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Abstract. Encryption came about as a result of the need for information security. 
Encryption serves the purpose of secure data storage. It needs to be transmitted, 
encrypted, then decrypted. Encryption is the process of transforming plain text 
into cipher text; decryption is the process of obtaining the original message from 
the cipher text. The key used for both encryption and decryption plays a major 
role in determining the strength of a cryptosystem. It is the key's size that com-
plicates brute-force attacks. But this also means that the algorithm becomes more 
sophisticated and demands more computing power. For encryption systems based 
on elliptic curves, we can employ smaller key sizes to ensure a comparable level 
of security and improved performance.  

This paper compares two modified versions of the Menezes-Vanstone elliptic 
curve cryptography with the original MVECC algorithm, applying them to dif-
ferent file sizes. Then the time complexity and execution time of the suggested 
algorithms against MVECC was calculated. The outcomes demonstrated that the 
suggested algorithms outperformed the original MVECC. 

Keywords: Cryptography, Elliptic Curves Cryptography, Discrete Logarithm 
Problem, Menezes-Vanstone. 

1 Introduction  

Sensitive data can be securely stored and transmitted over unsecured networks, like the 
Internet, with the use of encryption, guaranteeing that only the intended recipient can 
access and read it. For millennia, encryption has been integral to the protection of trans-
actions. The principal aim was to obscure communications so as to hinder intruders 
from gaining access to or changing sensitive data. Cryptography is the process of using 
encryption to change plaintext into ciphertext, which is unintelligible. Only an entity 
possessing the secret key may decrypt the ciphertext and return it to plaintext, making 
a cryptosystem secure. Since its inception, cryptographic algorithms has been divided 
into two kinds: symmetric and asymmetric cryptosystems. These terms specify whether 
the encryption and decryption processes within the cryptosystem utilize a single key or 
two keys [1]. 
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It is said that the Discrete Logarithm Problem (DLP), which is the hard direction of a 
one-way function, is also challenging. It has to do with groups' of mathematical struc-
ture, which can be defined as a binary operation on a nonempty set G in its most basic 
form. Let g be an element of group G if g is a generator for G. This means that repeat-
edly exponentiating g (g*g*g) will provide all of the elements of G. 

The group Z*p, a finite and multiplicative group of integers modulo a prime number p, 
is frequently used in cryptography. These components, provided the following condi-
tions are met, define the DLP. Find the unique integer j in the interval [1, p -1] such 
that h = gj mod p, given a generator g of the multiplicative group Z*p, a prime integer 
p, and another element ℎ ∈ 𝑍!∗  [1]. While it is feasible to compute the inverse exponen-
tiation operation on 𝑔#mod p, it is impractical to calculate 𝑔#mod p for large numbers. 
For this reason, the DLP is regarded as a hard issue and is a one-way function. 

The Elliptic Curve Discrete Logarithm Problem (ECDLP), which is predicated on the 
difficulties of computing discrete logs on elliptic curves over finite fields, provides the 
security of elliptic curve cryptography. EC-ElGamal, Elliptic Curve Digital Signature 
Algorithm (ECDSA), and Diffie-Hellman cryptosystems are based on the computa-
tional complexity of this specific mathematical problem. Analogously to the previously 
stated discrete logarithm problem, ECDLP is an analogue of DLP. Nonetheless, in the 
ECDLP, the group of points on an elliptic curve over a finite field assumes the function 
of the subgroup Z*p. Elliptic curve cryptosystems offer a higher strength-per-key bit 
than their non-analogue discrete logarithm counterparts because ECDLP has been 
found to be far tougher than the DLP.  

