
International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 2, Issue 1 (2016)

Page 27

Security and performance analysis of SCDSP
1Fardous Mohamed Eljadi, 2Imad Fakhri Al-Shaikhli

Department of Computer Science, IIUM, Malaysia
IIUM Cyber Security Malaysia Center for Cyber Space Security

 1fardous.eljadi@live.iium.edu.my
2imadf@iium.edu.my

Abstract—There are few approaches that attempt to add dynamicity to the structure of stream ciphers in
order to improve their security level. SCDSP is a dynamic stream cipher that based on these approaches. It
uses dynamic structure and parameters to increase the complexity of the cipher to improve its security
level. The dynamic parameters are specified using bits from the secret key. In this paper, SCDSP is
evaluated by conducting a performance and security analysis. Furthermore, a comparison between SCDSP
and the seven winners of eSTREAM competition is performed. The results show that SCDSP is very
promising for practical use.

Keywords— Stream Cipher, Dynamic Structure and Parameters (DSP), Linear Feedback Shift Registers.

I. INTRODUCTION

Stream ciphers are more suitable than block ciphers in
time-critical applications or processing-constrained devices
because of their real-time operation and adaptability to
hardware implementations [1]. Multimedia systems, hand
held communication devices, and wireless sensor networks
provide some examples in which a stream cipher is
preferred for an encryption operation. Currently there is no
standard model for stream ciphers, regardless that this
type of stream ciphers are needed for a lot of applications.
To deal with the lack of standards for secure stream ciphers
that can be utilised by industry, a number of
standardization efforts which included stream ciphers were
made by the cryptographic community. The first one was
the New European Schemes for Signature, Integrity and
Encryption (NESSIE) project that began in 2000 and ended
in 2004. All the stream cipher proposals sent to NESSIE
were discarded mainly because of the discovery of
cryptanalytic attacks [2]. After that, Japan initiated another
standardization effort named the Cryptographic Research
and Evaluation Committee (Cryptrec) [3]. Cryptrec highly
recommended a number of stream ciphers among them:
128 bit RC4, MUGI and MULTI-S01[4]. But, afterwards these
ciphers were also found to be vulnerable to the
cryptanalytic attacks [5-7]. Another project targeting
stream ciphers was launched as a part of the European
Network of Excellence for Cryptology (ECRYPT) in 2004 [1].
This was named eSTREAM - the ECRYPT Stream Cipher
Project. It was running from 2004 to 2008. It had the
objective of activating the research area of analysis and
design of stream ciphers. Researchers were invited to
submit stream cipher proposals in two categories: high
performance software applications and hardware
applications with restricted resources. These submissions

have been subjected to rigorous cryptanalysis and have
resulted in the enhancement of overall understanding of
stream cipher design. In this competition, sixteen stream
ciphers reached the final phase. Seven of them were
selected to be winners [1]. These winners are HC-128 [8],
Salsa20/12 [9], Rabbit[10] and SOSEMANUK [11] in profile 1
(software-oriented Ciphers) and Grain v1 [12], MICKEY
2.0[13] and Trivium [14] in profile 2 (hardware oriented
cipher). Even after these standardisation efforts, several
weaknesses were found in these ciphers [15-18]. Therefore,
it is necessary to make a large amount of effort toward the
invention of new replacement schemes.

Few approaches, which attempt to add dynamicity to
the structure of stream ciphers to improve their security
level, are proposed. The idea behind these approaches is
that the structure of these ciphers is unknown to the
attackers, and it makes them more resistant to attacks.
These ciphers are not widely discussed among researchers.
Moreover, the research about using dynamic structure in
stream ciphers has mostly focused on dynamic polynomial
switching in the Linear Feedback Shift Registers [19]. In this
paper, a dynamic stream cipher algorithm called SCDSP [20]
is analysed. It is based on using dynamic structure and
parameters to increase the complexity of the cipher and
consequently improve its security level. SCDSP is evaluated
by conducting a performance and security analysis.
Moreover, a comparison between SCDSP and the seven
winners of eSTREAM competition is performed.

This paper is organized as follows: Section 2 describes
SCDSP. Section 3 gives the details of the security analysis
conducted on the cipher and the performance analysis of
the cipher is discussed in section 4. Section 5 and 6 report a
comparison between SCDSP and the seven winners of
eSTREAM competition. Finally, section 7 concludes this
paper.

mailto:fardous.eljadi@live.iium.edu.my

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 2, Issue 1 (2016)

Page 28

II. SCDSP ARCHITECTURE

In SCDSP, a number of pools that contain several options
for constructing the algorithm are used. In every run, the
algorithm is built based on the secret key. The variable
parameters are the number of registers, the length of
registers, the clocking system, the initialisation procedure,
the confusion and diffusion method, and the output
function. These parameters are specified using bits from
the secret key.

