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Abstract—There are few approaches that attempt to add dynamicity to the structure of stream ciphers in 
order to improve their security level. SCDSP is a dynamic stream cipher that based on these approaches. It 
uses dynamic structure and parameters to increase the complexity of the cipher to improve its security 
level. The dynamic parameters are specified using bits from the secret key. In this paper, SCDSP is 
evaluated by conducting a performance and security analysis. Furthermore, a comparison between SCDSP 
and the seven winners of eSTREAM competition is performed. The results show that SCDSP is very 
promising for practical use.  
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I. INTRODUCTION 

Stream ciphers are more suitable than block ciphers in 
time-critical applications or processing-constrained devices 
because of their real-time operation and adaptability to 
hardware implementations [1]. Multimedia systems, hand 
held communication devices, and wireless sensor networks 
provide some examples in which a stream cipher is 
preferred for an encryption operation. Currently there is no 
standard model for stream ciphers, regardless that this 
type of stream ciphers are needed for a lot of applications. 
To deal with the lack of standards for secure stream ciphers 
that can be utilised by industry, a number of 
standardization efforts which included stream ciphers were 
made by the cryptographic community. The first one was 
the New European Schemes for Signature, Integrity and 
Encryption (NESSIE) project that began in 2000 and ended 
in 2004. All the stream cipher proposals sent to NESSIE 
were discarded mainly because of the discovery of 
cryptanalytic attacks [2]. After that, Japan initiated another 
standardization effort named the Cryptographic Research 
and Evaluation Committee (Cryptrec) [3]. Cryptrec highly 
recommended a number of stream ciphers among them: 
128 bit RC4, MUGI and MULTI-S01[4]. But, afterwards these 
ciphers were also found to be vulnerable to the 
cryptanalytic attacks [5-7]. Another project targeting 
stream ciphers was launched as a part of the European 
Network of Excellence for Cryptology (ECRYPT) in 2004 [1]. 
This was named eSTREAM - the ECRYPT Stream Cipher 
Project. It was running from 2004 to 2008. It had the 
objective of activating the research area of analysis and 
design of stream ciphers. Researchers were invited to 
submit stream cipher proposals in two categories: high 
performance software applications and hardware 
applications with restricted resources. These submissions 

have been subjected to rigorous cryptanalysis and have 
resulted in the enhancement of overall understanding of 
stream cipher design. In this competition, sixteen stream 
ciphers reached the final phase. Seven of them were 
selected to be winners [1]. These winners are HC-128 [8], 
Salsa20/12 [9], Rabbit[10] and SOSEMANUK [11] in profile 1 
(software-oriented Ciphers) and Grain v1 [12], MICKEY 
2.0[13] and Trivium [14] in profile 2 (hardware oriented 
cipher). Even after these standardisation efforts, several 
weaknesses were found in these ciphers [15-18]. Therefore, 
it is necessary to make a large amount of effort toward the 
invention of new replacement schemes. 

Few approaches, which attempt to add dynamicity to 
the structure of stream ciphers to improve their security 
level, are proposed. The idea behind these approaches is 
that the structure of these ciphers is unknown to the 
attackers, and it makes them more resistant to attacks. 
These ciphers are not widely discussed among researchers. 
Moreover, the research about using dynamic structure in 
stream ciphers has mostly focused on dynamic polynomial 
switching in the Linear Feedback Shift Registers [19]. In this 
paper, a dynamic stream cipher algorithm called SCDSP [20] 
is analysed. It is based on using dynamic structure and 
parameters to increase the complexity of the cipher and 
consequently improve its security level. SCDSP is evaluated 
by conducting a performance and security analysis. 
Moreover, a comparison between SCDSP and the seven 
winners of eSTREAM competition is performed. 

This paper is organized as follows: Section 2 describes 
SCDSP. Section 3 gives the details of the security analysis 
conducted on the cipher and the performance analysis of 
the cipher is discussed in section 4. Section 5 and 6 report a 
comparison between SCDSP and the seven winners of 
eSTREAM competition. Finally, section 7 concludes this 
paper. 
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II. SCDSP ARCHITECTURE 

In SCDSP, a number of pools that contain several options 
for constructing the algorithm are used. In every run, the 
algorithm is built based on the secret key. The variable 
parameters are the number of registers, the length of 
registers, the clocking system, the initialisation procedure, 
the confusion and diffusion method, and the output 
function. These parameters are specified using bits from 
the secret key. 

