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Abstract. One innovative initiative that shows how technology and creativity can 
save lives in dire circumstances is the creation of a smart autonomous drone sys-
tem for Search and Rescue Operations in Libya. The Search and Rescue Drone 
is a ray of hope that is intended to transform rescue operations by offering a quick 
and effective way to find persons who are in trouble or who may have been lost 
in Libya's desert or Mediterranean Sea. A Raspberry Pi, a Pixhawk flying con-
troller, the Internet of Things, and a specially created mobile application are the 
main parts of the study. With the help of the YOLOv4-tiny module and object 
detection algorithms, the system enables users to operate the drone and quickly 
and accurately identify those who go missing in challenging environments. By 
fusing technological innovation with a humanitarian goal, this paper paves the 
way for future search and rescue operations in Libya and other nations to be safer 
and more responsive. The work shows how technology can save lives in dire 
circumstances and serves as an example of how it can benefit humanity at its 
most vulnerable times. 
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1 Introduction 

Drones, also known as un-manned aerial vehicles (UAVs), have the potential to revo-

lutionize search and rescue operations by providing rapid scanning of wide geographic 

areas from the air, enabling them to navigate rough terrain that would be dangerous for 

human rescuers. They also enhance visual capabilities and enable well-informed deci-

sion making by providing real-time aerial data. Drones are increasingly used in research 

and rescue operations due to advancements in technology and affordability. They en-

hance situational awareness, aid search and rescue efforts, and support disaster man-

agement. In Libya, a drone system with object detection capabilities is being developed 

to improve search and rescue operations. The drone uses a camera and computer vision 

algorithms to locate missing people in far-off places, and the Flutter app provides real-

time control and feedback for users. This system addresses the shortcomings of con-

ventional techniques and incorporates cutting-edge technologies into search and rescue 

operations. The drone system includes hardware components, a Pixhawk 2.4.8 flight 

controller, a Raspberry Pi 4 for seamless communication, a Flutter app with an intuitive 
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user interface, an object detection algorithm YOLOv4-tiny module, and autonomous 

features like GPS-based navigation. 

2 Related Work 

Due to its capacity to cover large areas quickly and efficiently and to provide real-time 

situational awareness, unmanned aerial vehicles (UAVs) are becoming more and more 

common in search and rescue missions. Drones with a variety of sensors, including 

cameras, thermal imaging devices, and LiDAR, can find and identify people or things 

in places that are hazardous or challenging for human rescuers to reach. In search and 

rescue missions, drones are typically used to search for missing persons or survivors in 

disaster areas and identify dangerous areas or obstacles that may pose a risk to rescue 

personnel. Drones can also help coordinate rescue efforts and offer real-time situational 

awareness to aid in decision-making [1, 2]. Drones can also deliver medical personnel, 

equipment, and supplies to inaccessible or remote locations. Martinez-Alpiste et al. [3] 

achieved human detection using convolutional neural networks on smartphones and 

drones. Yang et al. [4] employed reinforcement learning (RL) to accomplish path plan-

ning and combined unmanned aerial vehicles and unmanned surface vehicles for mari-

time search and rescue. To increase the effectiveness and dependability of search and 

rescue operations, Gotovac et al. [5] employed convolutional neural networks after us-

ing drones to pre-acquire aerial images. This method's inability to detect changes in real 

time is a problem. To increase the accuracy of target localization, YOLOv2 [6] and 

YOLOv3 [7] both use the Faster R-CNN concept and include an anchor box. As a result 

of algorithmic improvements, YOLOv4 has performed better with more evenly bal-

anced optimization of speed and accuracy. A drone dataset for human action recogni-

tion has been suggested in this work [8] that leads them to suggest a model for human 

detection and action recognition. When applied it to the standard Okutama dataset, the 

proposed model outperforms the most advanced detection methods reported in the lit-

erature by 7%. 

3 The Drone Design and Hardware Setup 

This study aims to develop an intelligent, autonomous drone system for search and 

rescue missions. It details the hardware configuration and architectural layout, integrat-

ing software and hardware for reliable operation and smooth communication. The re-

search includes setting software and firmware on flight controllers and Raspberry Pi 4, 

as well as assembling hardware components like frames, motors, sensors, and commu-

nication modules. 
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3.1 System Architecture 

Figure 1, depicts the high-level, or "all overview," architecture of the Drone system, 

which serves as the basis for its operation and includes the fusion of software and hard-

ware layers. The drone's architecture makes it possible for it to function independently, 

identify objects, and carry out search and rescue operations efficiently. 

