

The Libyan Journal of Science University of Tripoli Vol. 27, No. 02 <u>https://uot.ed.ly/journals/index.php/ljs</u>

Metrizable Spaces with finitely many non-isolated points

Mabruk Ali Sola

Department of Mathematics, Faculty of Science, University of Tripoli

Corresponding author: Mabruk_sola@yahoo.com

ARTICLE INFO

ABSTRACT

Article history:

Received 03/01/2024 Received in revised form 20/07/2024 Accepted 27/072024 A point x in a topological space X is said to be non-isolated if every open set containing x contains another point different from x. The aim of this paper is to give the topology and the metric induces that topology of a metrizable space X with exactly n non-isolated points.

Keywords: metrizable space; isolated point; free filter

1. Preliminaries

Let X be an infinite set, a space (X, τ) is said to be metrizable if there exists a metric induces the topology τ [1, 6]. A collection \Im of non- empty subsets of X is called a filter if $F_1, F_2 \in \Im$ then $F_1 \cap$ $F_2 \in \Im$ and if $G \in \Im, G \subseteq X$ with $F \subseteq G$, then $G \in \Im$. A filter \Im in X is said to be free filter if $\bigcap_{F \in \Im} F = \varphi$. A subcollection \wp of a filter \Im is said to a filter base for \Im if for any $F \in \Im$ there exists $C \in \wp$ with $C \subseteq F[1,$ 6]. A collection of subsets of a topological space X is said to be locally finite collection if every point in X has an open neighborhood which intersects only finitely many members of \mathfrak{B} . A collection \mathfrak{B} of subsets of a topological space X is said to be σ – locally finite if $\mathfrak{B} = \bigcup_{n=1}^{\infty} \mathfrak{B}_n$ where \mathfrak{B}_n is locally finite collection for all [6]. A point *x* of a topological space *X* is called an isolated point if $\{x\}$ is open The following Theorems are respectively Theorem 2.2 and Theorem 2.1 of [5].

1.1. Theorem

A space (X, τ) is metrizable space with only one non- isolated point x_1 iff

 $\tau = p(X \setminus \{x_1\}) \cup \{\{x_1\}\} \cup F: F \in \mathfrak{I}\}, \text{ where } \mathfrak{I} \text{ is a}$ free filter in $X \setminus \{x_1\}$ with countable filter base $\{C_n\}_{n=1}^{\infty}$ with $C_{n+1} \subsetneq C_n$ for all $n, \bigcap_{n=1}^{\infty} C_n = \varphi$, and $P(X \mid \{x_1\})$ is the power set of $X \setminus \{x_1\}$.

1.2. Theorem

If X, τ , x_1 , $\{C\}_{n=1}^{\infty}$ and \Im are as in the above

Theorem, then the function

$$d(x, y): \begin{cases} 1 & if x, y \in X \setminus \{x_1\}, x \neq y, x \notin C_1 \text{ or } y \notin C_1 \\ 1 & if (x = x_1, y \notin C_1) \text{ or } (y = x_1, x \notin C_1) \\ \frac{1}{n+1} & if (x = x_1, y \in C_1) \text{ or } (y = x_1, x \in C_1) \\ where n \text{ is the least integer such that } x \notin C_n(resp. y \notin C_n) \\ max \left\{\frac{1}{n+1}, \frac{1}{m+1}\right\} & if x \neq y; x, y \in C_1 \\ and m, m \text{ are respectively the least} \\ intergers \text{ such that } x \notin C_n, y \notin C_m \\ 0 & if x \neq y, x, y \in X \end{cases}$$

is a metric and induces the topology τ .

1.3. Remark

Since the metric defined above is depending on the collection $\{C_n\}_{n=1}^{\infty}$ and the point x_1 we call it the metric associated with the collection $\{C_n\}_{n=1}^{\infty}$ and the point x_1 . The aim of this paper is to give the topology and a matric induces that topology for any metrizable space with finitely many of non-isolated points.

2. The Main results

First, we start with metrizable spaces with only two non-isolated points.

