

University of Tripoli

Faculty of Science
Department of Computer science

Enhancement of Grain Stream Cipher Using

Dynamic Linear Feedback Shift Register

Submitted by

Fayrouz Mohamed Aljadi

Supervised by

Dr. Ibrahim Almerhag

A Thesis Submitted to the Department of Computer Science

In Partial Fulfillment of the Requirements for the Degree

Master of Science in Computer Science

Fall 2017

i

DECLARATION

 I Fayrouz Mohamed Aljadi the undersigned hereby confirm that the work

contained in this thesis / dissertation, unless otherwise referenced is the researcher's

own work, and has not been previously submitted to meet requirements of an award at

this University or any other higher education or research institution, I furthermore, cede

copyright of this thesis / dissertation in favour of University of Tripoli.

Name: Fayrouz Mohamed Aljadi

Signature:

Date: // 20

ii

ABSTRACT

Stream ciphers are commonly used to provide confidentiality for a wide range of

frame based applications such as mobile devices or embedded systems. For these

applications, stream ciphers are preferred for encryption due to the simplicity of their

implementation, efficiency and high throughput. However, practical attacks have been

discovered on well-known stream ciphers. Many stream ciphers are designed to resist

these attacks. The majority of these ciphers have a fixed structure, which is an

advantage that their security against the known attacks can be proved. However, the

fixed building structure of these ciphers also provides opportunities for potential new

attacks. There have been a few approaches that have tried to add dynamicity to the

structure of these ciphers to improve their security level. The idea behind this is that

when the structures of ciphers are unknown to attackers, they are more resistant to

attacks. However, these ciphers are not widely discussed among researchers. Moreover,

the existing research concerning stream ciphers with dynamic structures has focused on

dynamic polynomial switching in the Linear Feedback Shift Registers.

This study proposes a modification to Grain128 stream cipher based on a

dynamic feedback approach to increase the complexity of the cipher, consequently,

improving its security level. In the proposed cipher, the dynamic parameters are the

feedback polynomial and the polynomial switching method. A determined set of

polynomials was used to change the feedback function, and two ways were used for

switching the feedback polynomials of the LFSR: regular and irregular way. The

randomness of the proposed cipher, which is called Dynamic Grain Stream Cipher

(DGSC), was evaluated using the National Institute of Standards and Technology

(NIST) suite; and those results were encouraging. Furthermore, the proposed algorithm

was compared with the original algorithm and the results indicated that the modified

algorithm outperforms the original cipher in several features. A performance analysis of

the proposed algorithm was carried out. Furthermore, a comparison between the

proposed algorithm and the original Grain was performed. The results showed that there

is no significant difference in speed between the original Grain and the modified

algorithm with regular changing of taps. However, the speed decreases in the proposed

algorithm with irregular changing of taps. Using regular or irregular ways to change the

taps may depend on the need of specific industries.

iii

 المستخلص
عادة لتوفير السرية لمجموعة واسعة من التطبيقات مثل الأجهزة النقالة أو النظم يستخدم التشفير التدفقي

لبساطة تنفيذه وكفاءته المضمنة. في هذا النوع من التطبيقات يفضل استخدام التشفير التدفقي نظرا
هذا النوع من التشفير فقد تم اكتشاف هجمات عملية على خوارزميات أهميةبالرغم من و وإنتاجيته العالية.

تشفير معروفة. بعد ذلك تمّ تصميم العديد من خوارزميات التشفير لمقاومة هذه الهجمات. اغلب هذه
روفة. ومع مقاومتها للهجمات المع إثبات إمكانيةالخوارزميات لديها بنية ثابتة، وذلك يعتبر ميزة من حيث

ذلك، فإن استخدام بنية ثابتة لخوارزمية التشفير يتيح المجال لهجمات جديدة محتملة. هناك بعض
ديناميكية لبنية هذه الخوارزميات لغرض تحسين مستوى أمنها. الفكرة من وراء خواص ضافةلإالمحاولات

بنية خوارزميات التشفير غير معروفة للمهاجمين، تكون أكثر قدرة على مقاومة تكون عندما ،هيذلك
ن إبين الباحثين. وعلاوة على ذلك، فهذا النوع من الخوارزميات لم يناقش على نطاق واسع و الهجمات.

في نى الديناميكية معظم الأبحاث الحالية المتعلقة بخوارزميات التشفير التدفقي ركزت على استخدام الب
 .يةخطالتغذية العكسية ال إزاحة مسجلات تبديل متعددة الحدود في

على منهج التغذية استنادا ((Grain128 خوارزمية التشفير التدفقيعلى تعديل أجري هذه الدراسة في
المعاملات الديناميكية في وهذه .تحسين مستوى الأمان رزمية وبالتالياة الديناميكية لزيادة تعقيد الخو العكسي

تم استخدام مجموعة محددة حيثالخوارزمية المقترحة هي متعددة الحدود وطريقة تبديل متعددة الحدود.
وغير مسبقا من الدوال متعددة الحدود، أما بالنسبة لطريقة تبديل الدوال فقد تم استخدام طريقتين: منتظمة

 (DGSC) الديناميكي التدفقي قرينتشفير لمقترحة والتي سميت م تقييم عشوائية الخوارزمية اوتمنتظمة.
وكانت النتائج مشجعة. علاوة على ذلك، تمت مقارنة الخوارزمية (NISTنيست) باستخدام اختبار

الخوارزمية الأصلية في أداءائج أن الخوارزمية المعدلة تفوق المقترحة مع الخوارزمية الأصلية وأظهرت النت
مقارنة أنه لا يوجد فرق الأظهرت نتائج وتم إجراء تحليل أداء للخوارزمية المقترحة. كذلك . عدة نواحي

للبتات الداخلة في منتظم التغيير المعنوي في السرعة بين الخوارزمية الأصلية والخوارزمية المعدلة مع
المقترحة مع لخوارزمية. ومع ذلك، فإن السرعة تنخفض في اTaps)حساب معادلة التغذية العكسية)

البتات الداخلة في حساب . استخدام طرق منتظمة أو غير منتظمة لتغييرلهذه البتات منتظمالغير التغيير
 المحددة.)التطبيقات(عتمد على الحاجة حسب الصناعاتي معادلة التغذية العكسية

iv

DEDICATION

This thesis is dedicated to my beloved parents

v

ACKNOWLEDGEMENTS

First, Alhamdulillah and thanks to almighty Allah for guiding and giving me strength

and patience to finish this thesis. Then, I would like to thank the people who helped me

in my study and supported me.

A special thanks to my family. Words cannot express how grateful I am to my

mother, father, sisters and my husband for all the sacrifices that they have made for me.

I was sustained in this study due to their excessive prayers.

I would like to express my sincere thanks and gratitude to my sister Fardous for

her moral and scientific support and her continuous encouragement for me, this

accomplishment would not have been possible without her.

I would like to express my sincere appreciation to my supervisor, Dr. Ibrahim

Almerhag for his support, guidance, advice, and feedback throughout the course of my

master study.

At the end, I think it is impossible to thank all those who deserve to be thanked,

but I would like to say many thanks to everyone who has helped through advices,

comments, and complements or even by a smile. Thank you all from the bottom of my

heart.

Fayrouz Aljadi

Tripoli, 28/11/2017

vi

TABLE OF CONTENT

DECLARATION ... I

ABSTRACT .. II

ARABIC ABSTRACT ... III

DEDICATION .. IV

ACKNOWLEDGEMENTS .. V

TABLE OF CONTENT .. VI

LIST OF TABLES ... VIII

LIST OF FIGURES .. IX

LIST OF ABBREVIATIONS .. XI

CHAPTER ONE: INTRODUCTION ... 1

1.1 INTRODUCTION ... 1

1.2 STREAM CIPHERS ... 1

1.3 LINEAR FEEDBACK SHIFT REGISTERS .. 2

1.4 INTRODUCING NONLINEARITY .. 3

1.5 DYNAMIC LINEAR FEEDBACK SHIFT REGISTERS 5

1.6 PROBLEM STATEMENT.. 5

1.7 RESEARCH QUESTIONS ... 6

1.8 RESEARCH OBJECTIVES .. 6

1.9 RESEARCH SIGNIFICANCE.. 6

1.10 RESEARCH SCOPE ... 6

1.11 RESEARCH METHODOLOGY .. 6

1.12 TERMINOLOGY .. 7

1.13 THESIS ORGANIZATION .. 8

1.14 SUMMARY .. 8

CHAPTER TWO: LITERATURE REVIEW .. 9

2.1 INTRODUCTION ... 9

2.2 CONSTRUCTION OF DLFSR ... 9

2.3 A BRIEF SUMMARY OF THE PREVIOUS STUDIES ON DLFSRS 21

2.4 SUMMARY .. 24

CHAPTER THREE: THE PROPOSED ALGORITHM.. 25

3.1 INTRODUCTION ... 25

3.2 GRAIN STREAM CIPHER .. 25

3.3 PROPOSED ALGORITHM ARCHITECTURE... 29

3.4 SUMMARY .. 32

vii

CHAPTER FOUR: EXPERIMENTAL RESULTS .. 33

4.1 INTRODUCTION ... 33

4.2 NIST TEST SUITE .. 33

4.3 SECURITY ANALYSIS OF THE PROPOSED ALGORITHM (DGSC) 36

4.4 PERFORMANCE OF THE PROPOSED ALGORITHM (DGSC) 44

4.5 COMPARISONS OF THE NIST TEST RESULTS ... 45

4.6 SUMMARY .. 54

CHAPTER FIVE: CONCLUSIONS AND FUTURE WORK 55

5.1 INTRODUCTION ... 55

5.2 CONCLUSIONS ... 55

5.3 FUTURE WORK .. 56

REFERENCES .. 57

viii

List of TABLEs

Table No. Page No.

2.1 A brief description of the previous papers of DLFSR…………………………22

3.1 Abbreviation for the names of algorithms……………………………………...32

4.1 Output NIST Test of the DGSCR128……………………………………………..36

4.2 NIST Test Results of the DGSCR128………………………………………….37

4.3 NIST Test Results of the DGSCR256...38

4.4 NIST Test Results of the DGSCI50……………………………………………40

4.5 NIST Test Results of DGSCI100..41

4.6 NIST Test Results of the DGSCI128..42

4.7 NIST Test Results of the DGSCI256..43

4.8 Speed comparison between Grain and the DGSC……………….……………..44

4.9 The NIST results of DGSCR128 and DGSCR256…………………………….46

4.10 The NIST results of DGSCI50, DGSCI100, DGSCI128, and DGSCI256…….47

4.11 NIST results of Grain, DGSCR128, and DGSCI128…………………………..48

ix

LIST OF FIGURES

Figure No. Page No.