Elliptic Curve Cryptography (ECC) can provide the same level of security as Rivest-
Shamir-Adleman (RSA) with much smaller key sizes. For example, a 256-bit ECC key 
offers the same security as a 3072-bit RSA key [1]. This makes ECC more efficient and 
better suited for devices with limited resources, such as smartphones, Internet of Things 
(IoT) devices, and smart cards. The smaller key sizes in ECC lead to lower computa-
tional and storage requirements, which translates to lower power consumption. This is 
especially beneficial for battery-powered devices. Additionally, ECC allows the use of 
various elliptic curves, each with its own trade-offs in terms of performance, security, 
and implementation complexity. This flexibility enables the selection of the most suit-
able curve for a given application. 

2 ELLIPTIC CURVE CRYPTOSYSTEMS 

Over a long period, researchers have conducted substantial research on elliptic curves, 
producing a wealth of literature on the subject. Neal Koblitz and V. S. Miller both sub-
mitted suggestions in 1985 urging their use in public-key cryptosystems [2]. They did 
not develop a brand-new method of cryptography with elliptic curves over finite fields. 
Rather, they used elliptic curves to incorporate public-key algorithms that already ex-
isted, such Diffie-Hellman [3]. The capacity of elliptic curves to create groups by build-
ing "elements" and "rules of combining" makes them fascinating. These clusters pos-
sess enough common features to build cryptographic algorithms.  
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The ECDLP is defined as follows: given an elliptic curve 𝐸 defined over a finite field 
𝐹𝑝, a point 𝑃 ∈ 𝐸(𝐹!) of order 𝑛, and a point 𝑄 ∈ 𝑃, find the integer 𝐿 ∈ [0, 𝑝	– 	1] 
such that 𝑄	 = 	𝐿𝑃. The integer 𝐿 is called the discrete logarithm of 𝑄 to the base 𝑃, 
denoted by 𝐿	 = 	𝑙𝑜𝑔!	𝑄 [4].  

Moreover, elliptic curves over a finite field 𝐹! When 𝑝 is a prime number, the prime 
field, also known as 𝐹(!), is a finite field made up of integers in the interval [0, p - 1] 
[5]. This field uses modulo p for arithmetic operations, ensuring that all calculation 
outputs remain within the designated finite space. The formula (1) gives the value of 
an elliptic curve 𝐸(𝐹!) over a finite field 𝐹! as follows: 

 𝑌& 	= 	 𝑥' 	+ 	𝑎	𝑥	 + 	𝑏	𝑚𝑜𝑑	𝑝                                          (1) 

Where 𝑎, 𝑏	 ∈ 	𝐹𝑝 and the condition 4	𝑎' 	+ 	27	𝑏& 	≠ 	0 𝑚𝑜𝑑	𝑝, together with an 
imaginary point at infinity 𝑂, create a group on the curve [6]. When points within an 
elliptic curve group are added, another point on the same curve is produced. Similarly, 
all scalar multiples of the points in the group are also on that elliptic curve.  

There are three guidelines for adding points to an elliptic curve group [4]: 

• O + O = O  
• (x, y) + O = (x, y) 
• (x, y) + (x, -y) = O 

The elliptic curve includes all points (x, y) which satisfy the elliptic curve equation 
modulo p (where x and y are numbers in 𝐹!). 
Given ECDLP is an elliptic curve E, we consider a primitive element P and another 
element T. The DLP is finding the integer d, where 1 ≤ d ≤ #E, such that: 

P + P + …… + P = dP = T       d times, where #E denotes the number of points on 
the curve. 

In cryptosystems, d is the private key which is an integer, while the public key T is 
a point on the curve with coordinates 𝑇	 = 	 (𝑥( , 𝑦(). In contrast, in the case of the dis-
crete logarithm problem in 𝑍!∗ , both keys were integers [4]. 

2.1 Massey-Omura Elliptic Curve Cryptosystem 

Massey-Omura cryptosystem is a well-known public-key cryptosystem that relies on 
discrete logarithms over the finite field Fp. James Massey and Jim K. Omura proposed 
it in 1982 as a potential enhancement to Shamir's initial three-pass cryptographic tech-
nique, which was created “circa 1980” [3]. Massey–Omura cryptographic system is a 
secure three-pass protocol that enables Alice to transmit a message to Bob without the 
requirement of exchanging or distributing encryption key [3]. 