 
  

Figure 1 The basic steps of SCDSP. 
 

Figure 1 shows the basic steps of our algorithm. Initially, 
the secret key is exchanged. Then, the first stage 
"pre-initialization" starts, which includes selecting the 
algorithm’s structure based on the secret key and applying 
the confusion and diffusion method on the key before the 
initialisation stage. Afterward, the selected initialization 
method is executed, and the generator starts to produce 
the keystream. 

In our initial implementation, the secret key and the IV 
lengths are chosen to be 128 bits in order to limit the scope 
of brute force attacks [21]. For connecting registers, the 
output of each register is connected to the input of 
another register. Figure 2 illustrates the bits that determine 
the dynamic parameters in the secret key. 

 
Figure 2 The bits that determine the dynamic parameters in the secret 

key. 
 

We make every pool consist of several components. The 
following section describes the options that are used to 
construct the proposed design.  

A. Number of registers 

The number of registers will be determined by the initial 
bits of the secret key. In order to use the majority 
clocking function of the A5 stream cipher [22], an odd 
number of registers is used. Therefore, the number of 
registers will be chosen from {7, 9, 11}. Based on a choice 
of 7, 9 or 11 registers, the first two bits (Bit0Bit1) of the 
secret key are used to determine the number of registers.  
 If Bit0Bit1=00, then the number of registers =7. 
 If Bit0Bit1=01, then the number of registers =9. 
 If Bit0=1, then the number of registers =11. 

B. Registers’ lengths  

The following points are considered to determine the 
ranges of the lengths of the registers. 
 The sum of the lengths of the registers used in any 

session should be equal to or greater than the key size, 
in order to avoid the known Time-Memory Trade Off 
attacks for stream ciphers [23]. In addition, the lengths 
of the registers should not present any difficulty in the 
implementation for either the software or hardware 
[24]. 

 The registers’ sizes must be limited to use the proper 
primitive feedback polynomials.  

 The registers’ lengths should be pairwise coprime in 
order to reduce the correlation attacks against the 
cipher and ensure that the cycle time is maximised [24, 
25]. The registers’ lengths will be chosen from 
{49,53,59,61,65,67,71,73,79,83,89,97,101}. This set has 13 
elements. To determine the registers’ lengths, 44 bits 
from the key are reserved. 
 If the number of registers =7, then 28 bits (7x4) are 

required to represent the registers’ lengths, which 
allows 50,388 choices of register lengths. 

 If the number of registers =9, then 36 bits (9x4) are 
needed to represent the registers’ lengths, which 
allows for 293,930 choices of register lengths. 

 If the number of registers =11, then 44 bits (11x4) are 
required to represent the registers’ lengths, which 
allows 1,352,078 choices of register lengths. 

Table 1 illustrates the chosen primitive feedback 
polynomials. These polynomials were taken from [21]. 

TABLE I 
PRIMITIVE POLYNOMIALS 

Register size Primitive polynomial 

49 X49+ X9 + 1 

53 X53+ X6 + X2+ X  + 1 

59 X59+ X7 + X4+ X2 + 1 

61 X61+ X5 + X2+ X + 1 

65 X65+ X18 + 1 

67 X67+ X5 + X2+ X + 1 

71 X71+ X6 + 1 

73 X73+ X25 + 1 

79 X79+ X9 + 1 

83 X83+ X7 + X4+ X2 + 1 

89 X89+ X38 + 1 

97 X97+ X6 + 1 

101 X101+X7+X6+X+1 
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C. Clocking mechanism 

According to Courtois [26], the complex clocking 
mechanisms provide significant immunity to algebraic 
attacks. For this reason, two different clocking functions 
are used, which are the majority clocking function as in 
A5.1[22] and a keystream-dependent clocking function. In 
our implementation, Bit46 is used to determine the 
clocking system. At the beginning, in the initialisation, the 
selected registers are clocked regularly 128 times without 
producing a keystream. Then, at each clock cycle, the 
registers are clocked according to the selected clocking 
system. 

