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POINTWISE REGULARITY FOR SOLUTIONS OF
DOUBLE OBSTACLE PROBLEMS

ON METRIC SPACES

ZOHRA FARNANA

Abstract
We study continuity at a given point for solutions of double obstacle problems. We obtain point-
wise continuity of the solutions for discontinuous obstacles. We also show Hölder continuity for
solutions of the double obstacle problems if the obstacles are Hölder continuous.

1. Introduction

The objective of this paper is to study continuity at a given point x0 of the solu-
tion of the obstacle problem on certain metric spaces. The setting considered
here is that of a complete metric spaceX endowed with a metric d and a Borel
measure μ which is doubling, i.e., there exists a constant C > 0 such that for
all balls B = B(x, r) := {y ∈ X : d(x, y) < r} in X we have

0 < μ(2B) ≤ Cμ(B) < ∞,

where τB = B(x, τr). The doubling property implies that X is complete if
and only if X is proper, i.e., closed bounded sets are compact. We also require
the space X to support a p-Poincaré inequality, see Section for the definition.

Nonlinear potential theory on metric measure spaces has been studied in
many papers, see for example Björn-Björn [1], [2], Björn-Björn-Shanmu-
galingam [3], [4], J. Björn [7], Cheeger [8], Heinonen-Koskela [13], Kinnunen-
Martio [16], Koskela-MacManus [19] and Shanmugalingam [23], [24].

There are several notions of Sobolev spaces in metric spaces; see for ex-
ample Cheeger [8], Hajłasz [11] and Shanmugalingam [23], [24]. We shall
follow the definition of Shanmugalingam [23], where Sobolev type spaces
N1,p(X) (called the Newtonian spaces) were defined as the collection of p-
integrable functions with p-integrable upper gradients. The notion of upper
gradients was introduced by Heinonen-Koskela [13], as a substitute for the
modulus of the usual gradient. Koskela-MacManus [19] extended the concept
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to p-weak upper gradients. Variational inequalities can then be used to define
p-harmonic functions as minimizers of the variational integral

(1)
∫
gpu dμ,

wheregu denotes the minimalp-weak upper gradient ofu, whose existence and
uniqueness were proved in Shanmugalingam [23]. The existence and unique-
ness of minimizers of (1) were shown in Shanmugalingam [24].

Let 1 < p < ∞ and let � be a bounded open subset of X whose com-
plement has positive capacity. We minimize the variational integral (1) on
� among all functions which have prescribed boundary values f and lie
between two given obstacles ψ1 and ψ2. The minimizer is called a solution
of the Kψ1,ψ2,f -problem. The Dirichlet problem (the obstacle problem with
ψ1 = −∞ and ψ2 = ∞) for p-harmonic functions on metric spaces was
studied e.g. in Björn-Björn [1], [2], Björn-Björn-Shanmugalingam [3], [4],
Kinnunen-Shanmugalingam [17] and Shanmugalingam [24], [25].

In this paper we investigate the continuity at a given point x0 of the solu-
tions of the double obstacle problem. The obstacles in this context are to be
regarded as quite general and irregular. In particular, they may be discontinu-
ous. We show that if the obstacles are not continuous, but satisfy a Wiener type
regularity condition, the solution is still continuous. This extends Theorem 5.4
from Malý-Ziemer [21] to metric spaces.

Although in Rn p-harmonic functions are Lipschitz they need not be so in
the general setting of metric spaces, see p. 149 in Koskela-Rajala-Shanmu-
galingam [20]. Therefore, as p-harmonic functions are solutions of special
obstacle problems we can expect at most Hölder regularity of our solutions.
Indeed, we show that the continuous solution of the single obstacle problem,
with locally Hölder continuous obstacle, is locally Hölder continuous. For
the double obstacle problem we prove that if the obstacles are locally Hölder
continuous, then the continuous solution u is Hölder continuous at every point
x0 ∈ �. This does not directly imply that u is locally Hölder continuous as
Example 4.2 shows.

Hölder continuity of p-harmonic functions on metric spaces was obtained
in Kinnunen-Shanmugalingam [17]. In the Euclidean case Hölder continuity
for solutions of the obstacle problems, with Hölder continuous obstacles, was
obtained in Kilpeläinen-Ziemer [14] and Michael-Ziemer [22].