Now let's describe the Massey-Omura protocol by which Alice may send a secret 
message M to Bob. Let E be an elliptic curve defined over the finite field Fp, N = #E, 
and there exists a publicly known relationship between the plaintext and some points 
on the curve, so for any message M the point 𝑃) 	 ∈ 	𝐸  is known by all the parties, also 



40                                                      Libyan Journal of Informatics, Vol. 01, Issue 01, June 2024 

known as Plaintext Message (𝑃)). The embedding system 𝑀 → 𝑃), as well as p, E, 
and N, are publicly known. 

When Alice wants to communicate secretly with Bob, they proceed like this: 
Alice chooses a pair of secret numbers: encryption factor (eA) and a decryption fac-

tor (dA), such  that  eA * dA = 1 mod N. Similarly, Bob chooses a pair of secret num-
bers: (eB, dB) such that eB * dB = 1 mod N. 

Now, whenever Alice wanted to send a secret message-point PM ∈ E to Bob, she has 
to proceed as follows: 

─ Alice sends 𝑒*	𝑃)	𝑚𝑜𝑑	𝑝 to Bob, 
─ Bob sends 𝑒+	𝑒*	𝑃)𝑚𝑜𝑑	𝑝 to Alice, 
─ Alice sends 𝑑*	𝑒+	𝑒*	𝑃)	𝑚𝑜𝑑	𝑝 = 	𝑒+	𝑃) to Bob. 
─ Bob calculates 𝑑+	𝑒+	𝑃)value as 𝑃), allowing him to get the original message point. 

2.2 ElGamal Elliptic Curve Cryptosystem 

The ElGamal encryption scheme was proposed by Taher ElGamal in 1985 [4]. Similar 
to other public-key cryptosystems, the renowned ElGamal cryptosystem also has a di-
rect elliptic curve counterpart, which can be defined as follows: 

Alice and Bob openly select an elliptic curve E over 𝐹! and a randomly choose a 
base point 𝐺 ∈ 𝐸. Assume that they are also aware of the quantity of points on E, de-
noted as 𝑁	 = 	#𝐸. 

Assume that Bob desires to transmit a confidential communication, labeled as PM, to 
Alice: 

─ Alice chooses a random integer a, computes: aG mod p and sends it to Bob. 
─ Bob chooses at random an integer b and computes: bG mod p. 
─ Bob also computes: (PM + baG) mod p, then sends the secret encrypted message  

(bG, PM + baG) mod p  to Alice. 
─ Alice knows the secret key a. So, she can calculate (abG mod p) to recover is the 

original plaintext message PM using equation (2):  

 PM = (PM + a(bG)) – b(aG)) mod p (2) 

The eavesdropper can only get PM if she can solve the ECDLP. In other words, if 
she has access to the random integer ‘a’ from aG mod p or ‘b’ from bG mod p, she can 
obtain PM. But it is widely known, there is no an efficient way to find an elliptic curve's 
discrete logarithms. 

3 Menezes Vanstone Elliptic Curve Cryptography and variants 

The plaintext message units (PM) are situated on the elliptic curve E, and presently there 
is not a good technique for deterministically constructing these points on E, which is a 
major problem with the Massey-Omura and ElGamal elliptic curve cryptosystems [3]. 
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The method for encrypting a message into a point is the Menezes-Vanstone Elliptic 
Curve Cryptosystem (MVECC). Where the elliptic curve is used for "masking" in the 
MVECC version, and ordered pairs of (nonzero) components. They can be any kind of 
text; and not limited to being points on E. A more effective variation was developed by 
Menezes and Vanstone, where the elliptic curve is used for "masking" and the pairs of 
plaintext and ciphertext are allowed to be in F*p× F*p rather than being limited to the 
elliptic curve. Below is a description of this variety [7]. 