 In the voting clocking function, each register has one 
clocking tap in the middle. At each clock cycle, the selected 
registers are clocked according to their clocking taps. The 
registers make a clocking vote using their taps to find the 
majority of the current clocking taps. Afterward, each 
register compares the voting result with its own clocking 
tap. If it is equal to the voting result, then the register is 
clocked [22]. In a keystream-dependent clocking function, 
three registers are chosen to be clocked regularly, and the 
other registers are clocked based on the previous 
keystream. 

If Bit46 = 0, then the majority clocking function of the A5 
stream cipher is used; otherwise, a keystream-dependent 
clocking function is used. 

D. Confusion and Diffusion Method 

Muller [27] stated that the initialisation process can 
provide protection against differential attacks by mixing 
nonlinear and linear functions. Therefore, using S-box and 
P-box in the initialisation process prevents a high 
probability of differential attack. In the SCDSP, a confusion 
and diffusion method is applied on the key in the 
pre-initialisation stage by using three types of S-box and 
P-box.  

If Bit51Bit52 =00, then Present [28] S-box and P-box are 
used ; else if Bit51Bit52 =01, then HISEC [29] S-box  and 
P-box are used. Otherwise, LBlock [30] S-box and P-box are 
used.  

E. Initialisation procedure 

In the initialisation process, the loading phase and the 
diffusion phase are dynamic. The next sections provide the 
details.  

 Loading phase: This phase has 9 options. The loading 
process that is used is inspired by Dragon stream 
cipher [31]. Based on the Bit47, Bit48, Bit49, and Bit50 
from the secret key, the loading option will be chosen 
from the following options: 

 

1) k|| k’ IV’|| IV|| kIV’|| k’|| k  IV || IV’|| k’ IV|| kIV̅̅ ̅̅ ̅̅ ̅ 
2) k’ IV’|| IV|| kIV’|| k’|| k  IV|| IV’ || k’ IV|| kIV̅̅ ̅̅ ̅̅ ̅||K 
3) IV|| kIV’|| k’ ||k  IV|| IV’|| k’  IV|| kIV̅̅ ̅̅ ̅̅ ̅||K ||k’  IV’  
4) kIV’|| k’ || k  IV || IV’||k’  IV|| kIV̅̅ ̅̅ ̅̅ ̅||K ||k’ IV’||IV  
5) k’ || k  IV|| IV’||k’  IV|| kIV̅̅ ̅̅ ̅̅ ̅||K|| k’  IV’||IV||  kIV’  
6) k IV || IV’||k’  IV || kIV̅̅ ̅̅ ̅̅ ̅||K ||k’  IV’||IV||kIV’ || k’   
7) IV’|| k’  IV|| kIV̅̅ ̅̅ ̅̅ ̅||K ||k’ IV’|| IV || kIV’||k’ || k  IV   
8) k’ IV|| kIV̅̅ ̅̅ ̅̅ ̅||K ||k’  IV’||IV||kIV’|| k’|| k  IV || IV’    

9) kIV̅̅ ̅̅ ̅̅ ̅||K || k’  IV’||IV|| kIV’|| k’|| k  IV || IV’||k’IV  
where x’ denotes the swapping of the upper and lower 

64-bit halves of x, and X ̅ denotes the complement of x. 
According to [32], the padding pattern should not be 

identical or cyclic (identical means that the padding is 
all-zeros or all-ones, and cyclic means that the padding 
consists of a repeated specific pattern) in order to reduce 
the chance of finding slid pairs and also reduce the 
probability of obtaining shifted keystreams. In our 
initialization process, we do not use an identical or cyclic 
padding pattern. 

 Diffusion phase: The shift registers are updated 128 
times before starting to produce the keystream. This 
approach makes any cryptanalysis of the keystream 
generated from this cipher difficult.  

F. Output functions 

Three types of output functions are used, which are 
XORing the output bits of the selected registers, an output 
function based on the Grain stream cipher [33], and an 
output function based on the BEAN stream cipher [34]. 