2. Notation and preliminaries

A nonnegative Borel function g is said to be an upper gradient of an extended
real-valued function f on X if for all rectifiable curves γ : [0, lγ ] → X



pointwise regularity for solutions 187

parameterized by arc length ds, we have

(2) |f (γ (0))− f (γ (lγ ))| ≤
∫
γ

g ds

whenever both f (γ (0)) and f (γ (lγ )) are finite, and
∫
γ
g ds = ∞ otherwise.

If g is a nonnegative measurable function onX and if (2) holds for p-almost
every curve, then g is a p-weak upper gradient of f .

By saying that (2) holds for p-almost every curve we mean that it fails
only for a curve family with zero p-modulus, see Definition 2.1 in Shan-
mugalingam [23]. If f has an upper gradient in Lp(X), then it has a min-
imal p-weak upper gradient gf ∈ Lp(X) in the sense that for every p-weak
upper gradient g ∈ Lp(X) of f , gf ≤ g a.e., see Corollary 3.7 in Shan-
mugalingam [24].

We shall use the following definition of Sobolev type spaces which is equi-
valent to the one introduced in Shanmugalingam [23].

Definition 2.1. Let u ∈ Lp(X), then we define

‖u‖N1,p(X) =
(∫

X

|u|p dμ+
∫
X

gpu dμ

)1/p

,

where gu is the minimal p-weak upper gradient of u. The Newtonian space on
X is the quotient space

N1,p(X) = {u : ‖u‖N1,p(X) < ∞}/∼,
where u ∼ v if and only if ‖u− v‖N1,p(X) = 0.

The space N1,p(X) is a Banach space and a lattice, see Theorem 3.7 and
p. 249 in Shanmugalingam [23].

The capacity of a set E ⊂ X is defined by

Cp(E) = inf
u

‖u‖pN1,p(X)
,

where the infimum is taken over all u ∈ N1,p(X) such that u ≥ 1 on E.
We say that a property holds quasieverywhere (q.e.) in X, if it holds every-

where except on a set of capacity zero. Newtonian functions are well defined
up to sets of capacity zero, i.e., if u,v ∈ N1,p(X) then u ∼ v if and only if
u = v q.e. Moreover, Corollary 3.3 in Shanmugalingam [23] shows that if
u, v ∈ N1,p(X) and u = v a.e., then u = v q.e.

From now on we assume thatX supports a p-Poincaré inequality i.e., there
exist constants C > 0 and λ ≥ 1 such that for all balls B(z, r) in X, all
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integrable functions u on X and all upper gradients g of u we have

∫
B(z,r)

|u− uB(z,r)| dμ ≤ Cr

(∫
B(z,λr)

gp dμ

)1/p

,

where uB(z,r) := ∫
B(z,r)

u dμ := μ(B(z, r))−1
∫
B(z,r)

u dμ.

Under the above assumptions, every function u ∈ N1,p(X) is quasicontinu-
ous, i.e., for every ε > 0 there is an open setG ⊂ X such that Cp(G) < ε and
u|X\G is continuous, see Theorem 1.1 in Björn-Björn-Shanmugalingam [5].
Moreover, when restricted to Rn, the Newtonian space N1,p(Rn) is the refined
Sobolev space W 1,p(Rn), as defined in Chapter 4 in Heinonen-Kilpeläinen-
Martio [12].

We say that f ∈ N1,p
loc (�) if f ∈ N1,p(�′) for every �′ ⊂⊂ �, where by

�′ ⊂⊂ � we mean that the closure of �′ is a compact subset of �. Let also

N1,p
0 (�) = {

u|� : u ∈ N1,p(X) and u = 0 in X \�}
.

The following definition is slightly different from the notation used in
Kinnunen-Martio [16]. We use q.e. inequalities rather than a.e. inequalities
as in [16], for more discussion see p. 265 in Farnana [10].