Figure 1 The basic steps of SCDSP.

Figure 1 shows the basic steps of our algorithm. Initially,
the secret key is exchanged. Then, the first stage
"pre-initialization" starts, which includes selecting the
algorithm’s structure based on the secret key and applying
the confusion and diffusion method on the key before the
initialisation stage. Afterward, the selected initialization
method is executed, and the generator starts to produce
the keystream.

In our initial implementation, the secret key and the IV
lengths are chosen to be 128 bits in order to limit the scope
of brute force attacks [21]. For connecting registers, the
output of each register is connected to the input of
another register. Figure 2 illustrates the bits that determine
the dynamic parameters in the secret key.

Figure 2 The bits that determine the dynamic parameters in the secret

key.

We make every pool consist of several components. The
following section describes the options that are used to
construct the proposed design.

A. Number of registers

The number of registers will be determined by the initial
bits of the secret key. In order to use the majority
clocking function of the A5 stream cipher [22], an odd
number of registers is used. Therefore, the number of
registers will be chosen from {7, 9, 11}. Based on a choice
of 7, 9 or 11 registers, the first two bits (Bit0Bit1) of the
secret key are used to determine the number of registers.
 If Bit0Bit1=00, then the number of registers =7.
 If Bit0Bit1=01, then the number of registers =9.
 If Bit0=1, then the number of registers =11.

B. Registers’ lengths

The following points are considered to determine the
ranges of the lengths of the registers.
 The sum of the lengths of the registers used in any

session should be equal to or greater than the key size,
in order to avoid the known Time-Memory Trade Off
attacks for stream ciphers [23]. In addition, the lengths
of the registers should not present any difficulty in the
implementation for either the software or hardware
[24].

 The registers’ sizes must be limited to use the proper
primitive feedback polynomials.

 The registers’ lengths should be pairwise coprime in
order to reduce the correlation attacks against the
cipher and ensure that the cycle time is maximised [24,
25]. The registers’ lengths will be chosen from
{49,53,59,61,65,67,71,73,79,83,89,97,101}. This set has 13
elements. To determine the registers’ lengths, 44 bits
from the key are reserved.
 If the number of registers =7, then 28 bits (7x4) are

required to represent the registers’ lengths, which
allows 50,388 choices of register lengths.

 If the number of registers =9, then 36 bits (9x4) are
needed to represent the registers’ lengths, which
allows for 293,930 choices of register lengths.

 If the number of registers =11, then 44 bits (11x4) are
required to represent the registers’ lengths, which
allows 1,352,078 choices of register lengths.

Table 1 illustrates the chosen primitive feedback
polynomials. These polynomials were taken from [21].

TABLE I
PRIMITIVE POLYNOMIALS

Register size Primitive polynomial

49 X49+ X9 + 1

53 X53+ X6 + X2+ X + 1

59 X59+ X7 + X4+ X2 + 1

61 X61+ X5 + X2+ X + 1

65 X65+ X18 + 1

67 X67+ X5 + X2+ X + 1

71 X71+ X6 + 1

73 X73+ X25 + 1

79 X79+ X9 + 1

83 X83+ X7 + X4+ X2 + 1

89 X89+ X38 + 1

97 X97+ X6 + 1

101 X101+X7+X6+X+1

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 2, Issue 1 (2016)

Page 29

C. Clocking mechanism

According to Courtois [26], the complex clocking
mechanisms provide significant immunity to algebraic
attacks. For this reason, two different clocking functions
are used, which are the majority clocking function as in
A5.1[22] and a keystream-dependent clocking function. In
our implementation, Bit46 is used to determine the
clocking system. At the beginning, in the initialisation, the
selected registers are clocked regularly 128 times without
producing a keystream. Then, at each clock cycle, the
registers are clocked according to the selected clocking
system.

 In the voting clocking function, each register has one
clocking tap in the middle. At each clock cycle, the selected
registers are clocked according to their clocking taps. The
registers make a clocking vote using their taps to find the
majority of the current clocking taps. Afterward, each
register compares the voting result with its own clocking
tap. If it is equal to the voting result, then the register is
clocked [22]. In a keystream-dependent clocking function,
three registers are chosen to be clocked regularly, and the
other registers are clocked based on the previous
keystream.

If Bit46 = 0, then the majority clocking function of the A5
stream cipher is used; otherwise, a keystream-dependent
clocking function is used.

