The Libyan Journal of Science (An International Journal): Volume 23, 2020.

On the System of Nonlinear Elliptic Equations with Nonlocal Boundary Conditions of Neumnna Type

I. M. Hassan and S. A. Alhswem

Department of Mathematics, Faculty of Science, University of Tripoli, Tripoli, Libya.

Abstract

In this paper, we consider a system of nonlinear elliptic equations with nonlocal boundary conditions of Neumman type of the form:

 $\hat{v}^*\,\partial v^*u=h_{1,j}\Big(x,u\big(\emptyset(x)\big)\Big)\enspace,\quad \partial v^*u=\textstyle\sum_{k=1}^nf_j^k(x,u,\partial u)\;v_k\Big\}.$

Where, $\Omega \in \mathbb{R}^n$ is a bounded domain $\partial \Omega$ and belongs to c^1 ; v_k denote the coordinates of the normal unit vector on $\partial\Omega$. Also we prove the existence of a weak solution for such problem.

المستخلص

في هده الورقة سوفه يتم دراسة منظومة المعادلات الجزئية اللاخطيه من النوع ألناقصي مع شروط حديه غير محليه من نوع نويمان, والنطاق \varOmega والحدود $\vartheta\varOmega$ محدودة وتتتمي إلي الفضاء ${\mathcal{C}}^1$ كذلك سوف يتم برهان وجود الحل الضعيف لتلك المسالة .

Introduction

The aim of this paper is to prove the existence of a weak solution $u = (u_1, u_2, ..., u_M)$ of the system, $-\sum_{k=1}^{n} \partial_{k} [f_{j}^{k}(x, u, \partial u)] + f_{j}^{0}(x, u, \partial u) + g_{j}(x, u) = F_{j}$ $in \Omega, j = 1, 2, \dots, M$ (1)

With nonlinear and nonlocal boundary condition of the form:

$$
\partial v^* u = h_{1,j}\left(x, u(\phi(x))\right) \tag{2}
$$

Where, $\Omega \in \mathbb{R}^n$ is a bounded domain (may be unbounded),

 $\partial \Omega$ is bounded and belongs to c^1 ;

 $\partial v^* u = \sum_{k=1}^n f_j^k(x, u, \partial u) v_k$

 v_k denote the coordinates of the normal unit vector on $\partial\Omega$, \emptyset is c^1 ; _diffeomorphism in a neighbourhood of $\partial \Omega$ such that $\phi(\partial \Omega) \subset \overline{\Omega}$

Accepted for Publication: 21/12/2020

It must be emphasized that the term $g_i(x, u(x))$ no growth restriction is imposed but it is supposed that the function g_j satisfies the sign condition $g_j(x, \eta)$ $\eta \ge 0$. The existence of weak solution of (1) and (2) will be proved using the arguments of [1] . Weak solution of (1) and (2) will be defined as follows:

Assuming that u is a classical solution of (1) an (2) By Gauss-Ostrogrdsdskij theorem and by using an integral transformation we obtain:

$$
\sum_{j=1}^{M} \left\{ \sum_{k=1}^{n} f_{j}^{k} \int_{\Omega} (x, u, \partial_{1} u, ..., \partial_{n} u) \partial_{k} v_{j} + \int_{\Omega} f_{j}^{0} (x, u, \partial_{1} u, ..., \partial_{n} u) v_{j} \right\} \quad (3)
$$

$$
= \sum_{j=1}^{M} \int_{\Omega} F_{j} v_{j}
$$

For all $v_j \in C^1(\overline{\Omega})$, with compact support, $S = \emptyset(\partial \Omega) \subset \overline{\overline{\Omega}}$. Thus weak solution $u = (u_1, u_2, \ldots, u_M)$ of (1), (2) will be defined by (3).

The nonlocal linear boundary value problems have been considered e .g in [2] and [3] and the importance of nonlocal in [4]. In [4], [5] and [6] nonlocal and nonlinear value problems have been studied.

