The Libyan Journal of Science (An International Journal): Volume 19B, 2016

On Extremal Topology

Mabruk Ali Sola¹* Massuodah Saed Tarjm²**

¹Department of Mathematics, Faculty of Science, Tripoli University ²Department of Mathematics, Faculty of Education, Tripoli University *mabruk_sola@yahoo.com **ms_najm@yahoo.com

Abstract

Extremal topology was defined on an arbitrary set X as a maximal non-discrete topology [2]. In this paper we will prove that every extremal topology τ on a set X has to be of the form $\tau = P(X \setminus \{x\}) \cup \{\{x\} \cup F: F \in \mathcal{F}\}$, for some $x \in X$ and some ultrafilter \mathcal{F} in $X \setminus \{x\}$. Where $P(X \setminus \{x\})$ is the power set of $X \setminus \{x\}$. We also show that if \mathcal{F} is a free ultrafilter then (X, τ) is a T_4 space.

Keywords: Extremal topology; Door Space; $T_{\frac{1}{2}}$ Space.

المستخلص

عُرَفت التوبولوجيا المتطرفة عل أنها أقوى توبولوجيا غير متقطعة على مجموعة X [2]، وسوف تثبت هذه $\tau = P(X \{x\}) \cup \{x\} \cup F : F \in \mathcal{F}\}$ على النحو $\{x\} \cup F : F \in \mathcal{F}\} \cup \{x\} \cup V$ الورقة أن أي توبولوجيا متطرفة على مجموعة X على النحو $X \neq X$ على $X \neq X$ ولبعض المرشحات الفوقية \mathcal{F} على $X \{x\}$, حيث $(X, \{x\})$ هي مجموعة القوة للمجموعة $X \neq X$. أيضا سوف نثبت إذا كان \mathcal{F} مرشح فوقي حر فإن (X, τ) يكون T_4 .

Preliminaries

If X is a non-empty set, a non-empty collection \mathcal{F} of subsets of X is called a filter in X if (i) $\emptyset \notin \mathcal{F}$, (ii) if $F_1, F_2 \in \mathcal{F}$ then $F_1 \cap F_2 \in \mathcal{F}$, (iii) if $F \in \mathcal{F}$ and $G \subset X$ with $F \subset G$ then $G \in \mathcal{F}$.

Accepted for publication: 29/11/2016

Mabruk Ali Sola and Massuodah Saed Tarjm

A filter \mathcal{F} on X is said to be free filter provided $\underset{F \in \mathcal{F}}{\cap} F = \emptyset$ otherwise it is called a fixed filter. A filter \mathcal{F} is called an ultrafilter if it is a maximal filter; that is if \mathcal{G} is a filter containing \mathcal{F} , then $\mathcal{F} = \mathcal{G}$. A filter \mathcal{F} is an ultrafilter in X if and only if for any $E \subseteq X$ either $E \in \mathcal{F}$ or $X \setminus E \in \mathcal{F}$ and an ultrafilter \mathcal{F} is fixed ultrafilter if and only if there exists, $y \in X$ such that $\underset{F \in \mathcal{F}}{\cap} F = \{y\}$. A collection \mathfrak{D} of subsets of X is a filter base for a filter in X if and only if: (i) $\emptyset \notin \mathfrak{D}$, (ii) For any $D_1, D_2 \in \mathfrak{D}$ there exists $D_3 \in \mathfrak{D}$ with $D_3 \subseteq D_1 \cap D_2$. Every filter is contained in an ultrafilter see [1] and [4]. A topological space X is said to be a door space if any subset of X is either open or closed [1]. A topological space X is called a $T_1 \atop space$ if every one-

point set is either open or closed. Clearly if X is a door space then X is a $T_{\underline{1}}$ space.

