

The Libyan Journal of Science University of Tripoli Vol. 27, No. 02 https://uot.ed.ly/journals/index.php/ljs

Metrizable Spaces with finitely many non–isolated points

Mabruk Ali Sola

 Department of Mathematics, Faculty of Science, University of Tripoli

 Corresponding author: Mabruk_sola@yahoo.com

ARTICLE I N F O A B S T R A C T

Article history:

Received 03/01/2024 Received in revised form 20/07/2024 Accepted 27/072024

A point x in a topological space X is said to be non-isolated if every open set containing x contains another point different from x. The aim of this paper is to give the topology and the metric induces that topology of a metrizable space X with exactly n non-isolated points .

 $_$, and the set of th

Keywords: metrizable space; isolated point; free filter

1. Preliminaries

Let *X* be an infinite set, a space (X, τ) is said to be metrizable if there exists a metric induces the topology τ [1, 6]. A collection \Im of non- empty subsets of *X* is called a filter if F_1 , $F_2 \in \mathfrak{F}$ then $F_1 \cap$ $F_2 \in \Im$ and if $G \in \Im$, $G \subseteq X$ with $F \subseteq G$, then $G \in \Im$. A filter \Im in X is said to be free filter if $\bigcap_{F \in \Im} F = \varphi$. A subcollection \wp of *a* filter $\mathfrak I$ is said to a filter base for \Im if for any *F*∈ \Im there exists *C*∈ \wp with *C* \subseteq *F*[1, 6] . A collection of subsets of a topological space *X* is said to be locally finite collection if every point in *X* has an open neighborhood which intersects only finitely many members of \mathfrak{B} . A collection \mathfrak{B} of subsets of a topological space *X* is said to be σ –

locally finite if $\mathfrak{B} = \bigcup_{n=1}^{\infty} \mathfrak{B}_n$ where \mathfrak{B}_n is locally finite collection for all [6]. A point x of a topological space X is called an isolated point if $\{x\}$ is open The following Theorems are respectively Theorem 2.2 and Theorem 2.1 of $[5]$.

1.1. Theorem

A space (X, τ) is metrizable space with only one non- isolated point x_1 iff

 $\tau = p(X\{x_1\}) \cup \{\{x_1\}\}\cup F: F \in \mathcal{F}$, where $\mathcal T$ is a free filter in $X\{x_1\}$ with countable filter base $\{C_n\}_{n=1}^{\infty}$ with $C_{n+1} \subsetneq C_n$ for all $n, \bigcap_{n=1}^{\infty} C_n =$ φ , and $P(X|\{x_1\})$ is the power set of $X \setminus \{x_1\}.$

1.2. Theorem

If X, τ , x_1 , $\{C\}_{n=1}^{\infty}$ and \Im are as in the above

Theorem , then the function

$$
d(x, y):
$$
\n
$$
\begin{cases}\n1 & \text{if } x, y \in X \setminus \{x_1\}, x \neq y, x \notin C_1 \text{ or } y \notin C_1 \\
1 & \text{if } \left(x = x_1, y \notin C_1\right) \text{ or } \left(y = x_1, x \notin C_1\right) \\
\frac{1}{n+1} & \text{if } \left(x = x_1, y \in C_1\right) \text{ or } \left(y = x_1, x \in C_1\right) \\
\text{where } n \text{ is the least integer such that } x \notin C_n \text{ (resp. } y \notin C_n\text{)}\n\end{cases}
$$
\n
$$
max \left\{\frac{1}{n+1}, \frac{1}{m+1}\right\} \quad if \quad x \neq y; \quad x, y \in C_1
$$
\n
$$
and \quad m, m \text{ are respectively the least}
$$
\n
$$
intergers \text{ such that } x \notin C_n, y \notin C_m
$$
\n
$$
if \quad x \neq y, \quad x, y \in X
$$

is a metric and induces the topology *τ*.

1.3. Remark

Since the metric defined above is depending on the collection $\{C_n\}_{n=1}^{\infty}$ and the point x_1 we call it the metric associated with the collection ${C_n}_{n=1}^{\infty}$ and the point x_1 . The aim of this paper is to give the topology and a matric induces that topology for any metrizable space with finitely many of non-isolated points.

2. The Main results

First, we start with metrizable spaces with only two non-isolated points.