Existence Theorem

Let $X = W_p^1(\Omega) \times ... \times W_p^1(\Omega)$. Then X is a reflexive Banach Space. Denote by $X[']$ the dual space of X. The points $\zeta = (\zeta_0, \zeta_1, ..., \zeta_n) \in IR^{(n+1)M}$ $(\zeta_j = (\zeta_j^1, \zeta_j^2, ..., \zeta_j^M) \in IR^M)$ Will be written in the form $\zeta =$ (η, ζ) where $\eta = \zeta_0, \zeta = (\zeta_0, \zeta_1, ..., \zeta_n)$

Assume that:
$$
\overline{a}
$$

a) Function $f_j^k: \Omega \times IR^{(n+1)M} \to IR$ satisfies Carathodoary conditions, i.e. they are measurable for every fixed $\zeta \in IR^{(n+1)M}$ and continuous in ζ for a.e.x. Similarly function $h_{1,j}: s \times IR^M \rightarrow IR$ satisfies the Carathrodory conditions:

b) There exists a constant
$$
c_1 > 0
$$
 and a function $k_1 \,\epsilon L^q(\Omega)$
\n $\left(\frac{1}{p} + \frac{1}{q} = 1\right)$ such that $|f_j^k(x, \zeta)| \le c_1 |\zeta|^{p-1} + k_1(x), j = 1, 2, ..., M, k = 1, 2, ..., n$
\nc) For all (η, ζ) , (η, ζ) in $IR^{(n+1)M}$ with $\zeta \ne \zeta$
\n
$$
\sum_{j=1}^M \sum_{k=1}^n [f_j^k(x, \eta, \zeta) - f_j^k(x, \eta, \zeta)] (\zeta_j - \zeta_j) > 0
$$

\nd) There exists a constant c_2 and a function $k_2 \in L^1(\Omega)$ such that

$$
\sum_{j=1}^{m} \sum_{k=1}^{n} f_j^k(x, \zeta) \zeta_j^k \ge c_2 |\zeta|^p - k_2(x)
$$

e) For any s> 0, there exits $g_{j,s} \in L^1(\Omega)$ such that for a.e. $x \in \Omega$ $|g_j(x, \eta)| \le g_{j,s}(x)$ if $|\eta| \le s$, $j = 1, 2, ...$ M

f) For any $\eta \in IR^M$, and for a.e. $x \in \Omega$ $g_j(x, \eta)\eta_j \ge 0$, $j = 1, 2, ..., ..., M$

g) There exist a constants $c_3 > 0$ and a fixed function $k_3 \in L^{1+\frac{1}{\rho}}(s)$ such that $|h_{1,j}(x,\eta)| \leq c_3 |\eta|^\rho + k_3(x)$ where $0 < \rho < p - 1$

Results

The main result of this paper is the following:

Theorem: Suppose that the assumptions a-g are satisfied, then for any

$$
F_j \in \left(w_p^1(\Omega)\right)
$$

There exits $u \in X$ such that $g_j(x, u) \in L^1(\Omega)$, $g_j(x, u)u_j \in L^1(\Omega)$, and (3) holds for all $v \in X$ X Satisifying $v \in L^{\infty}(\Omega) \times ... \times L^{\infty}(\Omega)$, $v|_{\partial \Omega} \in L^{\infty}(\partial \Omega) \times ... \times L^{\infty}(\partial \Omega)$ and for $v = u$. For any $u, v \in X$ let $\langle T(u), v \rangle \coloneqq \sum_{j=1}^{M} \sum_{k=1}^{n} \int_{\Omega} f_j^k(x, u, \partial_1 u \dots, \partial_n u) \partial_k v_j +$ $+\sum_{j=1}^{M} \int_{\Omega} f_j^0(x, u, \partial_1 u, \dots, \partial_n u) v_j - \sum_{j=1}^{M} \int_{S} \widetilde{h_{1,j}}(x, u) v_j(\phi^{-1}(x)) d\sigma_x$ (4)

And for any $\mu > 0$ Let

$$
g_j^{\mu}(x,\eta) := \begin{cases} g_{j(x,\eta)} & \text{if } |\eta| \leq \mu, |x| \leq \mu \\ \mu g_{j(x,\eta)} & \text{if } |\eta| > \mu, |x| < \mu \\ g_{j(x,\eta)} & \text{if } |x| < \mu \end{cases} \tag{5}
$$

