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ABSTRACT 

Stream ciphers are commonly used to provide confidentiality for a wide range of 

frame based applications such as mobile devices or embedded systems. For these 

applications, stream ciphers are preferred for encryption due to the simplicity of their 

implementation, efficiency and high throughput. However, practical attacks have been 

discovered on well-known stream ciphers. Many stream ciphers are designed to resist 

these attacks. The majority of these ciphers have a fixed structure, which is an 

advantage that their security against the known attacks can be proved. However, the 

fixed building structure of these ciphers also provides opportunities for potential new 

attacks. There have been a few approaches that have tried to add dynamicity to the 

structure of these ciphers to improve their security level. The idea behind this is that 

when the structures of ciphers are unknown to attackers, they are more resistant to 

attacks. However, these ciphers are not widely discussed among researchers. Moreover, 

the existing research concerning stream ciphers with dynamic structures has focused on 

dynamic polynomial switching in the Linear Feedback Shift Registers. 

This study proposes a modification to Grain128 stream cipher based on a 

dynamic feedback approach to increase the complexity of the cipher, consequently, 

improving its security level. In the proposed cipher, the dynamic parameters are the 

feedback polynomial and the polynomial switching method. A determined set of 

polynomials was used to change the feedback function, and two ways were used for 

switching the feedback polynomials of the LFSR: regular and irregular way. The 

randomness of the proposed cipher, which is called Dynamic Grain Stream Cipher 

(DGSC), was evaluated using the National Institute of Standards and Technology 

(NIST) suite; and those results were encouraging. Furthermore, the proposed algorithm 

was compared with the original algorithm and the results indicated that the modified 

algorithm outperforms the original cipher in several features. A performance analysis of 

the proposed algorithm was carried out. Furthermore, a comparison between the 

proposed algorithm and the original Grain was performed. The results showed that there 

is no significant difference in speed between the original Grain and the modified 

algorithm with regular changing of taps. However, the speed decreases in the proposed 

algorithm with irregular changing of taps. Using regular or irregular ways to change the 

taps may depend on the need of specific industries. 
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 المستخلص
عادة لتوفير السرية لمجموعة واسعة من التطبيقات مثل الأجهزة النقالة أو النظم  يستخدم التشفير التدفقي

لبساطة تنفيذه وكفاءته  المضمنة. في هذا النوع من التطبيقات يفضل استخدام التشفير التدفقي نظرا  
هذا النوع من التشفير فقد تم اكتشاف هجمات عملية على خوارزميات  أهميةبالرغم من و  وإنتاجيته العالية.

تشفير معروفة. بعد ذلك  تمّ تصميم العديد من خوارزميات التشفير لمقاومة هذه الهجمات. اغلب هذه 
روفة. ومع مقاومتها للهجمات المع إثبات إمكانيةالخوارزميات لديها بنية ثابتة، وذلك يعتبر ميزة من حيث 

ذلك، فإن استخدام بنية ثابتة لخوارزمية التشفير يتيح المجال لهجمات جديدة محتملة. هناك بعض 
ديناميكية لبنية هذه الخوارزميات لغرض تحسين مستوى أمنها. الفكرة من وراء  خواص ضافةلإالمحاولات 

بنية خوارزميات التشفير غير معروفة للمهاجمين، تكون أكثر قدرة على مقاومة تكون عندما  ،هيذلك 
ن إبين الباحثين. وعلاوة على ذلك، فهذا النوع من الخوارزميات لم يناقش على نطاق واسع و الهجمات. 

في نى الديناميكية معظم الأبحاث الحالية المتعلقة بخوارزميات التشفير التدفقي ركزت على استخدام الب  
 .يةخطالتغذية العكسية ال إزاحة مسجلات تبديل متعددة الحدود في

على منهج التغذية  استنادا   ((Grain128 خوارزمية التشفير التدفقيعلى تعديل أجري هذه الدراسة  في
المعاملات الديناميكية في وهذه  .تحسين مستوى الأمان رزمية وبالتالياة الديناميكية لزيادة تعقيد الخو العكسي

تم استخدام مجموعة محددة  حيثالخوارزمية المقترحة هي متعددة الحدود وطريقة تبديل متعددة الحدود. 
وغير مسبقا  من الدوال متعددة الحدود، أما بالنسبة لطريقة تبديل الدوال فقد تم استخدام طريقتين: منتظمة 

 (DGSC) الديناميكي التدفقي قرينتشفير لمقترحة والتي سميت م تقييم عشوائية الخوارزمية اوتمنتظمة. 
وكانت النتائج مشجعة. علاوة على ذلك، تمت مقارنة الخوارزمية  (NISTنيست ) باستخدام اختبار

الخوارزمية الأصلية في  أداءائج أن الخوارزمية المعدلة تفوق المقترحة مع الخوارزمية الأصلية وأظهرت النت
مقارنة أنه لا يوجد فرق الأظهرت نتائج  وتم إجراء تحليل أداء للخوارزمية المقترحة. كذلك . عدة نواحي

للبتات الداخلة في منتظم التغيير المعنوي في السرعة بين الخوارزمية الأصلية والخوارزمية المعدلة مع 
المقترحة مع  لخوارزمية. ومع ذلك، فإن السرعة تنخفض في اTaps)حساب معادلة التغذية العكسية )

البتات الداخلة في حساب  . استخدام طرق منتظمة أو غير منتظمة لتغييرلهذه البتات منتظمالغير التغيير 
 المحددة. )التطبيقات( عتمد على الحاجة حسب الصناعاتي معادلة التغذية العكسية
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CHAPTER ONE: INTRODUCTION 

1.1 INTRODUCTION 

In recent years, the Increasing use of the Internet and the growing exchange of digital 

information have led to the necessity of reinforcing security. Cryptography is one of the 

most commonly used techniques for maintaining security. It produces the methods for 

building most of the modern security protocols used to transmit information [1]. 

Cryptography is the art and science of keeping messages secure by hiding their 

meanings from unauthorized users [2]. It is one of two main branches of the term 

cryptology; the other branch is cryptanalysis, which is the science of recovering 

information without knowledge of the key. The key is secret information used to 

configure a cryptosystem for encryption and decryption. A cipher or a cryptosystem is 

used to encrypt data. The original data is known as plaintext, and the result of 

encryption is called ciphertext. And by decrypting the ciphertext, the original plaintext 

could be restored [3]. 

In cryptography, there are two basic techniques used for encrypting information: 

symmetric encryption (also called secret key encryption) and asymmetric encryption 

(also called public key encryption). In asymmetric encryption the encryption key and 

the decryption key are different. Since different keys are used, It is possible to make the 

encryption key public [2]. In symmetric encryption, the same key is used to encrypt and 

to decrypt data. This secret key is known to both ends before the transmission starts and 

it must be securely kept. In this research, the focuses on one type of the symmetric key 

cryptography known as stream ciphers. 

1.2 STREAM CIPHERS 

Symmetric algorithms can be divided into two categories: stream algorithms or stream 

ciphers that operate on the plaintext a single bit (or sometimes byte) at a time, and block 

algorithms or block ciphers that operate the plaintext in groups of bits. The groups of 

bits are called blocks [2]. 

Stream ciphers are very popular due to their many attractive features: they are 

generally fast, can typically be efficiently implemented in hardware, have no (or 

limited) error propagation, and are particularly suitable for use in environments where 
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no buffering is available and/or plaintext elements need to be processed individually. 

These are particularly important features in the telecommunications sector, and stream 

ciphers are ubiquitous in the field [4]. 

