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ABSTRACT 

 
In this paper, we calculate the energy bands for an electron in one dimensional lattice, by 

solving Schrödinger equation for a periodic potential using the transmission line method. In this 

technique we use the impedance function, which gives information about the physics of the 

problem through its relation to the wave function, and from the impedance we can also compute 

the energy eigenvalues. Comparison of the numerical solutions obtained by the transmission line 

method with exact solutions and numerical solutions obtained by other methods demonstrates 

the accuracy of this method. 
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 المستخلص
هد دوري وذلك بحل معادلة شرودنجر لج واحد،في هذه الورقة تم حساب حزم الطاقة لإلكترون في شبكية في بعد 

اء المسألة في هذه التقنية يتم استخدام دالة المعاوقة, والتي تعطي معلومات حول فيزي باستخدام طريقة خط النقل،
وذلك من خلال علاقتها بالدالة الموجية, ايضا من دالة المعاوقة يمكن حساب القيم الذاتية للطاقة. من خلال مقارنة 
الحلول المتحصل عليها باستخدام طريقة خط النقل مع الحلول المتحصل عليها تحليليا وكذلك مع الحلول العددية 

  يح مدى دقة هذه الطريقة.المتحصل عليها بطرق عددية اخرى يتم توض
 

 
Introduction 

 

The Schrödinger equation for an electron moving in a potential is given by 

−
ħ
2

2𝑚 
𝛻2Ѱ(𝑟) + 𝑉(𝑟)Ѱ(𝑟) = 𝐸 Ѱ(𝑟) .                                                         (1) 

The potential 𝑉(𝑟) in the lattice is due to the valance electrons and the ions, because the 

lattice is periodic, it is natural that this potential is also periodic. Based on Bloch's theorem [1] 

the wave function can be written as 
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     Ѱ𝐾 ⃗⃗⃗⃗⃗(𝑟) =  𝑒
𝑖�⃗⃗⃗�.𝑟𝑢𝐾 ⃗⃗⃗⃗⃗(𝑟),                                                                                        (2)       

Where 𝑢𝐾 ⃗⃗⃗⃗⃗(𝑟) is also periodic. 

The wave number 𝐾 ⃗⃗ ⃗⃗  extends to all Brilloain zones. For each wave number 𝑘 ⃗⃗⃗ ⃗ in the first 

Brilloain zone there should be large number of energy eigenvalues corresponding to  �⃗⃗⃗� = 𝑘 ⃗⃗⃗ ⃗ +

𝐺𝑛 ⃗⃗ ⃗⃗ ⃗⃗ , where 𝐺𝑛 ⃗⃗ ⃗⃗ ⃗⃗ a reciprocal lattice vector, and n is is an integer, so the different values of 𝐸�⃗⃗�,𝑛 

corresponding to different bands. By applying Born-Van Karmar condition [1] in one 

dimension, the reciprocal lattice vector is given by 

 𝐺𝑛 = 𝑛
2𝜋

𝑎
,                                                                                                          (3) 

Where 𝑎 is the lattice parameter. 

In addition to the introduction, this article is organized in three sections as follows: The 

general theory section which presents the formulation of the transmission line method; the 

application section, where we present a detailed description of the impedance function in 

order to show how we can calculate the electron energy bands by applying the resonance 

condition. In this section, we also briefly introduce two numerical methods to solve 

Schrödinger equation in one dimension for a periodic potential. One is based on perturbation 

theory by expanding any wave function obeying the Born-Van Karmar condition in a set of 

plane waves, which satisfy the boundary condition [1]. The other is based on the finite 

difference method, followed by displaying and discussing of the numerical results by 

comparing it with the results of the analytical solution. The last section is devoted to the 

conclusion.   