Define operator S_{μ} by

$$
\langle S_{\mu}(u), u \rangle := \sum_{j=1}^{M} \int_{\Omega} g_j^{\mu}(x, u) v_j \tag{6}
$$

Lemma 1. Operator $T + S_{\mu} : X \to X'$ is pseudomontate

Proof $T + S_{\mu}$ is bounded. Opertator T can be written in the form $T = A - B$. Where

$$
\langle A(u), v \rangle := \sum_{j=1}^{M} \sum_{k=1}^{n} \int_{\Omega} f_j^k(x, u, \partial_1 u \dots, \partial_n u) \partial_k v_j
$$

+
$$
\sum_{j=1}^{M} \int_{\Omega} f_j^0(x, u, \partial_1 u \dots, \partial_n u) v_j
$$

$$
\langle B(u),v\rangle\coloneqq\sum_{j=1}^M\int_{\mathcal{S}}\widetilde{h_{1,S}}(x,u)v_j\big(\emptyset^{-1}(x)\big)d\sigma_x
$$

From conditions a-d it follows that A is pseudomonotone (See [7]). Let (u^l) be a sequence such that (u^l) converge weakly to u in X and $\lim_{l\to\infty} sup < T(u^l)$, $u^l - u > \leq 0$

Now, by compact of trace operator there exists a subsequence (\tilde{u}_j^l) of (u_j^l) such that for all j, $\tilde{u}_j^l|_{\partial\Omega}$ converges to u_j in $L\tilde{q}(\partial\Omega)$. Where $\tilde{q} := \rho + 1 < p$ be condition (g) and holder is inequality

$$
\left(\frac{1}{p} + \frac{1}{q} = 1\right)
$$
 we have:

$$
\limsup \langle B(u^l), u^l - u \rangle = 0
$$
 (7)

And (7) is true also for the original sequrnce. Further we prove that

$$
B(u^1) \stackrel{w}{\rightarrow} B(u) \text{ in } X'
$$

i.e. For All $v \in X$ (B(u¹), v) $\stackrel{w}{\rightarrow}$ (B(u), v) (8)

We have seen that there exists a subsequence (\tilde{u}^l) of (u^l) such that $(\tilde{u}^l)|_{\partial\Omega}$ converges to u in $L\tilde{q}(\partial\Omega)$ and converges a.e. to u on $\partial\Omega$. Thus \rightarrow

$$
h_{1,j}(x, \tilde{u}^l) \to h_{1,j}(x, u) \text{ a.e. on } \partial \Omega
$$

By Holder s inequality and the bounded of the trace operator we have:

$$
\lim_{l \to \infty} \langle B(\tilde{u}^l), v \rangle = \langle B(u), v \rangle
$$

and it is easy to show that the above equality is true also for the original sequence i.e. we have proved (8), thus we have shown that if (u^l) converges weakly to u in X and

$$
\limsup < T(u^l), u^l - u > \le 0, \limsup < B(u^l), u^l - u > = 0 \tag{9}
$$

and

$$
B(u^l) \stackrel{w^l}{\rightarrow} B(u) \quad \text{in} \quad X'.
$$
 (10)

From (9) it follows that

$$
\lim_{l \to \infty} \sup < A(u^l) \, , u^l - u > \leq 0
$$

Since *A* is pseudomonotone thus

$$
A(u^l) \stackrel{\prime\prime}{\rightarrow} A(u) \quad \text{in} \quad X'.
$$

And by (10)

$$
T(u^l) \stackrel{\nu}{\rightarrow} T(u) \quad \text{in} \quad X'.
$$

 \overline{u}

By (9) we have

$$
\lim_{l\to\infty} =0
$$

So we have shown that T is pseudomonotone operator. Now we shall prove that $T + S_{\mu}$ is pseudomonotone operator.