Stream ciphers encrypt bits individually. This is achieved by adding a bit from a 

key stream to a plaintext bit to get a ciphertext bit. It can be transformed back into its 

original form using the same key stream [5]. A key stream is a pseudo-random 

sequence; it can be generated using a Linear Feedback Shift Register (LFSR). LFSRs 

are simple, fast, and easy to implement for both software and hardware. They are 

capable of generating pseudo-random sequences with the same uniform statistical 

distribution of 0’s and 1’s in a truly random sequence. However, they are not 

cryptographically secure, because the construction of an LFSR of length n-bits can be 

easily deduced by observing 2n consecutive bits of its sequence using Berlekamp-

Massey algorithm. Due to its inherent linearity, LFSR-based stream ciphers are 

vulnerable to several forms of attacks, such as fast algebraic attack and correlation 

attack [1, 2]. 

1.3 LINEAR FEEDBACK SHIFT REGISTERS 

A feedback shift register consists of two parts: a shift register and a feedback function 

(see Fig. 1.1). The shift register is a sequence of bits. Its length is determined in bits; if it 

is n bits long, it is called n-bit shift register. All of the bits in the shift register are shifted 

one bit to the right each time a bit is needed. The new left-most bit is computed as a 

function of the other bits in the register. The feedback function is normally the XOR of 

selected bits in the register; the list of these bits is called a tap sequence. The output of 

the shift register is one bit, usually the least significant bit [2]. 

LFSRs are commonly used as part of key stream generators in stream ciphers. Certain 

criteria are considered for the parts of keystream generators. These criteria include 

nb 1-nb …. 4b 3b 2b 1b 

 

Feedback Function 

Output bit 

Figure 1.1: The general constructions of a linear feedback shift 

register. 
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period, linear complexity, and statistical measures of the keystreams.  

• Period 

The period of a shift register is the length of the output sequence before it starts 

repeating. If the feedback polynomial of the n-bit LFSR is primitive and its initial state is 

at a non-zero state, then the output sequence generated by this LFSR has the maximum 

period of 2n -1. This sequence is called the maximum-length sequence, or m-sequence. 

The m-sequences possess excellent randomness properties [1]. 

• Linear complexity 

One essential metric used to evaluate LFSR-based generators is linear complexity, or 

linear span. This is described as the length (n) of the shortest LFSR that can imitate the 

generator output. Linear complexity is very important, because a simple algorithm, 

called the Berlekamp-Massey algorithm, can generate this LFSR after investigating only 

2n bits of the keystream. Once this LFSR is generated, the stream cipher is broken. It is 

worth noting that a big linear complexity does not always indicate a secure generator. 

However, a small linear complexity does indicate an insecure one [2]. 

• Statistical measures 

Suitable metrics are required to examine the degree of randomness for binary 

sequences generated by random number generators. A number of statistical tests exist to 

determine the statistical behavior of the sequence. These tests usually check for random 

distribution, distribution of ones and zeroes in a sequence, linear dependence among 

fixed length substrings, the level of compression that can be carried out on tested 

sequence, and whether a sequence is complex enough to be considered random. Three 

well-known tests are used for this purpose, which are: the Federal Information 

Processing Standard tests (FIPS), Diehard suite, and National Institute of Standards and 

Technology  Statistical Test Suite (NIST) [6].  

1.4 INTRODUCING NONLINEARITY 

The output sequences of LFSR have a linear structure. Therefore, the immediate output 

of LFSR is unsuitable to be used as a keystream. In order to use LFSRs in the design of 

keystream generators, their linearity must be destroyed. To achieve that, different 

methods have been introduced [1], which include:   
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1.4.1 Combination Generators 

In this generator, the output of several LFSRs is combined by a Boolean function f to 

produce the keystream. To generate a secure and random keystream, the Boolean 

function has to satisfy certain criteria. Figure 1.2 illustrates the general construction of 

this generator. 

 

1.4.2 Filter Generators 

Filter generators only use a single LFSR. A Boolean function generates the keystream 

by filtering the contents of the LFSR. Figure 1.3 illustrates the general construction of 

this generator. 

 

 

1.4.3 Clock-Controlled Generators 

A Clock-controlled generator has at least one LFSR, which is clocked in an irregular 

manner by some other part of the cipher. 

In addition to the aforementioned methods, there is a method [7] based on 

dynamic polynomial switching in the Linear Feedback Shift Registers.  

Figure 1.2: The Combination generator 

LFSR 1 

LFSR 2 

LFSR n 

 

Key Stream 

f 

 

LFSR 

f 

Figure 1.3: The Filter generator 
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1.5 DYNAMIC LINEAR FEEDBACK SHIFT REGISTERS 

The Dynamic Linear Feedback shift register (DLFSR) is a LFSR where the feedback 

taps are changed in run time [7]. As shown in Fig. 1.4, the conceptual design of a 

DLFSR is constructed of a main LFSR and an additional unit that controls the moment 

of time when the feedback taps are modified. The purpose of this design is to produce 

longer sequences with higher linear complexity than those produced by the LFSR. For 

doing that, the control unit modifies several feedback parameters. Therefore, the main 

DLFSR component is the algorithm of switching the polynomial [8]. 

The dynamic feedback control mechanism converts the deterministic linear recurrence 

of some registers into a probabilistic recurrence. This effectively protects against several 

attacks. The attacker has to guess the inputs to the dynamic feedback control unit first to 

perform an attack. This guessing is very difficult due to the irregular modification. 

Therefore, irregular modification of the feedback function improves the security of the 

stream cipher [9, 10].  

1.6 PROBLEM STATEMENT 

An improvement in the security of stream cipher is achieved by introducing dynamic 

polynomial switching in the Linear Feedback Shift Registers.  

Several researches declared that this addition enhances the stream cipher's 

immunity to cryptanalysts. However, good inviolability and statistical properties of the 

Dynamic LFSR generator can be achieved when the parameters of the switching 

algorithm are correctly chosen.  

bn bn-1 …. b4 b3 b2 b1 

 

Feedback Function 

Output bit 

Feedback control unit 

Figure 1.4: The general construction of a 

DLFSR. 
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1.7 RESEARCH QUESTIONS 

• What are the recent approaches for applying the dynamic Linear Feedback Shift 

Register in stream cipher designs? 

•  Why using the dynamic Linear Feedback Shift Register in stream cipher 

enhances the security level of these ciphers? 

• How could we find a suitable adjustment for the parameters of switching 

algorithm of the dynamic Linear Feedback Shift Register? 

1.8 RESEARCH OBJECTIVES 

▪ To investigate the recent approaches for applying the dynamic Linear Feedback 

Shift Register in stream cipher designs.  

▪ To analyze the investigated approaches signs in order to study the relationship 

between the security level and using dynamic polynomial switching. 

▪ To find a suitable adjustment for the parameters of switching algorithm of the 

dynamic Linear Feedback Shift Register. 

1.9 RESEARCH SIGNIFICANCE 

This research aims to provide comprehensive information about recent approaches for 

applying dynamic polynomial switching in the Linear Feedback Shift Registers. Besides 

that, it provides a study of the relationship between the dynamic polynomial switching 

and the security level of the stream ciphers. That will assist in the enhancement process 

of stream ciphers. 

1.10 RESEARCH SCOPE 

In this research, the main focus is on one type of the symmetric key algorithms known 

as stream ciphers. 

1.11 RESEARCH METHODOLOGY 

• Reviewing and analysing several approaches that use the dynamic polynomial 

switching in the Linear Feedback Shift Registers in their designs. 

• Modifying Grain stream cipher in order to apply the idea of dynamic polynomial 

switching to it. 

