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     Using a Taylor Series of Reciprocal Gamma instead of a Reciprocal Gamma 

has the advantage, as the series and the function agree broadly around 0. The 

more terms we include in our approximate function, the better the approximation 

to the true value. The coefficients of the Taylor series of the reciprocal Gamma 

have an interesting combinatorial interpretation. The geometrical representation 

of the Gamma reciprocal function demonstrates how accurately the Taylor 

polynomials represent the actual graph of the reciprocal Gamma function. The 

numerical computations in this paper are achieved in aid of a MATLAB software 

as well as graph the Gamma function, and the reciprocal Gamma function with 

its Taylor approximations. 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Keywords: Taylor Series; Taylor Polynomial; Gamma Function; Reciprocal 

Gamma Function. 

 

 

1. Introduction    

     In mathematics, the primary goal of series is to 

express a particular complex quantity as a single sum of 

simple terms; Furthermore, since the terms get smaller 

and smaller, we can take only the first few terms of the 

series to approximate the original quantity. A function 

can be represented by Taylor series as an infinite sum of 

terms calculated from the values of its derivatives at a 

single point. The series is also known as Maclaurin 

series if its center is at zero. In practice, we obtain the 

approximation of a function by using a finite number of 

terms from the series.  Many physical applications 

benefit from expansion techniques, sometimes in 

unexpected ways [1]. 

 

The application of the Taylor series expansion to a 

special analytical function, namely 1/Γ(𝑥) will be the 

main focus of our paper. We derive Taylor polynomials 

for the reciprocal Gamma function and also give 

numerical coefficients. All the results and the 

calculations presented in this paper are produced by 

means of a MATLAB software. 

2.  Basic Definitions 

     This section provides the basic definitions that has 

been used in our work; we have introduced the Taylor 

series formula, and presented a brief explanation of the 

fundamental analytical functions, namely, Gamma and 

zeta, as well as the Euler’s constant, which are utilized 

in the majority of calculus definitions. 

https://uot.ed.ly/journals/index.php/ljs/
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2.1.Taylor Series 

     Taylor expansion is one of the most interesting and 

useful ideas in mathematics. In general, solving most 

functions and polynomials is typically smooth process. 

Polynomials, on the other hand, are typically able to 

approximate functions, making them simpler to work 

with than nearly any other sort of function. Using the 

Taylor formula, we can find an equation for the 

polynomial expansion for nearly every smooth function. 

     Consider a function  𝑓(𝑥)  that has a power series 

representation at a point  𝑥 = 𝑎 . Then the series has the 

following form [2], [3]: 

𝑓(𝑥) = ∑ 𝑐𝑛

∞

𝑛=0

(𝑥 − 𝑎)𝑛 = 𝑐0 + 𝑐1(𝑥 − 𝑎) + 𝑐2(𝑥 − 𝑎)2 + ⋯ (1)  

Once we have a power series for 𝑓(𝑥) with known 

coefficients 𝑐𝑛 =
𝑓(𝑛)(𝑎)

𝑛!
 , 𝑓(𝑥) can be approximated by 

taking a finite partial sum of the series up to some cutoff 

term 𝑛. This partial sum is called a Taylor polynomial, 

denoted 𝑇𝑛(𝑥). In other words, if  𝑓(𝑥)  has derivatives 

of all degrees at  𝑥 = 𝑎, then the Taylor series for the 

function  𝑓(𝑥) at  𝑎  is given by: 

𝑓(𝑥) ≈ 𝑇𝑛(𝑥) = ∑
𝑓(𝑘)(𝑎)

𝑘!
(𝑥 − 𝑎)𝑘

𝑛

𝑘=0

 

                         = 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎)  

                         +
𝑓′′(𝑎)

2!
(𝑥 − 𝑎)2 +

𝑓(3)(𝑎)

3!
(𝑥 − 𝑎)3 

+ ⋯ +
𝑓(𝑛)(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛 

 

(2)  

2.2. Gamma Function 

     The Gamma function is the one that is used the most 

frequently out of all the special functions. It typically 

comes up first because it appears in almost every 

integral or series representation of other complex 

mathematical functions. Here we use the integral 

formula to define it. 

It is worth mentioning that the Gamma function is 

meromorphic on the whole complex plane, which 

means that it is a single-valued function and analytic 

everywhere in the complex plane except for non-

positive integers [4]. 