Definition 2.2. Let V ⊂ X be a nonempty bounded open set such that
Cp(X \ V ) > 0, let f ∈ N1,p(V ) and ψi : V → R, i = 1, 2. Then we define
the obstacle problem with obstacles ψ1, ψ2 and boundary values f by

Kψ1,ψ2,f (V ) = {
v ∈ N1,p(V ) : v−f ∈ N1,p

0 (V ) andψ1 ≤ v ≤ ψ2 q.e. inV
}
.

Furthermore, a function u ∈ Kψ1,ψ2,f (V ) is a solution of the Kψ1,ψ2,f (V )-
problem if

∫
V

gpu dμ ≤
∫
V

gpv dμ for all v ∈ Kψ1,ψ2,f (V ).

We also let Kψ1,ψ2,f = Kψ1,ψ2,f (�), Kψ,f (V ) = Kψ,∞,f (V ) and Kψ,f =
Kψ,f (�).

A function u ∈ N1,p
loc (�) is a minimizer in � if it is a solution of the

K−∞,u(�
′)-problem for every open �′ ⊂⊂ �. Also u is p-harmonic in �

if it is a continuous minimizer. Similarly, a function u ∈ N1,p
loc (�) is a su-

perminimizer in � if it is a solution of the Ku,u(�
′)-problem for every open

�′ ⊂⊂ �. In [16], Kinnunen and Martio showed that if u is a solution of the
Kψ,f -problem¦, then it is a superminimizer in � and its lower semicontinu-
ous regularization u∗(x) := ess lim infy→x u(y) equals u q.e. in � and is the
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unique lower semicontinuously regularized solution. Moreover u∗ is super-
harmonic, see e.g. Kinnunen-Martio [16] for the definition of superharmonic
functions.

We shall need the following results from Farnana [10]. We letu+= max{u,0}
be the positive part of u.

Lemma 2.3. Let ψ,ψ ′, φ, φ′ : � → R and f, f ′ ∈ N1,p(�). Let u be a
solution of the Kψ,φ,f -problem and u′ be a solution of the Kψ ′,φ′,f ′ -problem.
Assume that (f − f ′)+ ∈ N1,p

0 (�) and that ψ ≤ ψ ′ and φ ≤ φ′ q.e. in �.
Then u ≤ u′ q.e. in �.

Lemma 2.4. Let ψi : � → R, i = 1, 2, and f ∈ N1,p(�). Let u be a
solution of the Kψ1,ψ2,f -problem, V ⊆ � be open and k ∈ R. If ψ2 ≥ k q.e. in
V , then uk = min{u, k} is a superminimizer in V .

The following result, which we will need later, is a combination of The-
orem 4.2 and Remark 4.4 in Kinnunen-Shanmugalingam [17] and Theorem 4.4
and Remark 4.5 in Kinnunen-Martio [16]. It shows that the solution of the
single obstacle problem is locally bounded from above if the obstacle is loc-
ally bounded from above.

Theorem 2.5. Let B(x, 2r) ⊂ � and k ≥ ψ q.e. in B(x, 2r). Let u be a
solution of the Kψ,f (�)-problem. Then for all q > 0 and r > 0,

ess sup
B(x,r)

u ≤ k + C

(∫
B(x,2r)

(u− k)
q
+ dμ

)1/q

.

Remark 2.6. The comparison Lemma 2.3 between a solution u of the
Kψ1,ψ2,f -problem and a solution v of the Kψ1,f -problem implies that u ≤ v

q.e. in�, hence a.e. This together with Theorem 2.5 implies thatu is essentially
locally bounded from above if ψ1 is essentially locally bounded from above.
Similarly it follows that u is essentially locally bounded from below if ψ2 is
essentially bounded from below, using that −u is a solution of the K−ψ2,−ψ1,−f -
problem.

3. Continuity in the presence of irregular obstacles

In this section we will initiate a study of the regularity of solutions of the
double obstacle problems. Since we are concerned with pointwise regularity,
we will consider a fixed point x0 ∈ � throughout the rest of this section.

The relative capacity of E ⊂⊂ B with respect to a ball B is

Capp(E,B) = inf
u

∫
B

gpu dμ,
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where the infimum is taken over all u ∈ N1,p
0 (B) such that u ≥ 1 on E.

