The Libyan Journal of Science (An International Journal): Volume 21B, 2018

Metrizable Spaces with Exactly One Non-Isolated Point

Mabruk Ali Sola

Department of Mathematics, Tripoli University, Faculty Of Science mabruk_sola@yahoo.com

Abstract

It has been proved that if X is an infinite set, $x_0 \in X$ and $\tau = P(X \setminus \{x_0\}) \cup \{\{x_0\} \cup F : F \in \mathcal{F}\}$ then (X, τ) is a metrizable space, where \mathcal{F} is a free filter in $X \setminus \{x_0\}$ with countable filter base and $P(X \setminus \{x_0\})$ is the power set of $X \setminus \{x_0\}$ [3]. In this paper I will define a metric on X which induces the topology τ and show that every metrizable space with exactly one non-isolated point has to be of this form.

Keywords: Metrizable space; Isolated point; Free filter.

المستخلص

مثبت أنه إذا كانت X مجموعة غير منتهية, $\mathcal{F} = X \in X$ و $\{x_0\} \cup F : F \in \mathcal{F}\} \cup T = P(X \setminus \{x_0\}) \cup \{x_0\} \cup F : F \in \mathcal{F}$ مرشح حر في X أنه إذا كانت X مجموعة غير منتهية, $\mathcal{T} = P(X \setminus \{x_0\})$ فإن (X, τ) فضاء قابل للمترية [3]. في هذه الورقة سوف أعرف دالة مترية أو قياس يعطي التوبولوجيا τ أعلاه. و سوف اثبت أن أي فضاء قابل للمترية به فقط نقطة واحدة غير معزولة يكون على هذا النحو.

Preliminaries

Throughout the paper I am assuming X is an infinite set. A space (X, τ) is said to be metrizable if there is a metric d defined on X induces the topology τ [1,5]. If (X, τ) is a metrizable space with a metric d, then for any $\varepsilon > 0$, $x \in X$, $B_{\varepsilon}(x) = \{y \in X : d(x, y) < \varepsilon\}$ is called an open disc with center x and radius ε . A point x of a topological space X is called an isolated point if $\{x\}$ is open in X.

A filter in a set X is a collection \mathcal{F} of non-empty subsets of X such that if $F_1, F_2 \in \mathcal{F}$, then $F_1 \cap F_2 \in \mathcal{F}$ and if $F \in \mathcal{F}$, $G \subseteq X$ with $F \subseteq G$, then $G \in \mathcal{F}$. A subcollection ℓ of a filter \mathcal{F} is a filter base for \mathcal{F} if for any $F \in \mathcal{F}$ there exists $C \in \ell$ with $C \subset F$.

Accepted for publication: 30/12/2018

Mabruk Ali Sola

A filter \mathcal{F} is said to be free filter if $\underset{F \in \mathcal{F}}{\cap} F = \emptyset$. A collection β_n of subsets of a topological space *X* is said to be locally finite collection if every point in *X* has an open neighborhood which intersects only finitely many members of β_n . A collection β_n of subsets of a topological space *X* is said to be σ -locally finite if $\beta = \bigcup_{n=1}^{\infty} \beta_n$, where β_n is locally finite collection for all *n* [5].

The following theorem is theorem 23.9 of [5].

Theorem-1

A topological space X is metrizable if and only if it is T_3 and has a σ -locally finite base. The following theorem is theorem 6 of [3].

If $x_o \in X$, $\tau = P(X \setminus \{x_o\}) \cup \{\{x_o\} \cup F : F \in \mathcal{F}\}$, where \mathcal{F} is a free filter in $X \setminus \{x_o\}$, $P(X \setminus \{x_o\})$ is the power set of $X \setminus \{x_o\}$, then (X, τ) is metrizable if and only if \mathcal{F} has a countable filter base.

Clearly if x_{\circ} , X, τ as in the above theorem, then x_{\circ} is the only non-isolated point in X.

The main results

The main result of this section is finding a metric which induces the topology given in theorem 1.2 above and it is given in the following theorem j

Theorem-I

There is a metric induces the topology $\tau = P(X \setminus \{x_\circ\}) \cup \{\{x_\circ\} \cup F : F \in \mathcal{F}\}$, where $x_\circ \in X$ and \mathcal{F} is a free filter in $X \setminus \{x_\circ\}$ with countable filter base.