2.3. Riemann Zeta Function 

     The Riemann zeta function, denoted as 𝜁(𝑧)which 

appears in definite integration, is a very significant 

special function of mathematics and physics. It can be 

defined by simple formulae in two ways: as a Dirichlet 

series, or as an Euler product. Here we will present only 

the first definition, and for the second, the reader can 

refer to [5], [6]. 

The Riemann Zeta function 𝜁(𝑧) is defined by: 

𝜁(𝑧) = ∑
1

𝑛𝑧

∞

𝑛=1

 
(4)  

The Dirichlet series on the right hand converges for  

𝑅𝑒(𝑧) > 1, and converges uniformly in any region 

𝑅𝑒(𝑧) ≥ 1 + 𝛿, 𝛿 > 0. 

2.4. Euler’s constant 

     Euler's constant (sometimes also called the Euler–

Mascheroni constant) is a constant usually denoted by 

the lowercase Greek letter Gamma (γ) [4]. 

It is defined as the limiting difference between 

the harmonic series and the natural logarithm, denoted 

here by log: 

𝛾 = lim
𝑛→∞

(− log 𝑛 + ∑
1

𝑘

𝑛
𝑘=1 ) 

 

(5)  

𝛾 = ∫ (−
1

𝑥
+

1

⌊𝑥⌋
)

∞

1

 𝑑𝑥 

 

(6)  

  Here, ⌊ ⌋ represents the Step function. The numerical 

value of Euler's constant, to 50 decimal places, is:  

0.577215664901532860606512090082402431042159

33593992...  

Euler's constant plays an important role in Calculus and 

occurs frequently in Number Theory (see for instance 

[7]). The constant γ is deeply related to the Gamma 

function Γ(𝑧).  

In upcoming sections of the paper, we will see how we 

can benefit from both Riemann Zeta function and 

Euler's constant to obtain the coefficients of Taylor 

polynomials. 

2.5. Reciprocal Gamma Function 

     In mathematics, the reciprocal Gamma function is 

defined as function 𝑓(𝑧) =
1

Γ(𝑧)
. The reciprocal Gamma 

function is an entire function and can be defined as: 

1

Γ(𝑧)
 = 𝑧 𝑒

(𝛾𝑧−∑
(−1)𝑘𝜁(𝑘)𝑧𝑘

𝑘
∞
𝑘=2 )

      
(7)  

Γ(𝑧) = ∫ 𝑦𝑧−1𝑒−𝑦𝑑𝑦

∞

0

 

(3)  

https://en.wikipedia.org/wiki/Special_function
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where 𝛾 is the Euler-Mascheroni constant and 𝜁 is 

the Riemann zeta function [8]. An asymptotic 

series for 
1

Γ(𝑧)
 is given by: 

1

Γ(𝑧)
= 𝑧 + 𝛾𝑧2 +

1

12
(6𝛾2 − 𝜋2)𝑧3

+
1

12
(2𝛾3 − 𝛾𝜋24𝜁(3))𝑧4

+ ⋯ 

(8)  

It can be written as: 

𝟏

𝚪(𝒛)
= ∑ 𝒂𝒏𝒛𝒏

∞

𝒏=𝟏

, (9)  

where the the coefficient 𝑎𝑛 for the 𝑧𝑛 term can be 

computed recursively as;  

𝒂𝒏 = 𝒏 𝒂𝟏𝒂𝒏 − 𝒂𝟐𝒂𝒏−𝟏 + ∑(−𝟏)𝒌𝜻(𝒌)

∞

𝒌=𝟐

𝒂𝒏−𝒌 (10)  

According to the helpful Weierstrass formula, 
1

Γ(𝑧)
  is 

expressed as: 

𝟏

𝜞(𝒛)
 =  𝒛 𝒆(𝜸𝒛)  ∏ [(𝟏 +

𝒛

𝒏
) 𝒆

(− 
𝒛
𝒏

)
]

𝒏>𝟎

 (11)  

This identity implies the following relation; 

Γ′(1)  =  −𝛾. 

We will concentrate on using the real-valued function 
1

Γ(𝑥)
 instead of 

1

Γ(𝑧)
. 