   

General Theory 
 

    In the transmission line method [2,3] we reduce the infinite interval −∞ < 𝑥 < ∞ to finite 

interval of unit single cell  0 ≤ 𝑥 ≤ 𝑎 . This finite interval [0,a] is divided into mesh with 

∆𝑥 = 𝑥𝑛 − 𝑥𝑛−1, then the Schrödinger equation in the interval [𝑥𝑛, 𝑥𝑛+1] can be written in 𝑛𝑡ℎ 

part of interval as 

 
𝑑2Ѱ𝑛(𝑥)

𝑑𝑥2
− 𝛾𝑛

2Ѱ𝑛(𝑥) = 0,                                                                               (4) 

Where  

       𝛾𝑛 = √
2𝑚

ħ
2 (𝑉𝑛 − 𝐸) ,    

and  𝑉𝑛 is the potential over the interval, and we can also replace it as the value of the potential 

at the centre of the interval 𝑉𝑛 = 𝑉(𝑥𝑛 + ∆𝑥 2⁄ ), therefore 𝛾𝑛 is considered to be constant. 

The impedance function is defined as 

             𝑍(𝑥) =
Ѵ(𝑥)

𝐼(𝑥)
 ,                                                                                                      (5) 

Where  Ѵ(𝑥) and 𝐼(𝑥) are two continuous functions defined respectively as  

Ѵ(𝑥) =
𝑑Ѱ(𝑥)

𝑑𝑥
,                                                                                                   (6) 

 𝐼(𝑥) = −𝑖Ѱ(𝑥).                                                                                                  (7) 
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Using Eqs.  (4,6,7) we get two linear coupled first order differential equations 

 

 
𝑑Ѵ(𝑥)

𝑑𝑥
= 𝑖𝛾𝑛

2𝐼(𝑥)                 ,              
𝑑𝐼(𝑥)

𝑑𝑥
= −𝑖Ѵ(𝑥).                              (8) 

These two coupled first order equations can be separated as 

 
𝑑2Ѵ

𝑑𝑥2
= 𝛾𝑛

2Ѵ                            ,             
𝑑2𝐼

𝑑𝑥2
= 𝛾𝑛

2𝐼.                                           (9)   

Assuming 𝑥𝑛 is the origin point in the interval [𝑥𝑛 , 𝑥𝑛+1], since 𝛾𝑛 is constant then Ѵ(𝑥𝑛) 
and 𝐼(𝑥𝑛) will take the two following recursion relations form 

Ѵ(𝑥𝑛+1) =  Ѵ(𝑥𝑛)𝑐𝑜𝑠ℎ(𝛾𝑛∆𝑥) + 𝑖𝛾𝑛𝐼(𝑥𝑛) 𝑠𝑖𝑛ℎ((𝛾𝑛∆𝑥),                        (10) 

𝐼(𝑥𝑛+1) =  𝐼(𝑥𝑛)𝑐𝑜𝑠ℎ(𝛾𝑛∆𝑥) +
Ѵ(𝑥𝑛)

𝑖𝛾𝑛
𝑠𝑖𝑛ℎ((𝛾𝑛∆𝑥).                                (11) 

Plug Eqs.  (10,11) in Eq. (5) we get the impedance function as 

𝑍(𝑥𝑛+1) = 𝑧𝑛
𝑧𝑛𝑡𝑎𝑛ℎ (𝛾𝑛∆𝑥) − 𝑍(𝑥𝑛)

𝑍(𝑥𝑛)𝑡𝑎𝑛ℎ (𝛾𝑛∆𝑥) − 𝑧𝑛
,                                                        (12) 

where 𝑧𝑛 is a very important quantity in the transmission line theory known as characteristic 

impedance which is defined as 𝑧𝑛 = −𝑖𝛾𝑛.   

In order to calculate the eigenvalues of the system, the resonance condition of the 

impedance is required, this condition can be determined from Eqs.  (5,6,7) as 

∫𝑍(𝑥)𝑑𝑥

𝑎

0

= 𝑖 𝑙𝑛 |
Ѱ(𝑎)

Ѱ(0)
|.                                                                                   (13) 

We take an initial value of the energy 𝐸 as a guess, when the resonance condition is 

satisfied. Then the guessed value of 𝐸 will be the true eigenvalue of the system. It is notable 

that the resonance condition in Eq. (13) depends on the boundary conditions of the system. 