D. Confusion and Diffusion Method

Muller [27] stated that the initialisation process can
provide protection against differential attacks by mixing
nonlinear and linear functions. Therefore, using S-box and
P-box in the initialisation process prevents a high
probability of differential attack. In the SCDSP, a confusion
and diffusion method is applied on the key in the
pre-initialisation stage by using three types of S-box and
P-box.

If Bit51Bit52 =00, then Present [28] S-box and P-box are
used ; else if Bit51Bit52 =01, then HISEC [29] S-box and
P-box are used. Otherwise, LBlock [30] S-box and P-box are
used.

E. Initialisation procedure

In the initialisation process, the loading phase and the
diffusion phase are dynamic. The next sections provide the
details.

 Loading phase: This phase has 9 options. The loading
process that is used is inspired by Dragon stream
cipher [31]. Based on the Bit47, Bit48, Bit49, and Bit50
from the secret key, the loading option will be chosen
from the following options:

1) k|| k’ IV’|| IV|| kIV’|| k’|| k IV || IV’|| k’ IV|| kIV̅̅ ̅̅ ̅̅ ̅
2) k’ IV’|| IV|| kIV’|| k’|| k IV|| IV’ || k’ IV|| kIV̅̅ ̅̅ ̅̅ ̅||K
3) IV|| kIV’|| k’ ||k IV|| IV’|| k’ IV|| kIV̅̅ ̅̅ ̅̅ ̅||K ||k’ IV’
4) kIV’|| k’ || k IV || IV’||k’ IV|| kIV̅̅ ̅̅ ̅̅ ̅||K ||k’ IV’||IV
5) k’ || k IV|| IV’||k’ IV|| kIV̅̅ ̅̅ ̅̅ ̅||K|| k’ IV’||IV|| kIV’
6) k IV || IV’||k’ IV || kIV̅̅ ̅̅ ̅̅ ̅||K ||k’ IV’||IV||kIV’ || k’
7) IV’|| k’ IV|| kIV̅̅ ̅̅ ̅̅ ̅||K ||k’ IV’|| IV || kIV’||k’ || k IV
8) k’ IV|| kIV̅̅ ̅̅ ̅̅ ̅||K ||k’ IV’||IV||kIV’|| k’|| k IV || IV’

9) kIV̅̅ ̅̅ ̅̅ ̅||K || k’ IV’||IV|| kIV’|| k’|| k IV || IV’||k’IV
where x’ denotes the swapping of the upper and lower

64-bit halves of x, and X ̅ denotes the complement of x.
According to [32], the padding pattern should not be

identical or cyclic (identical means that the padding is
all-zeros or all-ones, and cyclic means that the padding
consists of a repeated specific pattern) in order to reduce
the chance of finding slid pairs and also reduce the
probability of obtaining shifted keystreams. In our
initialization process, we do not use an identical or cyclic
padding pattern.

 Diffusion phase: The shift registers are updated 128
times before starting to produce the keystream. This
approach makes any cryptanalysis of the keystream
generated from this cipher difficult.

F. Output functions

Three types of output functions are used, which are
XORing the output bits of the selected registers, an output
function based on the Grain stream cipher [33], and an
output function based on the BEAN stream cipher [34].

In the output function based on the Grain stream cipher,
two registers are used. The first register is an NLFR, which
is defined and filled with a part of the keystream that is
produced in the initialisation phase. The second register is
an LFSR, and it is chosen from the pool of selected registers
in each clock cycle.

In the output function based on the BEAN stream cipher,
two registers are used, and both are chosen from the pool
of selected registers in each clock cycle.

If Bit53Bit54=00, then the output function is XORing the
output bits of the chosen registers; else if Bit53Bit54=01,
then the output function based on the Grain stream cipher
is chosen. Otherwise, the output function based on the
BEAN stream cipher is selected.

Figure 3 The general construction of SCDSP

III. SECURITY ANALYSIS OF THE PROPOSED ALGORITHM

Security analysis plays an essential role in the evaluation
process of the new ciphers. In this section, the period and
the linear complexity of the proposed algorithm are
analysed. Then, the results of the NIST test suit are
presented. Finally, a discussion about some possible
attacks is given based on the specific design choices behind
the different functions and the parameters used in SCDSP.