Suppose that (u^l) converges weakly to u in X and $(T + S_\mu)(u^l)$ converges weakly in X['] to some y and

$$
\lim_{l \to \infty} < (T + S_{\mu})(u^l) \, u^l - u > \leq 0 \tag{11}
$$

Then by compact imbedding theorems there is a subsequence (u^{l_k}) of (u^l) such that $\lim_{l \to \infty} (u^{l_k}) = u$ a.e. in Ω and on $\partial \Omega$

Thus by Lebesguge's dominated convergence theorem

$$
\lim_{l \to \infty} ||g_j^{\mu}(x, u^{l_k}) - g_j^{\mu}(x, u)||_{L^q(\Omega)} = 0
$$
\n(12)

Where q defined by $\frac{1}{p} + \frac{1}{q}$ $\frac{1}{q} = 1$, hence $\lim_{l \to \infty} S_{\mu}(u^{l_k}) = S_{\mu}(u)$ weakly in X' and so $\lim_{k \to \infty} T(u^{l_k}) = y - S_{\mu}$ (13)

weakly in $X[']$ from equality

$$
\langle S_{\mu}(u^{l_{k}}), u^{l} - u \rangle = \langle S_{\mu}(u^{l_{k}}) - S_{\mu}(u), u^{l_{k}} - u \rangle + \langle S_{\mu}(u), u^{l_{k}} - u \rangle
$$

It follows that

$$
\lim_{l\to\infty} S_{\mu}(u^{l_k}), u^{l_k}-u>=0
$$

Because by (12), the boundness of $||u^{l_k} - u||_X$, $||u_j^{l_k} - u_j||_{L^p(\partial \Omega)}$

And Holder is inequality

$$
\lim_{k \to \infty} \langle S_{\mu}(u^{l_k}) - S_{\mu}(u), u^{l_k} - u \rangle = 0 \tag{14}
$$

It is not difficult to show that (14), is true also for the original sequence. Therefore (11) implies.

$$
\lim_{k \to \infty} \sup \ \langle T(u^{l_k}), u^l - u \rangle \le 0 \tag{15}
$$

Since T is pseudomonotone thus by (13) and (15) we have $T(u) = y - S_{\mu}(u)$, i. e. $(T + S_{\mu})(u) = y$

Further

$$
\lim_{k \to \infty} = 0
$$

\n
$$
\lim_{l \to \infty} <(T + S_{\mu})(u^l), u^l - u > = 0
$$

Which completes the proof of lemma 1.

lemma 2. Assume that (u^l) converges weakly to u in X and there is a constant c such that

$$
\sum_{j=1}^{M} \int_{\Omega} g_j(x, u^l) u_j \le c \tag{16}
$$

Then

 $g_{j(x,u)} \in L^{1}(\Omega)$, $g_{j(x,u)u_{j}} \in L^{1}(\Omega)$ For all $j = 1, 2, ..., M$ and there is a subsequence (u^{l_k}) of (u^l) such that $\lim_{k \to \infty} u^{l_k} = u$ a.e in in Ω and on $\partial \Omega$ (17)

Further

$$
\lim_{k \to \infty} \left\| g_j^{l_k}(x, u^{l_k}) - g_j(x, u) \right\|_{L^1(\Omega)} = 0
$$

Proof: As (u_j) converges weakly to u in X thus (by compact imbedding theorems) there exist a subsequence (u^{l_k}) of (u^l) such that

$$
\lim_{k \to \infty} g^{l_k}(x, u^{l_k}) = g_j(x, u) \text{ for a.e } X \in \Omega
$$
 (18)

By (3) , (4) and (16) and assumption (f) we have $\int_{\Omega} [g_j(x, u^l)] u_j^l \leq c$ (19)

Therefore by (18) and (f) implies $g_j(x, u) u_j \in L^1(\Omega)$

For any $\delta > 0$ we have e) $\left| g_j^{l_k}(x, u^{l_k}) \right| \leq g_j \delta^{-1}(x) + \delta \left| g_j^{l_k}(x, u^{l_k}) u_j^{l_k} \right|$

This implies that $\frac{d_k(x, u^{l_k})}{dt}$ is equiintegrable because by (19) $\int_{E} \left| g_j^{l_k}(x, u^{l_k}) \right| dx < \varepsilon$ if the measure of E is sufficiently small and there is a set $A\varepsilon$ of finite measure with

$$
\int_{\Omega\times A_{\varepsilon}}\Big|\mathsf{g}_{j}^{l_{k}}(x,u^{l_{k}})\Big|<\varepsilon
$$