When Alice wants to send a message to Bob using his public key. Alice and Bob 
have to decide upon the following conventions, all of which are public: 

─ p: a large prime number (it must at least be larger than 3). 
─ Fp: a field of size p (p is prime, so it works like modular arithmetic). 
─ E: an elliptic curve over Fp of the form: y2 = x3 + ax + b ; (a, b in Fp). 
─ G: a randomly selected point on E (called the base point) that will generate subgroup. 

Each user chooses a random integer dX which will be his/her own secret key, then com-
putes and publishes the point aXG. 

Suppose Alice wishes to send the message M = (m1, m2) ∈ F*p× F*p  to Bob. 
Private key: Bob's private key is 𝑑, 	 ∈ 	#𝐸, which is randomly selected and only he 

knows it. 
Public Key: Bob's pubic key is calculated as 𝐵	 = 	𝑑,𝐺. Ideally, it is distributed to 

the world. 

Encryption: 

─ Alice has secret M, which she splits up into m1 and m2,  
─ calculates (k1, k2) = da B.  
─ calculates C0 = da G. Note that C0 is a point. 
─ calculates C1 = k1m1 mod p. 
─ calculates C2 = k2m2 mod p. 
─ Alice sends encrypted message C = (C0, C1, C2) to Bob. 

Decryption: 
Bob wants to get back the message M from C. 
Bob calculates dbC0 =  (k1, k2) retrieves message M by calculating 

─ m1 = C1k1-1 mod p. 
─ m2 = C2k2-1 mod p. 
─ M = (m1, m2). 

The MVECC is a significant cryptographic system that offers several advantages. 
Unlike other cryptosystems, it does not rely on addition operations within the elliptic 
curve group. Additionally, the message being encrypted does not need to be a point on 
the elliptic curve [7]. 
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The inverse of the two integers at the critical point must be calculated in order to 
comply with the MVECC. The plaintext, which is made up of pairs of two numbers, is 
the same length as the key and the ciphertext. The introduction of more MVECC types 
resulted from the use of this feature to improve the efficiency of the system. As Hameed 
et al. stated, the aforementioned variant permits the system to execute the inverse oper-
ation one time only [8]. 

Dawahdeh et al. [9] propose a technique to enhance the MVECC. This improvement 
significantly decreases the computational time required by the encryption and decryp-
tion procedures in comparison to the previous approach. Furthermore, the revised tech-
nique exclusively employs addition and subtraction operations that use the hexadecimal 
ASCII value to encode every alphabet character in the message prior to encryption. This 
enhances the security and complexity of the algorithm, making it more resilient against 
adversaries.  

Ghadi et al. [10] proposed a new technique, which is based on the Quadratic Bezier 
Curve (QBC), to enhance the security and efficiency of the Menezes-Vanstone Elliptic 
Curve Cryptosystem. Also, they utilized the ASCII value to convert the text into num-
bers. This was achieved by taking every two characters in the message, separating them 
as a point, and then converting them into ASCII. The proposed method succeeds in 
achieving a higher level of security than the original MVECC method used in all of the 
NIST tests. This modification enhanced the MVECC, resulting in a higher level of se-
curity. Additionally, the mathematical complexity of the proposed method surpasses 
that of the original method.  

The authors, Heru et al. [11] perform text, image, audio, and video data security using 
a modified version of the Menezes-Vanstone elliptic curve cryptography algorithm. 
The study implements MVECC in a program for text, image, audio, and video file en-
cryption and decryption, as well as providing performance data for both the program 
and alternative approaches for comparison. The result shows that the encrypted file size 
using the proposed method is smaller than in previous studies. 