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 2, Issue 1 (2016)

Page 30

1) Period and Linear Complexity

Due to the irregular clock control, the method of
connecting the registers, and the used output function in
the SCDSP, it is difficult to establish mathematical results
about the period and linear complexity of the cipher.
However, we can predict a lower bound for the period
(considering only the internal state) and measure the linear
complexity of the algorithm using the NIST test suit, which
uses the Berlekamp-Massey algorithm to measure the
linear complexity.
According to [21], the period of LFSR that has a primitive
feedback polynomial is equal to 2L-1, where L is the length
of the register. Assume that our cipher consists of n
registers (7≤ n ≤11). Each register cycles periodically with
the period P = 2L-1. The output of each register is connected
to the input of another register. Therefore, the period of n
LFSRs is at most the LCM of the periods of the sequences
output by the n LFSRs [35]. Hence, the minimum period of
the keystream is estimated to be much more than
LCM (P1P2…Pn), where Pi is the period of register i.
In order to measure the linear complexity of the SCDSP, the
NIST test suit is used. 108 bits are generated by the
proposed algorithm and examined by the NIST statistical
suit. The best p-value for this test is equal to 0.924076,
which is a very high value because 0.01 is the passing rate,
while the value 1 represents perfect randomness.

2) Randomness of the keystream

The statistical tests on SCDSP were performed using the
NIST Test Suite for different keys. The results were
obtained for 108 bits generated by the proposed algorithm.
The average is calculated for the non-overlapping-
templates, random-excursions and random-excursions
variant test results, which are decomposable into a variety
of subtests. Table 2 shows the results of the NIST test suite
for one of the keys. It can be observed from the results that
the proposed algorithm passes all the tests because the
P-value of all the tests is below 0.01.

TABLE 2
NIST TEST RESULTS OF SCDSP

ID Statistical test P-value Result

1 Frequency 0.994250 Pass

2 Block-frequency 0.637119 Pass

3
Cumulative-sums(forward) 0.319084 Pass

Cumulative-sums(reverse) 0.798139 Pass

4 Runs 0.739918 Pass

5 Longest-runs of ones 0.145326 Pass

6 Rank 0.162606 Pass

7 DFT (Spectral) 0.051942 Pass

8 Non-overlapping-template 0.463171 Pass

9 Overlapping-templates 0.028817 Pass

10 Universal 0.964295 Pass

11 Approximate entropy 0.883171 Pass

12 Random-excursions 0.463186 Pass

13 Random-excursions variant 0.483266 Pass

14
Serial1 0.137282 Pass

Serial2 0.145326 Pass

15 Linear complexity 0.924076 Pass

There are some statistical tests that showed excellent
results. For example, the p-value for the frequency test is
0.994250, which indicates an excellent distribution of
zeroes and ones for the entire sequence. Moreover, the
linear complexity test’s p-value is equal to 0.924076, which
indicates that the generated keystream is sufficiently
complex to be considered random [36].

3) Autocorrelation Test Results

The autocorrelation test [37] is performed 5 times using 5
different keys, and the number of occurrences in each time
is compared to the expected value using a chi-square table
with one degree of freedom and a significance level of
α=0.05. The algorithm fails if the value of the test exceeds
3.84. It is notable from the results of Table 3 that SCDSP
successfully passes all five tests because the
autocorrelation value of all tests is less than 3.84.

TABLE 3
AUTOCORRELATION TEST RESULTS OF SCDSP

key Autocorrelation value Result

Key1 1.5943 Pass

Key2 0.9396 Pass

Key3 1.698 Pass

Key4 1.5943 Pass

Key5 0.7866 Pass

4) Resistance against Known Attacks

In this section, a discussion about resistance of SCDSP
against known attacks is presented.
Brute force attack. In this attack, if the key is n bits, then
the attacker must try 2n keys in the worst case and 2n−1 keys
on average. According to [21], the minimum size for the
secret key is set to be 128 bits in order to limit the scope of
brute force attacks on these systems. In SCDSP, the Key
size is 128 bits, and it can be increased to be 256 bits.
Algebraic Attacks. Algebraic attacks on stream ciphers
have received a large amount of attention lately because
they are very efficient if the designer is not careful. A filter
generator that uses only a nonlinear Boolean output
function and an LFSR can be very vulnerable in algebraic
attacks [38]. Babbage and Dodd [1] stated that algebraic
attacks usually become possible when the keystream is
correlated to one or more linearly clocking registers, whose
clocking is either entirely predictable or can be guessed. In
SCDSP, an S box, a P-box, and an irregular clocking function
are used to introduce nonlinearity together with a
nonlinear Boolean output function. Solving equations for
the initial state that has a minimum size of 343 bit (7 is the
minimum number of registers and 49 bit is the size of the
smallest register) is not possible due to the existence of
nonlinearity. The algebraic degree of the output bit
expressed in the initial state bits will be large in general and
will also vary over time. This property will defeat any
algebraic attack on SCDSP.
Time-Memory-Data Trade-off Attack. It is well known that
the state of a stream cipher must be at least twice the key