1.1 The general constructions of a linear feedback shift register………….……...…2

1.2 The Combination generator……………………………………………………...4

1.3 The Filter generator……………………………………………………………...4

1.4 The general constructionof a DLFSR…………………………………………...5

2.1 Block diagram of proposed DLFSR…………………………………………….9

2.2 The Structure of MICKEY……………………………………………………10

2.3 Block diagram of a generic DLFSR cipher………………………………….....11

2.4 Generator Construction…………………………………………………….…..12

2.5 K V2.0 stream cipher…………………………………………………………..13

2.6 Simplified Architecture Diagram……………………………………………....14

2.7 Rakaposhi Stream Cipher………………………………………………….......15

2.8 Model of modified SNOW 2.0…………………………………………………16

2.9 Proposed modified A5/1…………………………………………………….....17

2.10 Each session key K is used for 264frames………………………………………18

2.11 Block diagram of J3Gen………………………………………………………..19

2.12 The general LFSR generator……………………………………………………19

2.13 The DLFSR generator structure……………………………………………......20

2.14 Diagram of the generic DLFSR-with-counter module…………………………21

3.1 The Structure of Grain……………………………………………………….....26

3.2 Grain stream cipher……………………………………………………………..27

3.3 Overview of Grain key initialization…………………………………………...29

3.4 The proposed algorithm……………………………………………………….30

 3.5 The general construction of a DLFSR…………………………………………30

 4.1 NIST Test Results of the DGSCR128…………………………………………38

x

4.2 NIST Test Results of the DGSCR256…………………………………………39

4.3 NIST Test Results of the DGSCI50…………………………………………..40

4.4 NIST Test Results of the DGSCI100………………………………………….41

4.5 Test Results of DGSCI128…………………………………………………….42

4.6 NIST Test Results of the DGSC256...43

4.7 Speed comparisons between Grain and the DGSCs……………………………45

4.8 Frequency Test..49

4.9 Block-Frequency Test...49

4.10 Cumulative-sums Test………………………………………………………….49

4.11 Runs Test……………………………………………………………………….50

4.12 Longest-runs of one's Test………………..…………………………………….50

4.13 Rank Test……………………………………………………............................50

4.14 Discrete Fourier Transform Test...51

4.15 Non-overlapping-template Test..51

4.16 Overlapping-templates Test………...………………………………………….51

4.17 Universal Test...52

4.18 Approximate Entropy Test………………….………………………………….52

4.19 Random-excursions Test...52

4.20 Random-excursions Variant Test..53

4.21 Serial Test..53

4.22 Linear Complexity Test……………………...…………………………………53

4.23 Comparison of NIST Test results…….…....……..……………...……………..54

xi

LIST OF ABBREVIATIONS

Abbreviation Meaning

IV Initial Value / Initialization Vector

K The secret key

LFSR Linear Feedback Shift Register

NFSR Nonlinear Feedback Shift Register

DLFSR Dynamic Linear Feedback Shift Register

ECRYPT The European Network of Excellence for Cryptology

eSTREAM The ECRYPT Stream Cipher Project

NIST National Institute of Standards and Technology Statistical

Test Suite

1

CHAPTER ONE: INTRODUCTION

1.1 INTRODUCTION

In recent years, the Increasing use of the Internet and the growing exchange of digital

information have led to the necessity of reinforcing security. Cryptography is one of the

most commonly used techniques for maintaining security. It produces the methods for

building most of the modern security protocols used to transmit information [1].

Cryptography is the art and science of keeping messages secure by hiding their

meanings from unauthorized users [2]. It is one of two main branches of the term

cryptology; the other branch is cryptanalysis, which is the science of recovering

information without knowledge of the key. The key is secret information used to

configure a cryptosystem for encryption and decryption. A cipher or a cryptosystem is

used to encrypt data. The original data is known as plaintext, and the result of

encryption is called ciphertext. And by decrypting the ciphertext, the original plaintext

could be restored [3].

In cryptography, there are two basic techniques used for encrypting information:

symmetric encryption (also called secret key encryption) and asymmetric encryption

(also called public key encryption). In asymmetric encryption the encryption key and

the decryption key are different. Since different keys are used, It is possible to make the

encryption key public [2]. In symmetric encryption, the same key is used to encrypt and

to decrypt data. This secret key is known to both ends before the transmission starts and

it must be securely kept. In this research, the focuses on one type of the symmetric key

cryptography known as stream ciphers.

1.2 STREAM CIPHERS

Symmetric algorithms can be divided into two categories: stream algorithms or stream

ciphers that operate on the plaintext a single bit (or sometimes byte) at a time, and block

algorithms or block ciphers that operate the plaintext in groups of bits. The groups of

bits are called blocks [2].

Stream ciphers are very popular due to their many attractive features: they are

generally fast, can typically be efficiently implemented in hardware, have no (or

limited) error propagation, and are particularly suitable for use in environments where

2

no buffering is available and/or plaintext elements need to be processed individually.

These are particularly important features in the telecommunications sector, and stream

ciphers are ubiquitous in the field [4].

Stream ciphers encrypt bits individually. This is achieved by adding a bit from a

key stream to a plaintext bit to get a ciphertext bit. It can be transformed back into its

original form using the same key stream [5]. A key stream is a pseudo-random

sequence; it can be generated using a Linear Feedback Shift Register (LFSR). LFSRs

are simple, fast, and easy to implement for both software and hardware. They are

capable of generating pseudo-random sequences with the same uniform statistical

distribution of 0’s and 1’s in a truly random sequence. However, they are not

cryptographically secure, because the construction of an LFSR of length n-bits can be

easily deduced by observing 2n consecutive bits of its sequence using Berlekamp-

Massey algorithm. Due to its inherent linearity, LFSR-based stream ciphers are

vulnerable to several forms of attacks, such as fast algebraic attack and correlation

attack [1, 2].

1.3 LINEAR FEEDBACK SHIFT REGISTERS

A feedback shift register consists of two parts: a shift register and a feedback function

(see Fig. 1.1). The shift register is a sequence of bits. Its length is determined in bits; if it

is n bits long, it is called n-bit shift register. All of the bits in the shift register are shifted

one bit to the right each time a bit is needed. The new left-most bit is computed as a

function of the other bits in the register. The feedback function is normally the XOR of

selected bits in the register; the list of these bits is called a tap sequence. The output of

the shift register is one bit, usually the least significant bit [2].

LFSRs are commonly used as part of key stream generators in stream ciphers. Certain

criteria are considered for the parts of keystream generators. These criteria include

nb 1-nb …. 4b 3b 2b 1b

Feedback Function

Output bit

Figure 1.1: The general constructions of a linear feedback shift

register.

3

period, linear complexity, and statistical measures of the keystreams.

• Period

The period of a shift register is the length of the output sequence before it starts

repeating. If the feedback polynomial of the n-bit LFSR is primitive and its initial state is

at a non-zero state, then the output sequence generated by this LFSR has the maximum

period of 2n -1. This sequence is called the maximum-length sequence, or m-sequence.

The m-sequences possess excellent randomness properties [1].

• Linear complexity

One essential metric used to evaluate LFSR-based generators is linear complexity, or

linear span. This is described as the length (n) of the shortest LFSR that can imitate the

generator output. Linear complexity is very important, because a simple algorithm,

called the Berlekamp-Massey algorithm, can generate this LFSR after investigating only

2n bits of the keystream. Once this LFSR is generated, the stream cipher is broken. It is

worth noting that a big linear complexity does not always indicate a secure generator.

However, a small linear complexity does indicate an insecure one [2].

• Statistical measures

Suitable metrics are required to examine the degree of randomness for binary

sequences generated by random number generators. A number of statistical tests exist to

determine the statistical behavior of the sequence. These tests usually check for random

distribution, distribution of ones and zeroes in a sequence, linear dependence among

fixed length substrings, the level of compression that can be carried out on tested

sequence, and whether a sequence is complex enough to be considered random. Three

well-known tests are used for this purpose, which are: the Federal Information

Processing Standard tests (FIPS), Diehard suite, and National Institute of Standards and

Technology Statistical Test Suite (NIST) [6].

1.4 INTRODUCING NONLINEARITY

The output sequences of LFSR have a linear structure. Therefore, the immediate output

of LFSR is unsuitable to be used as a keystream. In order to use LFSRs in the design of

keystream generators, their linearity must be destroyed. To achieve that, different

methods have been introduced [1], which include:

4

1.4.1 Combination Generators

In this generator, the output of several LFSRs is combined by a Boolean function f to

produce the keystream. To generate a secure and random keystream, the Boolean

function has to satisfy certain criteria. Figure 1.2 illustrates the general construction of

this generator.

1.4.2 Filter Generators

Filter generators only use a single LFSR. A Boolean function generates the keystream

by filtering the contents of the LFSR. Figure 1.3 illustrates the general construction of

this generator.

1.4.3 Clock-Controlled Generators

A Clock-controlled generator has at least one LFSR, which is clocked in an irregular

manner by some other part of the cipher.

In addition to the aforementioned methods, there is a method [7] based on

dynamic polynomial switching in the Linear Feedback Shift Registers.

Figure 1.2: The Combination generator

LFSR 1

LFSR 2

LFSR n

Key Stream

f

LFSR

f

Figure 1.3: The Filter generator

5

1.5 DYNAMIC LINEAR FEEDBACK SHIFT REGISTERS

The Dynamic Linear Feedback shift register (DLFSR) is a LFSR where the feedback

taps are changed in run time [7]. As shown in Fig. 1.4, the conceptual design of a

DLFSR is constructed of a main LFSR and an additional unit that controls the moment

of time when the feedback taps are modified. The purpose of this design is to produce

longer sequences with higher linear complexity than those produced by the LFSR. For

doing that, the control unit modifies several feedback parameters. Therefore, the main

DLFSR component is the algorithm of switching the polynomial [8].

The dynamic feedback control mechanism converts the deterministic linear recurrence

of some registers into a probabilistic recurrence. This effectively protects against several

attacks. The attacker has to guess the inputs to the dynamic feedback control unit first to

perform an attack. This guessing is very difficult due to the irregular modification.

Therefore, irregular modification of the feedback function improves the security of the

stream cipher [9, 10].

1.6 PROBLEM STATEMENT

An improvement in the security of stream cipher is achieved by introducing dynamic

polynomial switching in the Linear Feedback Shift Registers.

Several researches declared that this addition enhances the stream cipher's

immunity to cryptanalysts. However, good inviolability and statistical properties of the

Dynamic LFSR generator can be achieved when the parameters of the switching

algorithm are correctly chosen.

bn bn-1 …. b4 b3 b2 b1

Feedback Function

Output bit

Feedback control unit

Figure 1.4: The general construction of a

DLFSR.

6

1.7 RESEARCH QUESTIONS

• What are the recent approaches for applying the dynamic Linear Feedback Shift

Register in stream cipher designs?

• Why using the dynamic Linear Feedback Shift Register in stream cipher

enhances the security level of these ciphers?

• How could we find a suitable adjustment for the parameters of switching

algorithm of the dynamic Linear Feedback Shift Register?

1.8 RESEARCH OBJECTIVES

▪ To investigate the recent approaches for applying the dynamic Linear Feedback

Shift Register in stream cipher designs.

▪ To analyze the investigated approaches signs in order to study the relationship

between the security level and using dynamic polynomial switching.

▪ To find a suitable adjustment for the parameters of switching algorithm of the

dynamic Linear Feedback Shift Register.

1.9 RESEARCH SIGNIFICANCE

This research aims to provide comprehensive information about recent approaches for

applying dynamic polynomial switching in the Linear Feedback Shift Registers. Besides

that, it provides a study of the relationship between the dynamic polynomial switching

and the security level of the stream ciphers. That will assist in the enhancement process

of stream ciphers.

1.10 RESEARCH SCOPE

In this research, the main focus is on one type of the symmetric key algorithms known

as stream ciphers.

1.11 RESEARCH METHODOLOGY

• Reviewing and analysing several approaches that use the dynamic polynomial

switching in the Linear Feedback Shift Registers in their designs.

• Modifying Grain stream cipher in order to apply the idea of dynamic polynomial

switching to it.

• Evaluating modified Grain stream cipher using NIST test suit.

7

• Adjusting parameters of the modified Grain stream cipher until getting

satisfying results.

• Comparing the performance of modified Grain stream cipher with the original

one.

1.12 TERMINOLOGY

The following terminology and notation will be used throughout this thesis:

• Ciphertext: the result of an encryption algorithm on a plaintext. For most

stream ciphers, it is the combination of a plaintext and a keystream using the

bitwise operation “XOR”.

• Decryption algorithm: the inverse of the encryption algorithm. It is the

procedure used to convert a ciphertext to a plaintext using a secret key and

(optionally) an initialization vector.