A novel discrete chaotic map (2D-TFCDM) was introduced in [12], that incorporates a 
discrete fractional difference. In addition, the authors use the Menezes-Vanstone ellip-
tic curve cryptosystem to generate secret keys. Moreover, the bifurcation diagrams, the 
plot of the largest Lyapunov exponent, and the phase portraits illustrate the chaotic be-
haviors of the proposed map. The researchers used the discrete fractional map to en-
crypt color images. The findings unequivocally demonstrated the superiority of the pro-
posed algorithm over its counterparts.  

In the elliptic curve encryption and decryption schemes, the plaintext becomes twice as 
long as the ciphertext. This characteristic can be exploited to enhance the system's ef-
ficiency. Menezes and Vanstone introduce the ElGamal analog variant, this implemen-
tation of ECC eliminates the need to embed the plaintext unit in the curve, allowing it 
to be represented as any two integer numbers in the field and either accepted or rejected 
in the curve equation. This is the major difference from the other ECC, especially the 
ElGamal cryptosystem, since there is a need to embed the plaintext unit in the curve by 
representing the plaintext unit as an acceptable point in the curve. However, the key 
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point is: the Menezes-Vanstone algorithm must compute the inverses of each number. 
But the inverse operation is an expensive operation. 

4 PROPOSED METHODS OF MVECC 

Looking back at the encryption function in the Menezes-Vanstone algorithm, it com-
putes two numbers (i.e., the ciphertext unit) from four numbers; two of these are the 
plaintext, and the other two numbers are the key points. Furthermore, it needs four 
multiplication operations, two for each process (encryption and decryption) plus two 
inverse operations for decryption. 

In this paper, we aim to avoid the inverse operation, similar to the MVECC algorithm's 
attempt to circumvent the inverse operation in the decryption process. The following 
subsections will introduce the modifications made to MVECC algorithm that utilize 
addition and subtraction operations only for both encryption and decryption processes. 
This approach differs from the MVECC algorithm, which employs multiplication and 
inverse during encryption/decryption processes, resulting in longer processing times 
than subtraction and addition operations.  
 
Each of the proposed cryptographic methods that modify the MVECC algorithm will 
be presented in a separate subsection, showing the main functions of the method in-
cluding: key generation, encryption process, decryption process, a proof of correctness, 
and an example illustrating how it works. The two modified methods of encryption and 
decryption will use text files as input data. 

4.1 Algorithm I 

Suppose Alice wants to send a message M ∈ F*p× F*p  to Bob. 

Key generation: 
Bob's private key is: db ∈ #E, only he knows it,  and it is a randomly selected. 
Bob's Public key: is calculated as B = db G, ideally it is sent to Alice. 

Encryption: 
Alice has message M = (m1, m2) ∈ F*p× F*p , then she calculates: 
 (k1, k2) = da B. 

C0 = da G. Note that C0 is a point. 
C1 = k2m2 – m1 mod p. 
C2 = k1(m1 – k2 m2) + m1 mod p. 

Alice sends encrypted message C = (C0, C1, C2) to Bob. 

Decryption:  
Bob wants to get back the message M from C. 
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Bob finds  db C0 = (k1, k2), and retrieves message M by calculating: 
m1 = C2 + k1C1 mod p. 
m2 = (C1 + m1) k&-. mod p. 

Thus, Bob recovers the message M = (m1, m2). 

Proof: 
m1 = C2 + k1C1 mod p. 
      = k1(m1 – k2 m2) + m1 + k1 (k2m2 – m1) mod p. 
      = k1m1 – k1k2 m2 + m1 + k1k2m2 – k1m1  mod p = m1. 
m2 = (C1 + m1) k&-. mod p. 
      = (k2m2 – m1 + m1 ) k&-. mod p = m2. 

Example: 
Let E be an elliptic curve define over Fp where p = 3023 having a = 1, b = 2547 where 
(4𝑎' 	+ 	27𝑏&) mod p = 2027, and #E = 3083. Therefore, let G = (2237, 2480) be a 
point on E. 