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 2, Issue 1 (2016)

Page 31

size, and the IV size should be at least as large as the key
size in order to prevent time-memory trade-off attacks [23,
39]. In SCDSP, there are at least seven shift registers, and
their minimum size is 49 bits each; therefore, the total
number of state sizes is at least 343 bit, and thus, the
number of states is greater than twice the key size.
Moreover, the IV size is equal to the key size. According to
Biryukov and Shamir [39], a generic time-memory-data
trade off attack on stream ciphers costs O(2n/2), where n is
the number of inner state variables in the stream cipher. In
SCDSP, there are at least seven shift registers, and their
minimum size is 49 bits each. Thus, the expected
complexity of a time-memory-data trade-off attack is not
lower than O(2343/2),which is greater than the complexity of
brute force attacks.
Guess-and-determine attacks. The strategy for this type of
attack is to guess a few of the unknown variables of the
cipher and, from those, deduce the remaining unknowns.
The system is then iterated a few times, producing output
that can be compared with the actual cipher output, to
verify the guess [1]. In order to make guessing attacks
infeasible, the key length must be increased. Moreover,
irregular clocking can increase the resistance against these
attacks [40]. In SCDSP, the initial key length has 128 bits.
Moreover, two types of irregular clocking are used.
Distinguishing Attacks. A distinguishing attack on a cipher
works with a formal model of security, in which an attacker
can distinguish between the output of a specific cipher and
the output of a truly random process, with a non-negligible
probability [1]. If attackers cannot make this distinction,
then an algorithmically derived stream cipher will view
them as a One Time Pad and will be information-
theoretically secure. In fact, the reality is that there is
always a distinguishing attack against any algorithmic
cipher because it should have a finite key, and thus, brute-
force key enumeration will yield a distinguishing attack of
complexity 2k-1, where k is the key length. An easy way to
get away from such attacks is to state that the cipher must
be rekeyed after a certain amount of keystream [41]. In
SCDSP, the key and IV are used to determine the structure
of the cipher in the next 264 bytes. This approach adds to
the non-predictability of future set-ups and consequently
provides security against attacks.
Correlation attacks. Key-stream generators based on
regularly clocked LFSR’s are susceptible to basic and fast
correlation attacks. However, there are two major
obstacles to the adaptation of this attack on SCDSP:

a) The register lengths are pairwise coprime, which
reduces the correlation attacks against the cipher and
ensures that the cycle time is maximised [24, 25].

b) The use of irregular clocking limits the possibilities for
mounting classical correlation attacks [42].
Differential attacks. A differential attack on stream ciphers
examines the behaviour of the initialisation and keystream
generation processes for a differential in the inputs. It
analyses how differences in the inputs (either the key or IV,
or the internal state) affect the output (either the internal
state or keystream) [43]. Muller [27] stated that the
initialisation process can provide protection against

differential attacks by mixing nonlinear and linear functions.
Therefore, using S-box and P Box in the initialisation
process prevents a high probability of differentials [31]. In
SCDSP, the use of S-box and P-box is an essential part of
the initialisation process.

IV. PERFORMANCE OF THE PROPOSED ALGORITHM

The performance of the proposed algorithm is measured
as the number of keystream bits produced over a given
time period. Specifically, it was measured in megabits per
second (Mbps). Our own reasonably efficient
implementation of SCDSP generated 1.23764 Megabits of
keystream per second using a PC with a 2.1GHz Intel®
Core™ i7-3612QM processor. It is worthwhile to mention
that SCDSP has the flexibility through its dynamic design to
implement it efficiently. This goal can be accomplished by
using light weight and low cost components with a medium
level of security.

V. COMPARISONS OF NIST TEST RESULTS

Statistical analysis in terms of the keystream has been
conducted for the seven stream ciphers that were selected
to be winners in the eSTREAM competition and the
proposed algorithm. In this experiment, 100 keystreams of
length 106 bits are generated using randomly chosen key
and IV pairs. The outputs were tested using the 15 tests
with standard parameters. Table 4 shows the results of
these tests for the compared algorithms.

All the ciphers pass the 15 tests because they have
p-values greater than 0.01. However, some of the
algorithms have higher p-values than others, which means
that they have better statistical properties than the others
[36]. In addition, there are several observations about the
results with regard to the range of p-values for some of the
tests and the p-values of each algorithm.