• Evaluating modified Grain stream cipher using NIST test suit.   
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• Adjusting parameters of the modified Grain stream cipher until getting 

satisfying results. 

• Comparing the performance of modified Grain stream cipher with the original 

one. 

1.12 TERMINOLOGY  

The following terminology and notation will be used throughout this thesis: 

• Ciphertext: the result of an encryption algorithm on a plaintext.  For most 

stream ciphers, it is the combination of a plaintext and a keystream using the 

bitwise operation “XOR”. 

• Decryption algorithm: the inverse of the encryption algorithm. It is the 

procedure used to convert a ciphertext to a plaintext using a secret key and 

(optionally) an initialization vector. 

• Encryption algorithm: a mathematical procedure for performing encryption on a 

plaintext to convert it to a ciphertext using a secret key and (optionally) an 

initialization vector. 

• Initialization vector (IV): or frame number, publicly known information which 

is used with the secret key (master key) to generate the session key that is used 

in turn to generate the keystream. The IV serves as a randomizer and should take 

a new value for every encryption session. The stream cipher will produce 

different sequences of key stream material for each IV. 

• Keystream: the sequence of random or pseudorandom bits that are generated by 

a keystream generator using a secret key and (optionally) an IV.  

• Output function: the function that is used to generate the keystream. 

• Plaintext: also called clear text, is the massage to be encrypted, it can be a 

stream of bits, a text file, a bitmap, a stream of digitized voice, a digital video 

image, etc. [2]. Plaintext is the input to an encryption process, and the output of 

a decryption process. 

• Polynomial degree: is the length of the shift register [2]. 

• Primitive polynomials: a polynomial is primitive (irreducible) if it cannot be 

expressed as the product of two other polynomials [2]. 

• Randomness: the randomness concept is defined as an independent sequence of 

numbers which have a specific distribution and probability [11]. 

http://www.webopedia.com/TERM/E/encryption.html
http://www.businessdictionary.com/definition/call.html
http://www.businessdictionary.com/definition/process.html
http://www.businessdictionary.com/definition/output.html
http://www.businessdictionary.com/definition/decryption.html
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• Secret key:  the piece of information or parameter that is used to encrypt and 

decrypt messages in a symmetric cryptosystem. It is combined with a known IV 

to produce a session key. It is assumed that this input is known only to the 

sender and receiver. All the security of these algorithms depends primarily on 

the key and none is based on the details of the algorithm; this means that the 

algorithm must be published and analysed to ensure its perfection [2]. Another 

important issue, usually referred to as “key distribution problem”, since the 

system requires a different secure channel for distribution of the key between 

sender and receiver. 

• Seed: the initial value of the Linear Feedback Shift Register (LFSR). 

1.13 THESIS ORGANIZATION 

The organization of this thesis will be as follows: 

Chapter 1: This chapter has provided an introduction and background of the problem 

under investigation, it has outlined the problem statement, the research objectives, the 

research questions, and has stated the significance of the study. 

Chapter 2: This chapter is a literature review of recent approaches for applying the 

dynamic Linear Feedback Shift Register in stream cipher designs. 

Chapter 3: This chapter will represent the proposed algorithm for enhancement and 

applying the idea of dynamic polynomial switching on it. 

Chapter 4: This chapter includes the performance analysis and the security analysis of 

the modified stream cipher and comparing it with the original one.  

Chapter 5: This chapter will contain the conclusions and suggestions for future 

research. 

1.14 SUMMARY 

This chapter has presented and discussed the background of the study. It defined the 

linear feedback shift registers and explains why they are not cryptographically secure. In 

addition, the dynamic linear feedback shift register and its featureswere discussed. 

Additionally, the statement of the problem was discussed, as this study set to introduce 

a dynamic stream cipher that meets the standards of efficiency in terms of security, 

implementation, and speed. This chapter also presents the research questions, 

hypotheses and objectives. Finally, the research methodology of this study is 

mentioned. 
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CHAPTER TWO: LITERATURE REVIEW 

2.1 INTRODUCTION 

This chapter provides an overview of previous studies related to this research, focusing 

mainly on several currently used stream cipher algorithms.That use a dynamic 

polynomial switching in the Linear Feedback Shift Registers of their designs. 

2.2 CONSTRUCTION OF DLFSR 

In 2002, Mita et al [12] presented a pseudorandom sequence generator based on a 

DLFSR whose feedback taps are updated based on m bits decoder driven by an m order 

LFSR as shown in Fig. 2.1, Obviously when increasing m the period of the overall 

system increases, but the complexity of the circuit also increases. 

 

  

A simple example is presented, where the length of the shift register was equal 

to 16 bits (n=16) use a fifth-order LFSR (m=5) to implement the selector blocks. And to 

reduce the number of XOR gates inside the DCP (Dynamic Characteristic Polynomials) 

block, only five terms including xI6 and xo were chosen among the overall characteristic 

polynomials. To implement the DCP block a predefined set of primitive polynomials 

which represent the largest set of 16-order characteristic polynomials having four equal 

terms was used. 

The properties of the output sequence are studied and compared with the output 

of a conventional LFSR of similar size by using the Federal Information Processing 

Standard (FIPS) tests published by the National Institute of Standards and Technology 

Figure 2.1: Block diagram of proposed DLFSR.  
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(NIST). The results of the analysis indicate a big improvement in terms of security level 

for the introduced stream cipher. 

In [13], a stream cipher called Mickey was introduced by Babbage and Dodd 

which stands for Mutual Irregular Clocking keystream generator. As showing in fig 2.2 

it consists of two LFSRs of the same length (80 bit), one linear (R) and one non-linear 

(S), each of which is irregularly clocked under control of the other. Mickey takes two 

input parameters, an 80-bit secret key K and an Initialization Variable IV, anywhere 

between 0 and 80 bits in length. The cipher specification states that each key can be 

used with up to 240 different IVs of the same length, and that 240 keystream bits can be 

generated from each key/IV pair. 

 

 

MICKEY uses a very simple output function (s0⊕ r0) to compute keystream bits 

from the register states. Ciphertext is produced from plaintext by bitwise XOR with 

keystream bits, as in most stream ciphers. 

The clock control bits chosen for each register to be derived from both registers, 

in such a way that knowledge of either register state is not sufficient to tell the attacker 

how either register will subsequently be clocked. This helps to guard against “guess and 

determine” or “divide and conquer” attacks. 

In 2006, a pseudo-random bit generator was proposed based on dynamically 

changing the primitive polynomial of a LFSR to convert it to DLFSR, The architecture 

of the dynamic linear feedback shift register (DLFSR) stream cipher is shown in Fig. 

2.3 where the block called dynamic characteristic polynomials (DCP) includes the 

logical circuit that dynamically switches among several feedback networks. The 

Figure 2.2: the Structure of MICKEY. 



11 
 

primitive polynomial of LFSR controlled by decoder a circuit and a counter that divides 

the operation time of each polynomial. A specific set of taps are used to change the 

feedback polynomials.  

 

 

 

The statistical properties of the proposed and the classical LFSRs are tested 

using ‘Statistical Random Number Generator Tests’ of FIPS. The results show that both 

generators have similar randomness and statistical properties. In addition, a 

methodology, based on a multi perception neural network is used. The results show that 

the proposed generator has an excellent inviolability property (the attribute of being 

secured against violation) [11]. 