In [2] extremal topology was defined, and it was proved that for any $x, y \in X, x \neq y, \tau_{\{x,y\}} = P(X \setminus \{x\}) \cup \{\{x\} \cup A : A \subset P(X \setminus \{x\}), y \in A\}$ is an extremal topology and if *X* is finite then every extremal topology on *X* has to be of the form $\tau_{\{x,y\}}$ for some $x, y \in X, x \neq y$. In this paper we will generalize Theorem 1-2 and Theorem 2-1 of [2] and derive some other properties of extremal spaces.

The Main Results

We first give the following Theorem

Theorem 1:

If X is a non-empty set, $x \in X$ and $\tau = P(X \setminus \{x\}) \cup \{\{x\} \cup F: F \in \mathcal{F}\}$ for some filter \mathcal{F} in $X \setminus \{x\}$ then:

- a) τ is a topology on X.
- b) (X, τ) is a normal space.
- c) (X, τ) is a door space and hence a T₁ space.
- d) If \mathcal{F} is a free filter in $X \setminus \{x\}$, then (X, τ) is a Hausdorff space and hence a T_4 space.

Proof:

- a) Is trivial.
- b) Let A, B be any two disjoint closed subsets. Then we have two cases: case(i): If $x \notin A \cup B$ then A, B are two disjoint open sets.

case(ii): If $x \in A \cup B$, say $x \in A$, $x \notin B$. Then *B* is a clopen(closed and open) subset and so B^c and *B* are two disjoint open sets containing *A* and *B* respectively. Hence *X* is a normal space.

On External Topology

- c) Let A be any subset of X. If x ∉ A, then A is an open set. If x ∈ A, then for any y ∉ A, {y} is an open set containing y and disjoint from A. Hence A is a closed set. So (X, τ) is a door space.
- d) If \mathcal{F} is a free filter in $X \setminus \{x\}$, $y, z \in X, y \neq z$. Then if $y, z \in X \setminus \{x\}$, the sets $\{y\}, \{z\}$ are two disjoint open sets containing y and z respectively. If $z = x, y \neq x$, then since \mathcal{F} is a free filter in $X \setminus \{x\}$, so there exists $F \in \mathcal{F}$ with $y \notin F$ and hence $\{x\} \cup F, \{y\}$ are two disjoint open sets containing x and y respectively. Therefore X is a Hausdorff space and hence by (b) above X is a T_4 space.

The following Theorem generalizes both 1-2 and 2-1 of [2]

Theorem 2 [3]:

A topology τ on *X* is an extremal if and only if there exists $x \in X$ such that $\tau = P(X \setminus \{x\}) \cup \{\{x\} \cup F: F \in \mathcal{F}\}$ for some ultrafilter \mathcal{F} in $X \setminus \{x\}$.

Proof:

⇒ Suppose τ is an extremal topology, then there exists $x \in X$ with $\{x\} \notin \tau$.

Let $\mathfrak{D} = \{D \subset X \setminus \{x\}: \{x\} \cup D \in \tau\}$, then \mathfrak{D} is a filter base for a filter \mathcal{G} in $X \setminus \{x\}$, and if $\underset{D \in \mathfrak{D}}{\cap} D = \emptyset$ then \mathcal{G} is a free filter while if $\underset{D \in \mathfrak{D}}{\cap} D \neq \emptyset$ then \mathcal{G} is a fixed filter. Let \mathcal{F} be an ultrafilter in $X \setminus \{x\}$ containing \mathcal{G} and τ^* be the topology generated by the collection $\tau \cup \{\{x\} \cup F: F \in \mathcal{F}\}$. Since $\{x\} \notin \tau^*$, then τ^* is not discrete and since $\tau \subset \tau^*$ and τ is an extremal so $\tau = \tau^*$ and hence $\{\{x\} \cup F: F \in \mathcal{F}\} \subset \tau$. Also since τ is extremal $A \in \tau$ for any $A \subset X \setminus \{x\}$, otherwise