Because the main purpose of this article is to calculate the electron band diagrams in one 

dimensional lattice, so we have to determine the boundary condition of the system that 

satisfies the Bloch's theorem in one dimension which is given by the following equation, 

Ѱ(𝑥 + 𝑎) = 𝑒𝑖𝑘𝑎Ѱ(𝑥),                                                                                          (14)    
where 𝑎  is the lattice parameter . 

Because the system is symmetric, the solution of 𝑘 and – 𝑘 have the same energy and the 

general solution will be the linear combination of these two solutions which leads to a pure 

real solution 

Ѱ(𝑥 + 𝑎) = Ѱ(𝑥) cos(𝑘𝑎).                                                                                 (15)    
 

Applications 
 

     In order to test the accuracy of the transmission line method, we apply it to two well known 

potentials, square well potential and delta function potential. We chose these examples 

because the solutions are simple and the analytic treatment is available. 
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i. Square Well Potential. 

     To describe the electron energy bands we consider a one dimensional lattice with a unit 

cell defined on  0 ≤ 𝑥 ≤ 𝑎 , so the lattice parameter is 𝑎, this unit cell have a square well 

potential at its center is given by 

𝑉(𝑥) = {
𝑉0         |𝑥 − 𝑎| ≤

𝑏

2

0          |𝑥 − 𝑎| >
𝑏

2

 ,           𝑏 < 𝑎                                                   (16) 

where 𝑉0 is the energy potential height , and 𝑏 is the width of the potential.   

In this case, it is best to use the following boundary conditions, the initial value of the wave 

function as 

       Ѱ (𝑥0) = Ѱ (0) = 1.0,                                                                       (17) 
Therefore the initial value of the impedance is 

       𝑍 (𝑥0) = 𝑍(0) = 0 ,                                                                           (18) 
By using Bloch's theorem, we get Ѱ(𝑎) as 

Ѱ (𝑎) =  cos  (𝑘𝑎),                                                                                          (19) 
 Therefore the resonance condition of the impedance using Eq. (13) is 

𝑒−𝑖 ∫ 𝑍(𝑥)𝑑𝑥
𝑎
0 = |cos(𝑘𝑎)|.                                                                                (20) 

According to Eq. (20), we can calculate the wave number 𝑘 which corresponds to any 

given energy 𝐸 provided that this energy lies in allowed band.    

In Fig. 1, we show the impedance function Z(x) for an electron moving in a unit cell with a 

lattice parameter 𝑎 = 1 𝐴0 and having a central square well potential of width 𝑏 = 0.3 𝐴0 and 

energy potential height 𝑉0 = 100 𝑒𝑉 at an arbitrary electron energy eigenvalue 𝐸 =
23.179 𝑒𝑉, which is in the first energy band, and corresponding to the wave number 𝑘 =

0.628 𝐴0
−1

 (see table 1.). The red line represents the real part of the impedance, while the blue 

line represents the imaginary part. It is worth noting from the figure that the real part of 𝑍(𝑥) 
is equal to zero, and the imaginary part of 𝑍(𝑥)  is a piece wise smooth curve. So the 

numerical integral in the resonance condition is calculated using Simpson rule using two 

points with error of order ∆𝑥5 by applying the following equation, 

     𝐴1 =
∆𝑥

2
((𝑍𝑛+1 + 𝑍𝑛) −

∆𝑥

6
(𝑍′

𝑛+1 − 𝑍
′
𝑛)),                                                      (21) 

 where 𝐴1is the area between the impedance curve and 𝑥 axis at the points 𝑥𝑛  and   𝑥𝑛+1, and 

𝑍′ is the first derivative of the impedance function. 