In the output function based on the Grain stream cipher, 
two registers are used. The first register is an NLFR, which 
is defined and filled with a part of the keystream that is 
produced in the initialisation phase. The second register is 
an LFSR, and it is chosen from the pool of selected registers 
in each clock cycle.  

In the output function based on the BEAN stream cipher, 
two registers are used, and both are chosen from the pool 
of selected registers in each clock cycle.  

If Bit53Bit54=00, then the output function is XORing the 
output bits of the chosen registers; else if Bit53Bit54=01, 
then the output function based on the Grain stream cipher 
is chosen. Otherwise, the output function based on the 
BEAN stream cipher is selected. 

 

 
Figure 3 The general construction of SCDSP 

 

III.  SECURITY ANALYSIS OF THE PROPOSED ALGORITHM 

Security analysis plays an essential role in the evaluation 
process of the new ciphers. In this section, the period and 
the linear complexity of the proposed algorithm are 
analysed. Then, the results of the NIST test suit are 
presented. Finally, a discussion about some possible 
attacks is given based on the specific design choices behind 
the different functions and the parameters used in SCDSP. 
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1)  Period and Linear Complexity 

Due to the irregular clock control, the method of 
connecting the registers, and the used output function in 
the SCDSP, it is difficult to establish mathematical results 
about the period and linear complexity of the cipher. 
However, we can predict a lower bound for the period 
(considering only the internal state) and measure the linear 
complexity of the algorithm using the NIST test suit, which 
uses the Berlekamp-Massey algorithm to measure the 
linear complexity. 
According to [21], the period of LFSR that has a primitive 
feedback polynomial is equal to 2L-1, where L is the length 
of the register. Assume that our cipher consists of n 
registers (7≤ n ≤11). Each register cycles periodically with 
the period P = 2L-1. The output of each register is connected 
to the input of another register. Therefore, the period of n 
LFSRs is at most the LCM of the periods of the sequences 
output by the n LFSRs [35]. Hence, the minimum period of 
the keystream is estimated to be much more than 
LCM (P1P2…Pn), where Pi is the period of register i.   
In order to measure the linear complexity of the SCDSP, the 
NIST test suit is used. 108 bits are generated by the 
proposed algorithm and examined by the NIST statistical 
suit. The best p-value for this test is equal to 0.924076, 
which is a very high value because 0.01 is the passing rate, 
while the value 1 represents perfect randomness.  

2)  Randomness of the keystream 

The statistical tests on SCDSP were performed using the 
NIST Test Suite for different keys. The results were 
obtained for 108 bits generated by the proposed algorithm. 
The average is calculated for the non-overlapping-
templates, random-excursions and random-excursions 
variant test results, which are decomposable into a variety 
of subtests. Table 2 shows the results of the NIST test suite 
for one of the keys. It can be observed from the results that 
the proposed algorithm passes all the tests because the 
P-value of all the tests is below 0.01. 

TABLE 2 
NIST TEST RESULTS OF SCDSP 

ID Statistical test P-value Result 

1 Frequency 0.994250 Pass 

2 Block-frequency 0.637119 Pass 

3 
Cumulative-sums(forward) 0.319084 Pass  

Cumulative-sums(reverse) 0.798139 Pass 

4 Runs 0.739918 Pass 

5 Longest-runs of ones 0.145326 Pass 

6 Rank 0.162606 Pass 

7 DFT (Spectral) 0.051942 Pass 

8 Non-overlapping-template 0.463171 Pass 

9 Overlapping-templates 0.028817 Pass 

10 Universal 0.964295 Pass 

11 Approximate entropy 0.883171 Pass 

12 Random-excursions 0.463186 Pass 

13 Random-excursions variant 0.483266 Pass 

14 
Serial1 0.137282 Pass 

Serial2 0.145326 Pass 

15 Linear complexity 0.924076 Pass 

 
There are some statistical tests that showed excellent 
results. For example, the p-value for the frequency test is 
0.994250, which indicates an excellent distribution of 
zeroes and ones for the entire sequence. Moreover, the 
linear complexity test’s p-value is equal to 0.924076, which 
indicates that the generated keystream is sufficiently 
complex to be considered random  [36].  