A set E ⊂ X is p-thin at x ∈ X if

∫ 1

0

(
Capp(E ∩ B(x, t), B(x, 2t))

Capp(B(x, t), B(x, 2t))

)1/(p−1)
dt

t
< ∞,

andG ⊂ X is p-finely open ifX\G is p-thin at every x ∈ G. The complement
of a p-finely open set is called p-finely closed. The p-fine open sets generate
the p-fine topology which is finer than the metric topology, see J. Björn [7],
Kinnunen-Latvala [15] and Korte [18]. In the Euclidean case the p-fine topo-
logy was studied in Malý-Ziemer [21].

Definition 3.1. A point x0 is called a Wiener point relative to the obstacles
ψ1 and ψ2 if

(3)

p-fine lim sup
x→x0

ψ1(x) = Cp-lim sup
x→x0

ψ1(x),

p-fine lim inf
x→x0

ψ2(x) = Cp-lim inf
x→x0

ψ2(x)

and

(4) Cp-lim sup
x→x0

ψ1(x) ≤ Cp-lim inf
x→x0

ψ2(x).

Here Cp-lim sup and Cp-lim inf stand for essential limits up to sets of
capacity zero, while p-fine lim sup and p-fine lim inf stand for limits in the
p-fine topology.

Remark 3.2. The inequality (4) is necessary even if we just want to insert
a function continuous at x0 which lies q.e. between ψ1 and ψ2.

A function u is p-finely continuous at x0 if u(x0) = p-fine lim supx→x0
u(x)

= p-fine lim infx→x0
u(x). If u ∈ N1,p(�) then u is p-finely continuous at q.e.

x ∈ �, see Theorem 4.6 in J. Björn [7].
We say that a function u is p-finely represented if u is defined everywhere

in � and
p-fine lim inf

y→x

u(y) ≤ u(x) ≤ p-fine lim sup
y→x

u(y)

for each x ∈ �. By Theorem 4.6 in J. Björn [7] every function u ∈ N1,p(�)

can be p-finely represented, e.g.

x �→ p-fine lim inf
y→x

u(y) and x �→ p-fine lim sup
y→x

u(y)
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are p-fine representatives of u. The following result extends Theorem 5.4 from
Malý-Ziemer [21] to metric spaces. The proof below has been inspired by the
proof in [21].

Theorem 3.3. Let f ∈ N1,p(�), ψ1 : � → [−∞,∞) and ψ2 : � →
(−∞,∞]. Let x0 be a Wiener point relative to ψ1 and ψ2 and let u be a p-
finely represented solution of the Kψ1,ψ2,f -problem. Assume also that ψ1 is
bounded from above in a neighbourhood of x0 and ψ2 is bounded from below
in a neighbourhood of x0. Then

(5) Cp-lim sup
x→x0

ψ1(x) ≤ u(x0) ≤ Cp-lim inf
x→x0

ψ2(x).

Moreover u is real-valued continuous at x0.

Note that in Theorem 3.3 we allow Cp-lim supx→x0
ψ1(x) to take the value

−∞ and Cp-lim infx→x0 ψ2(x) to take the value ∞.
Proof. Let

u(x) = p-fine lim inf
y→x

u(y) and u(x) = p-fine lim sup
y→x

u(y).

Note that for every k ∈ R we have

p-fine lim inf
y→x

(min{u, k})(y) = min{u, k}(x) =: uk(x),

p-fine lim sup
y→x

(min{u, k})(y) = min{u, k}(x) =: uk(x)

and
ess lim inf

y→x
(min{u, k})(y) = min{u∗, k}(x) =: u∗

k(x),

where u∗(x) = ess lim infy→x u(y).
Next, as u is p-finely represented we have

(6) u ≤ u ≤ u everywhere in �.

Choose k < Cp-lim infx→x0 ψ2(x). Then there exists r > 0 such that B(x0, r)

⊂ �, ψ2 is bounded from below in B(x0, r) and k < ψ2(x) for q.e. x ∈
B(x0, r). It follows that uk := min{u, k} is a superminimizer in B(x0, r),
by Lemma 2.4. Then the lower semicontinuous regularization u∗

k of uk is a
superharmonic function and hence p-finely continuous by Theorem 4.4 in
J. Björn [7] (or Theorem 4.3 in Korte [18]). This and the fact that u∗

k = uk q.e.
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in � imply that, for x ∈ B(x0, r),

uk(x) = p-fine lim inf
y→x

uk(y) = p-fine lim inf
y→x

u∗
k(y) = u∗

k(x)

= p-fine lim sup
y→x

u∗
k(y) = p-fine lim sup

y→x

uk(y) = uk(x).