2.1. Theorem

$$
if x_1, x_2 \in X, x_1 \neq x_2
$$

\n
$$
\tau = P(X \setminus \{x_1, x_2\}) \cup \{\{x_1\} \cup F: F \in \mathfrak{I}_1\} \cup \{\{x_2\} \cup G: G \in \mathfrak{I}_2\} \cup
$$

 $\{\{x_1, x_2\} \cup F : F \in \mathfrak{S}_1\} \cup \{\{x_1, x_2\} \cup G : G \in \mathfrak{S}_2\}.$

Where \mathfrak{I}_1 , \mathfrak{I}_2 are free filters in $X \setminus \{x_1, x_2\}$ with filter base $\{C_{1n}\}_{n=1}^{\infty}$,

 ${C_{2n}}_{n=1}^{\infty}$ Respectively such

that $C_{1n+1} \subsetneq C_{1n}$, $C_{2n+1} \subsetneq C_{2n}$ for all *n*,

 $\bigcap_{n=1}^{\infty} C_{1n} = \bigcap_{n=1}^{\infty} C_{2n} = \varphi$ and $C_{11} \cap$

 $C_{21} = \varphi$, then τ is a topology on X

and (X, τ) is a T_4 space.

Proof

It is routine to check that τ is a topology on *X*. To show that (X, τ) is

Hausdorff, let $x, y \in X$ with $x \neq y$. If $x = x_1, y \in X \setminus Y$ ${x_1, x_2}$

then since \mathfrak{I}_1 is a free filter so there exists $F \in \mathfrak{I}_1$ such that $y \notin F$ and so $\{x_1\} \cup F$, $\{y\}$ are disjoint open sets containing x_1 and y respectively. Similarly if $x = x_2$, $y \in$ $X \setminus \{x_1, x_2\}.$ if $x = x_1, \quad y = x_2$, then $\{x_1\}$ U C_{11} , $\{x_2\}$ ∪ C_{21} are disjoint open sets containing x_1 and x_2 respectively. So (X, τ) is Hausdorff. To show (X, τ) is normal space let A , B be any two disjoint closed sets, then we have the following cases :

- i) If A, B are subsets of $X \setminus \{x_1, x_2\}$, then A, B are both open .
- ii) If $x_1 \in A$, $x_2 \notin B$ then *B* is an open set and so *B* and B^c are two disjoint open sets containing *B* and *A* respectively . Similarly if $x_2 \in B$, $x_1 \notin A$
- iii) If $x_1 \in A$, $x_2 \in B$ then A^C is an open set. $B \subset$ A^C So for any $b \in B$ there exists with $F_b \in \mathfrak{I}$. with ${b} \cup F_b \subset A^C$. Let = $\cup_{b \in B} {b} \cup F_b$, then K is a clopen (closed and open) set containing *B* and disjoint from A. Therefore (X, τ) is a normal space and hence (X, τ) is a T_4 space.

The following Theorem is Theorem 23.9 of [6].

2.2. Theorem

A topological space X is metrizable if and only if it is *T*₃ and has a σ – locally finite base.

2.3. Theorem

If τ as in Theorem 2.1, then (X, τ) is a metrizable space .

Proof:

Let ${C_{1n}}_{n=1}^{\infty}$, ${C_{2n}}_{n=1}^{\infty}$ be as in Theorem 2.1 and let

$$
\mathbf{B}_{1} = \{ \{x\} : x \in X \setminus \{x_{1}, x_{2}\}, x \notin
$$
\n
$$
C_{11} \cup C_{21} \} \cup \{ \{x_{1}\} \cup C_{11} \cup \{ \{x_{2}\} \cup C_{21}\}
$$
\n...\n...\n...\n
$$
\mathbf{B}_{n} = \{ \{x\} : x \in X \setminus \{x_{1}, x_{2}\}, x \notin C_{1n} \cup C_{2n} \}
$$
\n
$$
\cup \{ \{x_{1}\} \cup C_{1n}\} \cup \{ \{x_{2}\} \cup C_{2n} \}.
$$

Then \mathfrak{B}_n is locally finite collection for all *n* and \mathfrak{B} $= \bigcup_{n=1}^{\infty} \mathfrak{B}_n$ is a σ -locally finite collection. Since **8** contains the collection

 $\{\{x\} : x \in X \setminus \{x_1, x_2\} \cup \{\{x_1\} \cup C_{1n}\}_{n=1}^{\infty} \cup \{\{x_2\} \cup$

 C_{2n} _{2 $n=1$}. So **8** is a base for the topology and since $(X,$ *τ*) is T_4 , so by the above Theorem (X, τ) is a metrizable space .