3)  Autocorrelation Test Results 

The autocorrelation test [37] is performed 5 times using 5 
different keys, and the number of occurrences in each time 
is compared to the expected value using a chi-square table 
with one degree of freedom and a significance level of 
α=0.05. The algorithm fails if the value of the test exceeds 
3.84. It is notable from the results of Table 3 that SCDSP 
successfully passes all five tests because the 
autocorrelation value of all tests is less than 3.84. 

TABLE 3 
AUTOCORRELATION TEST RESULTS OF SCDSP 

key Autocorrelation value Result 

Key1 1.5943 Pass 

Key2 0.9396 Pass 

Key3 1.698 Pass 

Key4 1.5943 Pass 

Key5 0.7866 Pass 

 

4)  Resistance against Known Attacks 

In this section, a discussion about resistance of SCDSP 
against known attacks is presented. 
Brute force attack. In this attack, if the key is n bits, then 
the attacker must try 2n keys in the worst case and 2n−1 keys 
on average. According to [21], the minimum size for the 
secret key is set to be 128 bits in order to limit the scope of 
brute force attacks on these systems. In SCDSP, the Key 
size is 128 bits, and it can be increased to be 256 bits. 
Algebraic Attacks. Algebraic attacks on stream ciphers 
have received a large amount of attention lately because 
they are very efficient if the designer is not careful. A filter 
generator that uses only a nonlinear Boolean output 
function and an LFSR can be very vulnerable in algebraic 
attacks [38]. Babbage and Dodd [1] stated that algebraic 
attacks usually become possible when the keystream is 
correlated to one or more linearly clocking registers, whose 
clocking is either entirely predictable or can be guessed. In 
SCDSP, an S box, a P-box, and an irregular clocking function 
are used to introduce nonlinearity together with a 
nonlinear Boolean output function. Solving equations for 
the initial state that has a minimum size of 343 bit (7 is the 
minimum number of registers and 49 bit is the size of the 
smallest register) is not possible due to the existence of 
nonlinearity. The algebraic degree of the output bit 
expressed in the initial state bits will be large in general and 
will also vary over time. This property will defeat any 
algebraic attack on SCDSP. 
Time-Memory-Data Trade-off Attack. It is well known that 
the state of a stream cipher must be at least twice the key 
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size, and the IV size should be at least as large as the key 
size in order to prevent time-memory trade-off attacks [23, 
39]. In SCDSP, there are at least seven shift registers, and 
their minimum size is 49 bits each; therefore, the total 
number of state sizes is at least 343 bit, and thus, the 
number of states is greater than twice the key size. 
Moreover, the IV size is equal to the key size. According to 
Biryukov and Shamir [39], a generic time-memory-data 
trade off attack on stream ciphers costs O(2n/2), where n is 
the number of inner state variables in the stream cipher. In 
SCDSP, there are at least seven shift registers, and their 
minimum size is 49 bits each. Thus, the expected 
complexity of a time-memory-data trade-off attack is not 
lower than O(2343/2),which is greater than the complexity of 
brute force attacks. 
Guess-and-determine attacks. The strategy for this type of 
attack is to guess a few of the unknown variables of the 
cipher and, from those, deduce the remaining unknowns. 
The system is then iterated a few times, producing output 
that can be compared with the actual cipher output, to 
verify the guess [1]. In order to make guessing attacks 
infeasible, the key length must be increased. Moreover, 
irregular clocking can increase the resistance against these 
attacks [40]. In SCDSP, the initial key length has 128 bits. 
Moreover, two types of irregular clocking are used.  
Distinguishing Attacks. A distinguishing attack on a cipher 
works with a formal model of security, in which an attacker 
can distinguish between the output of a specific cipher and 
the output of a truly random process, with a non-negligible 
probability [1]. If attackers cannot make this distinction, 
then an algorithmically derived stream cipher will view 
them as a One Time Pad and will be information-
theoretically secure. In fact, the reality is that there is 
always a distinguishing attack against any algorithmic 
cipher because it should have a finite key, and thus, brute-
force key enumeration will yield a distinguishing attack of 
complexity 2k-1, where k is the key length. An easy way to 
get away from such attacks is to state that the cipher must 
be rekeyed after a certain amount of keystream [41]. In 
SCDSP, the key and IV are used to determine the structure 
of the cipher in the next 264 bytes. This approach adds to 
the non-predictability of future set-ups and consequently 
provides security against attacks. 
Correlation attacks. Key-stream generators based on 
regularly clocked LFSR’s are susceptible to basic and fast 
correlation attacks. However, there are two major 
obstacles to the adaptation of this attack on SCDSP: 