Zeros of a function 

     Let 𝑓(𝑥) be a function, then a number c, for which 
𝑓(𝑐) = 0, is called a zero of a function. Since the 
Gamma function Γ(𝑥) is nonzero, and has simple 

poles with residue  
(−1)𝑛

𝑛!
, its reciprocal 

1

Γ(𝑥)
  is 

an entire function with simple zeros at 𝑥 = −𝑛(𝑛 =
0,1,2,3, ⋯ ),  as shown in Fig.1.  

  

Fig. 1.  The Gamma function has poles at zero and the 

negative integers; whereas, the entire function 𝟏/𝜞(𝒙) 

with zeros at these points 

3. The expansion of The Reciprocal Gamma 

Function  

     The Reciprocal Gamma 
1

𝛤(𝑥)
 is an entire function and 

so it has a convergent Taylor series expansion. In this 

section, we present the tool that typically enables us to 

express 
1

𝛤(𝑥)
  explicitly as a power series. For this special 

function, we will explain how to find a number of 

Taylor polynomials with particular degrees. 

 

     The Taylor polynomial for a smooth function is 
the truncation at the order 𝑛 of the Taylor series of 
the function. The first-degree Taylor polynomial  
𝑇1(𝑥) is the linear approximation of the function or 
tangent line at a point, while the quadratic 
approximation is typically represented by the 
second-degree Taylor polynomial 𝑇2(𝑥).  

Because the software takes longer time for 𝑛 > 30, 
we limited ourselves in this paper to approximate 

1

Γ(𝑥)
  by calculating 𝑇𝑛(𝑥), where 𝑛 ∈

{5,10,15,20,25,30} as shown in Fig. 2.  

𝑻𝟓(𝒙) = 𝒙 + 𝜸𝒙𝟐 +
𝟏

𝟏𝟐
(𝟔𝜸𝟐 − 𝝅𝟐)𝒔𝒙𝟑

+
𝟏

𝟏𝟐
(𝟐𝜸𝟑 − 𝜸𝝅𝟐𝟒𝜻(𝟑))𝒙𝟒 

(12)  

       + 
1

3
𝜁(3)𝑥5                     

The estimated coefficients 𝑎𝑛 are as follows: 

𝑎0 = 0,   𝑎1 = 1, 𝑎2 ≈ 0.577216, 𝑎3 ≈ −0.655878, 
𝑎4 ≈ −0.042003, and  𝑎5 ≈  0.400686. 

 

 

Fig. 2. The graphs of 
𝟏

𝜞(𝒙)
  along with the  𝑻𝒏(𝒙);  𝒏 ∈

{𝟓, 𝟏𝟎, 𝟏𝟓, 𝟐𝟎, 𝟐𝟓, 𝟑𝟎} 
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     In Fig. 2(a), the Taylor polynomial 𝑇5(𝑥),  matches 
1

𝛤(𝑥)
 in its five derivatives and stay closer to its original 

curve within the interval |𝑥| < 0.5,  namely, the series 

converges for |𝑥|  <  0.5, i.e., for −0.5 <  𝑥 <  0.5, 

and diverges for 𝑥 <  −0.5 and for 𝑥 >  0.5.  

The next Taylor polynomial 𝑇10(𝑥) (in Fig. 2(b)) is even 

closer to 
1

𝛤(𝑥)
  for even larger 𝑥.  we observe that as the 

degree 𝑛 get larger, the polynomial 𝑇𝑛(𝑥) approaches  
1

Γ(𝑥)
 more closely, over a wider domain (see Fig. 2(c), 

(d), (e) and (f)).  

The convergence intervals where Taylor polynomials 

are identical to 
1

𝛤(𝑥)
  can be tabulated in table 1. The 

𝑇𝑛(𝑥) values are generated using a MATLAB program 

at different values of 𝑥. table 3. provides a summary of 

the results. 

