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     The main object of this paper is to present the p-harmonic functions in metric 

spaces and compare them with the harmonic functions in the Euclidean spaces. 

We obtain many useful properties for the p-harmonic functions in metric spaces. 

In particular the  p-harmonic functions in metric spaces  satisfy the strong 

maximum principle, the Harnack's inequality and are locally Hölder continuous. 
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1. Introduction  

     The nonlinear Dirichlet problem (in  𝑹𝑛)  is the p-

energy minimization problem min 

∫|∇𝑢|𝑝 𝑑𝑥                                   (1) 

with given boundary values, and the continuous 

minimizer is called p-harmonic function. The 

minimizers are solutions of the corresponding Euler-

Lagrange equation, which is the p-Laplace equation 

div(|∇𝑢|𝑝−2∇𝑢) = 0.                (2) 

For 𝑝 = 2 this is the well known Laplace equation ∆𝑢 =

0.  It  has been shown that the harmonic functions in  𝑹𝑛 

satisfy the  Harnack's inequality, the maximum principle  

and the local Hölder continuity, see e.g. [1] and [2]. 

     In a metric space we have no partial derivatives but 

we have a substitute of the modulus of the gradient 

called upper gradient.  Therefore we cannot study  the  

p-Laplace equation (2), but by looking  at the  

minimizing equation (1) we only use the scalar of the 

gradient and one can, even, use the weak gradient to find 

weak solutions of  the problem.  Therefore, we instead  

deal with the p-minimization integral equation (1) with 

|∇𝑢|  replaced by the minimal p-weak upper gradient of 

𝑢. For more information about upper gradients and 

Sobolev spaces in metric spaces see, e.g.  [3], [4]  and 

[5,6]. 

     The p-harmonic function on metric spaces is defined 

to be the continuous minimizer of the p-Dirichlet 

integral  

∫ 𝑔𝑢
𝑝

 𝑑𝜇                                     (3) 

where, 𝑔𝑢 is the minimal p-weak upper gradient of u. In 

the Euclidean case 𝑔𝑢 = |∇𝑢|, see Section 2, Lemma 

2.2.  The potential theory of minimizers is not linear for 

𝑝 > 1; this happens because the operation of taking an 

upper gradient is not linear.   

Let 1 < 𝑝 < ∞ and 𝑋 = (𝑋, 𝑑, 𝜇) be a complete metric 

space with a metric d and a positive complete Borel 

measure 𝜇 which is doubling, i.e. there exists a constant 

𝐶 > 0 such that for all balls 𝐵 = 𝐵(𝑥0, 𝑟) = {𝑥 ∈

𝑋: 𝑑(𝑥, 𝑥0) < 𝑟}  in 𝑋, we have 
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0 < 𝜇(2𝐵) ≤ 𝐶 𝜇(𝐵) < ∞. 

We also assume that the space 𝑋 supports a p- Poincaré 

inequality, which means that the local mean oscillation 

of every function is controlled by the 𝑳𝑝-norm of its 

upper gradient. 

     The Dirichlet problem for p-harmonic functions on 

metric spaces was studied e.g. in [7,8], [9,10],  [11] and 

[6,12].  Although in 𝑹𝑛 p-harmonic functions are 

Lipschitz functions they need not to be so in the general 

setting of metric spaces, see p.149 in [13]. The Hölder 

continuity for 𝑝-harmonic functions on metric spaces, 

the strong maximum principle and Harnack's  inequality  

were obtained in [11]. 

     This paper is organized as follows. In section 2 we 

focus on preliminary notations and definitions needed in 

the rest of the paper. In section 3 we present the 

harmonic function on the Euclidean spaces and some of 

their properties.   

     In section 4, we consider the 𝑝-harmonic functions, 

as  minimizers of the p-Dirichlet integral (3), on the 

setting of a complete  metric measure space.  In 

particular we prove existence and uniqueness of  𝑝-

harmonic function for a given Newtonian boundary 

value. The strong maximum principle and the Harnack's  

inequality are also shown. Moreover, it has been shown 

that the Hölder continuity is satisfied for the  𝑝-harmonic 

functions. 

