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     A new formula for evaluating the radii of deformed nuclei is proposed. By 

incorporating the intrinsic moment of inertia and the ground state energy E(2), 

the formula simply predicts and reproduces the available experimentally mean 

square radii of deformed even–even nuclei. Calculated radii are quite close to 

data compared with other earlier available results. 
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1. Introduction    

      The knowledge of nuclear sizes plays an important 

role in understanding the structure of complex nuclei. 

It is also a key for studying the characteristics of 

nucleus and testing theoretical approaches and models.  

     The developments in the measurement techniques 

for charge radii of nuclei provide more accurate 

experimental results [1] which can be used to improve 

model parameters. The radius of nucleus can be 

determined from its charge density distribution [2]. 

Since the size of a nucleus depends mainly on its 

charge distribution, it is naturally proportional to the 

mass number A.  

     However, the conventional A-dependent formula, 

 R0 = r0 A1/3, is not valid for all nuclei [3], especially 

for those nuclei containing a significant difference 

between protons and neutrons numbers. Experimental 

data indicates that the order of magnitude of the range 

of nuclear forces compared with nuclear radius 

constant 𝑟₀ is not quite constant [4], [5]. Besides the 

regular A-dependent formula, some other approaches 

tending to describe nuclear size from the developed Z- 

and N-dependent formulae [1], [6] with relatively more 

reliable N-dependent formula [2]. On the other hand,  

 

 

earlier evidences indicate that a large number of nuclei 

can have deformed shapes [7]. These class of deformed 

nuclei can acquire spheroidal shapes, which likely 

described in terms of their semi-minor and semi-major 

radii. 

     In this work, we attempt to propose a new approach 

used to determine the radii of deformed even-even 

nuclei.  

1.1.  Theory and Approach 

     As a consequence of nuclear rotations [8], [9] a 

large number of nuclei can depart from spherical 

shapes and acquiring a spheroidal shapes, in the form 

of either oblate or prolate deformations [10]. Among a 

class of nuclei there are large number of even-even 

nuclei falling in the mass range between 150 < A < 180 

and A > 250 exhibit deformation caused by centrifugal 

stretching [11]. Nuclear rotations can roughly be 

described by the following equation [12]: 

                  EI = 
ħ²

2𝜗 
𝐼(𝐼 + 1)                                   (1) 

     where I and 𝜗 denote the nuclear spin and moment 

of inertia, respectively. For an axially symmetric rigid 
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rotator with uniform mass distribution m, the moment 

of inertia is simply given by 

𝜗 =
1

5
𝑚(𝑎2 + 𝑏2)                     (2) 

      where a and b are the semi-minor and semi-major 

axes, respectively. The nuclear deformations are 

considered for uniformly charged spheroid by taking 

the radial coordinates [13] of the surface of the nucleus 

𝑅 = 𝑅₀[1 + 𝛽𝑌₂₀(𝜃, ∅)]             (3)   

     where the deformation parameter 𝛽 is related also to 

the differences between the major a and minor b semi-

axes as ΔR= a - b, and is given by 

𝛽 = √
16𝜋

45
  

∆𝑅

𝑅₀
                               (4) 

     It is assumed in the first approximation that 2 << 1 

[10], so that  is an acceptable value, thus it can be 

determined from the observed value of the intrinsic 

quadrupole moment of the nucleus [14] as 

𝛽 =  
√5π

3
 

Ǫ₀

ZR₀²
                 (5) 

     where Z being the atomic number. It is well known 

that the intrinsic quadrupole moment of evenly charged 

ellipsoid can be described by the following equation 

[15]: 

Ǫ₀ = 
2

5 
𝑍(𝑎2 − 𝑏2)                            (6) 

     The moment of inertia given by Eq. (2) is assumed 

to represent an ellipsoid of revolution of deformed 

nucleus, is in common with the moment of inertia 

represented by Eq. (1). Thus, equating these two 

equations for the moment of inertia , obtaining 

1

5
𝑚(𝑎2 + 𝑏2) = 𝜉

ħ2

2𝐸𝐼 
𝐼(𝐼 + 1)      (7)   

      where the mass of nucleus is related to its 

constituents nucleons, m=Zmp+(A-Z)mn and 𝜉 is 

introduced as a correction parameter to compensate for 

the lack in between the quantum analog and classical 

expression of the value of moment of inertia 𝜗, which 

is obviously compensates for mass fraction [16]  and 

energy deviation from the rotational spectrum [17]. 