 

Fig. 1. All overview architecture of Drone system. 

3.2 The Drone's final design 

A Drone system typically consists of various components, as shows in the Figure 2, 

that work together to perform search and rescue operations efficiently.  

 

Fig. 2. Main Hardware Components of the Drone. 
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The Drone architecture consists of several layers that work together to enable the func-

tionality of the drone. The Flight Controller Layer is responsible for controlling the 

drone's flight operations, utilizing the Pixhawk 2.1 flight controller and interfacing with 

various sensors to ensure accurate positioning and stabilization. The Communication 

Layer enables bidirectional data exchange between the drone and external entities using 

the MAVLink protocol. The Control Application and User Interface, developed using 

Flutter and Dart, serve as the user interface and control center, allowing users to plan 

missions, monitor flight status, and interact with the drone's functionalities. The Rasp-

berry Pi 4 Layer acts as the computational hub, performing tasks such as real-time ob-

ject detection using YOLOv4 and OpenCV algorithms. The object detection outputs 

are then transmitted back to the Raspberry Pi 4 through the communication layer. 

 
Fig. 3. The Drone System Schematic. 
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3.3 The Drone Schematic and Design 

The autonomous drone is built on the careful selection and integration of various hard-

ware components. The Power Distribution Board PDB distributes power to the battery 

and brushless motors, while the brushless motors propel the drone. The Flight Control-

ler manages the drone's flight operations and has several connections, including GPS 

for accurate positioning and navigation, where the flight controller's GPS module ena-

bles autonomous navigation and positioning, allowing the drone to follow pre-defined 

waypoints and return to home. And if internet connectivity drops, it switches to a fail-

safe mode. a buzzer for sound notifications and alarms, an RC Receiver for manual 

control or telemetry data, a Raspberry Pi connected to the telemetry2 port for commu-

nication, and a camera for streaming video and object detection. The Raspberry Pi also 

provides Wi-Fi for communication between the Raspberry Pi and the mobile app. The 

system aims to provide and ensure a seamless blend of reliability, performance, and 

versatility. Figure 3, illustrates how various components are interconnected to form a 

cohesive system. 

Hardware Components of the Drone System 

As shown in the list below, the Drone System requires many electronic cards and 

hardware parts to perform object detection as shown in Table 1. 

Table 1. The Drone’s Hardware Components. 

Hardware 
Component Description 

Flight Con-
troller (Pix-
hawk). 

Flight Controller (Pixhawk): The Pixhawk 2.4.8 Flight Controller enhances 
autonomous drone flight control, enabling navigation, stabilization, com-
munication, and complex mission execution for search and rescue opera-
tions. It integrates sensors, processors, and algorithms, making it a valuable 
choice. its features are: 
The Pixhawk Flight Controller is a 32-bit ARM Cortex M4 core with FPU, 
168 MHz/256 KB RAM/2 MB Flash, and 32-bit failsafe co-processor. It 
features a MPU6000 accelerometer, ST Micro 16-bit gyroscope, ST Micro 
14-bit accelerometer/compass, and MEAS barometer. It is ideal for diode 
controllers with automatic failover and has 5x UART serial ports, 2 high-
power capable ports, Spektrum DSM/DSM2/DSM-X Satellite input, Futaba 
S.BUS input, PPM sum signal, RSSI input, I2C, SPI, 2x CAN, USB, and 
ADC inputs. 

Raspberry Pi 
4 with Cam-
era Module 
V2. 

The Raspberry Pi 4 Model B has improved memory, networking, multime-
dia capabilities, and CPU speed, making it a versatile and efficient compu-
tational core for the drone system. Its high-resolution image capacity, cou-
pled with the Broadcom BCM2711 quad-core processor, enables precise 
visual data analysis for search and rescue missions. The device also features 
IEEE 802.11ac wireless, Bluetooth 5.0, BLE, Gigabit Ethernet, 2 USB 3.0 
ports, and a micro-SD card slot. It also supports H.265, H264, OpenGL ES 
3.1, Vulkan 1.0, and PoE enabled. 
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S500 Quad-
copter Frame. 

The S500 quadcopter frame is the foundation of a smart autonomous drone 
system, supporting flight, navigation, and object detection. Its modular de-
sign allows easy hardware integration, serving as the central assembly point 
for motors, ESCs, flight controllers, and GPS modules. 