2.  Notation and preliminaries 

Definition 2.1 

 A nonnegative Borel function 𝑔 on 𝑋 is said to be an 

upper gradient of an extended real–valued function 𝑓 on 

𝑋 if for all rectifiable curve  𝛾 ∶  [0, 𝑙𝛾]  →  𝑋 

parametrized by the arc length 𝑑𝑠, we have 

𝑓(𝛾(0)) − 𝑓(𝛾(𝑙𝛾))| ≤ ∫ 𝑔 𝑑𝑠            (4)
𝛾

 

     When ever both 𝑓 (𝛾(0))  and  𝑓 (𝛾(𝑙𝛾)) are finite, 

and ∫ 𝑔
𝛾

𝑑𝑠 = ∞ otherwise. If 𝑔 is a nonnegative 

measurable function on  𝑋 and if (4) holds for 𝑝-almost 

every curve then 𝑔 is a 𝑝-weak upper gradient of  𝑓.  If  

𝑓 has an upper gradient in  𝑳𝑝(𝑋), then it has a minimal 

p-weak upper gradient 𝑔𝑓 ∈ 𝑳𝑝(𝑋) in the sense that for 

every p-weak upper gradient  𝑔 ∈ 𝑳𝑝(𝑋) of 𝑓 we have 

𝑔𝑓 ≤ 𝑔 a.e., see Corollary 3.7 in [6]. 

     By saying that (4) holds for 𝑝-almost every curve we 

mean that it fails only for a curve family with zero 𝑝-

modulus, see Definition 2.1 in [5]. 

      The upper gradient in not unique. In particular, from 

(4) every Borel function greater than 𝑔 will be another 

upper gradient of 𝑓. Moreover, the operation of taking 

an upper gradient is not linear. However, we have the 

following useful property. If 𝑎, 𝑏 ∈ 𝑹 and 𝑔1, 𝑔2  are 

upper gradients of 𝑢1, 𝑢2, respectively. Then |𝑎|𝑔1 +

|𝑏|𝑔2 is an upper gradient of 𝑎𝑢1 + 𝑏𝑢2.  

    The following lemma  gives a nontrivial example of 

upper gradient, see [8], Corollary 1.15. 

Lemma 2.2 

      If  𝑋 = 𝑹𝑛  and  𝑓 ∈  𝐶1(𝑹𝑛),  then  |∇𝑓| is  an  

upper  gradient of  𝑓.   

In [5],  Newtonian space has been defined to be the 

collection of all 𝑳𝑝- functions with 𝑳𝑝-upper gradients. 

We will use the following equivalent definition. 

Definition 2.3   

 Let 𝑢 ∈ 𝑳𝑝(𝑋),  then we define 

∥ 𝑢 ∥𝑁1,𝑝(𝑋)= (∫ |𝑢|𝑝 𝑑𝜇 + ∫ 𝑔𝑢
𝑝

 𝑑𝜇
𝑋𝑋

)

1/𝑝

   (5) 

                                           

where the 𝑔𝑢 is the minimal 𝑝-weak upper gradient of 𝑢. 

The Newtonian space on 𝑋 is the quotient space 

𝑁1,𝑝(𝑋) = {𝑢: ∥ 𝑢 ∥𝑁1,𝑝 (𝑋)< ∞}/~, 

where 𝑢~𝑣 if and only if  ∥ 𝑢 − 𝑣 ∥𝑁1,𝑝(𝑋) =  0. 

The space 𝑁1,𝑝(𝑋) is a Banach space and a lattice, see 

Theorem 3.7 and p.249 in [5]. 

We shall need the following lemma about minimal 𝑝-

weak upper gradient. 