Proof

Let $\{C_n\}_{n=1}^{\infty}$ be a countable filter base for \mathcal{F} and suppose $C_n \supseteq C_{n+1}$ for all n. Since \mathcal{F} is free, then $\bigcap_{n=1}^{\infty} C_n = \emptyset$. Let $d: X \times X \to [0, \infty)$ defined by $d(x, y) = \begin{cases}
1, & \text{if } x, y \in X \setminus \{x_o\}, x \neq y \text{ and } (x \notin C_1 \text{ or } y \notin C_1) \\
1, & \text{if } (x = x_0, y \notin C_1) \text{ or } (y = x_0, y \notin C_1) \\
\frac{1}{n+1}, & \text{if } (x = x_0, y \in C_1 \text{ and } n \text{ in the least integer such that } y \notin C_n) \\
or (y = x_0, x \in C_1 \text{ and } n \text{ in the least integer such that } x \notin C_n) \\
\max\left\{\frac{1}{n+1}, \frac{1}{m+1}\right\}, & \text{if } x \neq y, x, y \in C_1 \text{ and } n, m \text{ are} \\
respectively the least integers such that <math>x \notin C_n, y \notin C_m \\
0, & \text{if } x = y, x, y \in X
\end{cases}$ To check that d is a metric:

clearly,

(i) $d(x, y) \ge 0$ for all $x, y \in X$,

(ii) d(x, y) = 0 if and only if x = y, and

Metrizable Spaces with Exactly One Non-Isolated Point

(iii) d(x, y) = d(y, x) for all $x, y \in X$ hold

(iv) to check the triangle inequality, let $x, y, z \in X$, then we have the following cases:

- a) If x, y, z ∈ X\(C₁∪{x₀}), then clearly the inequalities d(x,z) ≤ d(x,y) + d(y,z) d(x,y) ≤ d(x,z) + d(z,y) d(y,z) ≤ d(y,x) + d(x,z) hold.
 b) If x = x₀, y, z ∉ C₁ then the inequalities
- b) If $x = x_{\circ}, y, z \notin c_1$ then the inequalities $d(x_{\circ}, z) \leq d(x_{\circ}, y) + d(y, z)$ $d(x_{\circ}, y) \leq d(x_{\circ}, z) + d(z, y)$ $d(y, z) \leq d(y, x_{\circ}) + d(x_{\circ}, z)$ hold.
- c) If $\in X \setminus (C_1 \cup \{x_\circ\}, y, z \in C_1$, then also the three inequalities hold.
- d) If x, y, z ∈ C₁. Suppose x ∉ C_n, y ∉ C_m, z ∉ C_k where n, m, k are the least integers with these proporties. Suppose n ≤ m ≤ k, then all of the inequalities d(x,z) ≤ d(x,y) + d(y,z) d(x,y) ≤ d(x,z) + d(z,y) d(y,z) ≤ d(y,x) + d(x,z) hold
- e) If x = x₀, y, z ∈ C₁ suppose (x₀, y) = 1/(n+1), d(x₀, z) = 1/(m+1) and n ≤ m, then the three triangle inequalities d(x₀, z) ≤ d(x₀, y) + d(y, z) d(x₀, y) ≤ d(x₀, z) + d(z, y) d(y, z) ≤ d(y, x₀) + d(x₀, z) hold.
 f) If x = x₀, y ∈ C₁, z ∉ C₁ then also the three triangle inequalities hold.

Hence *d* is a metric on *X*.

Next we will show that *d* induces the topology $\tau = P(X \setminus \{x_o\}) \cup \{\{x_o\} \cup F: F \in \mathcal{F}\}$. If $x \notin C_1, x \neq x_o$ then d(x, y) = d(y, x) = 1 for any $y \in X, y \neq x$. So $B_1(x) = \{x\}$. If $x \in C_1, x \notin C_2$, then $d(x, x_o) = \frac{1}{3} = d(x_o, x), d(x, y) = d(y, x) = 1$ if $y \notin C_1$ and $d(x, y) = \frac{1}{3} = d(y, x)$ if $y \in C_1$. So $B_{\frac{1}{3}}(x) = \{x\}$. If $x \in C_2, x \notin C_3$, then $d(x, x_o) = \frac{1}{4} = d(x_o, x), d(x, y) = d(y, x) = \frac{1}{4}$ if $y \notin C_1$. and $d(x, y) = d(y, x) = \frac{1}{4}$ if $y \notin C_1$. So $B_{\frac{1}{3}}(x) = \{x\}$. In general if $x \in C_n, x \notin C_{n+1}$ then $B_{\frac{1}{n+2}}(x) = \{x\}$. If $x = x_o$, then $d(y, x_o) = d(x_o, y) = 1$ if $y \notin C_1, d(x_o, y) = d(y, x_o) = \frac{1}{n+1}$ if $y \in C_1$ and n is the least integer such that $x \notin C_n$. So $B_{\frac{1}{n}}(x_o) = \{y \in X: d(x_o, y) < \frac{1}{n}\} = C_n \cup \{x_o\}$; that is $B_1(x_o) = C_1 \cup \{x_o\}, B_{\frac{1}{2}}(x_o) = C_2 \cup \{x_o\}$ and so on.