• Encryption algorithm: a mathematical procedure for performing encryption on a

plaintext to convert it to a ciphertext using a secret key and (optionally) an

initialization vector.

• Initialization vector (IV): or frame number, publicly known information which

is used with the secret key (master key) to generate the session key that is used

in turn to generate the keystream. The IV serves as a randomizer and should take

a new value for every encryption session. The stream cipher will produce

different sequences of key stream material for each IV.

• Keystream: the sequence of random or pseudorandom bits that are generated by

a keystream generator using a secret key and (optionally) an IV.

• Output function: the function that is used to generate the keystream.

• Plaintext: also called clear text, is the massage to be encrypted, it can be a

stream of bits, a text file, a bitmap, a stream of digitized voice, a digital video

image, etc. [2]. Plaintext is the input to an encryption process, and the output of

a decryption process.

• Polynomial degree: is the length of the shift register [2].

• Primitive polynomials: a polynomial is primitive (irreducible) if it cannot be

expressed as the product of two other polynomials [2].

• Randomness: the randomness concept is defined as an independent sequence of

numbers which have a specific distribution and probability [11].

http://www.webopedia.com/TERM/E/encryption.html
http://www.businessdictionary.com/definition/call.html
http://www.businessdictionary.com/definition/process.html
http://www.businessdictionary.com/definition/output.html
http://www.businessdictionary.com/definition/decryption.html

8

• Secret key: the piece of information or parameter that is used to encrypt and

decrypt messages in a symmetric cryptosystem. It is combined with a known IV

to produce a session key. It is assumed that this input is known only to the

sender and receiver. All the security of these algorithms depends primarily on

the key and none is based on the details of the algorithm; this means that the

algorithm must be published and analysed to ensure its perfection [2]. Another

important issue, usually referred to as “key distribution problem”, since the

system requires a different secure channel for distribution of the key between

sender and receiver.

• Seed: the initial value of the Linear Feedback Shift Register (LFSR).

1.13 THESIS ORGANIZATION

The organization of this thesis will be as follows:

Chapter 1: This chapter has provided an introduction and background of the problem

under investigation, it has outlined the problem statement, the research objectives, the

research questions, and has stated the significance of the study.

Chapter 2: This chapter is a literature review of recent approaches for applying the

dynamic Linear Feedback Shift Register in stream cipher designs.

Chapter 3: This chapter will represent the proposed algorithm for enhancement and

applying the idea of dynamic polynomial switching on it.

Chapter 4: This chapter includes the performance analysis and the security analysis of

the modified stream cipher and comparing it with the original one.

Chapter 5: This chapter will contain the conclusions and suggestions for future

research.

1.14 SUMMARY

This chapter has presented and discussed the background of the study. It defined the

linear feedback shift registers and explains why they are not cryptographically secure. In

addition, the dynamic linear feedback shift register and its featureswere discussed.

Additionally, the statement of the problem was discussed, as this study set to introduce

a dynamic stream cipher that meets the standards of efficiency in terms of security,

implementation, and speed. This chapter also presents the research questions,

hypotheses and objectives. Finally, the research methodology of this study is

mentioned.

9

CHAPTER TWO: LITERATURE REVIEW

2.1 INTRODUCTION

This chapter provides an overview of previous studies related to this research, focusing

mainly on several currently used stream cipher algorithms.That use a dynamic

polynomial switching in the Linear Feedback Shift Registers of their designs.

2.2 CONSTRUCTION OF DLFSR

In 2002, Mita et al [12] presented a pseudorandom sequence generator based on a

DLFSR whose feedback taps are updated based on m bits decoder driven by an m order

LFSR as shown in Fig. 2.1, Obviously when increasing m the period of the overall

system increases, but the complexity of the circuit also increases.

A simple example is presented, where the length of the shift register was equal

to 16 bits (n=16) use a fifth-order LFSR (m=5) to implement the selector blocks. And to

reduce the number of XOR gates inside the DCP (Dynamic Characteristic Polynomials)

block, only five terms including xI6 and xo were chosen among the overall characteristic

polynomials. To implement the DCP block a predefined set of primitive polynomials

which represent the largest set of 16-order characteristic polynomials having four equal

terms was used.

The properties of the output sequence are studied and compared with the output

of a conventional LFSR of similar size by using the Federal Information Processing

Standard (FIPS) tests published by the National Institute of Standards and Technology

Figure 2.1: Block diagram of proposed DLFSR.

10

(NIST). The results of the analysis indicate a big improvement in terms of security level

for the introduced stream cipher.

In [13], a stream cipher called Mickey was introduced by Babbage and Dodd

which stands for Mutual Irregular Clocking keystream generator. As showing in fig 2.2

it consists of two LFSRs of the same length (80 bit), one linear (R) and one non-linear

(S), each of which is irregularly clocked under control of the other. Mickey takes two

input parameters, an 80-bit secret key K and an Initialization Variable IV, anywhere

between 0 and 80 bits in length. The cipher specification states that each key can be

used with up to 240 different IVs of the same length, and that 240 keystream bits can be

generated from each key/IV pair.

MICKEY uses a very simple output function (s0⊕ r0) to compute keystream bits

from the register states. Ciphertext is produced from plaintext by bitwise XOR with

keystream bits, as in most stream ciphers.

The clock control bits chosen for each register to be derived from both registers,

in such a way that knowledge of either register state is not sufficient to tell the attacker

how either register will subsequently be clocked. This helps to guard against “guess and

determine” or “divide and conquer” attacks.

In 2006, a pseudo-random bit generator was proposed based on dynamically

changing the primitive polynomial of a LFSR to convert it to DLFSR, The architecture

of the dynamic linear feedback shift register (DLFSR) stream cipher is shown in Fig.

2.3 where the block called dynamic characteristic polynomials (DCP) includes the

logical circuit that dynamically switches among several feedback networks. The

Figure 2.2: the Structure of MICKEY.

11

primitive polynomial of LFSR controlled by decoder a circuit and a counter that divides

the operation time of each polynomial. A specific set of taps are used to change the

feedback polynomials.

The statistical properties of the proposed and the classical LFSRs are tested

using ‘Statistical Random Number Generator Tests’ of FIPS. The results show that both

generators have similar randomness and statistical properties. In addition, a

methodology, based on a multi perception neural network is used. The results show that

the proposed generator has an excellent inviolability property (the attribute of being

secured against violation) [11].

In the same year, Horant and Guinee [14] introduced a stream cipher

construction that is based on the A5/1 cipher which employs clock-control with

majority voting. The proposed generator structure consists of five LFSRs that are

connected to a Dynamic Feedback Polynomial (DFP) switching block. The DFP block

contains the logical switching circuit required for implementing different feedback

polynomial networks. Each register is configured with any one of the set of five

feedback polynomials at any given time. Each LFSR has a clocking tap that controls its

clock and polynomial switching time. At each step the five clocking taps are put to a

logic majority vote and three, four or five registers are simultaneously clocked. When a

LFSR is unclocked, its taps are changed. Each register has a set of five feedback

polynomials that are used to change its taps. The resultant keystream sequence is given

by the exclusive or (XOR) combination of the final stage of each LFSR.

Figure 2.3: Block diagram of a generic DLFSR cipher.

12

The results indicate that the proposed generator has excellent statistical properties via

both the NIST and Diehard test suites.

In 2007, Kiyomoto et al [9] introduced the stream cipher K2v2.0 which is word

oriented stream cipher using feedback control. It relies on two feedback shift registers

(FSRs) FSR-A and FSR-B, a non-linear function and a dynamic feedback controller.

FSR-B is a dynamic feedback shift registers. The feedback polynomial of the main

LFSR is controlled by two bits of the secondary LFSR state. Therefore, four

polynomials are selected to change the taps.

Figure 2.4: Generator Construction.

13

The NIST test suite is used to evaluate the statistical properties of the generated

sequence and the results confirmed that these properties are good.

In 2007, Hell et al. [15] introduced Grain stream cipher. The first version used

an 80-bit key and a 64-bit initialization vector; but analysis during the early stages of

the eSTREAM effort compromised its security [16]. After that, the Grain v1 was

presented. It described two stream ciphers that supported 80-bit keys with 64-bit

initialization vector, and 128-bit keys with 80-bit initialization vector. Due to the

cryptanalysis of the 128-bit version of Grain v1, a new cipher called Grain-128a is

presented [17].

Grain stream cipher is static in nature, i.e. it does not have any dynamic

properties. So, it has been targeted by this study for modification and improvement. The

Figure 2.5: K v2.0 stream cipher.

..introduced

14

modification is based on a dynamic feedback shift register. This approach will be

explained in more details in Chapter Three.

In 2008, a DLFSR construction, which had an algorithm to generate irreducible

polynomials, was introduced by Molina-Rueda et.al.[18]. A number of irreducible

polynomials are generated in the initialization stage by Blum Blum Shub generator [19].

Then, the generated polynomials are scrambled in a pseudorandom way in order to

increase the unpredictability, so even if the current tap is broken the attacker will not

know which will be the next tap. After this, a 127 bit LFSR is used, with an

initialization vector based on the key provided by the user. When the 2127−1 bits of the

output sequence are depleted the connection polynomial is reset with another one of

those generated in the initialization stage, and a different sequence is obtained. Each

time the polynomials are depleted, they will be chosen again but in a different order,

this will increase the period and is still statistically secure.

This LFSR was created with the objective of using it as a replacement of the

ordinary LFSR in secure generators, increasing the global security of a stream cipher.

The proposed generator is implemented in software as a test of the viability. The

average speed of this generator after the setup phase is 100 bit/sec.

The Rakaposhi stream cipher was presented in 2009 by Cid et al [4]. Its main

component is the bit-oriented dynamic linear feedback shift register. It consists of a

128-bit Non-Linear Feedback Shift Register and a 192-bit Linear Feedback Shift

Register, denoted as registers A and B, respectively. The cipher uses two bits from the

state of the NLFSR to select, and dynamically modify four (linear) feedback function of

Figure 2.6: Simplified Architecture Diagram.

15

the LFSR. The cipher keystream is produced by combining the output of both registers

with the output of a non-linear Boolean function. This function takes six bits from the

state of register B and two bits from the state of register A as input.

In the initialization process, the secret key and IV are loaded into the registers

and mixed. The secret key and IV are loaded into the NLFSR and DLFSR, respectively.

The cipher then clocks 448 times with the output of the filter function being fed back

into the cipher state. The cipher must be re-initialized (potentially by only modifying

the IV) after at most 264 cycles.

The NIST test Suite is used to evaluate this cipher. The results indicate that the

statistical properties of the Rakaposhi output sequence are good.

In 2010, a new version of stream cipher modified SNOW 2.0 based on dynamic

feedback was introduced [10]. Dynamic feedback is determined using dynamic number

generator function. The linearity in this version is converted into non linearity. In other

words LFSR property is converted into NLFSR property. The design of modified

SNOW 2.0 is divided into three steps; Main Operation of dynamic feedback based

modified version of SNOW 2.0, Updating of Linear Feedback Shift Register (LFSR),

and Updating of Finite State Machine (FSM).

Figure 2.7: Rakaposhi Stream Cipher.

16

The analysis and experimental results show that the suggested technique has

more resistance against Guess and Determine attacks and more affective for the

encryption of plaintext. It is more secure and reliable for a secure communication as

compared to static feedback based modified SNOW 2.0.

In [20], Bajaj suggested using DLFSR instead of LFSR in the A5/1 stream

cipher . Two modifications have been proposed in this cipher; one is in feedback tapping

unit and other modification is in the clocking rule. The feedback unit is modified in two

different ways; the first is Shuffling LFSRs by extending all LFSRs to 23 bit to shuffle

these LFSR. This shuffling is done periodically but the state of LFSR will change

randomly. The second way is Feedback polynomial unit; in this proposal four different

feedback polynomials for each LFSR are selected. The feedback polynomials are chosen

such that there would be only one tap that is different in all tap configurations of an

LFSR. A LFSR changes its feedback polynomial after generating bits more than twice its

length. The other modification is clocking unit, the clock controlled unit of conventional

A5/1 works on majority rule.

