The Libyan Journal of Science (An International Journal): Volume 21B, 2018

Metrizable Spaces with Exactly One Non-Isolated Point

Mabruk Ali Sola

Department of Mathematics,Tripoli University, Faculty Of Science mabruk_sola@yahoo.com

Abstract

It has been proved that if X is an infinite set, $x_0 \in X$ and $\tau = P(X\setminus\{x_0\}) \cup \{\{x_0\} \cup F : F \in$ \mathcal{F} } then (X, τ) is a metrizable space, where $\mathcal F$ is a free filter in $X\setminus\{x_0\}$ with countable filter base and P(X\{ x_0 }) is the power set of X\{ x_0 } [3]. In this paper I will define a metric on X which induces the topology τ and show that every metrizable space with exactly one nonisolated point has to be of this form.

Keywords: Metrizable space; Isolated point; Free filter.

المستخلص

[∘] ∈ **و** { ∋ ∶ ∪ {}} ∪ ({}\) = **حيث مرشح حر في مثبت أنه إذا كانت مجموعة غير منتهية,** {}\ **ي و ِّ له أساس عد** ({}\) **مجموعة القوة للمجموعة** {}\ **فإن** (,) **فضاء قابل للمترية [3]. في هذه الورقة سوف أعرف دالة مترية أو قياس يعطي التوبولوجيا أعاله. و سوف اثبت أن أي فضاء قابل للمترية به فقط نقطة واحدة غير معزولة يكون على هذا النحو.**

Preliminaries

Throughout the paper I am assuming X is an infinite set. A space (X, τ) is said to be metrizable if there is a metric d defined on X induces the topology τ [1,5]. If (X, τ) is a metrizable space with a metric d, then for any $\varepsilon > 0$, $x \in X$, $B_{\varepsilon}(x) = \{y \in X : d(x, y) < \varepsilon\}$ is called an open disc with center x and radius ε . A point x of a topological space X is called an isolated point if $\{x\}$ is open in X.

A filter in a set X is a collection $\mathcal F$ of non-empty subsets of X such that if $F_1, F_2 \in \mathcal F$, then $F_1 \cap F_2 \in \mathcal{F}$ and if $F \in \mathcal{F}$, $G \subseteq X$ with $F \subseteq G$, then $G \in \mathcal{F}$. A subcollection ℓ of a filter $\mathcal F$ is a filter base for $\mathcal F$ if for any $F \in \mathcal F$ there exists $C \in \ell$ with $C \subset F$.

Accepted for publication: 30/12/2018

Mabruk Ali Sola

A filter *F* is said to be free filter if $\int_{F \in \mathcal{F}}^{\cap} F = \emptyset$. A collection β_n of subsets of a topological space X is said to be locally finite collection if every point in X has an open neighborhood which intersects only finitely many members of β_n . A collection β_n of subsets of a topological space X is said to be σ -locally finite if $\beta = \bigcup_{n=1}^{\infty}$ ∞ \int_{-1} β_n , where β_n is locally finite collection for all $n \leq 5$.

The following theorem is theorem 23.9 of [5].

Theorem-1

A topological space X is metrizable if and only if it is T_3 and has a σ -locally finite base. The following theorem is theorem 6 of [3].

If $x_0 \in X$, $\tau = P(X \setminus \{x_0\}) \cup \{\{x_0\} \cup F : F \in \mathcal{F}\}\$, where $\mathcal F$ is a free filter in $X \setminus \{x_0\}$, $P(X \setminus \{x_0\})$ ${x_o}$) is the power set of $X \setminus {x_o}$, then (X, τ) is metrizable if and only if $\mathcal F$ has a countable filter base.

Clearly if x_0 , X , τ as in the above theorem, then x_0 is the only non-isolated point in X .

The main results

The main result of this section is finding a metric which induces the topology given in theorem 1.2 above and it is given in the following theorem $\overline{}$

Theorem-I

There is a metric induces the topology $\tau = P(X \setminus \{x_{\circ}\}) \cup \{\{x_{\circ}\} \cup F : F \in \mathcal{F}\}\)$, where $x_{\circ} \in$ X and F is a free filter in $X \setminus \{x_{\circ}\}\)$ with countable filter base.