In the same year, Horant and Guinee [14] introduced a stream cipher 

construction that is based on the A5/1 cipher which employs clock-control with 

majority voting. The proposed generator structure consists of five LFSRs that are 

connected to a Dynamic Feedback Polynomial (DFP) switching block. The DFP block 

contains the logical switching circuit required for implementing different feedback 

polynomial networks. Each register is configured with any one of the set of five 

feedback polynomials at any given time. Each LFSR has a clocking tap that controls its 

clock and polynomial switching time. At each step the five clocking taps are put to a 

logic majority vote and three, four or five registers are simultaneously clocked. When a 

LFSR is unclocked, its taps are changed. Each register has a set of five feedback 

polynomials that are used to change its taps. The resultant keystream sequence is given 

by the exclusive or (XOR) combination of the final stage of each LFSR. 

Figure 2.3: Block diagram of a generic DLFSR cipher. 
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The results indicate that the proposed generator has excellent statistical properties via 

both the NIST and Diehard test suites.  

In 2007, Kiyomoto et al [9] introduced the stream cipher K2v2.0  which is word 

oriented stream cipher using feedback control. It relies on two feedback shift registers 

(FSRs) FSR-A and FSR-B, a non-linear function and a dynamic feedback controller. 

FSR-B is a dynamic feedback shift registers. The feedback polynomial of the main 

LFSR is controlled by two bits of the secondary LFSR state. Therefore, four 

polynomials are selected to change the taps. 

Figure 2.4: Generator Construction. 
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The NIST test suite is used to evaluate the statistical properties of the generated 

sequence and the results confirmed that these properties are good. 

In 2007, Hell et al. [15] introduced Grain stream cipher. The first version used 

an 80-bit key and a 64-bit initialization vector; but analysis during the early stages of 

the eSTREAM effort compromised its security [16]. After that, the Grain v1 was 

presented. It described two stream ciphers that supported 80-bit keys with 64-bit 

initialization vector, and 128-bit keys with 80-bit initialization vector. Due to the 

cryptanalysis of the 128-bit version of Grain v1, a new cipher called Grain-128a  is 

presented [17].  

Grain stream cipher is static in nature, i.e. it does not have any dynamic 

properties. So, it has been targeted by this study for modification and improvement. The 

Figure 2.5: K v2.0 stream cipher. 

..introduced 
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modification is based on a dynamic feedback shift register. This approach will be 

explained in more details in Chapter Three. 

In 2008, a DLFSR construction, which had an algorithm to generate irreducible 

polynomials, was introduced by Molina-Rueda et.al.[18]. A number of irreducible 

polynomials are generated in the initialization stage by Blum Blum Shub generator [19]. 

Then, the generated polynomials are scrambled in a pseudorandom way in order to 

increase the unpredictability, so even if the current tap is broken the attacker will not 

know which will be the next tap. After this, a 127 bit LFSR is used, with an 

initialization vector based on the key provided by the user. When the 2127−1 bits of the 

output sequence are depleted the connection polynomial is reset with another one of 

those generated in the initialization stage, and a different sequence is obtained. Each 

time the polynomials are depleted, they will be chosen again but in a different order, 

this will increase the period and is still statistically secure. 

 

 

This LFSR was created with the objective of using it as a replacement of the 

ordinary LFSR in secure generators, increasing the global security of a stream cipher. 

The proposed generator is implemented in software as a test of the viability. The 

average speed of this generator after the setup phase is 100 bit/sec. 

The Rakaposhi stream cipher was presented in 2009 by Cid et al [4]. Its main 

component is the bit-oriented dynamic linear feedback shift register. It consists of a 

128-bit Non-Linear Feedback Shift Register and a 192-bit Linear Feedback Shift 

Register, denoted as registers A and B, respectively. The cipher uses two bits from the 

state of the NLFSR to select, and dynamically modify four (linear) feedback function of 

Figure 2.6: Simplified Architecture Diagram. 
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the LFSR. The cipher keystream is produced by combining the output of both registers 

with the output of a non-linear Boolean function. This function takes six bits from the 

state of register B and two bits from the state of register A as input. 

In the initialization process, the secret key and IV are loaded into the registers 

and mixed. The secret key and IV are loaded into the NLFSR and DLFSR, respectively. 

The cipher then clocks 448 times with the output of the filter function being fed back 

into the cipher state. The cipher must be re-initialized (potentially by only modifying 

the IV) after at most 264 cycles. 

 

 

 

The NIST test Suite is used to evaluate this cipher. The results indicate that the 

statistical properties of the Rakaposhi output sequence are good. 

In 2010, a new version of stream cipher modified SNOW 2.0 based on dynamic 

feedback was introduced [10]. Dynamic feedback is determined using dynamic number 

generator function. The linearity in this version is converted into non linearity. In other 

words LFSR property is converted into NLFSR property. The design of modified 

SNOW 2.0 is divided into three steps; Main Operation of dynamic feedback based 

modified version of SNOW 2.0, Updating of Linear Feedback Shift Register (LFSR), 

and Updating of Finite State Machine (FSM). 

Figure 2.7: Rakaposhi Stream Cipher. 
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The analysis and experimental results show that the suggested technique has 

more resistance against Guess and Determine attacks and more affective for the 

encryption of plaintext. It is more secure and reliable for a secure communication as 

compared to static feedback based modified SNOW 2.0. 

 

 

 

In [20], Bajaj suggested using DLFSR instead of LFSR in the A5/1 stream 

cipher . Two modifications have been proposed in this cipher; one is in feedback tapping 

unit and other modification is in the clocking rule. The feedback unit is modified in two 

different ways; the first is Shuffling LFSRs by extending all LFSRs to 23 bit to shuffle 

these LFSR. This shuffling is done periodically but the state of LFSR will change 

randomly. The second way is Feedback polynomial unit; in this proposal four different 

feedback polynomials for each LFSR are selected. The feedback polynomials are chosen 

such that there would be only one tap that is different in all tap configurations of an 

LFSR. A LFSR changes its feedback polynomial after generating bits more than twice its 

length. The other modification is clocking unit, the clock controlled unit of conventional 

A5/1 works on majority rule. 

The proposed stream cipher passed all the NIST’s random tests. And the 

proposed scheme is robust to the cryptographic attacks compared to the conventional 

A5/1 stream cipher. 

 

Figure 2.8: Model of modified SNOW 2.0. 
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The Heraclitus stream cipher was proposed in 2011 by Colbert et al [21]. The 

authors used a key dependent structure, whose variable parameters are the number of 

registers, the length of registers, and the feedback polynomials of the registers, these 

variable parameters are selected using an index. A fixed set of irreducible polynomials 

(one for each register) and the hash function SHA512 [22] are used to generate the 

feedback polynomials. The variable parameters are changed every 264 frames of a 

session. The clocking mechanism used majority clocking based on a fixed bit positions 

in the LFSRs. 

The design of Heraclitus exploited the choices available in cipher design, such 

as the choice of irreducible polynomials or the choice a function which satisfies certain 

conditions. They also represent an increase in strength of the ciphers because: (a) each 

cipher generated is designed to satisfy particular criteria to ensure the strength of the 

cipher and (b) each cipher is expected to be only used once — therefore it is infeasible 

to determine any weakness, even if the cipher is known. 

 

Figure 2.9: Proposed modified A5/1. 
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In 2013, the J3Gen generator was presented by Melià-Seguí et al [23]. Its 

construction is based on a DLFSR, with a number of feedback polynomials selected by 

a round robin scheme. The feedback polynomial is changed after a given number of 

DLFSR cycles. The Polynomial Selector Module shifts its position towards a new 

configuration. The number of shifts, i.e., the corresponding selection of each primitive 

polynomial at a certain LFSR cycle, is determined by a true random bit obtained from a 

physical source of randomness provided by the TRNG module. The feedback 

polynomials are implemented as a wheel, which rotates depending on this bit value. If 

the truly random bit is a logical 0, the wheel rotates one position, that is, it selects the 

next feedback polynomial. Instead, if the truly random bit is a logical 1, then the wheel 

rotates two positions, that is, the polynomial selector jumps one feedback polynomial 

and selects the next one. 