950kva 
Brushless 
Motors. 

The A2217 950kva brushless motors are essential for generating thrust in 
the drone, converting electrical energy into mechanical rotational force. 
They are securely mounted to the quadcopter frame, collaborating with the 
flight controller to achieve desired flight behavior and enable various ma-
neuvering directions. 

40A 2-6S 
ESC with 
3.5mm Ba-
nana Con-
nector. 

The 40A 2-6S ESC in a drone regulates power for A2217 brushless motors, 
ensuring stable flight and responsive maneuvers. It's compatible with 2-6S 
LiPo batteries and integrates with the motor, interpreting flight controller 
signals for precise motor speed and thrust adjustment. 

1045 Propel-
ler 
CW&CCW. 

The 1045 propellers, designed as CW and CCW variants, convert rotational 
energy into thrust, allowing stable flight. Compatibility with A2217 motors 
and quadcopter frame balances lift generation and flight dynamics, with 
each propeller securely attached to a motor shaft. 

LiPo Battery 
3S 3300mAh. 

The 3S LiPo battery, with a 3300mAh capacity, powers the smart autono-
mous drone system, providing power to motors, flight controller, communi-
cation modules, and computational devices, ensuring optimal flight dura-
tions and securely mounting to the drone's frame. 

20cm & 30cm 
LiPo Battery 
Strap Belt. 

The 20cm and 30cm LiPo battery strap belts are essential accessories for 
securing the LiPo battery to the quadcopter frame, ensuring a secure attach-
ment during flight. They provide a reliable, adjustable method for fastening 
the battery, enhancing drone safety and stability. 

B6AC LiPo 
Battery Bal-
ance Charger. 

The B6AC LiPo Battery Balance Charger is a tool for recharging LiPo bat-
teries in smart autonomous drone systems, utilizing advanced charging al-
gorithms and balance charging technology to ensure battery safety and lon-
gevity. 

Power Distri-
bution Board 
(PDB). 

PDB is a component in distributing electrical power from the LiPo battery 
to electronic components in a smart autonomous drone system. 

Flysky FS-
I6X Remote 
Control 
Transmitter. 

This Remote-Control Transmitter is a component for manual drone control, 
offering precise navigation, commanding, and parameter adjustment, while 
maintaining ergonomic design and compatibility. 

X6B Re-
ceiver. 

The X6B Receiver, a component of the Flysky FS-I6X Remote Control 
Transmitter, enables real-time communication between the drone and the 
operator, ensuring accurate control and communication. 

M8N GPS 
Module. 

The M8N GPS Module is a crucial navigation component for autonomous 
drone systems, offering precise positioning, orientation, and global satellite-
based information, ensuring flight planning and search and rescue opera-
tions. 

Determining Quadcopter Orientation 

The integration of dynamic system controllers and an attitude sensor is crucial for 

achieving stability in a quadcopter. The attitude sensor helps ascertain the aircraft's ori-

entation with the earth's fixed inertial frame as shown in Figure 4 , Stabilizing the roll 

and pitch axes is essential for maintaining steady flying. The attitude sensor can also 
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ascertain the aircraft's roll and pitch attitudes. While stability is required for the yaw 

axis, little drift can be addressed using the radio controller without significant loss of 

control. Although absolute yaw orientation cannot be measured using only an accel-

erometer and gyroscope, tracking changes in yaw orientation is sufficient for quadcop-

ter control [9]. 

 
Fig. 4. Inertial Frame of a Free Body [9]. 

Proportional Integral and Derivative PID Control 
To stabilize the quadcopter at the desired attitude, a dynamic system controller, such 

as a proportional, integral, and derivative (PID) controller, is implemented as shown in 

the Figure 5. 

 
Fig. 5. Standard PID Block Diagram [10]. 

The PID control consists of several steps: calculating the error between the set point 

and measured state, determining the proportional term from: 

 ! = #!. %(') (1) 

based on the error e(t) multiplied by a proportional gain KP, calculating the integral 

term as: 

 ) = #" . ∫ %(')#
#!  (2) 
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by integrating the error over time multiplied by an integral gain KI, and calculating 

the derivative term from: 

 + = #$. %%# %(') (3) 

by taking the time derivative of the error multiplied by a derivative gain KD. These 

terms are then summed as: 

 ,(') = ! + ) + + (4) 

The quadcopter uses separate PID controllers for roll, pitch, and yaw axes to produce 

controller output. The PID controller controls the rotation rate about the yaw axis, as 

absolute measurement of the yaw axis is not possible using only accelerometer and 

gyroscope. Proper tuning is essential for achieving desired performance [10]. 