The proposed stream cipher passed all the NIST’s random tests. And the

proposed scheme is robust to the cryptographic attacks compared to the conventional

A5/1 stream cipher.

Figure 2.8: Model of modified SNOW 2.0.

17

The Heraclitus stream cipher was proposed in 2011 by Colbert et al [21]. The

authors used a key dependent structure, whose variable parameters are the number of

registers, the length of registers, and the feedback polynomials of the registers, these

variable parameters are selected using an index. A fixed set of irreducible polynomials

(one for each register) and the hash function SHA512 [22] are used to generate the

feedback polynomials. The variable parameters are changed every 264 frames of a

session. The clocking mechanism used majority clocking based on a fixed bit positions

in the LFSRs.

The design of Heraclitus exploited the choices available in cipher design, such

as the choice of irreducible polynomials or the choice a function which satisfies certain

conditions. They also represent an increase in strength of the ciphers because: (a) each

cipher generated is designed to satisfy particular criteria to ensure the strength of the

cipher and (b) each cipher is expected to be only used once — therefore it is infeasible

to determine any weakness, even if the cipher is known.

Figure 2.9: Proposed modified A5/1.

18

In 2013, the J3Gen generator was presented by Melià-Seguí et al [23]. Its

construction is based on a DLFSR, with a number of feedback polynomials selected by

a round robin scheme. The feedback polynomial is changed after a given number of

DLFSR cycles. The Polynomial Selector Module shifts its position towards a new

configuration. The number of shifts, i.e., the corresponding selection of each primitive

polynomial at a certain LFSR cycle, is determined by a true random bit obtained from a

physical source of randomness provided by the TRNG module. The feedback

polynomials are implemented as a wheel, which rotates depending on this bit value. If

the truly random bit is a logical 0, the wheel rotates one position, that is, it selects the

next feedback polynomial. Instead, if the truly random bit is a logical 1, then the wheel

rotates two positions, that is, the polynomial selector jumps one feedback polynomial

and selects the next one.

The Decoding Logic is responsible for managing the internal PRNG clock of

J3Gen. It activates and deactivates the PRNG modules for its proper performance. The

authors introduced a hardware implementation of J3Gen, and evaluated it regarding

nonlinearity of the design, different design parameters, and defining the key-

equivalence security.

Figure 2.10: Each session key K is used for 264frames.

19

In [8] the authors presented the LFSR and DLFSR structures and their

differences. LFSR generator is built from the shift register and the feedback loop, most

often implemented as a multiple input XOR gate. The LFSR generator is a synchronous

circuit and it requires clocking signal to work properly. The feedback loop is described

by a polynomial, the general structure of the LFSR generator is shown in figure 2.12.

The feedback loop is described by the polynomial, which exponents of the variable x

are numbers of each shift register bits that are connected to the feedback loop. The

LFSR structure does not change while operating.

Another type of the pseudo random signal generator, based on a shift register, is

the Dynamic Linear Feedback Shift Register generator. The basic structure of this

generator is shown in figure 2.13.This generator is made from three basic functional

Figure 2.11: Block diagram of J3Gen.

Figure 2.12: the general LFSR generator.

20

Elements; the N bit shift register, the block that changes the feedback polynomial, and

the feedback loop function made from multiple XOR gate. Algorithm of the polynomial

change depends on its designer. This algorithm requires having some parameters to be

strictly determined; moment of time, related to the clock signal that determines the

feedback polynomial change, and set of the feedback polynomials that will be used by

the feedback block.

The authors used experimental methods to choose the parameters of DLFSR

switching algorithm. They compared between the Diehard statistical tests results of the

LFSR and DLFSR generators. This comparison confirmed that DLFSR pseudo random

sequences have better statistical properties than the conventional ones and it passed all

DIEHARD tests.

In 2014, Peninado et al [7] presented a DLFSR model that consisted of two LFSR

and a counter. The main LFSR is a regular LFSR of n cells with primitive feedback

polynomials which are applied in a round robin scheme. The secondary LFSR is a

clock-controlled primitive LFSR of m = log2n cells to control the feedback of the main

LFSR. The state of this LFSR sets the initial value of a counter. When the counter

downs to zero, then the secondary LFSR generates a new bit and the new state resets

again the counter to a different value. The counter synchronizes the secondary LFSR

with the feedback polynomial of the main LFSR. Each time the secondary LFSR

generates a new bit, the feedback polynomial of the main LFSR is updated, in such a

way that the number of consecutive bits generated by the corresponding polynomial is

the decimal value of the state of the secondary LFSR.

Figure 2.13: The DLFSR generator structure.

21

A comparative analysis of the proposed DLFSR design with other DLFSR designs is

performed. The results indicate that the introduced design is better than others in certain

aspects.

2.3 A BRIEF SUMMARY OF THE PREVIOUS STUDIES ON DLFSRS

This section shows a brief summary of the researcher’s contributions on dynamic linear

feedback shift registers as well as the names of authors and year, the title of papers, and

the main idea of each work which are presented below in Table (2.1).

Figure 2.14: Diagram of the generic DLFSR-with-counter module.

22

Table 2.1: A brief description of the previous papers of DLFSR.

Authors Title Main idea

1

R. Mita, G. Palumbo,

S. Pennisi, and M.

Poli (2002)

Pseudorandom bit generator

based on dynamic linear

feedback topology

A pseudorandom sequence generator based on a DLFSR whose feedback

taps are updated based on the state of a secondary LFSR.

2
Babbage and M.

Dodd (2005)

The stream cipher MICKEY

(version 1)

A stream cipher consists of two LFSRs of the same length connected in

such a manner that both registers mutually control their corresponding

feedbacks.

3
R. Mita, G. Palumbo,

and M. Poli (2006)

Pseudo-random sequence

generators with improved

inviolability performance

A generator was proposed based on DLFSR that is controlled by a decoder

circuit and a counter that divides the operation time of each polynomial

4
D. Horan and R.

Guinee (2006)

A novel keystream generator

using pseudo random binary

sequences for cryptographic

applications

A stream cipher whose DLFSRs’ construction is based on the A5/1 cipher

majority voting function.

5

S. Kiyomoto, T.

Tanaka, and K.

Sakurai (2007)

K2: A Stream Cipher

Algorithm using Dynamic

Feedback Control

A Stream Cipher that relies on two LFSRs and a non-linear function. The

feedback polynomial of the main LFSR is controlled by two bits of the

secondary LFSR state.

6

A. Molina-Rueda, F.

Uceda-Ponga, and C.

F. Uribe (2008)

Extended period LFSR using

variable TAP function

A DLFSR construction, which had an algorithm to generate irreducible

polynomials.

7

C. Cid, S. Kiyomoto,

and J. Kurihara

(2009)

The rakaposhi stream cipher

A DLFSR construction that consists of a LFSR whose feedback

polynomial is chosen among four different options controlled by two bits

of Non-LFSR state.

23

Authors Title Main idea

8

S. Khan, A. Khan, S.

Khayal, T. Naz, S.

Bashir, and F. Khan

(2010)

Dynamic feedback based

modified SNOW 2.0

A new version of stream cipher modified SNOW 2.0 based on dynamic

feedback was introduced.

9 N. Bajaj (2011)

Enhancement of A5/1: Using

variable feedback

polynomials of LFSR

Using DLFSR instead of LFSR in the A5/1 stream cipher. Each DLFSR

has four different feedback polynomials, and it changes its feedback

polynomial after it generates twice more bits than its length.

10

B. Colbert, A. H.

Dekker, and L. M.

Batten (2011)

Heraclitus: A LFSR-based

stream cipher with key

dependent structure

A stream cipher with key dependent structure, whose variable parameters

are the number of registers, the length of registers, and the feedback

polynomials of the registers.

11

J. Melià-Seguí, J.

Garcia-Alfaro, and J.

Herrera-Joancomartí

(2013)

J3Gen: A PRNG for low-cost

passive RFID

A generator construction that is based on a DLFSR, with a number of

feedback polynomials selected by a round robin scheme.

12
R. Stepien and J.

Walczak (2013)

Comparative analysis of

pseudo random signals of the

LFSR and DLFSR

generators

The authors compared between the statistical tests results of the LFSR and

DLFSR generators. This comparison confirmed that DLFSR pseudo

random sequences have better statistical properties than the conventional

ones.

13

A. Peinado, J.

Munilla, and A.

Fúster-Sabater (2014)

Improving the Period and

Linear Span of the

Sequences Generated by

DLFSRs

A DLFSR model that consists of two LFSRs and a counter. The main

LFSR polynomial is controlled by a counter, whose value depends on the

internal state of the secondary LFSR.

24

2.4 SUMMARY

This chapter represented a helpful insight to the previous work that have been done till

now on DLFSR constructions and their polynomial switching algorithms to provide a

clear understanding to the researchers who want to search in this area and participate in

enhancing the security issues of communication.

25

CHAPTER THREE: THE PROPOSED ALGORITHM

3.1 INTRODUCTION

The eSTREAM project is a multi-year effort to create a portfolio of promising new

stream ciphers, Funded by the ECRYPT Network of Excellence. The project started in

2004 with a call for proposals from industry and academia. These proposals were

designed to satisfy either a software-oriented or hardware-oriented profile. In total 34

submissions are generated during the original call for proposal [17].

 The project was divided into three phases, the third phase completed in April

2008 with the announcement of the candidates that had been selected for the final

eSTREAM portfolio. The algorithms in Profile 1 (software-oriented algorithms) are

suitable for software applications with high throughput requirements. The length of

their keys is either 128 or 256 bits, and the initialization vector (IV) is required to be 64

or 128 bits. This profile contains the following ciphers: HC-128, Rabbit, Salsa20/12,

and SOSEMANUK.

The algorithms in Profile 2 (hardware-oriented algorithms) are supposed to be

efficient with regards to the physical resources required when implemented in hardware.

These algorithms were required to support 80-bit keys, and can also support 128-bit

keys. The initialization vector can be 32 or 64 bits. This profile contains the following

ciphers: Grain, Mickey, and Trivium.

Grain stream cipher was chosen to test the idea of dynamic polynomial

switching, In order to examine the relationship between the dynamic polynomial

switching and the security level. In this chapter, the original Grain algorithm and the

proposed algorithm are explained in details.

3.2 GRAIN STREAM CIPHER

In 2007, Hell et al. [15] introduced Grain stream cipher. The first version used an 80-bit

key and a 64-bit initialization vector; but analysis during the early stages of the

eSTREAM effort compromised its security [16]. After that, the Grain v1 was presented.

It described two stream ciphers that supported 80-bit keys with 64-bit initialization

vector, and 128-bit keys with 80-bit initialization vector. The main building blocks of

this cipher are two shift registers as shown in Figure (3.1), one with linear feedback

26

(LFSR) and the second with non-linear feedback (NFSR). The contents of the two shift

registers represent the state of the cipher. From this state, 5 variables are chosen as input

to a Boolean function that is selected to be balanced, correlation immune of the first

order and have algebraic degree of 3. Due to the cryptanalysis of the 128-bit version of

Grain v1, a new cipher called Grain-128a is presented [17].

Figure 3.1: The Structure of Grain [15].

Grain has high speed, low gate count and low power consumption [24].

However, there is some cost incurred during initialization and the impact of this will be

determined by the intended application and the likely size of the messages being

encrypted [17]. Another weakness of Grain-v1 is that certain 18 bits of the internal

state can be efficiently recovered based on the corresponding keystream segment and

the assumption on certain 133 bits of the considered internal state [25]. Regarding

security, there are some recently introduced attacks on Grain.