The first observation is that the range of p-values (the
difference between the highest p-value and the lowest
p-value in a test) is high in some tests. For example, in the
linear complexity test, Trivium has the lowest p-value,
which is 0.01455, while SCDSP has the highest p-value,
which is 0.924076. Therefore, the range of p-values is
0.909526. This finding indicates that there is a significant
gap in the linear complexity between the compared ciphers.
On the other hand, the p-values in some of the tests of the
compared stream ciphers are convergent. For example, in
the non-overlapping-template test, the range of p-values is
0.075629.

The second observation is that some of the algorithms
have high p-values in several tests, which make them
outperform the other algorithms. In contrast, some of the
algorithms have low p-values in several of the tests, which
indicates that the statistical properties of their generated
sequences are low compared to the others. In addition, the
p-values of some of the algorithms are convergent.

It is worthwhile to mention that Trivium has a very low
linear complexity. That finding could be due to its simple
structure [44]. On the other hand, HC-128 has a high p-value
in a linear complexity test. This finding could result from
using two large dynamic s boxes in its design. However, the

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 2, Issue 1 (2016)

Page 32

proposed algorithm has the highest value in the test of
linear complexity, which is a good sign and indicates the

good security level of this algorithm.

TABLE 4
THE RESULTS OF NIST TESTS FOR THE COMPARED ALGORITHMS.

ID Statistical test Grain MICKY Rabbit Sosemanuk HC-128 Trivium Salsa20 SCDSP

1 Frequency 0.455937 0.455937 0.971699 0.883171 0.262249 0.401199 0.955835 0.99425

2
Block-
frequency

0.494392 0.595549 0.657933 0.419021 0.834308 0.637119 0.262249 0.637119

3

Cumulative-
sums(forward)

0.883171 0.304126 0.897763 0.494392 0.851383 0.978072 0.474986 0.319084

Cumulative-
sums(reverse)

0.058984 0.816537 0.494392 0.181557 0.122325 0.595549 0.514124 0.798139

4 Runs 0.719747 0.304126 0.911413 0.897763 0.955835 0.383827 0.678686 0.739918

5
Longest-runs
of ones

0.042808 0.162606 0.455937 0.719747 0.883171 0.122325 0.574903 0.145326

6 Rank 0.911413 0.719747 0.851383 0.162606 0.202268 0.191687 0.419021 0.162606

7 DFT 0.275709 0.202268 0.383827 0.779188 0.494392 0.739918 0.025193 0.051942

8
Non-
overlapping-
template

0.514027 0.488552 0.489705 0.473059 0.478228 0.5388 0.484063 0.463171

9
Overlapping-
templates

0.971699 0.595549 0.595549 0.867692 0.678686 0.181557 0.437274 0.028817

10 Universal 0.678686 0.383827 0.798139 0.021999 0.514124 0.816537 0.719747 0.964295

11
Approximate
entropy

0.595549 0.699313 0.319084 0.935716 0.289667 0.262249 0.137282 0.883171

12
Random-
excursions

0.239402 0.550557 0.538622 0.369533 0.561113 0.390931 0.418249 0.463186

13
Random-
excursions
variant

0.364894 0.394504 0.490274 0.474825 0.41484 0.546774 0.516361 0.483266

14
Serial1 0.319084 0.162606 0.798139 0.12962 0.153763 0.911413 0.137282 0.137282

Serial2 0.514124 0.037566 0.401199 0.23681 0.066882 0.834308 0.153763 0.145326

15
Linear
complexity

0.719747 0.045675 0.419021 0.616305 0.851383 0.01455 0.699313 0.924076

VI. PERFORMANCE COMPARISON BETWEEN SCDSP AND MICKEY-128

Because the Mickey-128 stream cipher is the only cipher
that has a dynamic clocking system (irregular clocking
system), it is compared with SCDSP in terms of the speed.
The compared algorithms were implemented on the same
PC in the same environment. Table 5 shows the comparison
between SCDSP and Mickey-128 from the perspective of
performance.

TABLE 5
PERFORMANCE COMPARISON BETWEEN SCDSP AND MICKEY-128

Algorithm Throughput(Mbps)

SCDSP 1.23764

MICKEY-128 0.518624

The result of the performance analysis shows that there

is a significant gap in the performance between our
proposed algorithm and Mickey-128. Despite the fact that
our proposed algorithm has more dynamic parameters
than Mickey-128, the proposed algorithm is faster than
Mickey-128.

VII. CONCLUSION

 In this paper, a dynamic stream cipher algorithm called
SCDSP was evaluated by conducting a performance and
security analysis. Furthermore, a comparison between this
algorithm and the seven winners of eSTREAM competition
was performed. The results were encouraging. It is worth
mentioning that adding the dynamicity to the design of
stream cipher enhances the security level and increases the
immunity of this cipher to several attacks. Moreover, the
design of SCDSP can extend the opportunity for
customizing several designs according to the need of the
industries. In future work, several algorithm designs will be
developed to suit different levels of security and several
types of usage. For example, developing a software
oriented algorithm design and developing a hardware
oriented algorithm design. The components of the dynamic
structure can be chosen to fit any type of usage with any
level of security. This flexibility is the main advantage of the
dynamic design.