By compact imbedding theorem and (18) this shows that

$$
g_j^{l_k}(x, u^{l_k}) \to g_j(x, u) \text{ in } L^1(\Omega)
$$

lemma 3 : The Operator

$$
T + S_{\mu}: X \to X'
$$
 is coercive, i.e.

$$
\lim_{\|u\|\to\infty} \frac{\langle (T+S_{\mu})(u), u \rangle}{\|u\|} = +\infty
$$

Proof : From f) we have $\int_{\Omega} g_j^{\mu}(x, u) u_j \ge 0$

This implies that $\langle S_\mu(u), u \rangle \ge 0$ Thus by using conditions d) and g) we obtain

$$
\frac{\langle (T+s_{\mu})(u),u \rangle}{\|u\|} = \frac{\langle T(u),u \rangle}{\|u\|} + \frac{\langle S_{\mu}(u),u \rangle}{\|u\|} \ge \frac{\langle (T)(u),u \rangle}{\|u\|} \ge C_2 \|u\|_X^{\rho} - C_3 - C_4 \|u\|_X^{\rho+1} - C_5 \tag{20}
$$

 $(C_2 - C_5$ are positive constants). From this inequality and $\rho + 1 < p$ it follows that $T + S_{\mu}$ is coercive.

Proof of the Theorem

By Lemmas 1 and 2 the operator $T + S_j$ is bounded pseudomonotone and coercive of all $j =$ $1,2,3, \ldots$, by using the well known theory of pseudo monotone operator in reflexive Banach space we obtain that for any $F \in X$ there exists $u^l \in X$ such that

$$
(T + S_j)(u^l) = F \tag{21}
$$

By (20) where the constants are independent of (μ) and (21) the sequence (u^l) is bounded in X['] . T is a bounded operator and so the sequence $T(u^{l_k})$ is bounded in X[']. Since X is a reflexive Banach space, thus there exists a subsequence (u^{l_k}) of (u^l) and $u \in X$ such that $lim(u^{l_k}) = u$ weakly in X, (22)

and $\lim_{k \to \infty} T(u^{l_k}) = y$ weakly in X' For some $y = X'$. Combining the definition of S_j with (21) we find that

$$
\sum_{j=1}^{M} \int_{\Omega} g_j^{l_k}(x, u^{l_k}) u_j^{l_k} = \langle S_{l_k}(u^{l_k}), u^{l_k} \rangle = \langle F, u^{l_k} \rangle \leq ||F||_{X} ||u^{l_k}||_{X} < C
$$

Thus by lemma 2.

$$
g_j(x, u) u_j \in L^1(\Omega), g_j(x, u) \in L^1(\Omega)
$$
 (23)

And there is a subsequence (u^{l_k}) of (u^l) such that

$$
\lim_{k \to \infty} (u^{l_k}) = u \text{ a.e. in } \Omega \text{ and on } \partial \Omega \text{ and also}
$$
\n
$$
\lim_{k \to \infty} \left\| g_j^{l_k}(x, u^{l_k}) - g_j(x, u) \right\|_{L^1(\Omega)} = 0
$$
\n(25)

According to (21) for any
$$
v \in X
$$

\n
$$
\langle (T + S_{l_k})(u^{l_k}), v \rangle = \langle F, v \rangle
$$
\n(26)

Consider in (26) a fixed $v \in X$ such that $v \in L^{\infty}(\Omega) \times ... \times L^{\infty}(\Omega)$ And $v|_{\partial\Omega} \in L^{\infty}(\partial\Omega) \times ... \times L^{\infty}(\partial\Omega)$ By using (23)-(26) we obtain as $k \to \infty$ $\langle y, v \rangle + \sum_{j=1}^{M} \int_{\Omega} g_j(x, u) v_j = \langle F, v \rangle$ (27)

Now, we shall prove that $y = T(u)$. Since T is pseudomonotone, thus, it is sufficient to prove the following inequalities

$$
\lim_{k\to\infty}\sup\left\langle T(u^{l_k}),u^{l_k}-u\right\rangle\leq 0^{[n]}
$$