Lemma 2.4  

If  𝑢, 𝑣 ∈  𝑁1,𝑝 (𝑋),  then  𝑔𝑢= 𝑔𝑣  a.e.   on  {𝑥 ∈

𝑋: 𝑢(𝑥) = 𝑣(𝑥)}.  Moreover, if 𝑐 ∈ 𝑹  is a constant, 

then  𝑔𝑢  =  0 a.e. on  {𝑥 ∈ 𝑋: 𝑢(𝑥) = 𝑐}. 

Definition 2.5  

The Capacity of a set   𝐸 ⊂ 𝑋 is defined by 

𝐶𝑝(𝐸) = inf
𝑢

∥ 𝑢 ∥𝑁1,𝑝(𝑋) 

where the infimum is taken over all 𝑢 ∈ 𝑁1,𝑝(𝑋) such 

that 𝑢 ≥ 1 on 𝐸. 

     We say that a property holds quasieverywhere (q.e.) 

in 𝑋, if it holds everywhere except on a set of capacity 

zero.  Newtonian functions are well defined up to sets of 
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capacity zero,  i.e.  if   𝑢, 𝑣 ∈ 𝑁1,𝑝(𝑋) then 𝑢 ~ 𝑣  if and 

only if 𝑢 = 𝑣 q.e. Moreover, Corollary 3.3 in [5]  shows 

that if 𝑢, 𝑣 ∈ 𝑁1,𝑝(𝑋) and 𝑢 = 𝑣 a.e., then 𝑢 = 𝑣 q.e. in 

𝑋. 

     From now on we assume that 𝑋 supports a 𝑝–

Poincaré inequality, i.e. there exist constants  𝐶 >

 0 and 𝜆 ≥ 1 such that for all balls 𝐵(𝑧, 𝑟) in 𝑋,  all 

integrable functions 𝑢 on 𝑋 and all upper gradients 𝑔 of 

𝑢 we have 

1

μ(𝐵)
∫ |𝑢 − 𝑢B(z,r)|

𝐵(𝑧,𝑟)

 𝑑𝜇 ≤ 𝐶 𝑟 (
1

𝜇(𝐵)
∫ 𝑔𝑝 𝑑𝜇

𝐵(𝑧,𝜆𝑟)

)

1/𝑝

, 

     To be able to compare the boundary values of 

Newtonian functions we need to define a Newtonian 

space with zero boundary values outside of  Ω  as follows 

𝑁0
1,𝑝(Ω) = {𝑓|Ω: 𝑓 ∈ 𝑁1,𝑝(𝑋)  and   𝑓 = 0   q. e.  in   𝑋\Ω }. 

     The next lemma is useful for proving that a function 

belongs to the  𝑁0
1,𝑝(Ω), see Lemma 5.3 in  [7]. 

Lemma 2.6 

Let  𝑢 ∈ 𝑁1,𝑝(Ω)  be such that 𝑣 ≤ 𝑢 ≤ 𝑤 q.e. in Ω for 

some 𝑣, 𝑤 ∈ 𝑁0
1,𝑝(Ω).  Then 𝑢 ∈ 𝑁0

1,𝑝(Ω). 

The following Poincaré type inequality is from [11],  and 

well be needed. 

Lemma 2.7 

      Assume that Ω ⊂ X is a nonempty bounded open set 

with 𝐶𝑝(𝑋\Ω) > 0. Then there exists a constant  𝐶 > 0 

such that for all 𝑢 ∈ 𝑁0
1,𝑝(Ω) we have 

∫ |𝑢|𝑝

Ω

𝑑𝜇 ≤ 𝐶 ∫ 𝑔𝑢
𝑝

 𝑑𝜇.
Ω

 

     The coming lemma will be needed. For a proof, see 

[14]. 