Similarly in Fig. 2a, we show the impedance function 𝑍(𝑥) for an electron with energy 

eigenvalue  𝐸 = 218.781 e𝑉 which is in the third band and corresponding to the wave 

number  𝑘 = 0.628 𝐴0
−1

(see table 1.). The figure shows that the imaginary part of the 

impedance goes to an extreme values if  Ѱ(𝑥) = 0 , thereby in the region |𝑍(𝑥𝑛)| < 100 the 

numerical integral in the resonance condition can be calculated by Simpson rule in the form of 

Eq. (21) which is represented by the green area in Fig. .2b, while in the region  |𝑍(𝑥𝑛)| ≥ 100 

we modify Simpson rule by simulating the impedance function using Laurant approximation 

as 

       𝑍(𝑥) =
a

𝑥 − b
,                                                                                                            (22)   
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therefore, the numerical integral is calculated by applying the following equation  

       𝐴2 =
𝑍𝑛𝑍𝑛+1∆𝑥

𝑍𝑛−𝑍𝑛+1
ln |

𝑍𝑛

𝑍𝑛+1
| ,                                                                                            (23)  

where 𝐴2 is the area between the impedance curve and 𝑥 axis at the points 𝑥𝑛 and 𝑥𝑛+1 
represented by the grey area in Fig. 2b.  

 

In Fig. 3, we illustrate the electron energy bands by plotting the resonance condition of the 

impedance  𝑒−𝑖 ∫ 𝑍(𝑥)𝑑𝑥
𝑎
0   against the energy 𝐸 for a one dimensional lattice with lattice 

parameter 𝑎 = 1𝐴0 having a central square well potential with width b=0.3 𝐴0  and energy 

potential height of  𝑉0 = 100 𝑒𝑉 . The numerical integral is performed using mesh size of the 

𝑥 coordinate  ∆𝑥 = 0.001. In order to have a real physical running state, the value of 

𝑒−𝑖 ∫ 𝑍(𝑥)𝑑𝑥
𝑎
0  must lie in the range 0 ≤ 𝑒−∫ 𝑍(𝑥)𝑑𝑥

𝑎
0 ≤ 1, and any energy giving a value above 

unity lies in the band gab. In the first energy band, the value of 𝑒−𝑖 ∫ 𝑍(𝑥)𝑑𝑥
𝑎
0   decreases in the 

range 1 ≥ 𝑒−𝑖 ∫ 𝑍(𝑥)𝑑𝑥
𝑎
0 ≥ 0 . In this range, 𝑘 raises from 0 to  

𝜋

2
. Because all the values of 

  𝑒−𝑖 ∫ 𝑍(𝑥)𝑑𝑥
𝑎
0 ,  are  positive, it will  increase  again from  0 to  1 then the  
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Figure 1. The impedance function for an electron in a unit cell   

              with a=1 A
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 and V
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=100 eV at energy eigenvalue

               E=23.179 eV.                  
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corresponding  𝑘 values varying from  
𝜋

2
 to 0. So we have to shift 𝑘 in this region to increase 

from 
𝜋

2
 to 𝜋  , and in this interval an allowed energy band has appeared in which 0 ≤ 𝑘  ≤ 𝜋.  

In the excluded region in which  𝑒−𝑖 ∫ 𝑍(𝑥)𝑑𝑥
𝑎
0 > 1 a forbidden energy band has appeared. The 

next allowed energy band for 𝑘 starts again from 0 and increase to 
𝜋

2
 and back to 0 for values 

of  1 ≥ e−i∫ Z(x)dx
a
0 ≥ 0 . Therefore, we have to shift 𝑘 to the region 𝜋 ≤ 𝑘  ≤ 2𝜋, and so on. 

In Fig, 3, each shaded area represents an energy band. Therefore for any given energy 𝐸 we 

can only determine |cos (𝑘𝑎)| resulting in 0 ≤ 𝑘  ≤
𝜋

2
 , so we have to shift 𝑘 to the appropriate 

range fit to describe the band in the folded zone scheme ie, 0 ≤ 𝑘  ≤ 𝜋. 

In Fig. 4, we show the first four energy bands diagram for an electron in one dimensional 

lattice with unit cell 𝑎 = 1𝐴0 having a central square well potential with width 𝑏 = 0.3 𝐴0 
and potential energy height 𝑉0 = 100 𝑒𝑉, calculated using the transmission line method. 