We have,

$$
\langle T(u^{l_k}), u^{l_k}-u\rangle = \langle T(u^{l_k}), u^{l_k}\rangle - \langle T(u^{l_k}), u\rangle
$$

And so by (22) and (26) and lemma 2.

$$
\lim_{k \to \infty} \sup \langle T(u^{l_k}), u^{l_k} - u \rangle = \lim_{k \to \infty} \sup \langle F - S^{l_k}(u^{l_k}), u^{l_k} \rangle - \langle y, v \rangle -
$$
\n
$$
-\leq \langle F - y, v \rangle - \lim_{k \to \infty} \inf \left\{ \sum_{j=1}^M \int_{\Omega} g^{l_k} \left(x, u^{l_k} \right) v_j^{l_k} \right\} \leq \langle F - y, v \rangle - \sum_{j=1}^M \int_{\Omega} g_j(x, u) v_j
$$

Thus for any $w \in X \cap L^{\infty}(\Omega) \times ... \times L^{\infty}(\Omega)$ by using (27). $\lim_{k \to \infty} \sup \langle T(u^{l_k}), u^{l_k} - u \rangle \le \langle F - y, u - w \rangle + \sum_{j=1}^{M} \int_{\Omega} [g_j(x, u)] (u_j - u)$ (28)

Since $\partial\Omega$ is bounded and continuously differentiable, thus $u \in X$ can be extended to IR^n such that we obtain

$$
u \in w_p^1(IR^n) \times \ldots \times w_p^1(IR^n)
$$

We know that there is a subsequence (w_j^l) and $w_p^1(IR^n) \cap L^\infty(IR^n)$ such that (w_j^l) in $w_p^1(IR^n) \cap L^\infty(IR^n)$ and such that (w_j^l) converges to (u_j) in $w_p^1(IR^n)$ and a.e. in IR^n , further $|w_j^l(x)| \le |u_j(x)|$ a. e. in IR, j = 1,2, ..., M (29)

consequently for the trace of (w_j^l) and u_j . (29) $|w_j^l|_{\partial\Omega}(x)| \le |u_j|_{\partial\Omega}(x)$ in a.e. $X \in \partial\Omega$. (30)

By (29) and (30) we have $\langle F - y, u - w^l \rangle \to 0$ and $\int_{\Omega} [g_j(x, u)] w_j^l dx \to \int_{\Omega} [g_j(x, u)] u_j dx$

Since $g(x, u)u \in L^1(\Omega)$. Thus from (28) it follows that $\lim_{k\to\infty} \sup \langle T(u^{l_k}), u^{l_k} - u \rangle \leq 0$

Consequently, $y = T(u)$, and $\langle T(u^{l_k}), u^{l_k}-u\rangle\to 0$

Therefore from (27) we obtain (3) for all $v \in w_p^1(\Omega) \times ... \times w_p^1(\Omega)$ with $v \in L^{\infty}(\Omega) \times ... \times L^{\infty}(\Omega)$ $v|_{\partial\Omega} \in L^{\infty}(\partial\Omega) \times ... \times L^{\infty}(\partial\Omega)$.

References

- [1] Webb, J. R. L. (1980). Boundary value problems for strongly nonlinear elliptic equations. Journal London Mathematical Society, **2**(1), 123-132.
- [2] Carleman, T. (1932). Sur la théorie des équations intégrales et ses applications. Füssli. Verh. Internat. Math-Kongr., Ziirich, Bd.1, 138- 15 IZb 16,400.
- [3] Skubachcvskij, A. L. (1968). Elliptic problems with nonlocal conditions near the boundary. Mat. Sb, **129**(171), 293-316 (Russian).
- [4] Samarskii, A. A. (1980). Some problems of the theory of differential equations. Differentsial'nye Uravneniya, **16**(11), 1925-1935 (Russian).
- [5] Simon, L. (1990). Nonlinear elliptic differential equations with nonlocal boundary conditions. Acta Mathematica Hungarica, **56**(3-4), 343-352.
- [6] Simon, L. (1990). Strongly nonlinear elliptic variational inequalities with nonlocal boundary conditions, differential equation, qualitative theory. Colloquia Math Soc., North-Holland, Amsterdam, **53**, 605-650.