The Decoding Logic is responsible for managing the internal PRNG clock of 

J3Gen. It activates and deactivates the PRNG modules for its proper performance. The 

authors introduced a hardware implementation of J3Gen, and evaluated it regarding 

nonlinearity of the design, different design parameters, and defining the key-

equivalence security. 

Figure 2.10: Each session key K is used for 264frames. 
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In [8] the authors presented the LFSR and DLFSR structures and their 

differences. LFSR generator is built from the shift register and the feedback loop, most 

often implemented as a multiple input XOR gate. The LFSR generator is a synchronous 

circuit and it requires clocking signal to work properly. The feedback loop is described 

by a polynomial, the general structure of the LFSR generator is shown in figure 2.12. 

The feedback loop is described by the polynomial, which exponents of the variable x 

are numbers of each shift register bits that are connected to the feedback loop. The 

LFSR structure does not change while operating. 

 

 

Another type of the pseudo random signal generator, based on a shift register, is 

the Dynamic Linear Feedback Shift Register generator. The basic structure of this 

generator is shown in figure 2.13.This generator is made from three basic functional 

Figure 2.11: Block diagram of J3Gen. 

Figure 2.12: the general LFSR generator. 
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Elements; the N bit shift register, the block that changes the feedback polynomial, and 

the feedback loop function made from multiple XOR gate. Algorithm of the polynomial 

change depends on its designer. This algorithm requires having some parameters to be 

strictly determined; moment of time, related to the clock signal that determines the 

feedback polynomial change, and set of the feedback polynomials that will be used by 

the feedback block. 

 

 

The authors used experimental methods to choose the parameters of DLFSR 

switching algorithm. They compared between the Diehard statistical tests results of the 

LFSR and DLFSR generators. This comparison confirmed that DLFSR pseudo random 

sequences have better statistical properties than the conventional ones and it passed all 

DIEHARD tests. 

In 2014, Peninado et al [7] presented a DLFSR model that consisted of two LFSR 

and a counter. The main LFSR is a regular LFSR of n cells with primitive feedback 

polynomials which are applied in a round robin scheme. The secondary LFSR is a 

clock-controlled primitive LFSR of m = log2n cells to control the feedback of the main 

LFSR. The state of this LFSR sets the initial value of a counter. When the counter 

downs to zero, then the secondary LFSR generates a new bit and the new state resets 

again the counter to a different value. The counter synchronizes the secondary LFSR 

with the feedback polynomial of the main LFSR. Each time the secondary LFSR 

generates a new bit, the feedback polynomial of the main LFSR is updated, in such a 

way that the number of consecutive bits generated by the corresponding polynomial is 

the decimal value of the state of the secondary LFSR. 

 

Figure 2.13: The DLFSR generator structure. 
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A comparative analysis of the proposed DLFSR design with other DLFSR designs is 

performed. The results indicate that the introduced design is better than others in certain 

aspects. 

2.3 A BRIEF SUMMARY OF THE PREVIOUS STUDIES ON DLFSRS 

This section shows a brief summary of the researcher’s contributions on dynamic linear 

feedback shift registers as well as the names of authors and year, the title of papers, and 

the main idea of each work which are presented below in Table (2.1). 

 

Figure 2.14: Diagram of the generic DLFSR-with-counter module. 
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Table 2.1: A brief description of the previous papers of DLFSR. 

# Authors Title Main idea 

1 

R. Mita, G. Palumbo, 

S. Pennisi, and M. 

Poli (2002) 

Pseudorandom bit generator 

based on dynamic linear 

feedback topology 

A pseudorandom sequence generator based on a DLFSR whose feedback 

taps are updated based on the state of a secondary LFSR. 

2 
Babbage and M. 

Dodd (2005) 

The stream cipher MICKEY 

(version 1) 

A stream cipher consists of two LFSRs of the same length connected in 

such a manner that both registers mutually control their corresponding 

feedbacks. 

3 
R. Mita, G. Palumbo, 

and M. Poli (2006) 

Pseudo-random sequence 

generators with improved 

inviolability performance 

A generator was proposed based on DLFSR that is controlled by a decoder 

circuit and a counter that divides the operation time of each polynomial 

4 
D. Horan and R. 

Guinee (2006) 

A novel keystream generator 

using pseudo random binary 

sequences for cryptographic 

applications 

A stream cipher whose DLFSRs’ construction is based on the A5/1 cipher 

majority voting function. 

5 

S. Kiyomoto, T. 

Tanaka, and K. 

Sakurai (2007) 

K2: A Stream Cipher 

Algorithm using Dynamic 

Feedback Control 

A Stream Cipher that relies on two LFSRs and a non-linear function. The 

feedback polynomial of the main LFSR is controlled by two bits of the 

secondary LFSR state. 

6 

A. Molina-Rueda, F. 

Uceda-Ponga, and C. 

F. Uribe (2008) 

Extended period LFSR using 

variable TAP function 

A DLFSR construction, which had an algorithm to generate irreducible 

polynomials. 

7 

C. Cid, S. Kiyomoto, 

and J. Kurihara 

(2009) 

The rakaposhi stream cipher 

A DLFSR construction that consists of a LFSR whose feedback 

polynomial is chosen among four different options controlled by two bits 

of Non-LFSR state. 
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# Authors Title Main idea 

8 

S. Khan, A. Khan, S. 

Khayal, T. Naz, S. 

Bashir, and F. Khan 

(2010) 

Dynamic feedback based 

modified SNOW 2.0 

A new version of stream cipher modified SNOW 2.0 based on dynamic 

feedback was introduced. 

9 N. Bajaj (2011) 

Enhancement of A5/1: Using 

variable feedback 

polynomials of LFSR 

Using DLFSR instead of LFSR in the A5/1 stream cipher. Each DLFSR 

has four different feedback polynomials, and it changes its feedback 

polynomial after it generates twice more bits than its length. 

10 

B. Colbert, A. H. 

Dekker, and L. M. 

Batten (2011) 

Heraclitus: A LFSR-based 

stream cipher with key 

dependent structure 

A stream cipher with key dependent structure, whose variable parameters 

are the number of registers, the length of registers, and the feedback 

polynomials of the registers. 

11 

J. Melià-Seguí, J. 

Garcia-Alfaro, and J. 

Herrera-Joancomartí 

(2013) 

J3Gen: A PRNG for low-cost 

passive RFID 

A generator construction that is based on a DLFSR, with a number of 

feedback polynomials selected by a round robin scheme. 

12 
R. Stepien and J. 

Walczak (2013) 

Comparative analysis of 

pseudo random signals of the 

LFSR and DLFSR 

generators 

The authors compared between the statistical tests results of the LFSR and 

DLFSR generators. This comparison confirmed that DLFSR pseudo 

random sequences have better statistical properties than the conventional 

ones. 

13 

A. Peinado, J. 

Munilla, and A. 