In table 1, we present the first four electron energy bands corresponding to specific wave 

numbers 𝑘. These energy eigenvalues calculated numerically by fitting the actual results in 

Fig. 4, which are not regularly spaced in 𝑘- space.  
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Figure 2a. The impedance function for an electron in a unit cell with a =1 A
o
    

                 having a central square well potential with b =0.3 A
o
 and V

0
=100 eV

                 at energy eigenvalue E = 218.781 eV.                                   
                                                                                                                                                           
                                                                        
Figure 2b. Illustration of the numerical integral in the resonance condition      
                calculated by applying Simpson rule and modefied Simpson rule.                    
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Comparison between the results obtained by applying the transmission line method and the 

results calculated using different methods; namely, the plane wave method, the finite 

difference method, and  the analytic solution is illustrated in Fig. 5, as follows;  
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Fig.5a, for  the first  band, Fig. 5b, for the second band, Fig. 5c, for the third band and Fig. 5d, 

for the fourth band . They are in a good agreement with each other. 

 

Table 1. The first four electron energy bands corresponding specific wave numbers 𝑘. 
4th energy band 

(𝑒𝑉) 
3rd energy band 

(𝑒𝑉) 
2nd energy band 

(𝑒𝑉) 
1st energy  band 

(𝑒𝑉) 
𝑘  

(𝐴𝑜−1) 

630.037 200.748 164.079 21.937 0 

603.412 206.360 159.279 22.388 0.314 

574.599 218.781 149.293 23.179 0.628 

546.474 233.949 138.206 24.706 0.942 

519.099 250.610 127.305 26.791 1.256 

492.488 268.364 117.059 29.365 1.570 

466.652 287.0456 107.743 32.311 1.884 

441.611 306.565 99.633 35.422 2.199 

417.4121 326.836 93.114 38.351 2.513 

394.273 347.617 88.751 40.554 2.827 

377.041 364.075 87.189 41.393 3.141 

 

In the plane wave numerical method calculations, we applied the general solution for a 

system of m-quantum levels which is given by Schrödinger equation in the momentum 

domain [1] 

       (ℰ − ℰ𝑘−𝐺𝑛
0 )𝐶𝑘−𝐺𝑛 =∑𝑈𝑛−𝑖𝐶𝑘−𝐺𝑛 ,                  𝑖 = 1,2, …… .𝑚               

𝑚

𝑛=1

 (24) 

where 𝑈𝐺 are the Fourier coefficients which related to the periodic potential by 

       𝑈𝐺 =
1

𝑎𝑙𝑙 𝑐𝑒𝑙𝑙
∫𝑑𝑥𝑒−𝑖𝐺𝑥 𝑉(𝑥),                                                                          (25) 

and the free electron energy ℰ0 is given by 

        ℰ𝑘−𝐺𝑛
0 =

ħ
2 

2𝑚
(𝑘 − 𝐺𝑛)

2.                                                                                        (26)  

In a unit cell with a lattice parameter 𝑎 having a central square well potential of width 𝑏 

and potential energy height  𝑉0 the Fourier coefficients are given by 

𝑈𝐺 =
2𝑣0
𝑎

sin (𝐺𝑓𝑎
2
)

𝐺
,                                                                                                           (27) 

where   𝑣0 =
2𝑚

ħ
2 𝑉0  and 𝑓 =

𝑏

𝑎
.  

The results in Fig. 5, calculated by expanding the system to 100 plane waves and it 

involves the diagonalization of 200X200 matrix which is expensive numerically.  

The results using the finite difference method [4,5] calculated numerically when  Ѱ(𝑥) is 

calculated at mesh point 𝑥𝑛 = 𝑛∆  where  𝑛 ≥ 0, and ∆ is the distance between adjacent point 

∆= 𝑥𝑛+1 − 𝑥𝑛 . Since Ѱ(𝑥𝑛 ) = Ѱ𝑛 and to implicit fourth order in ∆, 

then Ѱ𝑛+1 is given by; 
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       Ѱ𝑛+1 =
2 + 5 6⁄ ∆2𝛾𝑛

2

1 − ∆
2

12⁄ 𝛾𝑛+1
2

Ѱ𝑛 −
1 − ∆

2

12⁄ 𝛾𝑛−1
2

1 − ∆
2

12⁄ 𝛾𝑛+1
2

Ѱ𝑛−1,                               (28) 

where 

𝛾𝑛 = √
2𝑚

ħ
2 
(𝑉𝑛 − 𝐸). 