2.1. Theorem

$$if x_1, x_2 \in X, x_1 \neq x_2$$

$$r = P(X \setminus \{x_1, x_2\}) \cup \{\{x_1\}\} \cup F: F \in \mathfrak{I}_1\} \cup \{\{x_2\} \cup G: G \in \mathfrak{I}_2\} \cup I$$

 $\{\{x_1, x_2\} \cup F \colon F \in \mathfrak{J}_1\} \cup \{\{x_1, x_2\} \cup G \colon G \in \mathfrak{J}_2\}.$

Where \mathfrak{I}_1 , \mathfrak{I}_2 are free filters in $X \setminus \{x_1, x_2\}$ with filter base $\{C_{1n}\}_{n=1}^{\infty}$,

 $\{C_{2n}\}_{n=1}^{\infty}$ Respectively such

that $C_{1n+1} \subsetneq C_{1n}$, $C_{2n+1} \subsetneq C_{2n}$ for all n,

 $\bigcap_{n=1}^{\infty} C_{1n} = \bigcap_{n=1}^{\infty} C_{2n} = \varphi \text{ and } C_{11} \cap C_{21} = \varphi \text{ ,then } \tau \text{ is a topology on } X$

and (X, τ) is a T_4 space.

Proof

It is routine to check that τ is a topology on X. To show that (X, τ) is

Hausdorff, let $x, y \in X$ with $x \neq y$. If $x = x_1, y \in X \setminus \{x_1, x_2\}$

then since \mathfrak{I}_1 is a free filter so there exists $F \in \mathfrak{I}_1$ such that $y \notin F$ and so $\{x_1\} \cup F$, $\{y\}$ are disjoint open sets containing x_1 and y respectively. Similarly if $x = x_2, y \in X \setminus \{x_1, x_2\}$. if $x = x_1$, $y = x_2$, then $\{x_1\} \cup C_{11}, \{x_2\} \cup C_{21}$ are disjoint open sets containing x_1 and x_2 respectively. So (X, τ) is Hausdorff. To show (X, τ) is normal space let A, B be any two disjoint closed sets, then we have the following cases :

- i) If A, B are subsets of $X \setminus \{x_1, x_2\}$, then A, B are both open.
- ii) If $x_1 \in A, x_2 \notin B$ then B is an open set and so B and B^C are two disjoint open sets containing B and A respectively. Similarly if $x_2 \in B, x_1 \notin A$
- iii) If $x_1 \in A, x_2 \in B$ then A^c is an open set. $B \subset A^c$ So for any $b \in B$ there exists with $F_b \in \mathfrak{I}$. with $\{b\} \cup F_b \subset A^c$. Let $= \bigcup_{b \in B} \{b\} \cup F_b$, then K is a clopen (closed and open) set containing B and disjoint from A. Therefore (X, τ) is a normal space and hence (X, τ) is a T_4 space.

The following Theorem is Theorem 23.9 of [6].

2.2. Theorem

A topological space *X* is metrizable if and only if it is T_3 and has a σ – locally finite base.

2.3. Theorem

If τ as in Theorem 2.1, then (X, τ) is a metrizable space.

Proof:

Let $\{C_{1n}\}_{n=1}^{\infty}$, $\{C_{2n}\}_{n=1}^{\infty}$ be as in Theorem 2.1 and let

$$\begin{split} \mathfrak{B}_{1} =& \{\{x\} : x \in X \setminus \{x_{1}, x_{2}\}, x \notin \\ C_{11} \cup C_{21} \} \cup \{\{x_{1}\} \cup C_{11} \cup \{\{x_{2}\} \cup C_{21}\} \\ & \vdots \\ & \vdots \\ \mathfrak{B}_{n} =& \{\{x\} : x \in X \setminus \{x_{1}, x_{2}\}, x \notin C_{1n} \cup C_{2n}\} \\ \cup \{\{x_{1}\} \cup C_{1n}\} \cup \{\{x_{2}\} \cup C_{2n}\}. \end{split}$$

Then \mathfrak{B}_n is locally finite collection for all *n* and $\mathfrak{B} = \bigcup_{n=1}^{\infty} \mathfrak{B}_n$ is a σ -locally finite collection. Since \mathfrak{B} contains the collection

 $\{\{x\}: x \in X \setminus \{x_1, x_2\} \cup \{\{x_1\} \cup C_{1n}\}_{n=1}^{\infty} \cup \{\{x_2\} \cup \{x_2\} \cup \{x_3\} \cup \{x_$

 $C_{2n}\}_{n=1}^{\infty}$. So **B** is a base for the topology and since (X, τ) is T_4 , so by the above Theorem (X, τ) is a metrizable space.