a) The register lengths are pairwise coprime, which 
reduces the correlation attacks against the cipher and 
ensures that the cycle time is maximised [24, 25]. 

b) The use of irregular clocking limits the possibilities for 
mounting classical correlation attacks [42]. 
Differential attacks. A differential attack on stream ciphers 
examines the behaviour of the initialisation and keystream 
generation processes for a differential in the inputs. It 
analyses how differences in the inputs (either the key or IV, 
or the internal state) affect the output (either the internal 
state or keystream) [43]. Muller [27] stated that the 
initialisation process can provide protection against 

differential attacks by mixing nonlinear and linear functions. 
Therefore, using S-box and P Box in the initialisation 
process prevents a high probability of differentials [31]. In 
SCDSP, the use of S-box and P-box is an essential part of 
the initialisation process. 

IV. PERFORMANCE OF THE PROPOSED ALGORITHM 

The performance of the proposed algorithm is measured 
as the number of keystream bits produced over a given 
time period. Specifically, it was measured in megabits per 
second (Mbps). Our own reasonably efficient 
implementation of SCDSP generated 1.23764 Megabits of 
keystream per second using a PC with a 2.1GHz Intel® 
Core™ i7-3612QM processor. It is worthwhile to mention 
that SCDSP has the flexibility through its dynamic design to 
implement it efficiently. This goal can be accomplished by 
using light weight and low cost components with a medium 
level of security. 

V.  COMPARISONS OF NIST TEST RESULTS 

Statistical analysis in terms of the keystream has been 
conducted for the seven stream ciphers that were selected 
to be winners in the eSTREAM competition and the 
proposed algorithm. In this experiment, 100 keystreams of 
length 106 bits are generated using randomly chosen key 
and IV pairs. The outputs were tested using the 15 tests 
with standard parameters. Table 4 shows the results of 
these tests for the compared algorithms. 

All the ciphers pass the 15 tests because they have 
p-values greater than 0.01. However, some of the 
algorithms have higher p-values than others, which means 
that they have better statistical properties than the others 
[36]. In addition, there are several observations about the 
results with regard to the range of p-values for some of the 
tests and the p-values of each algorithm. 

The first observation is that the range of p-values (the 
difference between the highest p-value and the lowest 
p-value in a test) is high in some tests. For example, in the 
linear complexity test, Trivium has the lowest p-value, 
which is 0.01455, while SCDSP has the highest p-value, 
which is 0.924076. Therefore, the range of p-values is 
0.909526. This finding indicates that there is a significant 
gap in the linear complexity between the compared ciphers. 
On the other hand, the p-values in some of the tests of the 
compared stream ciphers are convergent. For example, in 
the non-overlapping-template test, the range of p-values is 
0.075629. 

The second observation is that some of the algorithms 
have high p-values in several tests, which make them 
outperform the other algorithms. In contrast, some of the 
algorithms have low p-values in several of the tests, which 
indicates that the statistical properties of their generated 
sequences are low compared to the others. In addition, the 
p-values of some of the algorithms are convergent. 

It is worthwhile to mention that Trivium has a very low 
linear complexity. That finding could be due to its simple 
structure [44]. On the other hand, HC-128 has a high p-value 
in a linear complexity test. This finding could result from 
using two large dynamic s boxes in its design. However, the 
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proposed algorithm has the highest value in the test of 
linear complexity, which is a good sign and indicates the 

good security level of this algorithm. 

TABLE 4 
THE RESULTS OF NIST TESTS FOR THE COMPARED ALGORITHMS. 