We choose the boundary values of the wave function as following 

       Ѱ(𝑥0 ) = Ѱ0 = 1.0              ,             Ѱ(∆) = Ѱ1 =
1+5 12⁄ ∆2𝛾0

2

1−∆
2
12⁄ 𝛾1

2
,                 (29)  

and 

       Ѱ(𝑎) = Ѱ𝑁 = cos(𝑘𝑎).                                                                                  (30)  

For a trail value of the energy eigenvalue we calculate Ѱ𝑁 starting from Ѱ0 and Ѱ1 using Eq. 

(28), in this case the boundary condition is given by  

       Ѱ𝑁 = cos(𝑘𝑎),                                                                                                  (31)                      
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Therefore the roots of the algebraic equation  Ѱ𝑁 − cos(𝑘𝑎) = 0 are the eigenvalues 

corresponding to the wave number vector which extended from 0 to 𝜋. The results in    Fig. 5, 

calculated with ∆= 0.0001 and 𝑛 = 10000 which is also expensive numerically. 

To calculate the electron energy bands illustrated in Fig. 5, analytically, we consider an 

arbitrary shape one bar potential 𝑉(𝑥) defined on   −
𝑎

2
≤ 𝑥 ≤

𝑎

2
  where 𝑎 is a lattice 

parameter, to simplify we assume that the potential is symmetric 𝑉(𝑥) = 𝑉(−𝑥) as shown in 

Fig. 6.  

 

For the free electron incidents from the left side by energy given by 𝐸 =
ħ
2𝐾2

2𝑚
 the wave 

function has the following form  

      Ѱ𝑙(𝑥) = {
𝑒𝑖𝐾𝑥 + 𝑟𝑒−𝑖𝐾𝑥                     𝑥 ≤ −𝑎 2⁄

𝑡𝑒𝑖𝐾𝑥                                         𝑥 ≥ 𝑎 2⁄
 ,                                                 (32)  

where 𝑟 and 𝑡 are the probability amplitude of the reflection and the probability amplitude of 

the transmission of the incident electron respectively, since the probability amplitude of the 

incident is the unity , so they satisfy the relation    

|𝑡|2 + |𝑟|2 = 1. 

 Similarly, the wave function for a free electron with the same energy incidents from the 

right side can be written as              

      Ѱ𝑟(𝑥) = { 
𝑡𝑒−𝑖𝐾𝑥                                  𝑥 ≤ −𝑎 2⁄

𝑒−𝑖𝐾𝑥 + 𝑟𝑒𝑖𝐾𝑥                         𝑥 ≥ 𝑎 2⁄
 .                                               (33) 

  

a b 

Figure 6. An arbitrary symmetric potential extending from −𝑎 2⁄  to 𝑎 2⁄  . 
                a. Represents a free electron incidents from the left side of the potential.       
                b. Represents a free electron incidents from the right side of the potential. 
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Since Ѱ𝑙 and Ѱ𝑟 are two independent solutions for Schrödinger equation for a single 

potential, so the general solution is the linear combination of these two   solutions  

      Ѱ(𝑥) = 𝐴Ѱ𝑙(𝑥) + 𝐵Ѱ𝑟(𝑥) .                       −
𝑎
2⁄ ≤ 𝑥 ≤ 𝑎 2⁄                                  (34) 

The solution for a one dimensional unit cell with lattice parameter can be found by 

applying the Bloch's theorem Eq. (15) and we get the following equation [1] 

       cos(𝑘𝑎) =
𝑡2−𝑟2

2𝑡
𝑒𝑖𝐾𝑎 +

1

𝑟2
𝑒−𝑖𝐾𝑎.                                                                               (35) 