Proof

Let ${C_n}_{n=1}^{\infty}$ be a countable filter base for $\mathcal F$ and suppose $C_n \supsetneq C_{n+1}$ for all n . Since F is free, then $n = 1$ ∞ = $C_n = \emptyset$. Let $d: X \times X \to [0, \infty)$ defined by $d(x, y) =$ $\overline{\mathcal{L}}$ \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} $if x, y \in X \setminus \{x_{\circ}\}, x \neq y \text{ and } (x \notin C_1 \text{ or } y \notin C_1)$
 $if (x - x, y \notin C_1) \text{ or } (y - x, y \notin C_1)$ 1, $if (x = x_0, y \notin C_1) \text{ or } (y = x_0, y \notin C_1)$ 1 $\frac{-}{n+1}$, if $(x = x_0, y \in C_1$ and n in the least integer such that $y \notin C_n$) or (y = x_0 , $x \in C_1$ and n in the least integer such that $x \notin C_n$) $\max\left\{\frac{1}{\cdots}\right\}$ $\frac{1}{n+1}, \frac{1}{m+1}$ $\frac{-}{m+1}$, if $x \neq y$, $x, y \in C_1$ and n, m are respectively the least integers such that $x \notin \mathcal{C}_n, y \notin \mathcal{C}_m$ 0, $if \; x = y, x, y \in X$ To check that d is a metric:

clearly,

(i) $d(x, y) \ge 0$ for all $x, y \in X$,

(ii) $d(x, y) = 0$ if and only if $x = y$, and

Metrizable Spaces with Exactly One Non-Isolated Point

(iii) $d(x, y) = d(y, x)$ for all $x, y \in X$ hold

(iv) to check the triangle inequality, let $x, y, z \in X$, then we have the following cases:

- a) If $x, y, z \in X \setminus (C_1 \cup \{x_{\circ}\})$, then clearly the inequalities $d(x, z) \leq d(x, y) + d(y, z)$ $d(x, y) \leq d(x, z) + d(z, y)$ $d(y, z) \leq d(y, x) + d(x, z)$ hold.
- b) If $x = x_0, y, z \notin C_1$ then the inequalities $d(x_0, z) \leq d(x_0, y) + d(y, z)$ $d(x_0, y) \leq d(x_0, z) + d(z, y)$ $d(y, z) \leq d(y, x_{\circ}) + d(x_{\circ}, z)$ hold.
- c) If $\in X \setminus (C_1 \cup \{x_\circ\}, y, z \in C_1)$, then also the three inequalities hold.
- d) If x, y, $z \in C_1$. Suppose $x \notin C_n$, $y \notin C_m$, $z \notin C_k$ where n, m, k are the least integers with these proporties. Suppose $n \le m \le k$, then all of the inequalities $d(x, z) \leq d(x, y) + d(y, z)$ $d(x, y) \leq d(x, z) + d(z, y)$ $d(y, z) \leq d(y, x) + d(x, z)$ hold
- e) If $x = x_0, y, z \in C_1$ suppose $(x_0, y) = \frac{1}{n+1}$ $\frac{1}{n+1}$, $d(x_0, z) = \frac{1}{m+1}$ $\frac{1}{m+1}$ and $n \leq m$, then the three triangle inequalities $d(x_0, z) \leq d(x_0, y) + d(y, z)$ $d(x_0, y) \leq d(x_0, z) + d(z, y)$ $d(y, z) \leq d(y, x_{\circ}) + d(x_{\circ}, z)$ hold. f) If $x = x_0, y \in C_1, z \notin C_1$ then also the three triangle inequalities hold.

Hence d is a metric on X .

Next we will show that *d* induces the topology $\tau = P(X \setminus \{x_{\circ}\}) \cup \{\{x_{\circ}\} \cup F : F \in \mathcal{F}\}.$ If $x \notin C_1$, $x \neq x$, then $d(x, y) = d(y, x) = 1$ for any $y \in X$, $y \neq x$. So $B_1(x) = \{x\}$. If $x \in$ $C_1, x \notin C_2$, then $d(x, x_0) = \frac{1}{3}$ $\frac{1}{3} = d(x_0, x), d(x, y) = d(y, x) = 1$ if $y \notin C_1$ and $d(x, y) =$ 1 $\frac{1}{3} = d(y, x)$ if $y \in C_1$. So $B_{\frac{1}{3}}$ $(x) = \{x\}.$ If $x \in C_2, x \notin C_3$, then $d(x, x_0) = \frac{1}{4}$ $\frac{1}{4} = d(x_0, x), d(x, y) = d(y, x) = \frac{1}{4}$ $\frac{1}{4}$ if $y \notin C_1$. and $d(x, y) = d(y, x) = \frac{1}{4}$ $\frac{1}{4}$ if $y \in C_1$. So $B_{\frac{1}{4}}(x) = \{x\}.$ In general if $x \in C_n$, $x \notin C_{n+1}$ then $B_{\frac{1}{n+2}}$ $(x) = \{x\}.$ If $x = x_0$, then $d(y, x_0) = d(x_0, y) = 1$ if $y \notin C_1$, $d(x_0, y) = d(y, x_0) = \frac{1}{n+1}$ $\frac{1}{n+1}$ if $y \in C_1$ and *n* is the least integer such that $x \notin C_n$. So B_1 $\frac{1}{n}(x_\circ) = \left\{ y \in X : d(x_\circ, y) < \frac{1}{n} \right\}$ $\frac{1}{n}$ } = $C_n \cup \{x_\circ\}$; that is $B_1(x_\circ) = C_1 \cup \{x_\circ\}$, $B_{\frac{1}{2}}$ $\frac{1}{2}(x_0) =$ $C_2 \cup \{x_\circ\}$ and so on.