$$\tau < A > = \{U \cup (V \cap A) \colon U, V \in \tau\}$$

is not a discrete topology containing τ and with $A \in \tau < A >$. Which is a contradiction. Hence

$$P(X \setminus \{x\}) \cup \{\{x\} \cup F : F \in \mathcal{F}\} \subset \tau.$$

If $U \in \tau$, then if $x \notin U$ we then have $U \subset X \setminus \{x\}$ and so

$$U \in P(X \setminus \{x\}) \cup \{\{x\} \cup F \colon F \in \mathcal{F}\}.$$

If $x \in U$, then since \mathcal{F} is an ultrafilter so either $U \setminus \{x\} \in \mathcal{F}$ or $X \setminus U \in \mathcal{F}$. If $U \setminus \{x\} \in \mathcal{F}$ then $U \in P(X \setminus \{x\}) \cup \{\{x\} \cup F: F \in \mathcal{F}\}$.

If $X \setminus U \in \mathcal{F}$ then $\{x\} \cup (X \setminus U) \in \tau$ and so $\{x\} = U \cap [\{x\} \cup (X \setminus U)] \in \tau$, which is a contradiction. So we have

$$\tau = P(X \setminus \{x\}) \cup \{\{x\} \cup F : F \in \mathcal{F}\}.$$

Mabruk Ali Sola and Massuodah Saed Tarjm

If $x \notin w$ then $w \in P(X \setminus \{x\}) \subset \tau$ and we have a contradiction.

If $x \in w$, then since \mathcal{F} is an ultrafilter in $X \setminus \{x\}$, so either $w \setminus \{x\} \in \mathcal{F}$ or $X \setminus w \in \mathcal{F}$. If $w \setminus \{x\} \in \mathcal{F}$, then $w \in \tau$ and we have a contradiction. If $X \setminus w \in \mathcal{F}$ then $\{x\} \cup (X \setminus w) \in \tau \subset \hat{\tau}$, and so $w \cap [\{x\} \cup (X \setminus w)] = \{x\} \in \hat{\tau}$, a contradiction since $\hat{\tau}$ is not discrete so $\tau = \hat{\tau}$ and hence τ is an extremal topology on X.

Corollory 3:

If $\tau = P(X \setminus \{x\}) \cup \{\{x\} \cup F: F \in \mathcal{F}\}$ is an extremal topology and \mathcal{F} is a fixed ultrafilter in $X \setminus \{x\}$, then $\tau = \tau_{\{x,y\}}$ for some $y \neq x$.

Proof:

If \mathcal{F} is a fixed ultrafilter, then there is $y \in X \setminus \{x\}$ with $\bigcap_{F \in \mathcal{F}} F = \{y\}$. So $\tau = P(X \setminus \{x\}) \cup \{\{x\} \cup F: F \in \mathcal{F}\} = P(X \setminus \{x\}) \cup \{\{x\} \cup F: y \in F, F \in \mathcal{F}\} = \tau_{\{x,y\}}$.

The following two corollaries are consequences of Theorem 2.

Corollary 4:

If τ is an extremal topology on a set X then:

- a) (X, τ) is a normal space.
- b) (X, τ) is a door space and hence a $T_{\frac{1}{2}}$ space.

Corollary 5:

If $\tau = P(X \setminus \{x\}) \cup \{\{x\} \cup F: F \in \mathcal{F}\}$ is an extremal topology on X and \mathcal{F} is a free ultrafilter in $X \setminus \{x\}$, then (X, τ) is a T_2 space and hence a T_4 space.

References

- [1] Kelley, J. L. (1955). General Topology, Springer- Verlag.
- [2] Mera, K. M. and Sola, M. A. (2005) Extremal Topology, Damascus University Journal for basic science, vol.21, No1.
- [3] Sola, M. A. A note on extremal topologies, unpublished paper.
- [4] Willard, S. (1970). General Topology, Addision-Wesley Publishing Company, INC.