Lemma 2.8 

     Assume that 𝑔𝑗 is a 𝑝-weak upper gradient of 𝑢𝑗, 𝑗 =

1,2, ⋯, and that both sequences  {𝑢𝑗}𝑗=1
∞  and {𝑔𝑗}𝑗=1

∞  are 

bounded in 𝑳𝑝(𝑋).  Then there are 𝑢, 𝑔 ∈ 𝑳𝑝(𝑋), convex 

combinations 𝑣𝑗 = ∑ 𝑎𝑗,𝑖𝑢𝑖

𝑁𝑗

𝑖=𝑗
  with  𝑝-weak upper 

gradients �̅�𝑗 = ∑ 𝑎𝑗,𝑖𝑔𝑖

𝑁𝑗

𝑖=𝑗
 and strictly increasing 

sequence of indices {𝑗𝑘}𝑘=1
∞ , such that:  

(a) both 𝑢𝑗𝑘
→ 𝑢  and 𝑔𝑗𝑘

→ 𝑔 weakly in  𝑳𝑝(𝑋); 

(b) both 𝑣𝑗 → 𝑢 and  �̅�𝑗 → 𝑔 in 𝑳𝑝(𝑋); 

(c)  𝑣𝑗 → 𝑣 q.e.; 

(d) 𝑔 is a 𝑝-weak upper gradient of 𝑢. 

 

3.  Harmonic functions on  𝑹𝒏 

     Let Ω ⊂ 𝑹𝒏 be open and 𝑢: Ω̅ ⟶ 𝑹  is  an unknown 

function. The Laplacian is defined by 

∆𝑢 = ∑ 𝑢𝑥𝑖 𝑥𝑖

𝑛

𝑖=1

  

and  ∆𝑢 = 0 is called the Laplace equation. The 𝑝-

Laplace equation  is defined by  

div(|∇𝑢|𝑝−2∇𝑢) = 0,                                                   (6) 

and  the  Dirichlet problem  is the p-energy 

minimization problem  defined by 

min ∫|∇𝑢|𝑝 𝑑𝑥                                                            (7) 

Definition 3.1  

A 𝐶2 function satisfying (6) is called (classical) 𝑝-

harmonic function. 

 The more general p-harmonic function is the 

continuous (weak) solution of  (6). 

Theorem 3.2  

If  𝑢 ∈  𝐶2(Ω̅), then 𝑢 solves (6) with a given boundary 

value function 𝑔, if and only if   𝑢 is the minimizer of 

the Dirichlet problem  (7). In other words, the 𝑝-

harmonic functions are exactly the minimizers of  (7), 

with a given boundary value function.  

The existence and uniqueness of  p-harmonic function 

on 𝑹𝑛, with prescribed boundary values, can be found, 

e.g. as it shown  in  [1] and  [2]. 

3.2.1. Properties of  𝒑- harmonic functions in 𝑹𝒏. 

The 𝑝-harmonic functions satisfy the following useful 

properties, see e.g. [2].  

1. The strong maximum principle: A 

nonconstant  p-harmonic function in a 

domain Ω cannot attain its supremum or 

infimum. 

2. Liouville's Theorem 

Theorem 3.3 Suppose that 𝑢: 𝑹𝑛 ⟶ 𝑹 is p-harmonic 

and bounded. Then 𝑢  is constant. 

3.  Harnack's inequality 

Theorem 3.4 Let 𝑢 be a nonnegative p-harmonic 

function in Ω. Then there exists a positive constant 𝐶 

such that 
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sup
𝐵

𝑢 ≤ 𝐶 inf
𝐵

𝑢, 

 

whenever 𝐵 is a ball in Ω such that 2B ⊂ Ω. 

 

4.  𝒑 −Harmonic functions in metric spaces 

Definition 4.1 

     Suppose that Ω ⊂ 𝑋.  A function 𝑢 ∈ 𝑁
1,𝑝

(Ω) is a 

minimizer in Ω  if for every function 𝑣 ∈ 𝑁
1,𝑝

(Ω)  with 

𝑢 − 𝑣 ∈ 𝑁0
1,𝑝(Ω),  we have  

∫ 𝑔𝑢 
𝑝

 𝑑𝜇 ≤ ∫ 𝑔𝑣
𝑝

Ω

 𝑑𝜇,
Ω

 

     where 𝑔𝑢  and 𝑔𝑣 are the minimal p-weak upper 

gradients of  𝑢 and  𝑣 respectively. We also say that  a 

function 𝑢 is p-harmonic if it is a continuous minimizer. 