Bob chooses a secret random integer db = 2313. Which is Bob's private key. And his 
public key is: 
B = db G = 2313 (2237, 2480) = (934, 29). 

Encryption: 
Alice represent the message M = (1111, 2222) = (m1, m2).  
Chooses a secret random integer  da = 1236 
Alice computes: 

(k1, k2) = da B = 1236 (934, 29) = (2537, 1632), 
C0 = da G = 1236 (2237, 2480) = (1713, 1709) 

C1 = k2m2 – m1 mod p  
      = (2222 * 1632) – 1111 mod 3023 = 616. 

C2 = k1(m1 – m2 k2 ) + m1 mod p  
      = 2537 (1111 + 2222 * 1632) + 1111 mod 3023 = 1210. 
Alice sends to Bob the following encrypted message 
C = ((1713, 1709), 616, 1210). 

Decryption:  
Bob computes: 

db C0 = 2313 (1713, 1709) = (2537, 1632) = (k1, k2), 
m1 = C2 + k1C1 mod p. 

       = 1210 + (2537 * 616) mod 3023 = 1111, 
m2 = (C1 + m1) k&-. mod p. 

       = (616 + 1111) 1869 mod 3023 = 2222.        
Thus, Bob recovers the message  M = (1111, 2222). 
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4.2 Algorithm II 

Suppose Alice wants to send a message M ∈ F*p× F*p  to Bob. 

Key generation: 
Bob's private key is: db ∈ #E, only he knows it,  and it is a randomly selected. 
Bob's Public key: is calculated as B = db G, ideally it is sent to Alice. 

Encryption: 
Alice has message M = (m1, m2) ∈ F*p× F*p, then she calculates: 

(k1, k2) = da B. 
C0  = da G. Note that C0 is a point. 
C1 = k1m1 – m2 mod p. 
C2 = k2(m2 – k1 m1) + m1 mod p. 

and sends encrypted message  C = (C0, C1, C2) to Bob. 

Decryption: 
Bob wants to get back the message M from C. 
Bob calculates  db C0 = (k1, k2), retrieves message M by calculating: 

m1 = C2 + k2C1 mod p. 
m2 = k1 m1 – C1 mod p. 

Thus, Bob recovers the message M = (m1, m2). 

Proof: 
m1 = C2 + k2C1 mod p. 
      = k2(m2 – k1 m1) + m1 + k2(k1 m1 – m2) mod p. 
      = k2m2 – k1k2 m1 + m1 + k1k2m1 – k2m2  mod p. 

m2 = k1 m1 – C1 mod p. 
      = (k1m1 – (k1m1 – m2)) mod p. 

Example: 
Consider an elliptic curve E defined over the finite field Fp, where p = 3023. The curve 
is given by the equation 𝑦	& =	𝑥' 	+ 	2547𝑥	 + 	1, and it satisfies the condition 
(4𝑎' 	+ 	27𝑏&) mod p = 2027. The number of points on the curve, denoted by #E, is 
equal to 3083. Let G = (2237, 2480) be a point on E. 
Bob chooses a secret random integer db = 2313. Which is Bob's private key. And his 
public key is: 
B = dbG = 2313 (2237, 2480) = (934, 29). 

Encryption: 
Alice represent the message M = (1111, 2222) = (m1, m2). Chooses a secret random 

integer  da = 1236 
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Alice computes: 
(k1, k2)  = da B = 1236 (934, 29) = (2537, 1632), 
C0 = da G = 1236 (2237, 2480) = (1713, 1709), 

C1 = k1m1 – m2 mod p. 
       = 1111 * 2537 – 2222 mod 3023 = 1972 

C2 = k2(m2 – k1 m1) + m1 mod p. 
      = 1632 (2222 + 1111 * 2537) + 1111 mod 3023 = 2302 
Alice transmits the encrypted communication to Bob. 

C = ((1713, 1709), 1972, 2302). 