2.2. Lemma

If d_1 , d_2 are two metrics on *X* and *A*, *B* are two nonempty subsets of *X* such that

 $X = A \cup B$, $A \cap B = \varphi$ and $d_1(x) = d_2(x, y)$ if $x \in A$ or $y \in A$ A then the function $d: X \times X \longrightarrow \mathbb{R}$ defined by

$$
d(x, y) = \begin{cases} d_1(x, y) & \text{if } x \in A \text{ or } y \in A \\ d_2(x, y) & \text{if } x \in B \text{, } y \in B \end{cases}
$$

is a metric on *X* .

Proof

The proof follows since

 $X \times X = (A \times A) \cup (B \times A) \cup (A \times B) \cup (B \times B)$ and d_1 , d_2 are two metrics on *X*.

2.3 Theorem

If τ , ${C_{1n}}_{n=1}^{\infty}$ and ${C_{2n}}_{n=1}^{\infty}$ as in Theorem 2.1 and $X \times$ $X \longrightarrow \mathbb{R}$ defined by

$$
d(x,y) = \begin{cases}\n1 & \text{if } x \neq y, x, y \in X \setminus \{x_1, x_2\}, (x, y) \notin C_{11} \times C_{11} \text{ and } (x, y) \notin C_{21} \times C_{21} \\
0 & \text{if } x = y \\
1 & \text{if } (x = x_1, y \notin C_{11}) \text{ or } (y = x_1, x \notin C_{11}) \\
1 & \text{if } (x = x_2, y \notin C_{21}) \text{ or } (y = x_2, x \notin C_{21}) \\
\frac{1}{n+1} & \text{if } x = x_1, y \in C_{11} \text{ and } n \text{ is the least integer such that } y \notin C_{1n} \\
\frac{1}{m+1} & \text{if } x = x_2, y \in C_{21} \text{ and } m \text{ is the least integer such that } x \notin C_{1n} \\
\frac{1}{m+1} & \text{if } x = x_2, y \in C_{21} \text{ and } m \text{ is the least integer such that } y \notin C_{2m} \\
y = x_2, x \in C_{21} \text{ and } m \text{ is the least integer such that } x \notin C_{2m} \\
\max \left\{ \frac{1}{n+1}, \frac{1}{m+1} \right\} & \text{if } x, y \in C_{11} \text{ and } n, m \text{ are respectively the least integers such that } x \notin C_{1n}, y \notin C_{1m} \\
\max \left\{ \frac{1}{n+1}, \frac{1}{m+1} \right\} & \text{if } x, y \in C_{21} \text{ and } n, m \text{ are respectively the least integers such that } x \notin C_{2n}, y \notin C_{2m}\n\end{cases}
$$

Then is a metric and induces the topology *τ*.

Proof

Let d_1 be the metric corresponding to the collection ${C_{1n}}_{n=1}^{\infty}$ and the point

 x_1 and d_2 be the metric corresponding to the collection ${C_{2n}}_{n=1}^{\infty}$ and the point x_2 , (See Remark 1.3).

 $d(x,y) = \begin{cases} d_1(x,y) & \text{if } x \in A \text{ or } y \in A \\ d(x,y) & \text{if } y \in B \end{cases}$ $d_2(x, y)$ if $x \in B$, $y \in B$

 $=d_2(x,y)$ if $x \in A$ or $y \in A$ and

Let $A = X \setminus (C_{21} \cup \{x_2\})$, $B = C_{21} \cup \{x_2\}$, since A, B are

two disjoint non empty subsets with $X = A \cup B$, $d_1(x,y)$

So by Lemma 2.2 d is a matric on X and it is routine to show that induces the topology τ*.*

2.4. Remarks:

i) The above metric can be written in the following way

$$
d(x,y) = \begin{cases} 1 & \text{if } x \neq y, x, y \in X \setminus \{x_1, x_2\}, (x,y) \notin C_{i1} \times C_{i1} \text{ for } i = 1, 2 \\ 0 & \text{if } x = y \\ 1 & \text{if } \left(x = x_i, y \notin C_{i1}\right) \text{ or } \left(y = x_i, x \notin C_{i1}\right) \text{ for } i = 1, 2 \\ \frac{1}{n+1} & \text{if } x = x_i, y \in C_{i1} \text{ and } n \text{ is the least integer such that } y \notin C_{in} \\ & \text{or} \\ y = x_i, x \in C_{i1} \text{ and } n \text{ is the least integer such that } x \notin C_{in} \text{ for } i = 1, 2 \\ \max\left\{\frac{1}{n+1}, \frac{1}{m+1}\right\} & \text{if } x, y \in C_{i1} \text{ and } n, m \text{ are respectively the least integers} \\ & \text{such that } x \notin C_{in}, y \notin C_{im} \text{ for } i = 1, 2 \end{cases}
$$