The transmission coefficient for an electron incident by energy 𝐸 on a unit cell with lattice 

parameter 𝑎 having a central square well potential of width 𝑏 and potential energy height  𝑉0 
is given by [6] 

 𝑡 =
4𝐾𝛼𝑒−𝑖𝐾𝑓

4𝐾𝑎𝑐𝑜𝑠(𝛼𝑓) − 2𝑖(𝐾2 + 𝛼2)sin (𝛼𝑓)
,                                                      (36) 

and the reflection coefficient is given by 

𝑟 =
𝑖𝑡(𝛼2 − 𝐾2)

2𝐾𝛼
sin(𝛼𝑓),                                                                                     (37) 

where 

𝐾 = √
2𝑚

ħ
2 𝐸  ,   𝛼 = √

2𝑚

ħ
2 (𝐸 − 𝑉0),      and   𝑓 =

𝑏

𝑎
.     

 

ii. Delta-Function Potential. 

Now we consider a one dimensional lattice with unit cell defined on 0 ≤ 𝑥 ≤ 𝑎 with 

central delta function potential given by 

𝑉(𝑥) = 𝑉0𝛿(𝑥 − 𝑎 2⁄ ),                                                                                          (38) 
where 𝑉0 is the strength of the potential. 

In the transmission line method, the boundary conditions and the resonance condition are 

very similar to those used in the case of the square well potential, represented in Eqs. 

(17,18,19,20), except now the impedance function given by Eq. (12) if x ≠ 𝑎 2⁄  while the 

impedance function in the position of the delta-function is given by  

          𝑍(𝑥𝑛) = 𝑍(𝑥𝑛−1) + 𝑣0𝑖                𝑎𝑡                𝑥 = 𝑎 2⁄                                        (39) 
where 

ℰ =
2𝑚

ħ
2 𝐸,           𝑣0 =

2𝑚

ħ
2 𝑉0, 

 and ∆ is the mesh size of the 𝑥 coordinate. 

In Fig. 7, we show the impedance function 𝑍(𝑥) for a unit cell with a lattice parameter 𝑎 =
1𝐴0 having a central delta function potential with a strength 𝑉0 = 100 𝑒𝑉 at arbitrary electron 

energy eigenvalues. In Fig. 7a, the electron energy eigenvalue 𝐸 = 29.185 𝑒𝑉 is in the first 

energy band and correspond to the wave number 𝑘 = 0.628 𝐴0
−1
 . While in Fig. 7b, the 

electron energy eigenvalue  𝐸 = 269.365 𝑒𝑉 is in the third energy band and correspond to the 

wave number  𝑘 = 0.628 𝐴0
−1

 . The red line represents the real part of the impedance while 

the blue line represents the imaginary part, the graphs show the rapidly changing of the 

imaginary part of the impedance at the position of delta-function. Therefore, in order to apply 

the resonance condition using Eq. (13) we had to calculate the numerical integral for a 

sufficiently small mesh size in this region. 
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In Fig. 8, we show the resonance condition 𝑒−𝑖 ∫ 𝑍(𝑥)𝑑𝑥
𝑎
0   against the energy 𝐸  for a one 

dimensional lattice with lattice parameter 𝑎 = 1𝐴0 having a central delta function potential 

with energy potential strength 𝑉0 = 100 𝑒𝑉. The numerical integral is performed using mesh 

size of the 𝑥 coordinate  ∆𝑥 = 0.0001 at the position of delta-function.  

Comparison between Fig. 3, and Fig. 8, shows that the forbidden energy bands (energy 

gabs) in the delta function potential are larger than those in the square well potential. 

In Fig. 9, we show the first four energy bands diagram for an electron in one dimensional 

lattice with a unit cell 𝑎 = 1𝐴0 having a central delta function potential with a strength 𝑉0 =
100 𝑒𝑉, calculated by the transmission line method. 

The first four electron energy bands corresponding to specific wave numbers 𝑘 are listed in 

Table 2. 