Table 1. The intervals in which Taylor polynomials are 

the same as 
𝟏

𝜞(𝒙)
   itself 

The number of 

terms 

𝟏

𝚪(𝒙)
 ≈  𝑻𝒏(𝒙) Domain 

𝒏 = 𝟓 ∑ 𝑎𝑛𝑥𝑛

5

𝑛=1

 −0.5 < 𝑥 < 0.5 

𝒏 = 𝟏𝟎 ∑ 𝑎𝑛𝑥𝑛

10

𝑛=1

 −1 < 𝑥 < 1 

𝒏 = 𝟏𝟓 ∑ 𝑎𝑛𝑥𝑛

15

𝑛=1

 −1.5 < 𝑥 < 1.5 

𝒏 = 𝟐𝟎 ∑ 𝑎𝑛𝑥𝑛

20

𝑛=1

 −2 < 𝑥 < 2 

𝒏 = 𝟐𝟓 ∑ 𝑎𝑛𝑥𝑛

25

𝑛=1

 −2.5 < 𝑥 < 2.5 

𝒏 = 𝟑𝟎 ∑ 𝑎𝑛𝑥𝑛

30

𝑛=1

 −3 < 𝑥 < 3 

It can be noticed in table 3. that the Taylor 

approximations precisely match the reciprocal 
1

Γ(𝑥)
  as 

𝑥 → 0, which reduces the relative error around the 

origin and rapidly increases as the value of |x| grows 

(see Fig. 2). 

4. The Approximate Area under The Curve  
𝟏

𝚪(𝒙)
 , −𝟑 ≤ 𝒙 ≤ 𝟑 

     The integral of the reciprocal Gamma function 
1

Γ(𝑥)
 

along the positive real axis, as observed in the litterers, 

has the value:  

∫
1

Γ(𝑥)

∞

0

𝑑𝑥 ≈ 2.80777024 

This constant is known as the Fransén–Robinson 

constant [9]. When we calculated the approximated 

integration in the domain 0 ≤ 𝑥 ≤ 3, we get: 

∫
1

Γ(𝑥)

3

0

𝑑𝑥 ≈ ∫ T30(𝑥)
3

0

𝑑𝑥 =  2.377988248 

We can compare the approximated area under the 

curve  
1

Γ(x)
  on the interval [0,3] with the definite 

integral ∫ T30(x)
3

0
dx using Trapezoid rule method 

[10], [11].  

As show in table 3, when the value of n is get larger, 
the two approximations get closer to each other.   

Table 2. A comparison between 
𝟏

𝚪(𝒙)
 and 𝐓𝟑𝟎(𝒙) using 

Trapezoid rule method 

n 𝑻𝒓𝒂𝒑 (
𝟏

𝚪(𝒙)
) 𝑻𝒓𝒂𝒑(𝑻𝟑𝟎(𝒙)) 

3 2.250000000000000 2.248960569140906 

6 2.347410764353472 2.346880153165195 

9 2.364624388811608 2.364240152025899 

12 2.370593931947559 2.370269209831074 

15 2.373347501340530 2.373052157275474 

18 2.374840776652307 2.374561926312747 

21 2.375740331032812 2.375471617356713 

24 2.376323837721993 2.376061782504875 

27 2.376723734190222 2.376466280772617 

30 2.377009701117583 2.376755557928740 

Therefore, considering that the Taylor polynomial 

T30(x) accurately estimates 
1

Γ(x)
, we attempted 

within the interval  −3 ≤ x ≤ 3, to calculate the area 

under the estimated curve  
1

Γ(x)
,  and obtained the 

following results: 

∫
1

Γ(𝑥)

3

−3

𝑑𝑥 ≈ ∫ T30(𝑥)
3

−3

𝑑𝑥 

 
= ∫ −T30(𝑥)

−2

−3

𝑑𝑥 + ∫ T30(𝑥)
−1

−2

𝑑𝑥

+ ∫ −T30(𝑥)
0

−1

𝑑𝑥 

 
+ ∫ T30(𝑥)

1

0

𝑑𝑥 + ∫ T30(𝑥)
2

1

𝑑𝑥 + ∫ T30(𝑥)
3

2

𝑑𝑥 

 =0.69841999+0.27577304+0.18372071 

+0.54123573 +1.085142658+0.75160986       

=  3.53590199. 
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Table 3. The Taylor approximations of 
𝟏

𝚪(𝒙)
, when −𝟑 ≤ 𝒙 ≤ 𝟑 

       

  𝑭 

          𝒙 

𝑻𝟓(𝒙) 𝑻𝟏𝟎(𝒙) 𝑻𝟏𝟓(𝒙) 𝑻𝟐𝟎(𝒙) 𝑻𝟐𝟓(𝒙) 𝑻𝟑𝟎(𝒙) 
𝟏

𝚪(𝒙)
 