ii) For any $x \in X$, $\varepsilon > 0$ we have

$$
B_{\varepsilon}(x) = \begin{cases} \{x\} & \text{if } x \notin C_{11} \cup C_{21} & x \neq x_1, x \neq x_2, \varepsilon = 1 \\ \{x\} & \text{if } x \in C_{11}, \varepsilon = \frac{1}{n+2} \text{ where } n \text{ is the least integer such that } x \in C_{1n} \\ \{x\} & \text{if } x \in C_{21}, \varepsilon = \frac{1}{m+2} \text{ where } m \text{ is the least integer such that } x \in C_{1m} \\ \{x_1\} \cup C_{1n} & \text{if } x = x_1, \varepsilon = \frac{1}{n} \\ \{x_2\} \cup C_{2m} & \text{if } x = x_2, \varepsilon = \frac{1}{m} \end{cases}
$$

so as base for the metric topology we have the collection

 $\{\{x\}: x \neq x_1, x \neq x_2\} \cup \{\{x_1\} \cup C_{1n}\}_{n=1}^{\infty} \cup \{\{x_2\} \cup C_{2n}\}_{n=1}^{\infty}$

2.5. Notation

Let Ω denotes the collection of all non-empty subsets of the set $\{x_1, x_2, \ldots, x_n\}$.

The proof of the following Theorem is similar to the proof of Theorem 2.1

2.6. Theorem

If x_1, x_2, \ldots, x_n are elements of X,

 $\tau = p(X \setminus \{x_1, x_2, \ldots, x_n \}) \cup [\bigcup_{i=1}^n [\bigcup_{A \in \Omega} \{A \cup F\}].$ $F \in \mathfrak{S}_i$ }]] where \mathfrak{S}_i is a free filter in $X \setminus \{x_1, x_2, \ldots, x_n\}$ with countable filter base, then τ is a topology on *X* and is (X, τ) a T_4 space.

2.7. Lemma

If x_1, x_2, \ldots, x_n are distinct points in a matric space *X* ,then there exists $\varepsilon > 0$ such that $B_{\varepsilon}(x_i) \cap$ $B_{\varepsilon}(x_i) = \varphi$ for $i \neq j$.

2.8. Theorem

A space (X, τ) with exactly *n* non-isolated points x_1, x_2, \ldots, x_n is metrizable iff $\tau = P(X \{x_1, x_2, \ldots, x_n\}) \cup \bigcup_{i=1}^n [U_{A \in \Omega}^n \{A \cup F\}].$

 $F \in \{S_i\}$]] where S_i is a free filter in $X \setminus \{x_1, x_2, \ldots, x_n\}$ with countable filter base.

Proof

 \Rightarrow Let *X* be a metrizable space with x_1, x_2, \ldots, x_n as the only non-isolated points .UsingLemma 2.7 we

choose $\varepsilon > 0$ such that $B_{\varepsilon}(x_i) \cap B_{\varepsilon}(x_j) = \varphi$ for $i \neq$ j

and let $C_{ik} = B \varepsilon_{i_k}(x_i) \setminus \{x_1, x_2, \dots, x_n\}$ for all $k=1,2,...,n$ then C_{ik} $X \setminus \{x_1, x_2, ..., x_n\}$,

 $C_{ik+1} \subsetneq C_{ik}$ for all k and $\bigcap_{k=1}^{\infty} C_{ik} = \varphi$.

Let \mathfrak{I}_i be a free filter with filter base $\{C_{ik}\}_{k=1}^{\infty}$ and let τ^* be the topology whose base is the collection $\mathfrak{B} = \{\{x\} : x \in X \setminus \{x_1, x_2, \ldots, x_n \}\} \cup [$ $\bigcup_{i=1}^n \{\{x_i\} \cup C_{ik}\}_{k=1}^\infty$

It is routine to check that $\tau = \tau^*$.