The first four electron energy bands diagram are illustrate in Fig. 10, for an electron in one 

dimensional lattice with a unit cell 𝑎 = 1𝐴0  having a central delta function potential with 

strength potential   𝑉0 = 100 𝑒𝑉 . It is calculated numerically using the transmission line 

method, plane wave method, and finite difference method, and the analytical solution. Again, 

the agreement between the analytical results and those obtained numerically and the results 

obtained by applying the transmission line method are good. 

 

 
Fig. 8. The resonance condition of a unit a=1 Ao having a central delta-function with V0=100 

eV against the energy. 

 
  



77 
 

Application of the Transmission Line Method to Calculate the Energy Bands for an Electron 
 

Table 2. The first four electron energy bands corresponding specific wave numbers 𝑘. 

 

k 
(𝐴𝑜−1) 

1𝑠𝑡energy band 

(𝑒𝑉) 
2𝑛𝑑energy band 

(𝑒𝑉) 
3𝑟𝑑  energy band 

(𝑒𝑉) 
4𝑡ℎ  energy band 

(𝑒𝑉) 
0 28.449 150.610 262.570 602.441 

0.314 28.635 149.486 264.329 598.009 

0.628 29.185 146.384 269.365 586.375 

0.942 30.063 141.864 277.063 570.403 

1.257 31.221 136.579 286.704 552.446 

1.571 32.578 131.111 297.569 534.047 

1.885 34.021 125.932 308.935 516.304 

2.199 35.411 121.436 319.973 500.218 

2.513 36.584 117.946 329.595 486.957 

2.827 37.373 115.730 336.386 477.982 

3.141 37.653 114.978 338.873 474.799 
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In the plane wave method, the Fourier coefficients of the delta function potential are given 

by 

𝑈𝐺 = 𝑣0,                                                                                                                                 (40)            

where 𝑣0 =
2𝑚

ħ
2 𝑉0 .  

The results in Fig. 10, are calculated by expanding the system to 100 plane waves which is 

numerically costing. 

In the finite difference method the eigenvalus are calculated similarly to the previous 

square well potential, the wave function Ѱ(𝑥𝑛) are calculated numerically by Eq. (28), while 

the wave function at the position of the delta-function is given by 

          Ѱ𝑁
2
+1
= (𝑣0∆ + 2)Ѱ𝑁

2
− Ѱ𝑁

2
−1
.                                                                         (41) 

The mesh size used in these results is ∆= 0.00001 

In the analytical solution the eigenvalues calculated by using Eq. (35), where the 

transmission coefficient of the delta function potential is given by 

          𝑡 =
𝑖𝐾

𝑖𝐾 −
𝑣0
2

 ,                                                                                                               (42) 

 and the reflection coefficient is given by [6] 

          𝑟 =

𝑣0
2

𝑖𝐾 −
𝑣0
2

.                                                                                                               (43) 

 

Conclusion 

 

In this paper, we have employed the transmission line method to calculate the electron 

energy bands in one dimensional lattice by applying a resonance condition of the impedance 

based on Bloch's theorem, this resonance condition involves an integral calculation as in Eq. 

(20).  In Fig. 2 and Fig. 7 we have shown the impedance function as a function of distance for 

electron energy eigenvalues included in a high energy band for both the square well potential 

and the delta-function potential respectively, to explain how we modified Simpson Rule using 

Laurant Approximation to perform the integral involved in the resonance condition 

numerically. In Fig. 3 and Fig. 8, we demonstrate the resonance condition against the energy 

for the square well potential and the delta-function potential respectively in order to explain 

how we can get the electron energy bands by applying this condition. The resulting energy 

bands for the square well potential and the delta-function potential have been shown in Fig. 4 

and Fig. 9, respectively, as a result, the width of the forbidden gabs become progressively 

narrower. We have presented a detailed account of the energy bands calculated numerically 

using different method and the energy bands calculated analytically to check our results 

against results from different methods. This comparison is illustrated in Fig. 5 and Fig. 10, for 

the square well potential and the delta-function potential respectively. The results of the 

transmission line method fit well with other numerical techniques and has the advantage of 

less expensive computations compared to the finite difference method and plane wave 

expansion.     
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