𝒙 = −𝟑. 𝟎 -23.9674 23.9013 0.8807 -0.0538 0.0023 0.0021 0 

𝒙 = −𝟐.8 -15.1204 10.7514 -0.6201 -0.8907 -0.8779 -0.8779 -0.8783 

𝒙 = −𝟐.6 -8.8768 4.1787 -1.0565 -1.1278 -1.1252 -1.1252 -1.1253 

𝒙 = −𝟐.4 -4.6628 1.3459 -0.8862 -0.9030 -0.9025 -0.9025 -0.9025 

𝒙 = −𝟐.2 -1.9892 0.4229 -0.4501 -0.4536 -0.4535 -0.4535 -0.4535 

𝒙 = −𝟐. 𝟎 -0.4454 0.3098 0.0006 -0.0000 0.0000 0.0000 0.0000 

𝒙 = −𝟏.8 0.3075 0.4111 0.3138 0.3137 0.3137 0.3137 0.3137 

𝒙 = −𝟏.6 0.5426 0.4594 0.4328 0.4328 0.4328 0.4328 0.4328 

𝒙 = −𝟏.4 0.4740 0.3821 0.3760 0.3760 0.3760 0.3760 0.3760 

𝒙 = −𝟏.2 0.2630 0.2072 0.2061 0.2061 0.2061 0.2061 0.2061 

𝒙 = −𝟏. 𝟎 0.0246 0.0001 0.0000 -0.0000 0.0000 0.0000 0.0000 

𝒙 = −𝟎.8 -0.1665 -0.1742 -0.1743 -0.1743 -0.1743 -0.1743 -0.1743 

𝒙 = −𝟎.6 -0.2689 -0.2705 -0.2705 -0.2705 -0.2705 -0.2705 -0.2705 

𝒙 = −𝟎.4 -0.2684 -0.2686 -0.2686 -0.2686 -0.2686 -0.2686 -0.2686 

𝒙 = −𝟎.2 -0.1718 -0.1718 -0.1718 -0.1718 -0.1718 -0.1718 -0.1718 

𝒙 = 𝟎. 𝟎 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

𝒙 = 𝟎. 𝟐 0.2178 0.2178 0.2178 0.2178 0.2178 0.2178 0.2178 

𝒙 = 𝟎. 𝟒 0.4510 0.4508 0.4508 0.4508 0.4508 0.4508 0.4508 

𝒙 = 𝟎. 𝟔 0.6736 0.6715 0.6715 0.6715 0.6715 0.6715 0.6715 

𝒙 = 𝟎. 𝟖 0.8710 0.8589 0.8589 0.8589 0.8589 0.8589 0.8589 

𝒙 = 𝟏. 𝟎 1.0459 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 

𝒙 = 𝟏. 𝟐 1.2251 1.0884 1.0891 1.0891 1.0891 1.0891 1.0891 

𝒙 = 𝟏. 𝟒 1.4659 1.1230 1.1271 1.1271 1.1271 1.1271 1.1271 

𝒙 = 𝟏. 𝟔 1.8622 1.1023 1.1192 1.1192 1.1192 1.1192 1.1192 

𝒙 = 𝟏. 𝟖 2.5510 1.0143 1.0735 1.0737 1.0737 1.0737 1.0737 

𝒙 = 𝟐. 𝟎 3.7190 0.8178 0.9992 1.0000 1.0000 1.0000 1.0000 

𝒙 = 𝟐. 𝟐 5.6088 0.4075 0.9038 0.9076 0.9076 0.9076 0.9076 

𝒙 = 𝟐. 𝟒 8.5252 -0.4486 0.7895 0.8053 0.8050 0.8050 0.8050 

𝒙 = 𝟐. 𝟔 12.8419 -2.2115 0.6427 0.7008 0.6994 0.6994 0.6995 

𝒙 = 𝟐. 𝟖 19.0077 -5.7376 0.4081 0.6026 0.5962 0.5961 0.5965 

𝒙 = 𝟑. 𝟎 27.5529 -12.533 -0.0757 0.5253 0.4982 0.4979 0.5000 
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5. Conclusion  

     Expanding the reciprocal Gamma function into a 
Taylor series is the simplest method for evaluating 
it. As a result, in this paper, rather than focusing on 
the function itself, we chose to use its Taylor 
expansions to simplify the numerical computation of 
this function; which has been used to determine the 
area under the curve (see Example 3.1). This concept 
can be applied to a variety of other analytical 
functions; for instance, the Bessel function, which is 
widely used in a variety of mathematical fields like 
probability, statistics, physics, engineering and in 
this regard, some new findings have been presented 
by other recent studies (see [12]).  
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