     If 𝑢 is a minimizer (or p-harmonic) and 𝛼, 𝛽 ∈

𝑹, then 𝛼𝑢 + 𝛽 is a minimizer (or p-harmonic). Note, 

however, that the sum of two minimizers (or  p-

harmonic) functions need not to be a  p-harmonic 

function and thus the theory is not linear. We instead 

have the minimum of two  p-harmonic functions is a  p-

harmonic function. 

     The first question that arises is whether there exists 

such a minimizer and if it will be unique.  In [6]  it was 

shown that there exists a unique minimizer for every 𝑢 ∈

𝑁
1,𝑝(Ω).  

Theorem 4.2 

     Assume that Ω is bounded and that 𝐶𝑝(𝑋 \Ω) > 0. 

Let 𝑓 ∈ 𝑁
1,𝑝(Ω), then there exists a unique minimizer 𝑢 

with  𝑢 − 𝑓 ∈ 𝑁0
1,𝑝

(Ω) (up to a set of capacity zero). 

Proof.  Let  

𝐼 =  inf𝑣 ∫ 𝑔𝑣
𝑝

Ω

𝑑𝜇, 

     where the infimum is taken over all 𝑣 such that 𝑣 −

𝑓 ∈ 𝑁0
1,𝑝(Ω).  Since 𝑓 ∈ 𝑁1,𝑝(Ω), we have 0 ≤ 𝐼 < ∞. 

Then there will be a sequence {𝑢𝑗}
𝑗=1

∞
with 𝑢𝑗 − 𝑓 ∈

𝑁0
1,𝑝(Ω), and that   

  ∫ 𝑔𝑢𝑗

𝑝

Ω
𝑑𝜇 ↘ 𝐼,   as 𝑗 → ∞.  

     It follows that {𝑔𝑢𝑗
}𝑗=1

∞  is bounded in 𝐿𝑝(Ω), since 

  ∫ 𝑔𝑢𝑗

𝑝

Ω
𝑑𝜇 ≤   ∫ 𝑔𝑢1

𝑝

Ω
𝑑𝜇.  Hence from the p- Poincaré 

inequality for  𝑁0
1,𝑝(Ω), we get that  

∫ |𝑢𝑗 − 𝑓|𝑝

Ω

𝑑𝜇 ≤ 𝐶 ∫ 𝑔𝑢𝑗−𝑓
𝑝

Ω

𝑑𝜇

≤ 𝐶 ∫ 𝑔𝑢𝑗

𝑝

Ω

 𝑑𝜇 + 𝐶 ∫ 𝑔𝑓
𝑝

Ω

 𝑑𝜇   

≤ 𝐶 ∫ 𝑔𝑢1

𝑝

Ω

 𝑑𝜇 + 𝐶 ∫ 𝑔𝑓
𝑝

Ω

 𝑑𝜇. 

     This shows that  {𝑢𝑗}
𝑗=1

∞
is bounded in  𝐿𝑝(Ω) and 

hence bounded  in 𝑁1,𝑝(Ω).  By Lemma 2.8, we find 

convex combinations 𝑣𝑗 = ∑ 𝑎𝑗,𝑘

𝑁𝑗

𝑘=𝑗
𝑢𝑘  with 𝑝-weak 

upper gradients 𝑔𝑗 = ∑ 𝑎𝑗,𝑘

𝑁𝑗

𝑘=𝑗
𝑔𝑢𝑘

 and limit functions  

𝑣 and 𝑔 such that 𝑣𝑗 → 𝑣 and 𝑔𝑗 → 𝑔 in  𝐿𝑝(Ω),  𝑣𝑗 → 𝑣  

q.e., as  𝑗 → ∞, and 𝑔 is a 𝑝-weak upper gradient of 𝑣. 