Therefore as a base for the metric topology we have the collection

Mabruk Ali Sola

$$
\Box = \{B_1(x): x \in X \setminus C_1, x \neq x_\circ\} \cup \{\bigcup_{n=1}^{\infty} \{B_{\frac{1}{n+2}}: x \in C_n \setminus C_{n+1}\}\} \cup \{B_{\frac{1}{n}}(x_\circ)\}_{n=1}^{\infty}
$$

$$
= \{\{x\}: x \in X \setminus \{x_\circ\}\} \cup \{\{x_\circ\} \cup C_n\}_{n=1}^{\infty}
$$

and this base induces the topology $\tau = P(X \setminus \{x_{\circ}\}) \cup \{\{x_{\circ}\} \cup F : F \in \mathcal{F}\}\)$, where $\mathcal F$ is a free filter in $X \setminus \{x_{\circ}\}$ with $\{C_n\}_{n=1}^{\infty}$ as a filter base.

The next theorem shows that if X is a metrizable space with only one isolated point, then the metric topology will be as in the above theorem.

Theorem-II

A space (X, τ) is metrizable with only one non-isolated point x_0 if and only if $\tau = P(X \setminus \{x_{\circ}\}) \cup \{\{x_{\circ}\} \cup F : F \in \mathcal{F}\}\$, where $\mathcal F$ is a free filter in $X \setminus \{x_{\circ}\}\$ with countable filter base.

proof \Rightarrow :

Let *X* be a metrizable space with x_0 as the only non-isolated point. Let $C_n = B_1(x_\circ) \setminus \{x_\circ\}$ for all *n*.

then $C_n \neq \emptyset$, $C_n \subseteq X \setminus \{x_{\circ}\}, C_{n+1} \subsetneq C_n$ for all n and $n = 1$ ∞ = $C_n = \emptyset$.

Let *F* be the free filter with filter base $\{C_n\}_{n=1}^{\infty}$. By theorem 1.2 if $\tau^* = P(X \setminus \{x_\circ\}) \cup \{\{x_\circ\} \cup F : F \in \mathcal{F}\}\)$, then (X, τ^*) is a metrizable space.

To show $\tau^* = \tau$, let $U = \{x_0\} \cup F$ be an open neighborhood of x_0 in (X, τ^*) , then there exists *m* such that $\{x_0\} \cup C_m \subset \{x_0\} \cup F$, so $\{x_0\} \cup C_m = B_{\perp}(x_0) \subseteq \{x_0\} \cup F$. Therefore

{ x_0 } ∪ $F \in \tau$ and so $\tau^* \subseteq \tau$. Also for any n , $B_1(x_0) = \{x_0\}$ ∪ \overline{C} $\frac{1}{n}(x_{\circ}) = \{x_{\circ}\} \cup C_n \in \tau^*$ consequently $\tau \subseteq \tau^*$ and hence $\tau^* = \tau$.

 \Leftarrow : If $\tau = P(X \setminus \{x_{\circ}\}) \cup \{\{x_{\circ}\} \cup F : F \in \mathcal{F}\}\$, where *F* is a free filter in $X \setminus \{x_{\circ}\}\$ with countable filter base, then by the last theorem (X, τ) is metrizable with x_0 as the only nonisolated point. Type equation here.

2.3 Remark

The next research is to find a metric for any metrizable space with finitely many nonisolated points.

References

- [1] Kelley, J. L. (1955). General Topology, Springer-Verlag.
- [2] Mera, K. M. and Sola, M. A . (2005). Extremal Topology. Damascus University Journal for Basic Science, **21** (1).
- [3] Sola M. A. (2017). On The metrizability of extremal spaces. Libyan Journal of science, **20**, 27-31.

Metrizable Spaces with Exactly One Non-Isolated Point

- [4] Sola M. A. and Tarjm M. S. (2016). On extremal topology. Libyan Journal of science, **19** (B), 37-42.
- [5] Willard S. (1970). General Topology. Addision-Wesley Publishing Company, INC.