This and (6) show that uk = u∗
k everywhere inB(x0, r). Hence uk is both lower

semicontinuous and p-finely continuous at x0, whenever k < Cp-lim infx→x0

ψ2(x). As for k = k0 := Cp-lim infx→x0 ψ2(x) < ∞ we have uk ↗ uk0

uniformly as k ↗ k0. Then for every ε > 0,

uk0(x0) ≤ uk0−ε(x0)+ ε ≤ lim inf
x→x0

uk0−ε(x)+ ε ≤ lim inf
x→x0

uk0(x)+ ε.

Since ε > 0 was arbitrary this shows that uk0 is lower semicontinuous at x0.
Similarly we conclude that uk0 is p-finely continuous at x0, using that uk is
p-finely continuous for all k < k0 and that uk ↗ uk0 uniformly in �, as
k ↗ k0.

Let k be a real number with

Cp-lim sup
x→x0

ψ1(x) ≤ k ≤ Cp-lim inf
x→x0

ψ2(x).

Then we obtain

u(x0) ≥ uk(x0) = p-fine lim
x→x0

uk(x)

≥ p-fine lim sup
x→x0

ψ1(x) = Cp-lim sup
x→x0

ψ1(x).

Similarly, as −u is ap-finely represented solution of the K−ψ2,−ψ1,−f -problem,
we have that u(x0) ≤ Cp-lim infx→x0 ψ2(x) and hence (5) is established.

Next, we show that u is real-valued at x0. As ψ1 is bounded from above in
a neighbourhood of x0, there exist r > 0 and M ∈ R such that ψ1 ≤ M in
B = B(x0, r). Applying Remark 2.6 to the ball B implies that u ≤ M ′ < ∞
q.e. in B for some M ′ ∈ R. Since u is p-finely represented we have u ≤ u ≤
M ′ < ∞ everywhere in B. Similarly we get that u > −∞ in a neighbourhood
of x0.

Finally we show that u is continuous at x0. As u is real-valued at x0 we can
take k = u(x0) ≤ Cp-lim infx→x0 ψ2(x). Then uk is lower semicontinuous at
x0, by the the first part of the proof. It then follows that

u(x0) = uk(x0) ≤ lim inf
x→x0

uk(x) ≤ lim inf
x→x0

u(x).
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Hence u is lower semicontinuous at x0. Using this and the fact that −u is a
p-finely represented solution of the K−ψ2,−ψ1,−f -problem, we get that

u(x0) = −(−u)(x0) ≥ − lim inf
x→x0

(−u)(x)
= lim sup

x→x0

u(x) ≥ lim inf
x→x0

u(x) ≥ u(x0),

which shows the continuity of u at x0.

From Theorem 3.3 we get the following immediate corollary. It extends
Theorem 3.9 from Farnana [10] where the continuity of u in� was proved for
real-valued continuous obstacles.

Corollary 3.4. Let ψ1 : � → [−∞,∞) and ψ2 : � → (−∞,∞] be
continuous (as R-valued functions) at x0 ∈ �. Let u be a p-finely represented
solution of the Kψ1,ψ2,f -problem, where f ∈ N1,p(�). Then u is continuous
at x0 (as a real-valued function). In particular if ψ1 and ψ2 are extended
real-valued continuous on �, then u is real-valued continuous on �.

4. Hölder continuity of the solutions

It was shown by Kinnunen-Shanmugalingam [17] that p-harmonic functions
are locally Hölder continuous. In this section we extend this result to obstacle
problems with Hölder continuous obstacles. Similar results in Rn have been
obtained by Kilpeläinen-Ziemer [14] and Michael-Ziemer [22]. Although, in
Rn, p-harmonic functions are Lipschitz they need not be so in the general
setting of metric spaces, see p. 149 in Koskela-Rajala-Shanmugalingam [20].