Thus 𝑣 ∈ 𝑁1,𝑝(Ω).  

     We have to show that 𝑣 − 𝑓 ∈ 𝑁0
1,𝑝

(Ω) and that 𝑣 is 

the desired minimizer. To do that let 𝑤𝑗 ≔ 𝑣𝑗 −

𝑓 ∈ 𝑁0
1,𝑝

(Ω) and we can consider 𝑤𝑗   to be zero outside 

of Ω.  Let also 𝑤 = 𝑣 − 𝑓, 𝑔′𝑗 = 𝑔𝑗 + 𝑔𝑓 and 𝑔′ = 𝑔 +

𝑔𝑓 and that all three are considered to  be zero outside of  

Ω.  Then 𝑤𝑗 → 𝑤 and  𝑔′𝑗 → 𝑔′ in 𝐿𝑝(𝑋) and 𝑤𝑗 → 𝑤 

q.e. in 𝑋,  as  𝑗 → ∞. By Lemma 2.8,  𝑤 ∈ 𝑁1,𝑝(X) and 

thus  𝑣 − 𝑓 ∈ 𝑁0
1,𝑝(Ω). 

     Now, we have  

𝐼 ≤ ∫ 𝑔𝑣
𝑝

Ω

 𝑑𝜇 ≤ ∫ 𝑔𝑝𝑑𝜇
Ω

= lim
𝑗→∞

∫ 𝑔𝑗
𝑝

Ω

𝑑𝜇 = 𝐼. 

     This shows that  𝐼 = ∫ 𝑔𝑣
𝑝

Ω
 𝑑𝜇 and hence 𝑣 is the 

minimizer. 

     For uniqueness, assume that 𝑢1, 𝑢2 are two 

minimizers with the same boundary values 𝑓, i.e. 𝑢1 −

𝑓 ∈ 𝑁0
1,𝑝(Ω) and  𝑢2 − 𝑓 ∈ 𝑁0

1,𝑝(Ω).  

Then also 𝑢′ = 1

2
(𝑢1 + 𝑢2) has the boundary values 𝑓 ( 

in the weak sense) and 

‖𝑔𝑢1
‖

𝐿𝑝(Ω)
≤ ‖𝑔𝑢′‖𝐿𝑝(Ω) ≤ ‖

1

2
(𝑔𝑢1

+ 𝑔𝑢2
)‖

𝐿𝑝(Ω)

≤
1

2
‖𝑔𝑢1

‖
𝐿𝑝(Ω)

+
1

2
‖𝑔𝑢2

‖
𝐿𝑝(Ω)

= ‖𝑔𝑢1
‖

𝐿𝑝(Ω).
 

     Hence 𝑔𝑢1
= 𝑔𝑢2

 a.e. in Ω by the strict convexity of 

the  𝐿𝑝(Ω).  We shall show that 𝑔𝑢1−𝑢2
= 0 a.e. in Ω. 

The p- Poincaré inequality for  𝑁0
1,𝑝(Ω), Lemma 2.7, 
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then implies that ‖𝑢1 − 𝑢2‖𝐿𝑝(Ω) = 0 and hence 𝑢1 =

𝑢2 q.e. in Ω. 

     To show that  𝑔𝑢1−𝑢2
= 0 a.e. in Ω, let 𝑐 ∈ 𝑹 and  

 

𝑢 = max {𝑢1, min{𝑢2, 𝑐}}. 

     Then 𝑢 ∈ 𝑁1,𝑝(Ω) and 𝑢 − 𝑓 ≥ 𝑢1 − 𝑓 ∈ 𝑁0
1,𝑝(Ω). 