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 2, Issue 1 (2016)

Page 33

REFERENCES

[1] M. Robshaw and O. Billet, New stream cipher designs: the

eSTREAM finalists vol. 4986: Springer, 2008.
[2] F. M. Eljadi and I. F. Al-Shaikhli, "Statistical Analysis of the

eSTREAM competition winners," in Advanced Computer Science

Applications and Technologies (ACSAT), 2015 International
Conference, 2015.

[3] H. Imai and A. Yamagishi, "CRYPTREC Project Cryptographic

Evaluation Project for the Japanese Electronic Government," in
Advances in Cryptology—ASIACRYPT 2000, ed: Springer, 2000,

pp. 399-400.

[4] J. Y. Cho, New Results on Cryptanalysis of Stream Ciphers:
Macquarie University, 2007.

[5] J. D. Golić, "A weakness of the linear part of stream cipher

MUGI," in Fast Software Encryption, 2004, pp. 178-192.
[6] M. Henricksen and E. Dawson, "Rekeying issues in the MUGI

stream cipher," in Selected Areas in Cryptography, 2006, pp. 175-

188.
[7] A. Nagao, T. Ohigashi, T. Isobe, and M. Morii, "Expanding Weak-

key Space of RC4," Journal of Information Processing, vol. 22, pp.

357-365, 2014.
[8] H. Wu, "The stream cipher HC-128," in New Stream Cipher

Designs, ed: Springer, 2008, pp. 39-47.

[9] D. J. Bernstein, "The Salsa20 family of stream ciphers," in New
stream cipher designs, ed: Springer, 2008, pp. 84-97.

[10] M. Boesgaard, M. Vesterager, and E. Zenner, "The Rabbit stream

cipher," in New Stream Cipher Designs, ed: Springer, 2008, pp.
69-83.

[11] C. Berbain, O. Billet, A. Canteaut, N. Courtois, H. Gilbert, L.

Goubin, et al., "Sosemanuk, a fast software-oriented stream
cipher," in New Stream Cipher Designs, ed: Springer, 2008, pp.

98-118.

[12] M. Hell, T. Johansson, and W. Meier, "Grain: a stream cipher for
constrained environments," International Journal of Wireless and

Mobile Computing, vol. 2, pp. 86-93, 2007.

[13] S. Babbage and M. Dodd, "The stream cipher MICKEY 2.0,"
ECRYPT Stream Cipher, available at http://www. ecrypt. eu.

org/stream/p3ciphers/mickey/mickey_p3. pdf, 2006.

[14] C. De Cannière, "Trivium: A stream cipher construction inspired
by block cipher design principles," in Information Security, ed:

Springer, 2006, pp. 171-186.

[15] L. Ding and J. Guan, "Related Key Chosen IV Attack on Grain-
128a Stream Cipher," Information Forensics and Security, IEEE

Transactions on, vol. 8, pp. 803-809, 2013.
[16] Z. Ma and D. Gu, "Improved Differential Fault Analysis of

SOSEMANUK," in Computational Intelligence and Security (CIS),

2012 Eighth International Conference on, 2012, pp. 487-491.
[17] M. J. Mihaljevic, S. Gangopadhyay, G. Paul, and H. Imai,

"Internal state recovery of Grain-v1 employing normality order of

the filter function," Information Security, IET, vol. 6, pp. 55-64,
2012.

[18] Z.-y. Shao and L. Ding, "Related-cipher attack on Salsa20," in

Computational and Information Sciences (ICCIS), 2012 Fourth
International Conference on, 2012, pp. 1182-1185.

[19] F. M. Eljadi and I. F. Al-Shaikhli, "Dynamic linear feedback shift

registers: A review," in Information and Communication
Technology for The Muslim World (ICT4M), 2014 The 5th

International Conference on, 2014, pp. 1-5.

[20] F. M. Eljadi and I. F. Al-Shaikhli, "SCDSP: A Novel Stream
Cipher with Dynamic Structure and Parameters," International

Journal of Advancements in Computing Technology, vol. 7, p. 49,

2015.
[21] B. Schneier, "Applied cryptography: protocols, algorithms, and

source code in C," John Wiley & Sons, Inc, 1996.