Therefore as a base for the metric topology we have the collection

Mabruk Ali Sola

$$\Box = \{B_1(x) : x \in X \setminus C_1, x \neq x_\circ\} \cup \{\bigcup_{n=1}^{\infty} \{B_{\frac{1}{n+2}} : x \in C_n \setminus C_{n+1}\}\} \cup \{B_{\frac{1}{n}}(x_\circ)\}_{n=1}^{\infty}$$
$$= \{\{x\} : x \in X \setminus \{x_\circ\}\} \cup \{\{x_\circ\} \cup C_n\}_{n=1}^{\infty}$$

and this base induces the topology $\tau = P(X \setminus \{x_\circ\}) \cup \{\{x_\circ\} \cup F : F \in \mathcal{F}\}$, where \mathcal{F} is a free filter in $X \setminus \{x_o\}$ with $\{C_n\}_{n=1}^{\infty}$ as a filter base.

The next theorem shows that if X is a metrizable space with only one isolated point, then the metric topology will be as in the above theorem.

Theorem-II

A space (X, τ) is metrizable with only one non-isolated point x_{\circ} if and only if $\tau = P(X \setminus \{x_\circ\}) \cup \{\{x_\circ\} \cup F : F \in \mathcal{F}\}$, where \mathcal{F} is a free filter in $X \setminus \{x_\circ\}$ with countable filter base.

proof \Rightarrow :

Let X be a metrizable space with x_{\circ} as the only non-isolated point. Let $C_n = B_{\frac{1}{n}}(x_\circ) \setminus \{x_\circ\}$ for all n.

then $C_n \neq \emptyset$, $C_n \subseteq X \setminus \{x_\circ\}$, $C_{n+1} \subseteq C_n$ for all n and $\bigcap_{n=0}^{\infty} C_n = \emptyset$.

Let \mathcal{F} be the free filter with filter base $\{C_n\}_{n=1}^{\infty}$. By theorem 1.2 if $\tau^* = P(X \setminus \{x_\circ\}) \cup \{\{x_\circ\} \cup F : F \in \mathcal{F}\}$, then (X, τ^*) is a metrizable space. To show $\tau^* = \tau$, let $U = \{x_\circ\} \cup F$ be an open neighborhood of x_\circ in (X, τ^*) , then there exists *m* such that $\{x_{\circ}\} \cup C_m \subset \{x_{\circ}\} \cup F$, so $\{x_{\circ}\} \cup C_m = B_{\frac{1}{m}}(x_{\circ}) \subseteq \{x_{\circ}\} \cup F$. Therefore $\{x_{\circ}\} \cup F \in \tau$ and so $\tau^* \subseteq \tau$. Also for any $n, B_{\frac{1}{n}}(x_{\circ}) = \{x_{\circ}\} \cup C_n \in \tau^*$ consequently $\tau \subseteq \tau^*$

and hence $\tau^* = \tau$.

 $\Leftarrow: \text{ If } \tau = P(X \setminus \{x_\circ\}) \cup \{\{x_\circ\} \cup F : F \in \mathcal{F}\}, \text{ where } \mathcal{F} \text{ is a free filter in } X \setminus \{x_\circ\} \text{ with } X \in \mathcal{F}\}$ countable filter base, then by the last theorem (X, τ) is metrizable with x_{\circ} as the only nonisolated point. Type equation here.

2.3 Remark

The next research is to find a metric for any metrizable space with finitely many nonisolated points.

References

- [1] Kelley, J. L. (1955). General Topology, Springer-Verlag.
- [2] Mera, K. M. and Sola, M. A. (2005). Extremal Topology. Damascus University Journal for Basic Science, **21** (1).
- [3] Sola M. A. (2017). On The metrizability of extremal spaces. Libyan Journal of science, **20**, 27-31.

Metrizable Spaces with Exactly One Non-Isolated Point

- [4] Sola M. A. and Tarjm M. S. (2016). On extremal topology. Libyan Journal of science, 19 (B), 37-42.
- [5] Willard S. (1970). General Topology. Addision-Wesley Publishing Company, INC.