The nuclear volume V, on the other hand, is 

presumably preserved [16] i.e., 

3

4𝜋
𝑉 = 𝑅3₀ = 𝑎²𝑏                          (8) 

     where Eqs (6), (7), and (8) can be solved for 

threeunknowns namely: a, b, and 𝜉. 

2.  Results  

     The determination of the three parameters a, b, 

and 𝜉 can be obtained straight forward by employing 

the first exited energy state of the ground state band 

E(2+), intrinsic electric quadrupole moment Q0, and 

the nuclear radius R0. In Table 1, we present the 

results of our calculations along with the parameters 

determined. A sample of our result is compared with 

other available calculated radii of 180,182,184,186W 

isotopes and are shown in Table 2. The deformation 

parameter 𝛽 [10], [15], [18], [19] is calculated and 

shown along with different sets of earlier calculations 

in Figure 1. 

Table 1.  The calculated radii aCalc and bCalc, along with 

the correction paramet 

No A Z Nucl 
E [keV] 

[18] 

Q0 

[b] 

[18] 

aCalc 

[fm] 

bCalc 

[fm] 
𝝃 

1 150 62 Sm 333.869 3.684 6.801 5.604 6.253 

2 152 62 Sm 121.782 5.9 7.118 5.184 2.308 

3 154 62 Sm 81.976 6.62 7.242 5.074 1.587 

4 166 72 Hf 158.5 5.93 7.18 5.564 3.49 

5 168 72 Hf 124 6.57 7.274 5.486 2.78 

6 170 72 Hf 100.8 7.3 7.379 5.395 2.302 

7 172 72 Hf 95.22 6.7 7.334 5.525 2.22 

8 174 72 Hf 90.985 7 7.39 5.505 2.162 

9 176 72 Hf 88.351 7.28 7.444 5.489 2.138 

10 178 72 Hf 93.18 6.961 7.43 5.571 2.3 

11 180 72 Hf 93.326 6.85 7.44 5.619 2.348 

12 180 74 W 103.557 6.53 7.387 5.701 2.609 

13 182 74 W 100.106 6.5 7.406 5.734 2.57 

14 184 74 W 111.208 6.16 7.393 5.818 2.911 

15 186 74 W 122.33 5.93 7.392 5.883 3.265 

 

 

Fig. 1. Comparison of deformation parameter   for 

different sets of calculations. 
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Table 2.  Calculated radii aCalc and  bCalc for W isotopes 

compared with earlier results. 

A Z Nucl a [fm] 

[20] 

b [fm] 

[20] 

aCalc 

[fm] 

bCalc 

[fm] 

180 74 W 7.33 5.79 7.387 5.701 

182 74 W 7.36 5.81 7.406 5.734 

184 74 W 7.32 5.87 7.393 5.818 

186 74 W 7.3 5.92 7.392 5.883 

 

3. Conclusion 

      In this work we introduced some correction 

parameter  which we assumed it covers the gap 

between the classical expression and the quantum 

related equation expressive for the moment of inertia 

of even-even nuclei. The calculation we presented are 

quite encouraging compared with data and other earlier 

approaches. We noted that the sample isotopes W are 

all deformed in about 1 fm variation from the average 

radius of the semi-major and semi-minor radius. The 

calculated values of deformation parameter  is 

compared with different calculations and presented 

schematically for convenience. 
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