Fúster-Sabater (2014) 

Improving the Period and 

Linear Span of the 

Sequences Generated by 

DLFSRs 

A DLFSR model that consists of two LFSRs and a counter. The main 

LFSR polynomial is controlled by a counter, whose value depends on the 

internal state of the secondary LFSR. 
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2.4 SUMMARY 

This chapter represented a helpful insight to the previous work that have been done till 

now on DLFSR constructions and their polynomial switching algorithms to provide a 

clear understanding to the researchers who want to search in this area and participate in 

enhancing the security issues of communication. 
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CHAPTER THREE: THE PROPOSED ALGORITHM 

3.1 INTRODUCTION 

The eSTREAM project is a multi-year effort to create a portfolio of promising new 

stream ciphers, Funded by the ECRYPT Network of Excellence. The project started in 

2004 with a call for proposals from industry and academia. These proposals were 

designed to satisfy either a software-oriented or hardware-oriented profile. In total 34 

submissions are generated during the original call for proposal [17]. 

 The project was divided into three phases, the third phase completed in April 

2008 with the announcement of the candidates that had been selected for the final 

eSTREAM portfolio. The algorithms in Profile 1 (software-oriented algorithms) are 

suitable for software applications with high throughput requirements. The length of 

their keys is either 128 or 256 bits, and the initialization vector (IV) is required to be 64 

or 128 bits. This profile contains the following ciphers: HC-128, Rabbit, Salsa20/12, 

and SOSEMANUK. 

The algorithms in Profile 2 (hardware-oriented algorithms) are supposed to be 

efficient with regards to the physical resources required when implemented in hardware. 

These algorithms were required to support 80-bit keys, and can also support 128-bit 

keys. The initialization vector can be 32 or 64 bits. This profile contains the following 

ciphers: Grain, Mickey, and Trivium. 

Grain stream cipher was chosen to test the idea of dynamic polynomial 

switching, In order to examine the relationship between the dynamic polynomial 

switching and the security level. In this chapter, the original Grain algorithm and the 

proposed algorithm are explained in details.  

3.2 GRAIN STREAM CIPHER 

In 2007, Hell et al. [15] introduced Grain stream cipher. The first version used an 80-bit 

key and a 64-bit initialization vector; but analysis during the early stages of the 

eSTREAM effort compromised its security [16]. After that, the Grain v1 was presented. 

It described two stream ciphers that supported 80-bit keys with 64-bit initialization 

vector, and 128-bit keys with 80-bit initialization vector. The main building blocks of 

this cipher are two shift registers as shown in Figure (3.1), one with linear feedback 
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(LFSR) and the second with non-linear feedback (NFSR). The contents of the two shift 

registers represent the state of the cipher. From this state, 5 variables are chosen as input 

to a Boolean function that is selected to be balanced, correlation immune of the first 

order and have algebraic degree of 3. Due to the cryptanalysis of the 128-bit version of 

Grain v1, a new cipher called Grain-128a  is presented [17]. 

 

Figure 3.1: The Structure of Grain [15]. 

Grain has high speed, low gate count and low power consumption [24]. 

However,  there is some cost incurred during initialization and the impact of this will be 

determined by the intended application and the likely size of the messages being 

encrypted  [17].  Another weakness of Grain-v1 is that certain 18 bits of the internal 

state can be efficiently recovered based on the corresponding keystream segment and 

the assumption on certain 133 bits of the considered internal state [25]. Regarding 

security, there are some recently introduced attacks on Grain. 

 In 2008, De Canniere et al. [26] observed the existence of a sliding property in 

the initialization algorithm of the Grain family, and show that it can be used to decrease 

by half the cost of exhaustive key search. In 2012, Banik et al. [27] introduced a 

differential fault attack on the Grain 128a authenticated encryption scheme using certain 

properties of the Boolean function h used in the cipher design. In 2013, Ding and Guan 

proposed a related key chosen IV attack on Grain-128a based on some observations. 
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Their result showed that their attack is much better than an exhaustive key search in the 

related key setting [28].  

3.2.1 GRAIN-128’S OUTPUT AND STATE UPDATE FUNCTIONS 

Grain and Grain-128 ciphers follow the same design principle [29]. They include three 

essential building blocks, which are an NFSR, an LFSR and an output function. The 

contents of the two shift registers represent the state of the cipher and their sizes are |K| 

bits each, where K is the key. In the following, the content of the NFSR is denoted 

by𝐵𝑡 = 𝑏𝑡 + 𝑏𝑡+1, . . . , 𝑏𝑡+|𝐾|−1  and the content of the LFSR is denoted by 𝑆𝑡 = 𝑠𝑡 +

𝑠𝑡+1, . . . , 𝑠𝑡+|𝐾|−1 . The output function, denoted by 𝐻(𝐵𝑡, 𝑆𝑡) contains two parts. A 

nonlinear Boolean function h(x) and a set of linear terms combined with h(x). The 

output of 𝐻(𝐵𝑡, 𝑆𝑡) is the keystream bit 𝑧𝑡. Figure 3.2 shows a general overview of the 

design. 

 

 

Grain-128 supports a key size of |K| = 128 bits. The size of the IV is stated to be 

|IV| = 96 bits. The feedback polynomial of the LFSR, f(x) is a primitive polynomial of 

degree 128. It is defined as in Equ (3.1) 

𝑓(𝑥) = 1 + 𝑥32 + 𝑥47 + 𝑥58 + 𝑥90 + 𝑥121 + 𝑥128.  ................................................ (3.1) 

The corresponding update function of the LFSR defined as in Equ (3.2) 

Figure 3.2: Grain128 stream cipher [10]. 



28 
 

𝑆𝑡+128 = 𝑠𝑡 ⊕ 𝑠𝑡+7 ⊕ 𝑠𝑡+38 ⊕ 𝑠𝑡+70 ⊕ 𝑠𝑡+81 ⊕ 𝑠𝑡+96 .………………………… (3.2) 

g(x) is the nonlinear feedback polynomial of the NFSR. It is defined as in Equ (3.3) 

𝑔(𝑥) = 1 + 𝑥32 + 𝑥37 + 𝑥72 + 𝑥102 + 𝑥128 + 𝑥44𝑥60 + 𝑥61𝑥125 +  𝑥63𝑥67 +

𝑥69𝑥101 + 𝑥80𝑥88 + 𝑥110𝑥111 + 𝑥115𝑥117 ………………………………………... (3.3) 

In the corresponding update function of the NFSR below in Equ (3.4) observe 

that the bit St which is masked with the input to the NFSR is included, while ignored in 

the feedback polynomial. 

𝑏𝑡+128 = 𝑠𝑡 ⊕ 𝑏𝑡 ⊕ 𝑏𝑡+26 ⊕ 𝑏𝑡+56 ⊕ 𝑏𝑡+91 ⊕ 𝑏𝑡+96 ⊕ 𝑏𝑡+3𝑏𝑡+67 ⊕ 𝑏𝑡+11𝑏𝑡+13 ⊕

𝑏𝑡+17𝑏𝑡+18 ⊕ 𝑏𝑡+27𝑏𝑡+59 ⊕ 𝑏𝑡+40𝑏𝑡+48 ⊕ 𝑏𝑡+61𝑏𝑡+65 ⊕ 𝑏𝑡+68𝑏𝑡+84 …………… (3.4) 

In the cipher state, 9 variables are used as input to the Boolean function, h(x). 2 

inputs to h(x) are obtained from the NFSR and 7 are obtained from the LFSR. This 

function is of degree 3 and quite simple. It can be defined as in Equ (3.5) 

ℎ(𝑥) = ℎ(𝑥0, 𝑥1, … , 𝑥8) = 𝑥0𝑥1 ⊕ 𝑥2𝑥3 ⊕ 𝑥4𝑥5 ⊕ 𝑥6𝑥7 ⊕ 𝑥0𝑥4𝑥8....................... (3.5) 

 where the variables x0, x1, x2, x3, x4, x5, x6, x7 and x8 match the tap positions bt+12, St+8, 

St+13, St+20, bt+95, St+42, St+60, St+79 and St+95 respectively. 