 \Leftarrow Let ${C_{ik}}_{k=1}^{\infty}$ be the filter base for \mathfrak{I}_i for all with $C_{i1} \cap C_{i1} = \varphi$ for $i \neq j$

 ..

$$
\mathbf{\mathfrak{B}}_1 = \Big\{ \{x\}: \text{ if } x \notin \bigcup_{i=1}^n C_{i1} \Big\} \cup \{ \bigcup_{i=1}^n \{x_i\} \cup C_{i1} \} \Big\}
$$
\n
$$
\mathbf{\mathfrak{B}}_2 = \Big\{ \{x\}: \text{ if } x \notin \bigcup_{i=1}^n C_{i2} \Big\} \cup \{ \big\{ \bigcup_{i=1}^n \{x_i\} \cup C_{i2} \} \Big\}
$$

$$
\mathbf{\mathfrak{B}}_{n} = \Big\{ \{x\}: \text{ if } x \notin \bigcup_{i=1}^{n} C_{in} \Big\} \cup \big\{ \bigcup_{i=1}^{n} \{x_{i}\} \cup C_{in} \big\} \Big\}
$$

Then \mathfrak{B}_n is locally finite collection for all *n*. Let \mathfrak{B} $= \bigcup_{n=1}^{\infty} \mathfrak{B}_n$, then \mathfrak{B} is a σ -locally finite collection and since \mathfrak{B} is a base for τ by Theorem 2.2 it follows that *X* is a metrizable space with x_1, x_2, \ldots, x_n as the nonisolated points .

2.9. Theorem

If τ , $\{C_{ik}\}_{k=1}^{\infty}$ as in last Theorem and $d: X \times X \longrightarrow \mathbb{R}$ defined by

$$
d(x,y)
$$
\n
$$
\begin{cases}\n1 & \text{if } x \neq y, x, y \in X \setminus \{x_1, x_2, \dots, x_n\}, (x,y) \notin C_{i1} \times C_{i1} \text{ for } i = 1,2,\dots,n \\
1 & \text{if } x = y \\
1 & \text{if } (x = x_i, y \notin C_{i1}) \text{ or } (y = x_i, x \notin C_{i1}) \text{ for } i = 1,2,\dots,n \\
\frac{1}{m+1} & \text{if } x = x_i, y \in C_{i1} \text{ and } m \text{ is the least integer such that } y \notin C_{im} \\
& \text{or} \\
& \text{max}\left\{\frac{1}{n+1}, \frac{1}{m+1}\right\} & \text{if } x, y \in C_{i1} \text{ and } n, m \text{ are respectively the least integers} \\
& \text{such that } x \notin C_{in}, y \notin C_{im}\n\end{cases}
$$

Then is a metric and inducs the topology *τ*.

Proof

By induction on the number of the non-isolated points . If $n=1$, then this is Theorem 2.2 of [5]. If *n* $=$ 2, then this is Theorem 2.1. So suppose $n \geq 3$ and the Theorem is true for all *i* with $1 \le i < n$. Let d_i be the metric corresponding to the collection ${C_{ik}}_{k=1}^{\infty}$ and the point x_i for all i.

Let d_* be the metric produced by d_1 , d_2 ,, d_{n-1} using Lemma 2.2, d_n the metric corresponding to the collection $\{C_{nk}\}_{k=1}^{\infty}$ and the point x_n and define,

 $d(x,y)=$ $\begin{cases} d_*(x,y) & \text{if } x \in X \setminus (C_{n_1} \cup \{x_n\} \text{ or } y \in X \setminus C_{n_1} \cup \{x_n\}) \\ d_*(x,y) & \text{if } x \in C_{n_1} \cup \{x_n\} \end{cases}$ $d_n(x, y)$ if $x, y \in C_{n1} \cup \{x_n\}$

Then by Lemma 2.2 *d* is a matric on *X* with metric base the collection

 $\mathfrak{B} = \{ \{x\} : x \neq x_i \text{ for all } i \} \cup [\bigcup_{i=1}^n \{ \{x_i\} \cup \{x_i\} \}$ C_{ik} _{$\}_{k=1}^{\infty}$}] and clearly τ is generated by **8.**

3. References

[1] Kelly J . L .General Topology, (1955) , Springer-Varlag .

- **[2]** Mera K .M and Sola M.A. Extremal topology, Damascus University Journal for basic science , vol.21,NoI (2005) .
- **[3]** Sola M .A on the metrizability of Extremal spaces . The Libyan Journal of Science , vol 20A (2017)
- **[4]** Sola M .A and Tarjm M .S Extremal Topology . The Libyan Journal of Science, vol 19B (2016) .
- **[5]** Sola M . Metrizable spaces with exactly one nonisolated point . The Libyan Journal of science vol 21 NO.B (2018)
- **[6]** Willard S . General Topology, (1970) Addision-Wesley , publishing company , INC . 1111