2.2. Lemma

If d_1 , d_2 are two metrics on X and A, B are two nonempty subsets of X such that

 $X = A \cup B$, $A \cap B = \varphi$ and $d_1(x) = d_2(x, y)$ if $x \in A$ or $y \in A$ then the function $d: X \times X \longrightarrow \mathbb{R}$ defined by

$$d(x, y) = \begin{cases} d_1(x, y) & \text{if } x \in A \text{ or } y \in A \\ d_2(x, y) & \text{if } x \in B, y \in B \end{cases}$$

is a metric on X.

Proof

The proof follows since

 $X \times X = (A \times A) \cup (B \times A) \cup (A \times B) \cup (B \times B)$ and d_1 , d_2 are two metrics on X.

2.3 Theorem

If τ , $\{C_{1n}\}_{n=1}^{\infty}$ and $\{C_{2n}\}_{n=1}^{\infty}$ as in Theorem 2.1 and $X \times X \longrightarrow \mathbb{R}$ defined by

$$d(x,y) = \begin{cases} 1 & \text{if } x \neq y, x, y \in X \setminus \{x_1, x_2\}, (x, y) \notin C_{11} \times C_{11} and(x, y) \notin C_{21} \times C_{21} \\ 0 & \text{if } x = y \\ 1 & \text{if } (x = x_1, y \notin C_{11}) or(y = x_1, x \notin C_{11}) \\ 1 & \text{if } (x = x_2, y \notin C_{21}) or(y = x_2, x \notin C_{21}) \\ \frac{1}{n+1} & \text{if } x = x_1, y \in C_{11} and n \text{ is the least integer such that } y \notin C_{1n} \\ 0 & \text{or } \\ y = x_1, x \in C_{11} and n \text{ is the least integer such that } x \notin C_{1n} \\ \frac{1}{m+1} & \text{if } x = x_2, y \in C_{21} and m \text{ is the least integer such that } y \notin C_{2m} \\ 0 & \text{or } \\ y = x_2, x \in C_{21} and m \text{ is the least integer such that } x \notin C_{2m} \\ \max\left\{\frac{1}{n+1}, \frac{1}{m+1}\right\} & \text{if } x, y \in C_{11} and n, m \text{ are respectively the least integers } \\ \supch that x \notin C_{1n}, y \notin C_{1m} \\ \max\left\{\frac{1}{n+1}, \frac{1}{m+1}\right\} & \text{if } x, y \in C_{21} and n, m \text{ are respectively the least integers } \\ \supch that x \notin C_{2n}, y \notin C_{2m} \end{cases}$$

Then is a metric and induces the topology τ .

Proof

Let d_1 be the metric corresponding to the collection $\{C_{1n}\}_{n=1}^{\infty}$ and the point

 x_1 and d_2 be the metric corresponding to the collection $\{C_{2n}\}_{n=1}^{\infty}$ and the point x_2 , (See Remark 1.3).

Let $A = X \setminus (C_{21} \cup \{x_2\}), B = C_{21} \cup \{x_2\}$, since A, B are two disjoint non empty subsets with $X = A \cup B, d_1(x,y)$ $= d_2(x,y)$ if $x \in A$ or $y \in A$ and

 $d(x,y) = \begin{cases} d_1(x,y) & \text{if } x \in A \text{ or } y \in A \\ d_2(x,y) & \text{if } x \in B, y \in B \end{cases}$

So by Lemma 2.2 *d* is a matric on *X* and it is routine to show that induces the topology τ .

2.4. Remarks:

i) The above metric can be written in the following way

$$d(x,y) = \begin{cases} 1 & \text{if } x \neq y, x, y \in X \setminus \{x_1, x_2\}, (x, y) \notin C_{i1} \times C_{i1} \text{ for } i = 1, 2 \\ 0 & \text{if } x = y \\ 1 & \text{if } (x = x_i, y \notin C_{i1}) \text{ or } (y = x_i, x \notin C_{i1}) \text{ for } i = 1, 2 \\ \frac{1}{n+1} & \text{if } x = x_i, y \in C_{i1} \text{ and } n \text{ is the least integer such that } y \notin C_{in} \\ y = x_i, x \in C_{i1} \text{ and } n \text{ is the least integer such that } x \notin C_{in} \text{ for } i = 1, 2 \\ \max \left\{ \frac{1}{n+1}, \frac{1}{m+1} \right\} & \text{if } x, y \in C_{i1} \text{ and } n, \text{m are respectively the least integers such that } x \notin C_{in} \text{ for } i = 1, 2 \end{cases}$$