The output function H(Bt, St) is described as in Equ (3.6) 

𝑧𝑡 = 𝐻(𝐵𝑡, 𝑆𝑡) =⊕𝑗∈𝐴 𝑏𝑡+𝑗 ⊕ ℎ(𝑥) ⊕ 𝑠𝑡+93, ……………………………….……. (3.6) 

𝑤ℎ𝑒𝑟𝑒 𝐴 = {2, 15, 36, 45, 64, 73, 89}. 

3.2.2 GRAIN-128 INITIALIZATION PROCESS 

The initialisation process is an essential process which is required to be carried out prior 

to keystream production gets started. Next, the keystream generators could be used to 

generate keystream sequences. With regard to security, the particular initialisation 

process should not expose any kind of information regarding the secret key and also is 

required to be protected to prevent, as a minimum, all the widely known common 

attacks. 
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In Grain-128’s initialization process [29], the loading phase is performed by 

loading the 128-bit secret key into the nonlinear feedback shift register. The 96 bits 

of IV are loaded into 96 bits of the linear feedback shift register (LFSR). The 

remaining bits of the LFSR are filled by ones. In the diffusion phase, the LFSR and 

NFSR registers are clocked 256 times before producing any keystream, and the 

output bit is XORed and fed back to the input of both the LFSR and NFSR. The 

general concept of Grain is illustrated in Figure 3.3. 

 

 

3.3 PROPOSED ALGORITHM ARCHITECTURE 

In the original algorithm the output sequences of LFSR have a linear structure. So, in 

order to overcome the linearity of the bits generated using LFSR, a dynamic Linear 

Feedback Shift Register is used instead of LFSR. The proposed algorithm is called 

Dynamic Grain Stream Cipher (DGSC).  

Figure 3.3: Overview of Grain128 key initialization [1] 
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The conceptual design of a DLFSR is constructed of a main LFSR and an 

additional unit that controls the moment of time where the feedback taps are modified. 

The purpose of this design is to produce longer sequences than those produced by the 

LFSR with higher linear complexity. To do that, the control unit modifies several 

feedback parameters. Therefore, the main DLFSR component is the algorithm of 

switching the polynomial [8], and the proposed modification is centered in this part. 

bn bn-1 …. b4 b3 b2 b1 

 

Feedback Function 

Output bit 

Feedback control unit 

Figure 3.5: The general construction of a 

DLFSR. 

 

Figure 3.4: The proposed algorithm. 
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3.3.1 THE PROPOSED POLYNOMIAL SWITCHING ALGORITHM 

The main DLFSR component is the algorithm of switching the polynomial [8]. It has two 

parameters: the set of feedback taps which will be used to change the feedback 

polynomials, and the method of changing these polynomials.      

3.3.1.1 Feedback polynomials  

In DLFSRs, determining the set of polynomials that will be used to change the feedback 

function is very important. While some approaches used a predefined set of primitive 

polynomials, others used algorithms to generate these polynomials.  

Predefined set of irreducible polynomials will be used in the proposed algorithm to 

switch the primitive polynomial of the LFSR. Five irreducible polynomials of degree 

128 are used with the original polynomial: 

F1(X) = X128 + X9 + X8 + X7 + X6 + X5 + X4 + X3…………………………………. (1) 

F2(X) = X128 + X8 + X6 + X5 + X4 + X …………………………………………….. (2) 

F3(X) = X128 + X8 + X6 + X5 + X4 + X2 ……………………………………………. (3) 

F4(X) = X128 + X10 + X9 + X7 + X3 + X2 …………………………………...……… (4) 

F5(X) = X128 + X7 + X2 + X ………………………………………………………... (5) 

3.3.1.2 Polynomial changing method  

Another important consideration is the way of switching the feedback polynomials. 

There are two methods that can be used to switch the taps; regular and irregular methods. 

If taps are changed in a regular manner, then polynomials are changed after a specific 

amount of time. But when irregular ways are used, the moment of change is not fixed 

and usually depends on the value of certain bits within the operated registers. 

Both methods (regular and irregular) will be used for switching the DGSC feedback 

polynomials. In the regular way, two options will be used to change the taps based on 

number of output bits: changing the taps every 128 bits or changing the taps every 256 

bits. In the irregular way, changing the taps will happen if the output bits of LFSR and 

NLFSR match for 50, 100, 128, 256 times.  Later a comparison will be done between 

these methods.  
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Table 3.1 illustrates the shortcuts that are used to represent different versions of the 

proposed algorithm (DGSC). 

Table 3.1: Abbreviation for the names of algorithms. 

No Algorithm Abbreviation 

1 Original Grain-128 Grain 

2 Grain-128 with regular changing of taps (n=128) DGSCR128 

3 Grain-128with regular changing of taps(n=256) DGSCR256 

4 Grain-128 with irregular changing of taps (m=128) DGSCI128 

5 Grain-128 with irregular changing of taps (m=256) DGSCI256 

6 Grain-128with irregular changing of taps (m=50) DGSCI50 

7 Grain-128with irregular changing of taps(m=100) DGSCI100 

 

3.4 SUMMARY 

This chapter presented the details of the original algorithm (Grain-128) and the 

proposed algorithm DGSC with detailed explanation of modification have made. The 

modification has been concentrated on replacing the LFSR with DLFSR. In addition, a 

new switching method for changing polynomial is introduced in order to find a suitable 

adjustment for the parameters of switching algorithm of the dynamic Linear Feedback 

Shift Register. 
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CHAPTER FOUR: EXPERIMENTAL RESULTS 

4.1 INTRODUCTION 

This chapter presents an evaluation of the proposed algorithm (DGSC). A 

performance and security analysis of the DGSC were conducted. Moreover, a 

comparison is performed between the proposed cipher and the original cipher in 

terms of statistical properties and performance. The NIST test suite is used to 

examine the statistical properties of the compared algorithms, and C code is used to 

measure their performance. 

4.2 NIST TEST SUITE 

The NIST Test Suite is a statistical package that includes 15 tests designed to 

evaluate the randomness of binary sequences generated by either hardware or 

software-based cryptographic random or pseudorandom number generators. These 

tests concentrate on a number of different types of non-randomness which could 

exist in a sequence. One of these tests is linear complexity test. This test is an 

essential metric that is used to evaluate the randomness of binary sequences. Some 

tests are split into a number of subtests.  

In the NIST tests, when a P-value for a test is determined to be equal to 1, 

then the sequence seems to have perfect randomness. A P-value of zero indicates 

that the sequence seems to be completely non-random. A significance level 

(a=0.01) is selected for the tests. If p-value is greater than or equal to 0.01, then the 

sequence seems to be random with a confidence of 99%. A P-value less than 0.01 

indicates that the sequence appears to be non-random with a confidence of 99% [6]. 

Each test is explained in more details below: 

• Frequency  (Monobit) 

This test computes the proportion of zeroes and ones for the whole sequence. The 

intent behind this test is to check if the number of ones and zeros in a sequence are 

almost the same as would be expected for a random sequence. 
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• Frequency Test within a Block 

This test computes the proportion of zeroes and ones within M-bit blocks. The 

intent behind this test is to check if the number of ones and zeros in an M-bit block 

is approximately M/2, as would be estimated for a random sequence. 

• Runs Test 

This test concentrates on determining the total number of runs in the sequence, 

where a run is a continuous sequence of identical bits. A run of length K contains K 

identical bits and is bounded before and after with a bit of the opposite value. The 

intent behind this test is to check if the number of runs of ones and zeros of several 

lengths is approximately the same as would be expected for a truly random 

sequence. 