4 The Drone Software Development 

The software development phase is a crucial part of the Drone system, combining 

advanced algorithms and technologies to make the hardware functional. It involves cre-

ating, improving, and integrating software modules, providing insight into the chal-

lenges of turning concepts into workable code. This phase covers topics like software 

architecture, user interface design, and algorithm development, ensuring smooth inter-

action between the virtual world and physical hardware. The software development 

phase lays the groundwork for the system's operational excellence through careful cod-

ing, rigorous testing, and iterative refinement. 

4.1 Software Application Architecture 

The Drone system's Software Architecture is a blueprint for its organization and in-

teraction, defining data flow, control, and communication among modules. It uses Ac-

tivity Diagrams and Use Case Diagrams for visual clarity, in Figure 6, illustrating in-

teractions between external actors and the system's various use cases, providing a de-

tailed view of how components collaborate to fulfill specific functionalities. The user 

interacts with the drone application, while the Raspberry Pi handles image processing 

and communication, and the Flight Controller manages navigation and flight. 



Libyan Journal of Informatics, Vol. 01, Issue 01, June 2024                                                      9 

 
Fig. 6. The Drone’s Use Case Diagram 

The Raspberry Pi serves as a communication intermediary between the user and the 

flight controller, facilitating communication and object detection. as it is indicated in 

Figure 7. 

It receives and relays user commands, captures, and streams live video for monitoring, 

and analyzes images for detection. The flight controller maintains stable flight using 

PID control algorithms and is connected to a GPS module for navigation and location 

determination. It also allows flight mode switching, enabling transitions between au-

tonomous and manual control for testing purposes. The Raspberry Pi also has Wi-Fi 

communication capabilities, allowing data exchange with other components via com-

mands and coordinates. 

 
Fig. 7. Raspberry pi and Flight controller Use Case Diagram 
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Activity Diagrams for the Drone App 
Activity diagram models system, shown in Figure 8, flow from user interactions to 

application responses, highlighting execution order and decision points, providing a 

clear path from user interactions to application responses. 

 
Fig. 8. Application Activity Diagram 

Data and Control Plane for the Drone System 
The Drone system outlines the communication and control flow between the Rasp-

berry Pi and the flight controller in the system as shown in Figure 9. The main process 

sends commands and instructions to the Raspberry Pi, while the flight controller re-

ceives commands and performs tasks accordingly. The flight controller can change its 

mode to "guide mode" for autonomous flight operations. A pre-arm check ensures 

drone safety and readiness, then arming and initiating flight. 

Once the drone is armed and in flight, the script running on the Raspberry Pi executes 

its intended tasks, such as object detection using YOLO and tracking. The flight con-

troller reverts to its default mode after completing its tasks, ensuring the drone returns 

to normal operation. The flight controller then disarms the drone to end the flight. The 

Raspberry Pi initiates a process to request video streaming from the drone using the 

Real-Time Transport Protocol for Streaming (RTPS) protocol, allowing real-time video 
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feed to be displayed on the Raspberry Pi. The YOLO module is used for object detec-

tion in video processing, detecting missing persons in the video stream. Relevant infor-

mation is displayed on the screen for monitoring. 

 
Fig. 9. Data and control plane. 

User's Application 
A new drone can be added to the user's list by entering its IP address, username, 

password, and Raspberry Pi operating system. The drone can be instructed to take off, 

land, arm, and disarm by them. The program can stream live video. GPS data can also 

be used by the user to locate the drone. They can change the username and password 

for the drone, these steps show Figure 10. 

 
Fig. 10. User's application Use case Diagram. 
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4.2 Onboarding User Interfaces Application 

The onboarding screens guide users through creating an intelligent drone app. The 

menu panel, featuring Control, Monitor, Mapping, and Settings, offers easy access to 

important features. Control allows users to control the drone, monitor monitors it, Map-

ping allows routes planning, and Settings allows users to personalize their experience. 

The menu screen is designed for easy navigation. Figure 11 displays some of the screens 

for Drone’s application. 