ID Statistical test Grain MICKY Rabbit Sosemanuk HC-128 Trivium Salsa20 SCDSP 

1 Frequency 0.455937 0.455937 0.971699 0.883171 0.262249 0.401199 0.955835 0.99425 

2 
Block-
frequency 

0.494392 0.595549 0.657933 0.419021 0.834308 0.637119 0.262249 0.637119 

3 

Cumulative-
sums(forward) 

0.883171 0.304126 0.897763 0.494392 0.851383 0.978072 0.474986 0.319084 

Cumulative-
sums(reverse) 

0.058984 0.816537 0.494392 0.181557 0.122325 0.595549 0.514124 0.798139 

4 Runs 0.719747 0.304126 0.911413 0.897763 0.955835 0.383827 0.678686 0.739918 

5 
Longest-runs 
of ones 

0.042808 0.162606 0.455937 0.719747 0.883171 0.122325 0.574903 0.145326 

6 Rank 0.911413 0.719747 0.851383 0.162606 0.202268 0.191687 0.419021 0.162606 

7 DFT  0.275709 0.202268 0.383827 0.779188 0.494392 0.739918 0.025193 0.051942 

8 
Non-
overlapping-
template 

0.514027 0.488552 0.489705 0.473059 0.478228 0.5388 0.484063 0.463171 

9 
Overlapping-
templates 

0.971699 0.595549 0.595549 0.867692 0.678686 0.181557 0.437274 0.028817 

10 Universal 0.678686 0.383827 0.798139 0.021999 0.514124 0.816537 0.719747 0.964295 

11 
Approximate 
entropy 

0.595549 0.699313 0.319084 0.935716 0.289667 0.262249 0.137282 0.883171 

12 
Random-
excursions 

0.239402 0.550557 0.538622 0.369533 0.561113 0.390931 0.418249 0.463186 

13 
Random-
excursions 
variant 

0.364894 0.394504 0.490274 0.474825 0.41484 0.546774 0.516361 0.483266 

14 
Serial1 0.319084 0.162606 0.798139 0.12962 0.153763 0.911413 0.137282 0.137282 

Serial2 0.514124 0.037566 0.401199 0.23681 0.066882 0.834308 0.153763 0.145326 

15 
Linear 
complexity 

0.719747 0.045675 0.419021 0.616305 0.851383 0.01455 0.699313 0.924076 

 

VI. PERFORMANCE COMPARISON BETWEEN SCDSP AND MICKEY-128 

Because the Mickey-128 stream cipher is the only cipher 
that has a dynamic clocking system (irregular clocking 
system), it is compared with SCDSP in terms of the speed. 
The compared algorithms were implemented on the same 
PC in the same environment. Table 5 shows the comparison 
between SCDSP and Mickey-128 from the perspective of 
performance. 

TABLE 5 
PERFORMANCE COMPARISON BETWEEN SCDSP AND MICKEY-128 

Algorithm Throughput(Mbps) 

SCDSP 1.23764 

MICKEY-128 0.518624 

 
The result of the performance analysis shows that there 

is a significant gap in the performance between our 
proposed algorithm and Mickey-128. Despite the fact that 
our proposed algorithm has more dynamic parameters 
than Mickey-128, the proposed algorithm is faster than 
Mickey-128.  

 

VII.  CONCLUSION 

 In this paper, a dynamic stream cipher algorithm called 
SCDSP was evaluated by conducting a performance and 
security analysis. Furthermore, a comparison between this 
algorithm and the seven winners of eSTREAM competition 
was performed. The results were encouraging. It is worth 
mentioning that adding the dynamicity to the design of 
stream cipher enhances the security level and increases the 
immunity of this cipher to several attacks. Moreover, the 
design of SCDSP can extend the opportunity for 
customizing several designs according to the need of the 
industries. In future work, several algorithm designs will be 
developed to suit different levels of security and several 
types of usage. For example, developing a software 
oriented algorithm design and developing a hardware 
oriented algorithm design. The components of the dynamic 
structure can be chosen to fit any type of usage with any 
level of security. This flexibility is the main advantage of the 
dynamic design. 
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