ii) For any $x \in X$, $\varepsilon > 0$ we have

$$B_{\varepsilon}(x) = \begin{cases} \{x\} & \text{if } x \notin C_{11} \cup C_{21} \qquad x \neq x_1, x \neq x_2, \varepsilon = 1 \\ \{x\} & \text{if } , x \in C_{11}, \varepsilon = \frac{1}{n+2} \text{ where } n \text{ is the least integer such that } x \in C_{1n} \\ \{x\} & \text{if } , x \in C_{21}, \varepsilon = \frac{1}{m+2} \text{ where } m \text{ is the least integer such that } x \in C_{1m} \\ \{x_1\} \cup C_{1n} & \text{if } x = x_1, \varepsilon = \frac{1}{n} \\ \{x_2\} \cup C_{2m} & \text{if } x = x_2, \varepsilon = \frac{1}{m} \end{cases}$$

so as base for the metric topology we have the collection

 $\{\{x\} \colon x \neq x_1 \,, x \neq x_2 \,\} \cup \{\{x_1\} \cup C_{1n}\}_{n=1}^{\infty} \cup \{\{x_2\} \cup C_{2n}\}_{n=1}^{\infty}$

2.5. Notation

Let Ω denotes the collection of all non-empty subsets of the set $\{x_1, x_2, \dots, x_n\}$.

The proof of the following Theorem is similar to the proof of Theorem 2.1

2.6. Theorem

If x_1, x_2, \ldots, x_n are elements of X,

 $\tau = p(X \setminus \{x_1, x_2, \dots, x_n\}) \cup [\bigcup_{i=1}^n [\bigcup_{A \in \Omega} \{A \cup F:$

 $F \in \mathfrak{I}_i$]] where \mathfrak{I}_i is a free filter in

 $X \setminus \{x_1, x_2, \dots, x_n\}$ with countable filter base, then τ is a topology on X and is (X, τ) a T_4 space.

2.7. Lemma

If $x_1, x_2, ..., x_n$ are distinct points in a matric space X , then there exists $\varepsilon > 0$ such that $B_{\varepsilon}(x_i) \cap B_{\varepsilon}(x_j) = \varphi$ for $i \neq j$.

2.8. Theorem

A space (X, τ) with exactly *n* non-isolated points $x_1, x_2, ..., x_n$ is metrizable iff $\tau = P(X \setminus \{x_1, x_2, ..., x_n\}) \cup [\bigcup_{i=1}^n [\bigcup_{A \in \Omega} \{A \cup F: F \in \mathfrak{I}_i\}]]$ where \mathfrak{I}_i is a free filter in $X \setminus \{x_1, x_2, ..., x_n\}$ with countable filter base.

Proof

⇒ Let X be a metrizable space with $x_1, x_2, ..., x_n$ as the only non-isolated points .UsingLemma 2.7 we

choose $\varepsilon > 0$ such that $B_{\varepsilon}(x_i) \cap B_{\varepsilon}(x_j) = \varphi$ for $i \neq j$

and let $C_{ik} = B\varepsilon_{/k}(x_i) \setminus \{x_1, x_2, \dots, x_n\}$ for all $k=1,2,\dots,n$ then $C_{ik} \in X \setminus \{x_1, x_2, \dots, x_n\}$,

 $C_{ik+1} \subsetneq C_{ik}$ for all k and $\bigcap_{k=1}^{\infty} C_{ik} = \varphi$.

Let \Im_i be a free filter with filter base $\{C_{ik}\}_{k=1}^{\infty}$ and let τ^* be the topology whose base is the collection $\mathfrak{B} = \{\{x\}: x \in X \setminus \{x_1, x_2, \dots, x_n\}\} \cup [$ $\bigcup_{i=1}^n \{\{x_i\} \cup C_{ik}\}_{k=1}^{\infty}]$

It is routine to check that $\tau = \tau^*$.