We shall need the following result, for a proof see Theorem 9.2 in A. Björn-
Marola [6].

Theorem 4.1. If u is a nonnegative superminimizer in �, then there are
q > 0 and C > 0 independent of u such that

(∫
B(x,2r)

uq dμ

)1/q

≤ C ess inf
B(x,r)

u

for every ball B(x, r) such that B(x, 20λr) ⊂ �.

Here λ is the dilation constant in the Poincaré inequality.
We say that f is Hölder continuous at x0 if there exist r > 0, α > 0 and

C > 0 such that, for all x ∈ B(x0, r), we have

|f (x)− f (x0)| ≤ Cd(x, x0)
α.
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We also say that f is locally Hölder continuous in � if for each x0 ∈ �

there exist r > 0, α > 0 and C > 0 (depending on x0) such that for all
x, y ∈ B(x0, r), we have

|f (x)− f (y)| ≤ Cd(x, y)α.

Note that Hölder continuity of f at every x0 ∈ � does not imply, in general,
that f is locally Hölder continuous as the following example shows.

Example 4.2. The function

f (x) =
{
x sin e1/x, x > 0,

0, x ≤ 0

is continuously differentiable in R \ {0}. Hence it is Hölder continuous (even
Lipschitz continuous) at every point in R \ {0}. As |f (x)| ≤ |x| at every x ∈ R
we also have thatf is Hölder continuous at x = 0. Thusf is Hölder continuous
at every x ∈ R. But f is not Hölder continuous in any neighbourhood of zero.
If f were Hölder continuous in a neighbourhood of zero then there would exist
ε > 0, C > 0 and α > 0 such that

|f (x)− f (y)| ≤ C|x − y|α for all x, y ∈ B(0, ε).
Let

x = 1

log
(
2πn+ π

2

) and y = 1

log
(
2πn− π

2

)
for n ∈ N sufficiently large so that 0 < x < y < ε. Then we have

(7) |f (x)− f (y)| = x + y > y >
1

log(2πn)
.

On the other hand we have

(8)

|x − y| = y − x = log
(
2πn+ π

2

) − log
(
2πn− π

2

)
log

(
2πn+ π

2

)
log

(
2πn− π

2

)

≤ 2
log

(
1 + 1

4n

) − log
(
1 − 1

4n

)
(log(2πn))2

≤ 2

n
.

It follows from (7) and (8) that for sufficiently large n we have

|f (x)− f (y)| ≥ 1

log(2πn)
> C

(
2

n

)α
≥ C|x − y|α,
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a contradiction. Hence f is not Hölder continuous in any neighbourhood of
zero.

Theorem 4.3. Let ψ : � → R be locally Hölder continuous and f ∈
N1,p(�). Let u be the continuous solution of the Kψ,f -problem. Then u is
locally Hölder continuous in �.

Proof. Let B = B(x0, R) and 20λB ⊂ �, where λ is the dilation constant
from the p-Poincaré inequality, be such that ψ is Hölder continuous in 2B,
with exponent α and constant C0. Let also, for r > 0,

u(r) = inf
B(x0,r)

u and u(r) = sup
B(x0,r)

u

and similarly forψ . As u−u(20λR) is a nonnegative superminimizer in 20λB
it follows from the weak Harnack inequality, Theorem 4.1, that there are q > 0
and C1 > 0 such that

(9)

u(R)− u(20λR) = inf
B
(u− u(20λR))

≥ 1

C1

(∫
2B
(u− u(20λR))q dμ

)1/q

.

We consider two cases. First assume that ψ(2R) ≤ u(20λR) which implies
that u(20λR) ≥ ψ in 2B. The weak Harnack inequality, Theorem 2.5, then
implies that, for some C2 > 0, we have

u(R)− u(20λR) = sup
B

(u− u(20λR)) ≤ C2

(∫
2B
(u− u(20λR))q dμ

)1/q

.

This and (9) imply that

(10) u(R)− u(20λR) ≤ C1C2(u(R)− u(20λR)).

Next suppose that ψ(2R) > u(20λR). It follows that

(u− ψ(2R))+ ≤ (u− u(20λR))+ = u− u(20λR), in 20λB.