[22] N. Bajaj, "Enhancement of A5/1: Using variable feedback
polynomials of LFSR," in Emerging Trends in Networks and

Computer Communications (ETNCC), 2011 International

Conference on, 2011, pp. 55-60.
[23] M. A. B. Shemaili, C. Y. Yeun, M. J. Zemerly, and K. Mubarak,

"A novel hybrid cellular automata based cipher system for internet

of things," in Future Information Technology, ed: Springer, 2014,
pp. 269-276.

[24] B. Colbert, A. H. Dekker, and L. M. Batten, "Heraclitus: A LFSR-

based stream cipher with key dependent structure," in
Communications and Signal Processing (ICCSP), 2011

International Conference on, 2011, pp. 141-145.

[25] B. Schneier, Applied cryptography: protocols, algorithms, and
source code in C, 1996.

[26] N. T. Courtois, "Fast algebraic attacks on stream ciphers with

linear feedback," in Advances in Cryptology-CRYPTO 2003, ed:
Springer, 2003, pp. 176-194.

[27] F. Muller, "Differential attacks and stream ciphers," in The State of

the Art of Stream Ciphers, Workshop Record, ECRYPT Network of
Excellence in Cryptology, 2004, pp. 133-146.

[28] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann,

M. J. Robshaw, et al., PRESENT: An ultra-lightweight block
cipher: Springer, 2007.

[29] S. S. M. AlDabbagh, I. F. T. Al Shaikhli, and M. A. Alahmad,

"HISEC: A New Lightweight Block Cipher Algorithm," in
Proceedings of the 7th International Conference on Security of

Information and Networks, 2014, p. 151.

[30] W. Wu and L. Zhang, "LBlock: a lightweight block cipher," in
Applied Cryptography and Network Security, 2011, pp. 327-344.

[31] E. Dawson, M. Henricksen, and L. Simpson, "The Dragon Stream

Cipher: Design, Analysis, and Implementation Issues," in New
Stream Cipher Designs, ed: Springer, 2008, pp. 20-38.

[32] A. A. Alhamdan, "Secure stream cipher initialisation processes,"

Doctor of Philosophy, Queensland University of Technology,
2014.

[33] M. Hell, T. Johansson, A. Maximov, and W. Meier, "The Grain

family of stream ciphers," in New Stream Cipher Designs, ed:
Springer, 2008, pp. 179-190.

[34] N. Kumar, S. Ojha, K. Jain, and S. Lal, "BEAN: a lightweight

stream cipher," in Proceedings of the 2nd international conference
on Security of information and networks, 2009, pp. 168-171.

[35] Y. Crama and P. L. Hammer, Boolean models and methods in

mathematics, computer science, and engineering vol. 2:
Cambridge University Press, 2010.

[36] A. Rukhin, J. Soto, J. Nechvatal, E. Barker, S. Leigh, M. Levenson,

et al., "Statistical test suite for random and pseudorandom number
generators for cryptographic applications, NIST special

publication," 2010.
[37] N. Kolokotronis, "Cryptographic properties of nonlinear

pseudorandom number generators," Designs, Codes and

Cryptography, vol. 46, pp. 353-363, 2008.
[38] N. T. Courtois and W. Meier, "Algebraic attacks on stream ciphers

with linear feedback," in Advances in Cryptology—EUROCRYPT

2003, ed: Springer, 2003, pp. 345-359.
[39] A. Biryukov and A. Shamir, "Cryptanalytic time/memory/data

tradeoffs for stream ciphers," in Advances in Cryptology—

ASIACRYPT 2000, ed: Springer, 2000, pp. 1-13.
[40] V. A. Ghaffari and A. Vardasbi, "On the period of GSM's A5/1

stream cipher and its internal state transition structure," in

Information Security and Cryptology (ISCISC), 2011 8th
International ISC Conference on, 2011, pp. 37-40.

[41] G. G. Rose and P. Hawkes, "On the Applicability of

Distinguishing Attacks Against Stream Ciphers," IACR Cryptology
ePrint Archive, vol. 2002, p. 142, 2002.

[42] C. J. Jansen, T. Helleseth, and A. Kholosha, "Cascade jump

controlled sequence generator and Pomaranch stream cipher," in
New Stream Cipher Designs, ed: Springer, 2008, pp. 224-243.

[43] E. Biham and O. Dunkelman, "Differential Cryptanalysis in

Stream Ciphers," IACR Cryptology ePrint Archive, vol. 2007, p.
218, 2007.

[44] T. E. Schilling and H. Raddum, "Analysis of trivium using

compressed right hand side equations," in Information Security
and Cryptology-ICISC 2011, ed: Springer, 2012, pp. 18-32.

http://www/