 
Fig. 11. The Drone user interface. 

4.3 Object Detection Algorithm 

The drone system uses a Raspberry Pi 4 board model to train a model in aquatic or 

desert environments. YOLOv4, a cutting-edge object detection algorithm, is used, im-

proving on YOLOv3 with new techniques [11]. Known for its speed, accuracy, and 

Single-Pass Detection, YOLOv4 is ideal for real-time applications in smart autonomous 

drone systems. It can detect multiple object classes simultaneously in a single pass. 

Using YOLO models 
YOLO (You Only Look Once) models are highly efficient object detection systems, 

particularly in surveillance, robotics, and search and rescue operations. They process 

entire images or frames in a single pass, reducing computation time and memory re-

quirements. YOLO's design optimizes object detection, making them suitable for real-

time performance on embedded systems like Raspberry Pi. These models are compact 

and have fewer parameters than full-scale models, making them ideal for resource-con-
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strained devices. The primary objective is to detect human victims, maintaining algo-

rithm simplicity. The model's memory footprint must be under 4GB, aligning with em-

bedded GPUs suitable for drone usage [12]. 

Darknet is an open-source C and CUDA framework for implementing DNN models, 

supporting both CPU and GPU computing. It is used in an autonomous drone system 

to implement YOLOv4, a neural network, with its modular architecture ensuring 

smooth integration with YOLO models. Darknet optimizes Raspberry Pi 4 platform 

performance and ensures seamless operation. 

Average Precision and Mean Average Precision 
Average Precision (AP) is a crucial metric in object detection and recognition tasks, 

assessing a model's ability to accurately identify and localize objects within an image 

or frame. It provides a balanced assessment of precision and recall, essential for evalu-

ating bounding box predictions. AP is calculated by plotting a precision-recall curve 

based on varying confidence thresholds, dividing True Positives (TP) by False Positives 

(FP), and False Negatives (FN) to calculate the ratio of true positive detections (Recall) 

to the total number of actual positive objects being calculated (Precision). [14]. 

 .%/011 = &!
&!'() (5) 

 !2%/34356 = &!
&!'(! (6) 

 7! = ∫(.%/011)8(!2%/34356) (7) 

In tasks involving object detection and recognition, Mean Average Precision (mAP) is 

a statistic that takes precision and recall into consideration across several object classes. 

It requires to calculate precision and recall values for various confidence score thresh-

olds or Intersection over Union (IoU) thresholds. Then, to obtain mAP, the mean of 

these AP values is calculated. 

Intersection over Union 
Intersection over Union is a crucial metric in object detection and image segmenta-

tion, assessing the overlap between predicted and ground truth bounding boxes [15]. It 

determines the accuracy of detections and is calculated by: 

 )59 = *+,-	/0	12,+3-4
*+,-	/0	567/6  (8) 

IoU values range from 0 (no overlap) to 1 (perfect overlap), with thresholds like 0.5 

and 0.75 used for classification. Figure 12 shows Mean Average Precision for the pa-

per's work. 
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Fig. 12. Mean Average Precision for the Drone system. 

Frames Per Second (FPS) in Real-Time Object Detection 
FPS is a performance indicator in real-time object detection applications like auton-

omous vehicles and surveillance systems. It enables vehicles to quickly identify obsta-

cles, pedestrians, and other vehicles, ensuring road safety and facilitating timely deci-

sion-making. In surveillance systems, high FPS is essential for real-time monitoring, 

enabling faster response times and increased situational awareness. 

4.4 Object Detector Using YOLOv4 

The drone system uses YOLOv4, an optimized model for Raspberry Pi 4, to train an 

object detector. The dataset used is the "Multi-Person Re-Identification and Tracking 

Dataset in Top View," ideal for search and rescue missions. The dataset provides top-

view video footage and nearly 4000 manually labeled images in YOLO format, provid-

ing substantial diversity for the drone's mission scenarios. [13]. 

The YOLOv4-based object detection model undergoes a meticulous training pro-

cess, including data loading, preprocessing, initialization, hyperparameter tuning, loss 

function, training loop, validation, testing, checkpoint saving, and model optimization. 

Preprocessing steps include resizing images, augmentation, and formatting annotations 

in YOLO format. 