Also, 

𝑢 − 𝑓 ≤ max{𝑢1, 𝑢2} − 𝑓 = max{𝑢1 − 𝑓, 𝑢2 − 𝑓}

∈ 𝑁0
1,𝑝(Ω). 

    Lemma 2.6 shows that  𝑢 − 𝑓 ∈ 𝑁0
1,𝑝(Ω).  

Now, let  𝑉𝑐 = {𝑥 ∈ Ω: 𝑢1(𝑥) < 𝑐 < 𝑢2} and note that 

𝑉𝑐 ⊂ {𝑥 ∈ Ω: 𝑢(𝑥) = 𝑐} and hence 𝑔𝑢 = 0 a.e. in 𝑉𝑐, by 

Lemma 2.4. The minimizing property of 𝑔𝑢1
 then 

implies that  

∫ 𝑔𝑢1

𝑝

Ω

𝑑𝜇 ≤ ∫ 𝑔𝑢
𝑝

Ω

 𝑑𝜇 ≤ ∫ 𝑔𝑢
𝑝

Ω\Vc

 𝑑𝜇

≤ ∫ 𝑔𝑢1

𝑝

Ω\Vc

 𝑑𝜇,                              (8) 

     since by Lemma 2.4 𝑔𝑢 = 𝑔𝑢1
= 𝑔𝑢2

 for a.e. 𝑥 ∈

Ω\𝑉𝑐. From (8) we conclude that 𝑔𝑢2
= 𝑔𝑢1

 a.e. in 𝑉𝑐 

for all 𝑐 ∈ 𝑹.  Now 

{𝑥 ∈ Ω: 𝑢1(𝑥) < 𝑢2(𝑥)} ⊂ ⋃ 𝑉𝑐

𝑐∈𝑸

 

and hence 𝑔𝑢2
= 𝑔𝑢1

= 0 a.e. in {𝑥 ∈ Ω: 𝑢1(𝑥) <

𝑢2(𝑥)},  and similarly for {𝑥 ∈ Ω: 𝑢2(𝑥) < 𝑢1(𝑥)}.  It 
follows that 

𝑔𝑢1−𝑢2
≤ (𝑔𝑢1

+ 𝑔𝑢2
)𝜒{𝑥∈Ω:𝑢1≠𝑢2} = 0 a.e. in Ω, 

which implies that 𝑢1 = 𝑢2 q.e. in Ω, and hence the 

minimizer is unique.  

Lemma  4.3 (comparison principle)  

     Assume that Ω is bounded and that 𝐶𝑝(𝑋 \Ω) > 0. 

Let 𝑢1 , 𝑢2 ∈ 𝑁
1,𝑝(X) be two minmizers in Ω such that 

𝑢1 ≤ 𝑢2 q.e. in  𝜕𝛺. Then 𝑢1 ≤ 𝑢2 in Ω.  

Theorem 4.5 (Harnack inequality)  

     Suppose that u is a nonnegative minimizer in Ω. Then 

there exists a constant 𝐶 ≥ 1,  

only depending on p, 𝐶𝜇 and the constants in the p-

Poincaré inequality, such that 

ess sup
B

𝑢 ≤ C ess inf
B

 𝑢   

for every 𝐵 ⊂ 50𝜆𝐵 ⊂ Ω. 

 

Theorem 4.6 (The strong maximum principle)  

     If  Ω  is connected, 𝑢 is p-harmonic in Ω  and 𝑢 attains 

its maximum in Ω then u is a constant in Ω. Proof. 

     We may assume that the maximum is  0. Let  𝐴 =
{𝑥 ∈ Ω: 𝑢(𝑥) = 0}, a relatively closed subset of Ω, since 

𝑢 is continuous. Let further 𝑥 ∈ 𝐴. Then we can find a 

ball 𝐵 ∋ 𝑥 such that  50𝜆𝐵 ⋐ Ω. As – 𝑢 is a nonnegative 

p-harmonic function in Ω , we have by the Harnack's 

inequality (Theorem 4.5) that 

− inf
𝐵

𝑢 = sup
𝐵

(−𝑢) ≤ −𝐶 𝑢(𝑥) = 0, 

i.e. 0 ≤ inf
𝐵

𝑢 ≤ sup
𝐵

𝑢 = 0. Hence 𝐵 ⊂ 𝐴,  i.e. 𝐴 is open. 