Decryption:  
Bob computes: 

db C0 = 2313 (1713, 1709) = (2537, 1632) = (k1, k2), 
m1 = C2 + k2C1 mod p. 

       = 2302 + (1632 * 1972) mod 3023 = 1111, 
m2 = k1 m1 – C1 mod p. 

       = 1111 * 2537 – 1972 mod 3023 = 2222  
Thus, Bob recovers the message M = (1111, 2222). 

5 Computational Complexity 

The computational complexity of the encryption and decryption functions for the 
MVECC and the two proposed approaches is computed in this section. The O-notation 
has been shown to be quite valuable in assisting analysts in categorizing algorithms 
based on their performance and in directing algorithm designers towards finding the 
most optimal algorithms for significant problems.  

Adding two k-bit numbers needs k Binary calculations [8]. 

TIM(k-bit + k-bit) = O(s) For the input numbers of size n decimal digits 

TIM(n + n) = O(log n), where the number of bits of n equal log2n. The multiplication 
of two k-bits binary integers requires s2(s*s) bit operation, because it needs s addition 
operations. That is: 

TIM(k-bit * k-bit) = O(s2) For the input numbers of size n decimal digits  

TIM(n * n) = O(log n)2, the amount of bits in n is equal to the logarithm base 2 of n. 

5.1 Menezes-Vanstone Complexity 

Let the size of the input message unit be n, in MVECC method the encryption function 
is : 

C1 = k1m1 
C2 = k2m2  
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then: 
TIM(𝐶.) 	= 	O(log	k)& Binary calculations. 
TIM(𝐶&) = O(log	k)& Binary calculations. 
The decryption function is: 
m1 = 𝐶. ×	𝑘.

-. mod p. 
m2 = 𝐶& ×	𝑘&

-. mod p. 

then: 
TIM(𝑚.) 	= 	O(log	k)& 	+ 	TIM(𝑘.

	-.). 
TIM(𝑘.

	-.) 	= 	O(log	k)', by utilizing Euclid's approach to a greater degree. 
TIM(𝑚.) 	= 	O(log	k)& 	+ 	O(log	k)' Binary calculations. 
TIM(𝑚&) 	= 	O(log	k)& 	+ 	O(log	k)'  Binary calculations. 

5.2 Algorithm I Complexity 

Let the size of the input message unit be n, in algorithm I the encryption function is: 
𝐶. =	𝑘&𝑚&	–	𝑚.	mod	p. 
𝐶& =	𝑘.(𝑚.	–	𝑘&	𝑚&) 	+	𝑚.	mod	p.  

Then: 
TIM(𝐶.) = O(log	k)& 	+ 	O(log	k) Binary calculations. 
TIM(𝐶&) = O(	2	(log	k)&	) 	+ 	O(	2	log	k) Binary calculations. 

The decryption function is: 
𝑚. 	= 	𝐶& + 𝑘.𝐶.mod	p. 
𝑚& 	= 	 (𝐶. +	𝑚.)	𝑘&

	-.	mod	p. 

Then: 
TIM(𝑚.) = O(log	k) 	+ 	O(log	k)&  Binary calculations. 
TIM(𝑚&) = O(log	k) 	+ 	O(log	k)& 	+ 	O(log	k)'  Binary calculations. 

5.3 Algorithm II Complexity 

In Algorithm II the encryption function is defined for an input message unit of size k. 
C1 = k1m1 – m2 mod p. 
C2 = k2(m2 – k1 m1) + m1 mod p. 

Then: 
TIM(𝐶.) 	= 	O(log	k)& 	+ 	O(log	k)	Binary calculations. 
TIM(𝐶&) 	= 	O(	2	(log	k)&	) 	+ 	O(	2	log	k) Binary calculations. 
The decryption function is: 
𝑚. 	= 	𝐶& +	𝑘&𝐶.	mod	p. 
𝑚& 	= 	 𝑘.𝑚.	–	𝐶.	mod	p. 