 In 2008, De Canniere et al. [26] observed the existence of a sliding property in

the initialization algorithm of the Grain family, and show that it can be used to decrease

by half the cost of exhaustive key search. In 2012, Banik et al. [27] introduced a

differential fault attack on the Grain 128a authenticated encryption scheme using certain

properties of the Boolean function h used in the cipher design. In 2013, Ding and Guan

proposed a related key chosen IV attack on Grain-128a based on some observations.

27

Their result showed that their attack is much better than an exhaustive key search in the

related key setting [28].

3.2.1 GRAIN-128’S OUTPUT AND STATE UPDATE FUNCTIONS

Grain and Grain-128 ciphers follow the same design principle [29]. They include three

essential building blocks, which are an NFSR, an LFSR and an output function. The

contents of the two shift registers represent the state of the cipher and their sizes are |K|

bits each, where K is the key. In the following, the content of the NFSR is denoted

by𝐵𝑡 = 𝑏𝑡 + 𝑏𝑡+1, . . . , 𝑏𝑡+|𝐾|−1 and the content of the LFSR is denoted by 𝑆𝑡 = 𝑠𝑡 +

𝑠𝑡+1, . . . , 𝑠𝑡+|𝐾|−1 . The output function, denoted by 𝐻(𝐵𝑡, 𝑆𝑡) contains two parts. A

nonlinear Boolean function h(x) and a set of linear terms combined with h(x). The

output of 𝐻(𝐵𝑡, 𝑆𝑡) is the keystream bit 𝑧𝑡. Figure 3.2 shows a general overview of the

design.

Grain-128 supports a key size of |K| = 128 bits. The size of the IV is stated to be

|IV| = 96 bits. The feedback polynomial of the LFSR, f(x) is a primitive polynomial of

degree 128. It is defined as in Equ (3.1)

𝑓(𝑥) = 1 + 𝑥32 + 𝑥47 + 𝑥58 + 𝑥90 + 𝑥121 + 𝑥128. .. (3.1)

The corresponding update function of the LFSR defined as in Equ (3.2)

Figure 3.2: Grain128 stream cipher [10].

28

𝑆𝑡+128 = 𝑠𝑡 ⊕ 𝑠𝑡+7 ⊕ 𝑠𝑡+38 ⊕ 𝑠𝑡+70 ⊕ 𝑠𝑡+81 ⊕ 𝑠𝑡+96 .………………………… (3.2)

g(x) is the nonlinear feedback polynomial of the NFSR. It is defined as in Equ (3.3)

𝑔(𝑥) = 1 + 𝑥32 + 𝑥37 + 𝑥72 + 𝑥102 + 𝑥128 + 𝑥44𝑥60 + 𝑥61𝑥125 + 𝑥63𝑥67 +

𝑥69𝑥101 + 𝑥80𝑥88 + 𝑥110𝑥111 + 𝑥115𝑥117 ………………………………………... (3.3)

In the corresponding update function of the NFSR below in Equ (3.4) observe

that the bit St which is masked with the input to the NFSR is included, while ignored in

the feedback polynomial.

𝑏𝑡+128 = 𝑠𝑡 ⊕ 𝑏𝑡 ⊕ 𝑏𝑡+26 ⊕ 𝑏𝑡+56 ⊕ 𝑏𝑡+91 ⊕ 𝑏𝑡+96 ⊕ 𝑏𝑡+3𝑏𝑡+67 ⊕ 𝑏𝑡+11𝑏𝑡+13 ⊕

𝑏𝑡+17𝑏𝑡+18 ⊕ 𝑏𝑡+27𝑏𝑡+59 ⊕ 𝑏𝑡+40𝑏𝑡+48 ⊕ 𝑏𝑡+61𝑏𝑡+65 ⊕ 𝑏𝑡+68𝑏𝑡+84 …………… (3.4)

In the cipher state, 9 variables are used as input to the Boolean function, h(x). 2

inputs to h(x) are obtained from the NFSR and 7 are obtained from the LFSR. This

function is of degree 3 and quite simple. It can be defined as in Equ (3.5)

ℎ(𝑥) = ℎ(𝑥0, 𝑥1, … , 𝑥8) = 𝑥0𝑥1 ⊕ 𝑥2𝑥3 ⊕ 𝑥4𝑥5 ⊕ 𝑥6𝑥7 ⊕ 𝑥0𝑥4𝑥8....................... (3.5)

 where the variables x0, x1, x2, x3, x4, x5, x6, x7 and x8 match the tap positions bt+12, St+8,

St+13, St+20, bt+95, St+42, St+60, St+79 and St+95 respectively.

The output function H(Bt, St) is described as in Equ (3.6)

𝑧𝑡 = 𝐻(𝐵𝑡, 𝑆𝑡) =⊕𝑗∈𝐴 𝑏𝑡+𝑗 ⊕ ℎ(𝑥) ⊕ 𝑠𝑡+93, ……………………………….……. (3.6)

𝑤ℎ𝑒𝑟𝑒 𝐴 = {2, 15, 36, 45, 64, 73, 89}.

3.2.2 GRAIN-128 INITIALIZATION PROCESS

The initialisation process is an essential process which is required to be carried out prior

to keystream production gets started. Next, the keystream generators could be used to

generate keystream sequences. With regard to security, the particular initialisation

process should not expose any kind of information regarding the secret key and also is

required to be protected to prevent, as a minimum, all the widely known common

attacks.

29

In Grain-128’s initialization process [29], the loading phase is performed by

loading the 128-bit secret key into the nonlinear feedback shift register. The 96 bits

of IV are loaded into 96 bits of the linear feedback shift register (LFSR). The

remaining bits of the LFSR are filled by ones. In the diffusion phase, the LFSR and

NFSR registers are clocked 256 times before producing any keystream, and the

output bit is XORed and fed back to the input of both the LFSR and NFSR. The

general concept of Grain is illustrated in Figure 3.3.

3.3 PROPOSED ALGORITHM ARCHITECTURE

In the original algorithm the output sequences of LFSR have a linear structure. So, in

order to overcome the linearity of the bits generated using LFSR, a dynamic Linear

Feedback Shift Register is used instead of LFSR. The proposed algorithm is called

Dynamic Grain Stream Cipher (DGSC).

Figure 3.3: Overview of Grain128 key initialization [1]

30

The conceptual design of a DLFSR is constructed of a main LFSR and an

additional unit that controls the moment of time where the feedback taps are modified.

The purpose of this design is to produce longer sequences than those produced by the

LFSR with higher linear complexity. To do that, the control unit modifies several

feedback parameters. Therefore, the main DLFSR component is the algorithm of

switching the polynomial [8], and the proposed modification is centered in this part.

bn bn-1 …. b4 b3 b2 b1

Feedback Function

Output bit

Feedback control unit

Figure 3.5: The general construction of a

DLFSR.

Figure 3.4: The proposed algorithm.

31

3.3.1 THE PROPOSED POLYNOMIAL SWITCHING ALGORITHM

The main DLFSR component is the algorithm of switching the polynomial [8]. It has two

parameters: the set of feedback taps which will be used to change the feedback

polynomials, and the method of changing these polynomials.

3.3.1.1 Feedback polynomials

In DLFSRs, determining the set of polynomials that will be used to change the feedback

function is very important. While some approaches used a predefined set of primitive

polynomials, others used algorithms to generate these polynomials.

Predefined set of irreducible polynomials will be used in the proposed algorithm to

switch the primitive polynomial of the LFSR. Five irreducible polynomials of degree

128 are used with the original polynomial:

F1(X) = X128 + X9 + X8 + X7 + X6 + X5 + X4 + X3…………………………………. (1)

F2(X) = X128 + X8 + X6 + X5 + X4 + X …………………………………………….. (2)

F3(X) = X128 + X8 + X6 + X5 + X4 + X2 ……………………………………………. (3)

F4(X) = X128 + X10 + X9 + X7 + X3 + X2 …………………………………...……… (4)

F5(X) = X128 + X7 + X2 + X ………………………………………………………... (5)

3.3.1.2 Polynomial changing method

Another important consideration is the way of switching the feedback polynomials.

There are two methods that can be used to switch the taps; regular and irregular methods.

If taps are changed in a regular manner, then polynomials are changed after a specific

amount of time. But when irregular ways are used, the moment of change is not fixed

and usually depends on the value of certain bits within the operated registers.

Both methods (regular and irregular) will be used for switching the DGSC feedback

polynomials. In the regular way, two options will be used to change the taps based on

number of output bits: changing the taps every 128 bits or changing the taps every 256

bits. In the irregular way, changing the taps will happen if the output bits of LFSR and

NLFSR match for 50, 100, 128, 256 times. Later a comparison will be done between

these methods.

32

Table 3.1 illustrates the shortcuts that are used to represent different versions of the

proposed algorithm (DGSC).

Table 3.1: Abbreviation for the names of algorithms.

No Algorithm Abbreviation

1 Original Grain-128 Grain

2 Grain-128 with regular changing of taps (n=128) DGSCR128

3 Grain-128with regular changing of taps(n=256) DGSCR256

4 Grain-128 with irregular changing of taps (m=128) DGSCI128

5 Grain-128 with irregular changing of taps (m=256) DGSCI256

6 Grain-128with irregular changing of taps (m=50) DGSCI50

7 Grain-128with irregular changing of taps(m=100) DGSCI100

3.4 SUMMARY

This chapter presented the details of the original algorithm (Grain-128) and the

proposed algorithm DGSC with detailed explanation of modification have made. The

modification has been concentrated on replacing the LFSR with DLFSR. In addition, a

new switching method for changing polynomial is introduced in order to find a suitable

adjustment for the parameters of switching algorithm of the dynamic Linear Feedback

Shift Register.

33

CHAPTER FOUR: EXPERIMENTAL RESULTS

4.1 INTRODUCTION

This chapter presents an evaluation of the proposed algorithm (DGSC). A

performance and security analysis of the DGSC were conducted. Moreover, a

comparison is performed between the proposed cipher and the original cipher in

terms of statistical properties and performance. The NIST test suite is used to

examine the statistical properties of the compared algorithms, and C code is used to

measure their performance.

4.2 NIST TEST SUITE

The NIST Test Suite is a statistical package that includes 15 tests designed to

evaluate the randomness of binary sequences generated by either hardware or

software-based cryptographic random or pseudorandom number generators. These

tests concentrate on a number of different types of non-randomness which could

exist in a sequence. One of these tests is linear complexity test. This test is an

essential metric that is used to evaluate the randomness of binary sequences. Some

tests are split into a number of subtests.

In the NIST tests, when a P-value for a test is determined to be equal to 1,

then the sequence seems to have perfect randomness. A P-value of zero indicates

that the sequence seems to be completely non-random. A significance level

(a=0.01) is selected for the tests. If p-value is greater than or equal to 0.01, then the

sequence seems to be random with a confidence of 99%. A P-value less than 0.01

indicates that the sequence appears to be non-random with a confidence of 99% [6].

Each test is explained in more details below:

• Frequency (Monobit)

This test computes the proportion of zeroes and ones for the whole sequence. The

intent behind this test is to check if the number of ones and zeros in a sequence are

almost the same as would be expected for a random sequence.

34

• Frequency Test within a Block

This test computes the proportion of zeroes and ones within M-bit blocks. The

intent behind this test is to check if the number of ones and zeros in an M-bit block

is approximately M/2, as would be estimated for a random sequence.

• Runs Test

This test concentrates on determining the total number of runs in the sequence,

where a run is a continuous sequence of identical bits. A run of length K contains K

identical bits and is bounded before and after with a bit of the opposite value. The

intent behind this test is to check if the number of runs of ones and zeros of several

lengths is approximately the same as would be expected for a truly random

sequence.