Training Process Results 
After a lengthy training phase, the object detection model showed promising perfor-

mance. At various intersection over union thresholds, the model's average precision for 

the "Person" class was high, hitting 96.54% at IoU 0.50, 96.49% at IoU 0.60, 96.40% 

at IoU 0.70, and 96.14% at IoU 0.80. The model consistently demonstrated great recall 

and precision across a range of scenarios, as evidenced by its impressive mean average 

precision of roughly 96.44% over varied IoU thresholds. With a total detection time of 

about 13 seconds, real-time or nearly real-time performance was shown. 
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The YOLOv4 model is initialized with weights pretrained on a large object detection 

dataset, which allows the model to leverage prior knowledge. Hyperparameters, such 

as learning rate, batch size, and number of training epochs, are fine-tuned to optimize 

training performance. A suitable loss function, often a combination of classification and 

localization losses, is employed to guide the model's learning. Figure 13 shows multiple 

object detection used in the Drone. 

 
Fig. 13. Person Detection by the Drone system. 

The model undergoes multiple training epochs, with periodic evaluation on the valida-

tion dataset to monitor progress and prevent over-fitting. Validation and testing metrics, 

such as mean average precision, are calculated to assess the model's performance. 

Checkpoints are saved at regular intervals during training, allowing for model restora-

tion and continued training if needed. 

5 Comparing the Drone to other studies 

There is a slight distinction between this study and the other two study papers as shown 

in Table 2. In the original study paper, communication is established via telemetry ra-

dio, but in this project, the flutter program and the Raspberry Pi 4 communicate via 

built-in Wi-Fi, that, simplifying design and reducing hardware requirements. Wi-Fi of-

fers a flexible platform for experimentation, allowing rapid prototyping and testing of 

various technologies. The choice to use Wi-Fi was driven by budget, Raspberry Pi's 

built-in capabilities, and its affordability, making it a cost-effective, accessible, and ro-

bust solution.  

The second difference was, although research paper ref. [4] employed YOLOv7 Algo-

rithms for Human-Detection, this study used a drone to detect objects using a Raspberry 

Pi 4 with Tiny-YOLO, which introduces certain processing capabilities in the Rasp-

berry Pi with the Tiny-YOLO neural network. 
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Table 2. Comparison between the Drone system study and similar papers. 

Function Paper ref. [3] Paper ref. [4] The Drone sys. 
Flight Controller N/A Pixhawk Pixhawk 4  
Companion Computer  Nvidia Jetson N/A Raspberry Pi  
Communication RF Telemetry RF Telemetry Wi-Fi  
Algorithm  N/A  YOLOv7  Tiny-YOLO  
Autonomy  YES  YES  YES  
Real-Time  YES  YES  YES  
GPS  N/A  YES  YES  
GCS  YES  YES  Flutter App.  

6 Cost of Hardware and Sensor 

The Drone system operates under specific budget limitations for various components 

and expenses. The drone frame, motors, ESC, and other accessories have an estimated 

combined cost of approximately $300. Similarly, the Raspberry Pi 4, camera module, 

and related accessories are restricted to a total cost of $110. Additionally, the flight 

controller, Pixhawk, and its accompanying accessories do not exceed $140. The overall 

hardware project budget is capped at $750, equivalent to 3,750LDY, encompassing all 

expenses associated with prototype components, testing, and labor. 

7 Conclusion 

The paper presents the design and development of an autonomous search and rescue 

drone system for Libya, aiming to transform rescue operations by quickly and effec-

tively locating missing persons. The system consists of a Raspberry Pi 4, a Pixhawk 

flight controller, the Internet of Things, and a custom mobile application developed 

using Flutter. The drone uses computer vision algorithms, specifically the YOLOv4-

tiny object detection model, to identify and locate missing persons in challenging envi-

ronments like the desert or sea. The system architecture includes the flight controller 

layer, communication layer, control application, and user interface. The hardware setup 

includes power distribution board, brushless motors, sensors, and communication mod-

ules. The paper demonstrates how technology can be integrated to enhance search and 

rescue operations and save lives in dire circumstances. The total budget for the hard-

ware project is limited to $750, or 3,750LDY, and includes all costs related to labor, 

testing, and prototype componentry. 

8 Future Work 

By employing RF Telemetry Communication, the drone system seeks to increase its 

autonomy and range while concentrating on flight endurance, precise navigation, and 

flying skills. Additionally, it will make real-time data analysis and decision-making 
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possible by fusing machine learning and artificial intelligence to react quickly to items 

that are spotted. 
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