 $\leftarrow \operatorname{Let} \{C_{ik}\}_{k=1}^{\infty} \text{ be the filter base for } \mathfrak{I}_i \text{ for all } i \text{ with}$ $C_{i1} \cap C_{j1} = \varphi \text{ for } i \neq j$ ••

$$\mathfrak{B}_{1} = \left\{ \{x\}: if \ x \notin \bigcup_{i=1}^{n} C_{i1} \right\} \cup \left\{ \{\bigcup_{i=1}^{n} \{x_{i}\} \cup C_{i1}\} \right\}$$
$$\mathfrak{B}_{2} = \left\{ \{x\}: if \ x \notin \bigcup_{i=1}^{n} C_{i2} \right\} \cup \left\{ \{\bigcup_{i=1}^{n} \{x_{i}\} \cup C_{i2}\} \right\}$$
$$..$$

$$\mathfrak{B}_{n} = \left\{ \{x\}: if x \notin \bigcup_{i=1}^{n} C_{in} \right\} \cup \left\{ \{\bigcup_{i=1}^{n} \{x_{i}\} \cup C_{in} \} \right\}$$

Then \mathfrak{B}_n is locally finite collection for all *n*. Let $\mathfrak{B} = \bigcup_{n=1}^{\infty} \mathfrak{B}_n$, then \mathfrak{B} is a σ -locally finite collection and since \mathfrak{B} is a base for τ by Theorem 2.2 it follows that *X* is a metrizable space with x_1, x_2, \ldots, x_n as the non-isolated points.

2.9. Theorem

If τ , $\{C_{ik}\}_{k=1}^{\infty}$ as in last Theorem and $d: X \times X \longrightarrow \mathbb{R}$ defined by

$$d(x,y) \begin{cases} 1 & \text{if } x \neq y, x, y \in X \setminus \{x_1, x_2, \dots, x_n\}, (x,y) \notin C_{i1} \times C_{i1} \text{ for } i = 1, 2, \dots, n \\ 0 & \text{if } x = y \\ 1 & \text{if } (x = x_i, y \notin C_{i1}) \text{ or } (y = x_i, x \notin C_{i1}) \text{ for } i = 1, 2, \dots, n \\ \frac{1}{m+1} & \text{if } x = x_i, y \in C_{i1} \text{ and } m \text{ is the least integer such that } y \notin C_{im} \\ y = x_i, x \in C_{i1} \text{ and } m \text{ is the least integer such that } x \notin C_{im} \\ \max\left\{\frac{1}{n+1}, \frac{1}{m+1}\right\} & \text{if } x, y \in C_{i1} \text{ and } n, m \text{ are respectively the least integers} \\ & \text{such that } x \notin C_{im} \end{cases}$$

Then is a metric and inducs the topology τ .

Proof

By induction on the number of the non-isolated points . If n=1, then this is Theorem 2.2 of [5] . If n=2, then this is Theorem 2.1. So suppose $n \ge 3$ and the Theorem is true for all i with $1 \le i < n$. Let d_i be the metric corresponding to the collection $\{C_{ik}\}_{k=1}^{\infty}$ and the point x_i for all i.

Let d_* be the metric produced by d_1, d_2, \dots, d_{n-1} using Lemma 2.2, d_n the metric corresponding to the collection $\{C_{nk}\}_{k=1}^{\infty}$ and the point x_n and define, $\begin{aligned} d(x,y) &= \\ \begin{cases} d_*(x,y) & \text{if } x \in X \setminus (C_{n1} \cup \{x_n\} \text{ or } y \in X \setminus C_{n1} \cup \{x_n\}) \\ d_n(x,y) & \text{if } x, y \in C_{n1} \cup \{x_n\} \end{aligned}$

Then by Lemma 2.2 d is a matric on X with metric base the collection

 $\mathfrak{B} = \{\{x\} \colon x \neq x_i \text{ for all } i\} \cup [\bigcup_{i=1}^n \{\{x_i\} \cup C_{ik}\}_{k=1}^\infty] \text{ and clearly } \tau \text{ is generated by } \mathfrak{B}.$

3. References

 Kelly J. L. General Topology, (1955), Springer-Varlag.

- [2] Mera K .M and Sola M.A. Extremal topology, Damascus University Journal for basic science, vol.21,NoI (2005).
- [3] Sola M .A on the metrizability of Extremal spaces . The Libyan Journal of Science , vol 20A (2017)
- [4] Sola M .A and Tarjm M .S Extremal Topology . The Libyan Journal of Science, vol 19B (2016) .
- [5] Sola M. Metrizable spaces with exactly one nonisolated point. The Libyan Journal of science vol 21 NO.B (2018)
- [6] Willard S. General Topology, (1970) Addision-Wesley, publishing company, INC. 1111