• Test for the Longest Run of Ones in a Block

This test computes the longest run of ones within M-bit blocks. It checks if the

length of the longest run of ones within the tested sequence is consistent with the

length of the longest run of ones which would be estimated for a truly random

sequence.

• Binary Matrix Rank

This test computes the rank of disjoint sub-matrices of the entire sequence. It

checks for linear dependence among fixed length substrings of the original

sequence.

• Discrete Fourier Transform (DFT)

This test detects periodic features. It focuses on the peak heights in the discrete

Fourier transform of the sequence.

• Non-overlapping Template Matching

This test detects generators that generate a lot of occurrences of a specified non-

periodic pattern. It focuses on the number of occurrences of pre-specified target

strings.

• Overlapping Template Matching

This test focuses on the number of occurrences of pre-specified target strings.

35

• Maurer’s “Universal Statistical”

This test detects whether or not the sequence can be significantly compressed

without losing information. Therefore, this test computes the number of bits

between matching patterns. The non-random sequence is a very compressible

sequence.

• Linear Complexity

This test checks if the sequence is complex enough to be considered random. It is

based on the Berlekamp-Massey algorithm that provides a way for measuring linear

complexity.

• Serial Test

This test checks if the number of occurrences of the 2mm-bit overlapping patterns is

roughly the same as would be estimated for a random sequence. Its focus is on the

frequency of all possible overlapping m-bit patterns across the whole sequence.

• Approximate Entropy

This test compares the frequency of overlapping blocks of two adjacent lengths (m

and m+1) with estimated result for a truly random sequence. It focuses on the

frequency of all possible overlapping m-bit patterns across the whole sequence.

• Cumulative Sums

This test concentrates on determining the maximal excursion (from zero) of the

random walk described by the cumulative sum of adjusted (-1, +1) digits in the

sequence.

• Random Excursions

This test concentrates on determining the number of cycles having exactly K visits

in a cumulative sum random walk. After the (0, 1) sequence is transferred to the

appropriate (-1, +1) sequence, the cumulative sum random walk is produced from

partial sums.

• Random Excursions Variant

This test discovers deviations from the estimated number of visits to various states

in the random walk. It focuses on the total number of times a particular state is

visited in a cumulative sum random walk [6].

36

4.3 SECURITY ANALYSIS OF THE PROPOSED ALGORITHM (DGSC)

Security analysis plays an essential role in the evaluation process of new ciphers. This

section reports the results of the NIST test suite of the proposed algorithm. The results

are obtained for 108 bits generated by the DGSC. The output logs of empirical results

will be stored in two files, stats and results that correspond respectively to the

computational information e.g., test statistics, intermediate parameters, and P-values for

each statistical test applied to a data set.

 A file final Analysis Report is generated when statistical testing is complete. The

results are represented via a table with p rows and q columns. The number of rows, p,

corresponds to the number of statistical tests applied. The number of columns, q = 13,

are distributed as follows: columns 1-10 correspond to the frequency of P-values10,

column 11 is the P-value that arises via the application of a chi-square test11, column

12 is the proportion of binary sequences that passed, and the 13th column is the

corresponding statistical test [6]. As shown in table 4.1 below.

Table 4.1: Output NIST Test of the DGSCR128.
-

R E S U L T S F O R T H E U N I F O R M I T Y O F P - V A L U E S A N D T H E P R O P O R T I O N O F P A S S I N G S E Q U E N C E S
-

g e n e r a t o r i s < d a t a / D y n a m i c T a p s _ G r a i n _ r e g u l a r 1 2 8 . t x t >
-

C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 1 0 P - V A L U E P R O P O R T I O N S T A T I S T I C A L T E S T
-
1 1 8 1 3 9 1 5 4 7 1 2 1 1 1 0 0 . 4 3 7 2 7 4 1 0 0 / 1 0 0 B l o c k F r e q u e n c y
 8 1 7 9 6 1 0 9 9 1 1 1 0 1 1 0 . 5 9 5 5 4 9 9 9 / 1 0 0 C u m u l a t i v e S u m s
1 5 6 9 1 2 8 7 1 0 1 2 8 1 3 0 . 5 7 4 9 0 3 1 0 0 / 1 0 0 C u m u l a t i v e S u m s
1 1 8 8 1 6 4 1 1 1 1 9 1 0 1 2 0 . 4 5 5 9 3 7 9 8 / 1 0 0 R u n s
1 2 8 1 0 1 3 1 0 1 0 1 1 9 5 1 2 0 . 8 5 1 3 8 3 1 0 0 / 1 0 0 L o n g e s t R u n
 7 1 2 4 7 1 7 1 0 7 1 4 8 1 4 0 . 0 8 5 5 8 7 9 8 / 1 0 0 R a n k
1 7 8 1 2 1 7 8 5 9 9 6 9 0 . 0 8 0 5 1 9 9 7 / 1 0 0 F F T
1 2 6 8 9 9 7 1 0 1 4 1 5 1 0 0 . 5 7 4 9 0 3 9 8 / 1 0 0 N o n O v e r l a p p i n g T e m p l a t e
1 0 1 4 1 0 1 0 9 1 1 1 2 1 1 6 7 0 . 8 5 1 3 8 3 1 0 0 / 1 0 0 N o n O v e r l a p p i n g T e m p l a t e
1 2 1 1 1 1 1 2 3 1 0 1 2 7 1 2 1 0 0 . 5 7 4 9 0 3 9 8 / 1 0 0 N o n O v e r l a p p i n g T e m p l a t e
1 0 1 3 6 1 4 1 0 8 1 2 7 6 1 4 0 . 4 3 7 2 7 4 9 8 / 1 0 0 O v e r l a p p i n g T e m p l a t e
 8 7 1 6 9 1 1 1 1 7 1 0 1 2 9 0 . 6 7 8 6 8 6 9 8 / 1 0 0 U n i v e r s a l
 5 1 0 7 1 3 1 1 1 8 1 0 2 9 1 5 0 . 0 1 9 1 8 8 9 9 / 1 0 0 A p p r o x i m a t e E n t r o p y
 3 2 6 7 8 5 7 6 2 8 0 . 3 5 0 4 8 5 5 4 / 5 4 R a n d o m E x c u r s i o n s
 5 4 9 5 4 7 8 3 4 5 0 . 6 1 6 3 0 5 5 4 / 5 4 R a n d o m E x c u r s i o n s
 6 4 6 4 4 7 3 8 7 5 0 . 8 1 6 5 3 7 5 3 / 5 4 R a n d o m E x c u r s i o n s
 6 1 1 5 1 0 1 0 1 1 1 2 1 2 1 3 1 0 0 . 7 3 9 9 1 8 9 9 / 1 0 0 S e r i a l
1 0 5 2 0 5 1 0 8 1 0 1 3 1 1 8 0 . 0 5 1 9 4 2 9 9 / 1 0 0 S e r i a l
 9 1 4 5 1 1 1 3 8 1 0 1 0 1 1 9 0 . 7 5 9 7 5 6 9 8 / 1 0 0 L i n e a r C o m p l e x i t y

-

T h e m i n i m u m p a s s r a t e f o r e a c h s t a t i s t i ca l t e s t w i t h t he e x c e p t i o n o f t h e
r a n d o m e x c u r s i o n (v a r i a n t) t e s t i s a p p r o x i m a t e l y = 9 6 f o r a
s a m p l e s i z e = 1 0 0 b i n a r y s e q u e n c e s .

T h e m i n i m u m p a s s r a t e f o r t h e r a n d o m e x c u r s i o n (v a r i a n t) t e s t
i s a p p r o x i m a t e l y = 5 1 f o r a s a m p l e s i z e = 5 4 b i n a r y s e q u e n c e s .

F o r f u r t h e r g u i d e l i n e s c o n s t r u c t a p r o b a b i l i t y t a b l e u s in g t h e M A P L E p r o g r a m
p r o v i d e d i n t h e a d d e n d u m s e c t i o n o f t h e d o c u m e n t a t i on .
-

37

The p-values reported in tables, and the average is calculated for test results of the non-

overlapping-templates, random-excursions and random-excursions variant, which are

decomposable into a variety of subtests. Table 4.2 shows the results of the NIST test

suite for the DGSC with regular changing of taps every 128 bits of keystream (n=128).

It can be observed from the results that the DGSCR passes all the tests as the p-value for

all tests are greater than 0.01.

Table 4.2: NIST Test Results of the DGSCR128.

Statistical test P-value Result

1 Frequency 0.678686 Pass

2 Block-frequency 0.437274 Pass

3
Cumulative-sums(forward) 0.595549 Pass

Cumulative-sums(reverse) 0.574903 Pass

4 Runs 0.455937 Pass

5 Longest-runs of ones 0.851383 Pass

6 Rank 0.085587 Pass

7 DFT (Spectral) 0.080519 Pass

8 Non-overlapping-template 0.526587 Pass

9 Overlapping-templates 0.437274 Pass

10 Universal 0.678686 Pass

11 Approximate entropy 0.019188 Pass

12 Random-excursions 0.589688 Pass

13 Random-excursions variant 0.363008 Pass

14
Serial1 0.739918 Pass

Serial2 0.051942 Pass

15 Linear complexity 0.759756 Pass

38

Figure 4.1: NIST Test Results of the DGSCR128.

Figure 4.1 shows the NIST test analysis of the randomness of the proposed cipher. The

horizontal line represents the passing rate, which is 0.01; the value 1 represents perfect

randomness. In Figure 4.1, it is worth noting that all 15 statistical tests exceeded the

passing rate.

Table 4.3: NIST Test Results of the DGSCR256.

-0.1

0.1

0.3

0.5

0.7

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
-v

al
u

e

Test ID

P-value

p-value α

Statistical test P-value Result

1 Frequency 0.145326 Pass

2 Block-frequency 0.616305 Pass

3
Cumulative-sums(forward) 0.048716 Pass

Cumulative-sums(reverse) 0.224821 Pass

4 Runs 0.657933 Pass

5 Longest-runs of ones 0.494392 Pass

6 Rank 0.181557 Pass

7 DFT (Spectral) 0.637119 Pass

8 Non-overlapping-template 0.454613 Pass

9 Overlapping-templates 0.075719 Pass

10 Universal 0.366918 Pass

11 Approximate entropy 0.834308 Pass

12 Random-excursions 0.4089375 Pass

13 Random-excursions variant 0.517047 Pass

14
Serial1 0.911413 Pass

Serial2 0.383827 Pass

15 Linear complexity 0.366918 Pass

39

Another experiment is conducted in order to find a suitable adjustment for the number

of bits after which the taps are changed. In this experiment, the taps are changed every

256 bits. Table 4.3 and figure 4.2 shows the results of the NIST test suite for the DGSC

with regular changing of taps after 256 bits of keystream (n=256) are generated.

It can be observed from the results that the DGSC with regular changing of taps every

256 bits of keystream passes all the tests because the p-values for all tests are greater

than 0.01.

Figure 4.2: NIST Test Results of the DGSCR256.

In the second experiment, the taps are changed irregularly when there is matching

between the outputs bit of LFSR and NLFSR for 50, 100, 128, and 256 times. Table 4.4

shows the results of the NIST test suite for 50 matching (m=50).

Table 4.4 and Figure 4.3 show the results of the NIST test suite for 50 matching

(m=50).

-0.1

0.1

0.3

0.5

0.7

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
-v

al
u

e

Test ID

P-value

p-value α

40

Table 4.4: NIST Test Results of the DGSCI50.

Figure 4.3: NIST Test Results of the DGSCI50.