The weak Harnack inequality, Theorem 2.5, then imply that

u(R)− ψ(2R) ≤ C2

(∫
2B
(u− ψ(2R))q+ dμ

)1/q

≤ C2

(∫
2B
(u− u(20λR))q dμ

)1/q

,
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for some C2 > 0. This and (9) give

u(R)− ψ(2R) ≤ C1C2(u(R)− u(20λR)).

As ψ is α-Hölder continuous in 2B we have u(2R) ≥ ψ(2R) ≥ ψ(2R) −
C0(2R)α . Then it follows that

u(R)− u(20λR) = u(R)− u(2R)+ u(2R)− u(20λR)

≤ u(R)− ψ(2R)+ u(R)− u(20λR)

≤ u(R)− ψ(2R)+ C0(2R)
α + u(R)− u(20λR)

≤ (C1C2 + 1)(u(R)− u(20λR))+ C0(2R)
α.

So in both cases we have, with C3 = C1C2 + 1,

(11) u(R)− u(20λR) ≤ C3(u(R)− u(20λR))+ C0(2R)
α.

Now, suppose that

u(R)− u(20λR) ≤ 1

1 + C3
(u(R)− u(20λR)).

We use this and (11) together with the fact that u(R) ≥ u(20λR) and u(R) ≤
u(20λR) to conclude that

(12)
u(R)− u(R) ≤ C3(u(R)− u(20λR))+ C0(2R)

α

≤ C3
1+C3

(u(20λR)− u(20λR))+ C0(2R)
α.

On the other hand if u(R)− u(20λR) > 1
1+C3

(u(R)− u(20λR)), we have

u(R)− u(R) = u(R)− u(20λR)− (u(R)− u(20λR))

≤ u(R)− u(20λR)− 1
1+C3

(u(R)− u(20λR))

≤ C3
1+C3

(u(20λR)− u(20λR)).

Letting oscτB u = supτB u− infτB u, we thus have in both cases that

(13) osc
B
u ≤ γ osc

20λB
u+ C0(2R)

α,

where γ = C3
1+C3

< 1 is independent of R and α. To complete the proof we
iterate inequality (13). Choose 0 < R < 1/2 and

0 < α′ < min{α,− log γ / log 20λ}.
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Then, we get that (20λ)α
′
γ < 1, which will be needed below, and that

(14) osc
B
u ≤ γ osc

20λB
u+ C0(2R)

α′
.

Let r ∈ (0, R) be arbitrary and j ∈ N be such that (20λ)j−1 ≤ R/r < (20λ)j .
Applying (14) to the balls Bi = B(x0, (20λ)ir), i = 0, 1, 2, . . . , j − 1, we
obtain

osc
B0

u ≤ γ osc
B1

u+ C0(2r)
α′

≤ γ 2 osc
B2

u+ C02α
′
((20λ)α

′
γ + 1)rα

′

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

≤ γ j−1 osc
Bj−1

u+ C02α
′
(((20λ)α

′
γ )j−2 + · · · + 1)rα

′

≤ γ j−1 osc
Bj−1

u+ C02α
′

1 − (20λ)α′
γ
rα

′
,

where we use the fact that (20λ)α
′
γ < 1. By the choice of j we conclude that

γ j−1 = (20λ)(j−1) log γ / log 20λ = (20λ)α
′′
((20λ)j )−α

′′

≤ (20λ)α
′′
(
R

r

)−α′′

= (20λ)α
′′
(
r

R

)α′′

,

where α′′ = − log γ / log 20λ > 0. Hence we get, using that r/R < 1 and
α′ ≤ α′′,

(15)

osc
B(x0,r)

u ≤ (20λ)α
′′
(
r

R

)α′′

osc
B(x0,R)

u+ C02α
′

1 − (20λ)α′
γ
rα

′

≤
(
(20λ)α

′′

Rα
′ osc

B(x0,R)
u+ C02α

′

1 − (20λ)α′
γ

)
rα

′
.

Now, fix r ∈ R such that 0 < 2r < R < 1. Then, for x, y ∈ B(x0, r), we
consider two cases. First let r ≤ d(x, y) < 2r < 1. This and (15) imply that

(16)

|u(x)− u(y)| ≤ osc
B(x0,r)

u

≤
(
(20λ)α

′′

Rα
′ osc

B(x0,R)
u+ C02α

′

1 − (20λ)α′
γ

)
d(x, y)α

′
.