Since  Ω is connected, 𝐴 must be the only nonempty 

relatively closed open subset of  Ω, viz. Ω  itself. Thus 

𝑢 ≡ 0. 

The following  theorem provide us with a continuous 

minimizer  i.e. it ensures the existence of  p-harmonic 

functions and that they are locally Hölder continuous in 

the domain of its harmonicity. 

Theorem 4.7 

     Let u be a minimizer in Ω. Then u can be modified on 

a set of capacity zero so that it becomes locally 𝛼-Hölder 

continuous in Ω, where 0 < 𝛼 < 1. More precisely, if 

𝐵 = 𝐵(𝑥0, 𝑟0) ⊂ 2𝐵 ⋐ Ω is a ball, then for all 𝑥, 𝑦 ∈ 𝐵, 

|�̃�(𝑥) − �̃�(𝑦)| ≤ 𝐶 ( sup
2B

�̃� −  inf
2B

 �̃� )
𝑑(𝑥, 𝑦)𝛼

𝑟0
𝛼 , 

where �̃� = 𝑢 q.e. in Ω, and C and 𝛼 only depend on 𝑝, 𝐶𝜇 

and the constants in the p-Poincaré inequality. 

Theorem 4.8 

     Let 𝑢 be a 𝑝-harmonic function on Ω and 𝐺 ⋐ 𝐺′ ⋐

Ω.  Then for 𝑥, 𝑦 ∈ Ω, 

|𝑢(𝑥) − 𝑢(𝑦)| ≤ 𝐶 ( sup 
G′

𝑢 −  inf
G′

 𝑢 )
𝑑(𝑥, 𝑦)𝛼

𝑟0
𝛼 , 

where 𝐶 and  0 < 𝛼 < 1 only depend on 𝐺, 𝐺′, 𝑝, 𝐶𝜇 

and the constants in the 𝑝-Poincaré inequality. 

Corollary 4.9 (Liouville's theorem)  
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      If 𝑢 is 𝑝-harmonic and bounded from below on all of 

𝑋, then 𝑢 is constant. 

      

Proof.  Let 𝑣 = 𝑢 −  inf
𝑋

 𝑢  ≥ 0.  Then by the Harnack's 

inequality, for 𝑥 ∈ 𝑋,  we have  

    𝑣(𝑥) ≤  sup 
𝐵(𝑥,𝑟)

𝑣 ≤ C  inf
𝐵(𝑥,𝑟)

 𝑣 → 0,     as    𝑟 → ∞. 

Thus 𝑣 ≡ 0, and 𝑢 is constant. 

Corollary 4.10 (Harnack's inequality)  

If  Ω is connected and 𝐸 ⋐ Ω, then  there is a constant 𝐶 

such that for all nonnegative 𝑝-harmonic function 𝑢 on 

Ω we have 

 sup 
E

𝑢 ≤ 𝐶  inf
E

 𝑢.  

5.  Conclusion   

        In this study we assume that Ω is open and bounded, 

 𝑋 = (𝑋, 𝑑, 𝜇) is a complete metric space with a metric 

d and a positive complete Borel measure 𝜇 which is 

doubling. We also assume that the space 𝑋 supports a p- 

Poincaré inequality. We define the p-harmonic functions 

in metric spaces  and investigate their properties. The 

finding showed that the 𝑝-harmonic functions in metric 

spaces keep the most useful properties as those  in the 

Euclidean spaces. In particular, it has been shown that,  

the 𝑝-harmonic functions in metric spaces satisfy the 

strong maximum principle,  the Harnack's  inequality 

and they are locally Hölder continuous.  
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