-0.1

0.1

0.3

0.5

0.7

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
-v

al
u

e

Test ID

P-value

p-value α

Statistical test P-value Result

1 Frequency 0.798139 Pass

2 Block-frequency 0.350485 Pass

3
Cumulative-sums(forward) 0.534146 Pass

Cumulative-sums(reverse) 0.955835 Pass

4 Runs 0.719747 Pass

5 Longest-runs of ones 0.657933 Pass

6 Rank 0.987896 Pass

7 DFT (Spectral) 0.55442 Pass

8 Non-overlapping-template 0.552449 Pass

9 Overlapping-templates 0.779188 Pass

10 Universal 0.035174 Pass

11 Approximate entropy 0.23681 Pass

12 Random-excursions 0.33767225 Pass

13 Random-excursions variant 0.365456 Pass

14
Serial1 0.637119 Pass

Serial2 0.224821 Pass

15 Linear complexity 0.437274 Pass

41

Table 4.5 and Figure 4.4 show the results of the NIST test suite for 100 matching

(m=100).

Table 4.5: NIST Test Results of DGSCI100.

Statistical test P-value Result

1 Frequency 0.455937 Pass

2 Block-frequency 0.191687 Pass

3
Cumulative-sums(forward) 0.213309 Pass

Cumulative-sums(reverse) 0.181557 Pass

4 Runs 0.191687 Pass

5 Longest-runs of ones 0.383827 Pass

6 Rank 0.224821 Pass

7 DFT (Spectral) 0.798139 Pass

8 Non-overlapping-template 0.493655 Pass

9 Overlapping-templates 0.595549 Pass

10 Universal 0.304126 Pass

11 Approximate entropy 0.678686 Pass

12 Random-excursions 0.427572 Pass

13 Random-excursions variant 0.435763 Pass

14
Serial1 0.015598 Pass

Serial2 0.181557 Pass

15 Linear complexity 0.202268 Pass

Figure 4.4: NIST Test Results of the DGSCI100.

-0.1

0.1

0.3

0.5

0.7

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
-v

al
u

e

Test ID

P-value

p-value α

42

Table 4.6 and Figure 4.5 show the results of the NIST test suite for 128 matching

(m=128).

Table 4.6: NIST Test Results of the DGSCI128.

Figure 4.5: NIST Test Results of DGSCI128.

Statistical test P-value Result

1 Frequency 0.637119 Pass

2 Block-frequency 0.181557 Pass

3
Cumulative-sums(forward) 0.897763 Pass

Cumulative-sums(reverse) 0.719747 Pass

4 Runs 0.171867 Pass

5 Longest-runs of ones 0.455937 Pass

6 Rank 0.798139 Pass

7 DFT (Spectral) 0.224821 Pass

8 Non-overlapping-template 0.488985 Pass

9 Overlapping-templates 0.897763 Pass

10 Universal 0.971699 Pass

11 Approximate entropy 0.574903 Pass

12 Random-excursions 0.293469 Pass

13 Random-excursions variant 0.322444 Pass

14
Serial1 0.911413 Pass

Serial2 0.334538 Pass

15 Linear complexity 0.851383 Pass

-0.1

0.1

0.3

0.5

0.7

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
-v

al
u

e

Test ID

P-value

p-value α

43

Table 4.7 and Figure 4.6 show the results of the NIST test suite for 256 matching

(m=256).

Table 4.7: NIST Test Results of the DGSCI256.

Statistical test P-value Result

1 Frequency 0.213309 Pass

2 Block-frequency 0.719747 Pass

3
Cumulative-sums(forward) 0.350485 Pass

Cumulative-sums(reverse) 0.657933 Pass

4 Runs 0.350485 Pass

5 Longest-runs of ones 0.102526 Pass

6 Rank 0.085587 Pass

7 DFT (Spectral) 0.213309 Pass

8 Non-overlapping-template 0.487295 Pass

9 Overlapping-templates 0.834308 Pass

10 Universal 0.816537 Pass

11 Approximate entropy 0.759756 Pass

12 Random-excursions 0.375971 Pass

13 Random-excursions variant 0.242827 Pass

14
Serial1 0.514124 Pass

Serial2 0.455937 Pass

15 Linear complexity 0.678686 Pass

Figure 4.6: NIST Test Results of the DGSC256.

-0.1

0.1

0.3

0.5

0.7

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
-v

al
u

e

Test ID

P-value

p-value α

44

All the NIST Test Results show that the proposed algorithms with dynamic switching

taps pass all the tests because the p-values for all tests are greater than 0.01.

4.4 PERFORMANCE OF THE PROPOSED ALGORITHM (DGSC)

The second important factor is the Performance. Grain and the proposed modified Grain

have been coded into C language to test their performance of them. Table 4.8 shows the

comparison between Grain and the modified algorithms in the perspective of

performance. The under consideration algorithms were tested on the same PC and same

environment. In this test, the performance is done by measuring the number of

generated keystream bits versus time.

Table 4.8: Speed comparison between Grain and the DGSC.

No Algorithm

Performance in

Megabyte per

second(Mbps)

Taps changing condition

1 Grain 0.269459 ---

2 DGSCR128 0.269318 Every 128 bits.

3 DGSCR256 0.269418 Every 256 bits.

4 DGSCI128 0.266941

The output bit of the LFSR

matches the output bit of the

NFSR 128 times.

5 DGSCI256 0.267322

The output bit of the LFSR

matches the output bit of the

NFSR 256 times.

6 DGSCI50 0.264457

The output bit of the LFSR

matches the output bit of the

NFSR 50 times.

7 DGSCI100
0.265927

The output bit of the LFSR

matches the output bit of the

NFSR 100 times.

45

Figure 4.7: Speed comparisons between Grain and the DGSC.

From Figure 4.7, it is clear that there is no significant difference in speed between the

original Grain and the modified algorithms with regular changing of taps. However, the

speed decreases in the proposed algorithms with irregular changing of taps. This could

be due to the comparisions that are needed to find match between the output of the

LFSR and NLFSR. When the number of required maching is small, the times of

changing taps increases, therefore, the speed decreases. on the other hand, when the

number of required maching increases, the times of changing of taps decreases. Thus,

the speed increases.

Despite the fact that using irregular ways to change the feedback bits slows down the

algorithm, it is more secure than using regular ones, because these ways increase the

nonlinearity of the produced sequence.

4.5 COMPARISONS OF THE NIST TEST RESULTS

In the following tables, the best result in each row is highlighted. In these tables, results

that are close to 1 indicate better statistical properties. It is clear that the use of regular

and irregular tap switching increases the security level of Grain algorithm.

Table 4.9 shows the NIST results for DGSCR128 and DGSCR256.

0.261

0.262

0.263

0.264

0.265

0.266

0.267

0.268

0.269

0.27
Th

ro
u

gh
p

u
t(

M
b

p
s)

Performance Test

46

Table 4.9: The NIST results of DGSCR128 and DGSCR256.

Statistical test DGSCR128 DGSCR256

1 Frequency 0.678686 0.145326

2 Block-frequency 0.437274 0.616305

3
Cumulative-sums(forward) 0.595549 0.048716

Cumulative-sums(reverse) 0.574903 0.224821

4 Runs 0.455937 0.657933

5 Longest-runs of ones 0.851383 0.494392

6 Rank 0.085587 0.181557

7 DFT (Spectral) 0.080519 0.637119

8 Non-overlapping-template 0.526587 0.45461

9 Overlapping-templates 0.437274 0.075719

10 Universal 0.678686 0.366918

11 Approximate entropy 0.019188 0.834308

12 Random-excursions 0.589688 0.408937

13 Random-excursions variant 0.363008 0.517047

14
Serial1 0.739918 0.911413

Serial2 0.051942 0.383827

15 Linear complexity 0.759756 0.366918

It is obvious that DGSCR128 has the highest number of highlighted cells. Therefore,

DGSCR128 has better statistical properties than DGSCR256.

Table 4.10 shows the NIST results of DGSCI50, DGSCI100, DGSCI128, and

DGSCI256.

47

Table 4.10: The NIST results of DGSCI50, DGSCI100, DGSCI128, and DGSCI256.

Statistical test DGSCI50 DGSCI100 DGSCI128 DGSCI256

1 Frequency 0.798139 0.455937 0.637119 0.213309

2 Block-frequency 0.350485 0.191687 0.181557 0.719747

3
Cumulative-sums(forward) 0.534146 0.213309 0.897763 0.350485

Cumulative-sums(reverse) 0.955835 0.181557 0.719747 0.657933

4 Runs 0.719747 0.191687 0.171867 0.350485

5 Longest-runs of ones 0.657933 0.383827 0.455937 0.102526

6 Rank 0.987896 0.224821 0.798139 0.085587

7 DFT (Spectral) 0.55442 0.798139 0.224821 0.213309

8 Non-overlapping-template 0.552449 0.493655 0.488985 0.487295

9 Overlapping-templates 0.779188 0.595549 0.897763 0.834308

10 Universal 0.035174 0.304126 0.971699 0.816537

11 Approximate entropy 0.23681 0.678686 0.574903 0.759756

12 Random-excursions 0.33767 0.427572 0.293469 0.375971

13
Random-excursions

variant
0.365456 0.435763 0.322444 0.242827

14
Serial1 0.637119 0.015598 0.911413 0.514124

Serial2 0.224821 0.181557 0.334538 0.455937

15 Linear complexity 0.437274 0.202268 0.851383 0.678686

From Table 4.10, it can be seen that DGSCI50 and DGSCI128 have the highest

number of highlighted cells. Furthermore, the DGSCI128 is faster than DGSCI50.

Therefore, it can be concluded that the DGSCI128 attained the best result.

DGSCR128 and DGSCI128 are chosen to be compared with the original Grain in order

to conform that the modification improves the original algorithm. Table 4.11 shows

NIST results for Grain, DGSCR128, and DGSCI128.

48

Table 4.11: NIST results of Grain, DGSCR128, and DGSCI128.

Statistical test Grain DGSCR128 DGSCI128

1 Frequency 0.026948 0.678686 0.637119

2 Block-frequency 0.494392 0.437274 0.181557

3

Cumulative-

sums(forward)
0.55442 0.595549 0.897763

Cumulative-

sums(reverse)
0.12962 0.574903 0.719747

4 Runs 0.334538 0.455937 0.171867

5 Longest-runs of ones 0.779188 0.851383 0.455937

6 Rank 0.595549 0.085587 0.798139

7 DFT (Spectral) 0.037566 0.080519 0.224821

8
Non-overlapping-

template
0.517810 0.526587 0.488985

9 Overlapping-templates 0.153763 0.437274 0.897763

10 Universal 0.350485 0.678686 0.971699

11 Approximate entropy 0.066882 0.019188 0.574903

12 Random-excursions 0.256454 0.589688 0.293469

13
Random-excursions

variant
0.414677 0.363008 0.322444

14
Serial1 0.595549 0.739918 0.911413

Serial2 0.171867 0.051942 0.334538

15 Linear complexity 0.699313 0.759756 0.851383

In Table 4.11, the first observation is that the range of p-values (the difference

between the highest p-value and the lowest p-value in a test) is high in some tests. For

example, in the Overlapping-templates, original algorithm has the lowest p-value

(0.153763), while DGSCI128 has the highest p-value (0.897763). Therefore, the

range of p-values is 0. 744. This indicates that there is a significant gap in Overlapping-

templates between the compared algorithms. On the other hand, the p-values in some

tests of the compared algorithms are convergent.

The second observation is that using dynamic polynomial switching improves the

statistical properties of the keystream generated by Grain; and that can be seen from the

number of highlighted cells. In addition, the best results are obtained when DGSCI128

is used to generate the keystream. Graphical comparisons of the results are displayed in

Figures 4.8–4.22.

49

Figure 4.8: Frequency Test.

Figure 4.9: Block-Frequency Test.