Next, if d(x, y) < r < 1, then choose s > 0 such that s/2 < d(x, y) <

s < r < R/2. Then (15) with B(x0, r) and B(x0, R) replaced by B(y, s) and
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B(y,R/2) implies that

(17)

|u(x)− u(y)| ≤ osc
B(y,s)

u

≤
(
(20λ)α

′′

(R/2)α′ osc
B(y,R/2)

u+ C02α
′

1 − (20λ)α′
γ

)
sα

′

≤ 2α
′
(
(20λ)α

′′

Rα
′ osc

B(x0,R)
u+ C0

1 − (20λ)α′
γ

)
sα

′

≤ 4α
′
(
(20λ)α

′′

Rα
′ osc

B(x0,R)
u+ C0

1 − (20λ)α′
γ

)
d(x, y)α

′
.

Thus we conclude from (16) and (17) that we can find C > 0 such that for
x, y ∈ B(x0, r) we have

|u(x)− u(y)| ≤ Cd(x, y)α
′
,

where C depends only on R, α′′ = − log γ / log 20λ, the oscillation of u on
B(x0, R) and the Hölder exponent of ψ . Since x0 ∈ � was arbitrary we see
that u is locally Hölder continuous in �.

For the double obstacle problem we have the following weaker result.

Theorem 4.4. Let ψi : � → R, i = 1, 2, be locally Hölder continuous
and f ∈ N1,p(�). Let u be the continuous solution of the Kψ1,ψ2,f -problem.
Then u is Hölder continuous in � at every x0 ∈ �.

Note that Hölder continuity of u at every x0 ∈ � does not imply, in general,
that u is locally Hölder continuous as Example 4.2 shows.

Proof. Assume first that ψ1(x0) < ψ2(x0). Note that either u(x0) <

ψ2(x0) or u(x0) > ψ1(x0). If u(x0) < ψ2(x0) find ε > 0 and B = B(x0, r)

such that u(x0)+ ε ≤ ψ2(x0)− ε and that

sup
B

u ≤ inf
B

u+ ε =: k and inf
B

ψ2 ≥ ψ2(x0)− ε.

It follows that k ≥ u in B and that

k = inf
B
u+ ε ≤ u(x0)+ ε ≤ ψ2(x0)− ε ≤ inf

B
ψ2 ≤ ψ2 in B.

Lemma 2.4 then implies that u = min{u, k} is a superminimizer in B. Thus
u is a solution of the Ku,u(B)-problem. Two applications of the comparison
Lemma 2.3 between the continuous solution of the Kψ1,u(B)-problem and
u, once as u is the continuous solution of the Kψ1,ψ2,u(B)-problem and the
other as u is the solution of the Ku,u(B)-problem, then implies that u is the
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continuous solution of the Kψ1,u(B)-problem. It follows from Theorem 4.3
that there exists a ball B(x0, r

′) ⊂ B such that

|u(x)− u(y)| ≤ Cd(x, y)α for all x, y ∈ B(x0, r
′).

Similarly, if u(x0) > ψ1(x0)we conclude that −u is the continuous solution of
the K−ψ2,−u(B(x0, s))-problem, for some s > 0. Henceu is Hölder continuous
in B(x0, s

′), for some 0 < s ′ < s.
Next, if ψ1(x0) = ψ2(x0), then u(x0) = ψ1(x0) = ψ2(x0), by continuity.

Fix B = B(x0, r) such thatψ1 andψ2 are Hölder continuous in B. Then using
that ψ1 is Hölder continuous in B we get that, for x ∈ B,

u(x0)− u(x) ≤ ψ1(x0)− ψ1(x) ≤ C1d(x0, x)
α1 ,

for some C1 > 0 and α1 > 0. Similarly, using that ψ2 is Hölder continuous in
B, we obtain

u(x)− u(x0) ≤ ψ2(x)− ψ2(x0) ≤ C2d(x0, x)
α2 ,

for some C2 > 0 and α2 > 0. Hence u is Hölder continuous at x0.
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