Then: 
TIM(𝑚.) 	= 	O(log	k) 	+ 	O(log	k)&  Binary calculations. 
TIM(𝑚.) 	= 	O(log	k)& 	+ 	O(log	k) Binary calculations. 
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6 RESULTS AND DISCUSSION 

The next section will graphically depict the execution duration for each algorithm to 
assess its efficiency in encrypting and decrypting data. Processor speed and algorithm 
complexity influence the time each algorithm takes to complete its operation, as shown 
in Table 1 below. It is important to note that a shorter execution time indicates a more 
efficient algorithm.  
It is worth mentioning that the size of the decrypted file is equal to the size of the en-
crypted file. And in implementing the proposed algorithms Java programming language 
was used, and the tests performed on a laptop running Windows 7 Home Premium 64-
bit with an Intel CoreTM i3 2nd generation 2.4 GHz and 4 GB of RAM. 

Table 1. Execution times (milliseconds) for different text file sizes. 

6.1 Execution Time of Encryption 

Figure 1 displays the execution time needed for encryption, in milliseconds, by each of 
the proposed methods and the MVECC algorithm. Also, it displays the outcomes ob-
tained by measuring the duration of the encryption process for text files of different 
sizes. The execution times of the proposed algorithms are about comparable to that of 
the MVECC method. 

Algorithm Process 2KB 4KB 6KB 8KB 16KB 32KB 

MVECC 
Encrypt 0.66 1.13 1.67 1.98 3.51 6.75 
Decrypt 2.43 4.40 6.24 8.45 16.95 33.20 

Algorithm I 
Encrypt 0.90 1.30 1.80 2.18 4.14 7.75 
Decrypt 1.63 2.87 4.06 5.37 10.04 20.12 

Algorithm II 
Encrypt 0.90 1.30 1.80 2.18 4.14 7.75 
Decrypt 0.86 1.24 1.64 2.00 3.66 6.96 
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Fig. 1. The encryption execution time (in milliseconds). 

6.2 Execution Time of Decryption 

Figure 2 displays the execution time in milliseconds for the decryption process of the 
proposed methods and the MVECC algorithm. And it shows the outcomes obtained 
from measuring the time it takes to decode text files of different sizes. The results indi-
cate that algorithm I has a shorter execution time than the MVECC algorithm, whereas 
algorithm II has the shortest execution time among the other two algorithms. Therefore, 
algorithm II compared to the other algorithms has the highest performance. 

 
Fig. 2.   The decryption execution time (in milliseconds). 
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6.3 Execution Time of Encryption and Decryption 

Using the MVECC method and the two suggested techniques, the total execution times 
(encryption and decryption) in milliseconds was collected. The gathered results repre-
sent the total time required to encrypt and decrypt text files of different sizes are shown 
in Figure 3. In comparison to both algorithm I, II approach and the MVECC, the results 
show that algorithm II has the least execution time. 

 
Fig. 3.     Total time (in milliseconds) for encryption and decryption. 

7 CONCLUSION 

In this study, two modifications to the MVECC were suggested. Each demonstrating 
enhanced performance in terms of rapid data encryption and decryption. The goal was 
to reduce the amount of time needed by the encryption and decryption processes by 
optimizing the operations of algorithms. Algorithm I needs to calculate the inverse op-
eration only once for each decryption process, whereas algorithm II does not need to 
perform any inverse operations. However, the MVECC scheme needs to compute two 
inverses for each decryption process.  

With regard to the encryption and decryption execution times, algorithm II works 
better than the other two methods. In addition, algorithm II takes fewer Binary calcula-
tions than the other two algorithms in terms of time complexity.  

There are several promising directions for future research. We will apply modified 
algorithms to other types of data, such as grayscale images, color images, and videos, 
to show how well these modified algorithms can encrypt and decrypt these types of 
files. 
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