Figure 4.10: Cumulative-sums Test

0

0.2

0.4

0.6

0.8

1

Grain DGSCR128 DGSCI128

P
-v

al
u

e

Frequency Test

0

0.2

0.4

0.6

0.8

1

Grain DGSCR128 DGSCI128

P
-v

al
u

e

Block-frequency Test

0

0.2

0.4

0.6

0.8

1

Grain DGSCR128 DGSCI128

P
-v

al
u

e

Cumulative-sumsTest

Cumulative-sums(forward) Cumulative-sums(reverse)

50

Figure 4.11: Runs Test.

Figure 4.12: Longest-runs of ones Test.

Figure 4.13: Rank Test.

0

0.2

0.4

0.6

0.8

1

Grain DGSCR128 DGSCI128

P
-v

al
u

e

Runs Test

0

0.2

0.4

0.6

0.8

1

Grain DGSCR128 DGSCI128

P
-v

al
u

e

Longest-runs of ones Test

0

0.2

0.4

0.6

0.8

1

Grain DGSCR128 DGSCI128

P
-v

al
u

e

Rank Test

51

Figure 4.14: Discrete Fourier Transform test.

Figure 4.15: Non-overlapping-template Test.

Figure 4.16: Overlapping-templates Test.

0

0.2

0.4

0.6

0.8

1

Grain DGSCR128 DGSCI128

P
-v

al
u

e

DFT (Spectral) Test

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Grain DGSCR128 DGSCI128

P
-v

al
u

e

Non-overlapping-template Test

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Grain DGSCR128 DGSCI128

P
-v

al
u

e

overlapping-templates Test

52

Figure 4.17: Universal Test.

Figure 4.18: Approximate Entropy Test.

Figure 4.19: Random-excursions Test.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Grain DGSCR128 DGSCI128

P
-v

al
u

e

Universal Test

0

0.2

0.4

0.6

0.8

1

Grain DGSCR128 DGSCI128

P
-v

al
u

e

Approximate entropy Test

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Grain DGSCR128 DGSCI128

P
-v

al
u

e

Random-excursions Test

53

Figure 4.20: Random-excursions Variant Test.

Figure 4.21: Serial Test.

Figure 4.22: Linear Complexity Test.

0

0.2

0.4

0.6

0.8

1

Grain DGSCR128 DGSCI128

P
-v

al
u

e

Random-excursions variant Test

0

0.2

0.4

0.6

0.8

1

Grain DGSCR128 DGSCI128

P
-v

al
u

e

Serial Test

Serial1 Serial2

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Grain DGSCR128 DGSCI128

P
-v

al
u

e

Linear complexity Test

54

Figure 4.23: comparison of NIST Test results

Figure 4.23 displayed the comparison of NIST Test results between Grain, DGCR128

and DGCI128. It is clear that the proposed algorithm have best results in the most tests

(thirteen from fifteen).

4.6 SUMMARY

This chapter presented the NIST Test Suite and its tests. NIST Test suite was used to

evaluate the randomness of several versions of the proposed algorithm. Security and

performance analysis were conducted in order to prove the level of security and the

efficiency of the proposed design with different strategies to change the taps. In

addition, the proposed algorithm was compared with the original algorithm; the results

indicated that the proposed algorithm outperforms the original cipher in several tests.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Test ID

P-value

Grain DGSCR128 DGSCI128

55

CHAPTER FIVE: CONCLUSIONS AND FUTURE WORK

5.1 INTRODUCTION

To promote the design of efficient and secure stream ciphers suitable for widespread

adoption, an effort must be made to investigate the security issues of stream ciphers in

current use. One important issue in stream cipher design is to investigate the

relationship between using dynamic polynomial switching and the security level. To

address this issue, extensive research on previous works was conducted. Then, a new

algorithm was proposed. In this chapter, the contribution of this research is presented

and discussed. Finally, possible future work is suggested at the end of this chapter.

5.2 CONCLUSIONS

The main goal of this chapter is to summarize the conclusions and highlight the

contributions of this research, which are detailed as follows:

1. This study proposed a new algorithm called DGSC which is based on Grain stream

cipher. It has been shown that the produced keystreams possess a high linear

complexity, and good statistical properties. These characteristics and properties

make DGSC suitable encryption system for stream cipher applications.

2. In the proposed algorithm, two ways (regular and irregular) are used for switching

the feedback polynomials of the LFSR. In the regular way, the taps are changed

every specific amount of time. Two options are used, which are changing the taps

every 128 bits and changing the taps every 256 bits. In the irregular way, changing

the taps happens when there is matching between the output of LFSR and NLFSR

for 50, 100, 128, and 256 times.

3. NIST test suite was used to evaluate the statistical properties of the keystream that

are generated by the proposed algorithm with several ways of changing the taps. In

addition, the proposed algorithm was compared with Grain stream cipher. The

results showed that the proposed algorithm outperforms the original Grain in many

tests.

4. A performance analysis of the proposed algorithm was carried out. Furthermore, a

comparison between the proposed algorithm and the original Grain was performed.

The results showed that there is no significant difference in speed between the

original Grain and the modified algorithm with regular changing of taps. However,

the speed of the proposed algorithm with irregular changing of taps decreases.

56

5. Despite the fact that using irregular ways to change the feedback bits slows down

the algorithm, it is more secure than using regular ones, because these ways

increase the nonlinearity of the produced sequence.

6. Overall, the DLFSR could be used instead of LFSR in stream ciphers design to

enhance the security of these ciphers. Using regular or irregular ways to change the

taps may depend on the need of specific industries. For instance, the mobile

industry can customize its stream ciphers to be light weight by using regular ways

for changing the taps; while banking and military industries can use irregular tap

switching to enhance the security level.

5.3 FUTURE WORK

As a future work, the proposed algorithm can be exposed to several attacks in order to

prove the security of this cipher. Moreover, a comparison between the proposed stream

cipher and several currently used stream ciphers might be conducted.

57

REFERENCES

[1] A. Eljadi, F. Mohamed, T. Al-Shaikhli, and I. Fakhri, "Dynamic linear feedback shift
registers: A review," in Information and Communication Technology for The Muslim
World (ICT4M), 2014 The 5th International Conference on, 2014, pp. 1-5.

[2] B. Schneier, Applied cryptography: protocols, algorithms, and source code in C: john
wiley & sons, 2007.

[3] M. Stamp, Information security: principles and practice: John Wiley & Sons, 2011.
[4] C. Cid, S. Kiyomoto, and J. Kurihara, "The rakaposhi stream cipher," in Information and

Communications Security, ed: Springer, 2009, pp. 32-46.
[5] C. Paar and J. Pelzl, Understanding cryptography: a textbook for students and

practitioners: Springer Science & Business Media, 2009.
[6] A. Rukhin, J. Soto, J. Nechvatal, E. Barker, S. Leigh, M. Levenson, et al., "Statistical test

suite for random and pseudorandom number generators for cryptographic
applications, NIST special publication," 2010.

[7] A. Peinado, J. Munilla, and A. Fúster-Sabater, "Improving the Period and Linear Span of
the Sequences Generated by DLFSRs," in International Joint Conference SOCO’14-
CISIS’14-ICEUTE’14, 2014, pp. 397-406.

[8] R. Stepien and J. Walczak, "Comparative analysis of pseudo random signals of the LFSR
and DLFSR generators," in Mixed Design of Integrated Circuits and Systems (MIXDES),
2013 Proceedings of the 20th International Conference, 2013, pp. 598-602.

[9] S. Kiyomoto, T. Tanaka, and K. Sakurai, "K2: A Stream Cipher Algorithm using Dynamic
Feedback Control," in SECRYPT, 2007, pp. 204-213.

[10] S. Khan, A. Khan, S. Khayal, T. Naz, S. Bashir, and F. Khan, "Dynamic feedback based
modified SNOW 2.0," in Emerging Technologies (ICET), 2010 6th International
Conference on, 2010, pp. 250-255.

[11] R. Mita, G. Palumbo, and M. Poli, "Pseudo-random sequence generators with
improved inviolability performance," IEE Proceedings-Circuits, Devices and Systems,
vol. 153, pp. 375-382, 2006.

[12] R. Mita, G. Palumbo, S. Pennisi, and M. Poli, "Pseudorandom bit generator based on
dynamic linear feedback topology," Electronics Letters, vol. 38, pp. 1097-1098, 2002.

[13] S. Babbage and M. Dodd, "The stream cipher MICKEY (version 1)," ECRYPT Stream
Cipher Project Report, vol. 15, p. 2005, 2005.

[14] D. Horan and R. Guinee, "A novel keystream generator using pseudo random binary
sequences for cryptographic applications," 2006.

[15] M. Hell, T. Johansson, and W. Meier, "Grain: a stream cipher for constrained
environments," International Journal of Wireless and Mobile Computing, vol. 2, pp. 86-
93, 2007.

[16] C. Berbain, H. Gilbert, and A. Maximov, "Cryptanalysis of grain," in Fast Software
Encryption, 2006, pp. 15-29.

[17] M. Robshaw and O. Billet, New stream cipher designs: the eSTREAM finalists vol. 4986:
Springer, 2008.

[18] A. Molina-Rueda, F. Uceda-Ponga, and C. F. Uribe, "Extended period LFSR using
variable TAP function," in Electronics, Communications and Computers, 2008.
CONIELECOMP 2008, 18th International Conference on, 2008, pp. 129-132.

[19] L. Blum, M. Blum, and M. Shub, "A simple unpredictable pseudo-random number
generator," SIAM Journal on computing, vol. 15, pp. 364-383, 1986.

[20] N. Bajaj, "Enhancement of A5/1: Using variable feedback polynomials of LFSR," in
Emerging Trends in Networks and Computer Communications (ETNCC), 2011
International Conference on, 2011, pp. 55-60.

58

[21] B. Colbert, A. H. Dekker, and L. M. Batten, "Heraclitus: A LFSR-based stream cipher
with key dependent structure," in Communications and Signal Processing (ICCSP), 2011
International Conference on, 2011, pp. 141-145.

[22] I. F. Al-shaikhli, M. A. Alahmad, and K. Munthir, "Hash Function of Finalist SHA-3:
Analysis Study," Information Technology (IJACSIT), vol. 2, 2013.

[23] J. Melià-Seguí, J. Garcia-Alfaro, and J. Herrera-Joancomartí, "J3Gen: A PRNG for low-
cost passive RFID," Sensors, vol. 13, pp. 3816-3830, 2013.

[24] T. Good and M. Benaissa, "Hardware performance of eStream phase-III stream cipher
candidates," in Proc. of Workshop on the State of the Art of Stream Ciphers (SACS’08),
2008.

[25] M. J. Mihaljevic, S. Gangopadhyay, G. Paul, and H. Imai, "Internal state recovery of
Grain-v1 employing normality order of the filter function," Information Security, IET,
vol. 6, pp. 55-64, 2012.

[26] C. De Cannière, Ö. Kücük, and B. Preneel, "Analysis of Grain’s initialization algorithm,"
in Progress in Cryptology–AFRICACRYPT 2008, ed: Springer, 2008, pp. 276-289.

[27] S. Banik, S. Maitra, and S. Sarkar, "A differential fault attack on grain-128a using
MACs," in Security, Privacy, and Applied Cryptography Engineering, ed: Springer, 2012,
pp. 111-125.

[28] L. Ding and J. Guan, "Related Key Chosen IV Attack on Grain-128a Stream Cipher,"
Information Forensics and Security, IEEE Transactions on, vol. 8, pp. 803-809, 2013.

[29] M. Hell, T. Johansson, A. Maximov, and W. Meier, "The Grain family of stream
ciphers," in New Stream Cipher Designs, ed: Springer, 2008, pp. 179-190.