• Test for the Longest Run of Ones in a Block 

This test computes the longest run of ones within M-bit blocks. It checks if the 

length of the longest run of ones within the tested sequence is consistent with the 

length of the longest run of ones which would be estimated for a truly random 

sequence. 

• Binary Matrix Rank 

This test computes the rank of disjoint sub-matrices of the entire sequence. It 

checks for linear dependence among fixed length substrings of the original 

sequence. 

• Discrete Fourier Transform (DFT) 

This test detects periodic features. It focuses on the peak heights in the discrete 

Fourier transform of the sequence. 

• Non-overlapping Template Matching 

This test detects generators that generate a lot of occurrences of a specified non-

periodic pattern. It focuses on the number of occurrences of pre-specified target 

strings. 

• Overlapping Template Matching 

This test focuses on the number of occurrences of pre-specified target strings. 
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• Maurer’s “Universal Statistical” 

This test detects whether or not the sequence can be significantly compressed 

without losing information. Therefore, this test computes the number of bits 

between matching patterns. The non-random sequence is a very compressible 

sequence. 

• Linear Complexity 

This test checks if the sequence is complex enough to be considered random. It is 

based on the Berlekamp-Massey algorithm that provides a way for measuring linear 

complexity. 

• Serial Test 

This test checks if the number of occurrences of the 2mm-bit overlapping patterns is 

roughly the same as would be estimated for a random sequence. Its focus is on the 

frequency of all possible overlapping m-bit patterns across the whole sequence. 

• Approximate Entropy 

This test compares the frequency of overlapping blocks of two adjacent lengths (m 

and m+1) with estimated result for a truly random sequence. It focuses on the 

frequency of all possible overlapping m-bit patterns across the whole sequence. 

• Cumulative Sums 

This test concentrates on determining the maximal excursion (from zero) of the 

random walk described by the cumulative sum of adjusted (-1, +1) digits in the 

sequence. 

• Random Excursions 

This test concentrates on determining the number of cycles having exactly K visits 

in a cumulative sum random walk. After the (0, 1) sequence is transferred to the 

appropriate (-1, +1) sequence, the cumulative sum random walk is produced from 

partial sums. 

• Random Excursions Variant 

This test discovers deviations from the estimated number of visits to various states 

in the random walk. It focuses on the total number of times a particular state is 

visited in a cumulative sum random walk [6]. 



36 
 

4.3 SECURITY ANALYSIS OF THE PROPOSED ALGORITHM (DGSC) 

Security analysis plays an essential role in the evaluation process of new ciphers. This 

section reports the results of the NIST test suite of the proposed algorithm. The results 

are obtained for 108 bits generated by the DGSC. The output logs of empirical results 

will be stored in two files, stats and results that correspond respectively to the 

computational information e.g., test statistics, intermediate parameters, and P-values for 

each statistical test applied to a data set. 

 A file final Analysis Report is generated when statistical testing is complete. The 

results are represented via a table with p rows and q columns.  The number of rows, p, 

corresponds to the number of statistical tests applied.  The number of columns, q = 13, 

are distributed as follows: columns 1-10 correspond to the frequency of P-values10, 

column 11 is the P-value that arises via the application of a chi-square test11, column 

12 is the proportion of binary sequences that passed, and the 13th column is the 

corresponding statistical test [6]. As shown in table 4.1 below.   

Table 4.1: Output NIST Test of the DGSCR128. 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

R E S U L T S  F O R  T H E  U N I F O R M I T Y  O F  P - V A L U E S  A N D  T H E  P R O P O R T I O N  O F  P A S S I N G S E Q U E N C E S  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

g e n e r a t o r  i s  < d a t a / D y n a m i c T a p s _ G r a i n _ r e g u l a r 1 2 8 . t x t >  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

C 1   C 2   C 3   C 4   C 5   C 6   C 7   C 8   C 9  C 1 0   P - V A L U E   P R O P O R T I O N   S T A T I S T I C A L  T E S T  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
1 1     8   1 3     9   1 5     4     7   1 2   1 1  1 0     0 . 4 3 7 2 7 4     1 0 0 / 1 0 0      B l o c k F r e q u e n c y  
  8   1 7     9     6   1 0     9     9   1 1   1 0  1 1     0 . 5 9 5 5 4 9       9 9 / 1 0 0      C u m u l a t i v e S u m s  
1 5     6     9   1 2     8     7   1 0   1 2    8   1 3     0 . 5 7 4 9 0 3     1 0 0 / 1 0 0      C u m u l a t i v e S u m s  
1 1     8     8   1 6     4   1 1   1 1     9   1 0  1 2     0 . 4 5 5 9 3 7       9 8 / 1 0 0      R u n s  
1 2     8   1 0   1 3   1 0   1 0   1 1     9     5  1 2     0 . 8 5 1 3 8 3     1 0 0 / 1 0 0      L o n g e s t R u n  
  7   1 2     4     7   1 7   1 0     7   1 4     8  1 4     0 . 0 8 5 5 8 7       9 8 / 1 0 0      R a n k  
1 7     8   1 2   1 7     8     5     9     9     6    9     0 . 0 8 0 5 1 9       9 7 / 1 0 0      F F T  
1 2     6     8     9     9     7   1 0   1 4   1 5  1 0     0 . 5 7 4 9 0 3       9 8 / 1 0 0      N o n O v e r l a p p i n g T e m p l a t e  
1 0   1 4   1 0   1 0     9   1 1   1 2   1 1     6     7    0 . 8 5 1 3 8 3     1 0 0 / 1 0 0      N o n O v e r l a p p i n g T e m p l a t e  
1 2   1 1   1 1   1 2     3   1 0   1 2     7   1 2  1 0     0 . 5 7 4 9 0 3       9 8 / 1 0 0      N o n O v e r l a p p i n g T e m p l a t e  
1 0   1 3     6   1 4   1 0     8   1 2     7     6  1 4     0 . 4 3 7 2 7 4       9 8 / 1 0 0      O v e r l a p p i n g T e m p l a t e  
  8     7   1 6     9   1 1   1 1     7    1 0  1 2    9     0 . 6 7 8 6 8 6       9 8 / 1 0 0      U n i v e r s a l  
  5   1 0     7   1 3   1 1   1 8   1 0      2    9  1 5     0 . 0 1 9 1 8 8       9 9 / 1 0 0      A p p r o x i m a t e E n t r o p y  
  3     2     6     7     8     5     7     6     2    8     0 . 3 5 0 4 8 5       5 4 / 5 4        R a n d o m E x c u r s i o n s  
  5     4     9     5     4     7     8     3     4    5     0 . 6 1 6 3 0 5       5 4 / 5 4        R a n d o m E x c u r s i o n s  
  6     4     6     4     4     7     3     8     7    5     0 . 8 1 6 5 3 7       5 3 / 5 4        R a n d o m E x c u r s i o n s  
  6   1 1     5   1 0   1 0   1 1   1 2   1 2   1 3  1 0     0 . 7 3 9 9 1 8       9 9 / 1 0 0      S e r i a l  
1 0     5   2 0     5   1 0     8   1 0   1 3   1 1    8     0 . 0 5 1 9 4 2       9 9 / 1 0 0      S e r i a l  
  9   1 4     5   1 1   1 3     8   1 0   1 0   1 1    9     0 . 7 5 9 7 5 6       9 8 / 1 0 0      L i n e a r C o m p l e x i t y  

-  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  

T h e  m i n i m u m  p a s s  r a t e  f o r  e a c h  s t a t i s t i ca l  t e s t  w i t h  t he  e x c e p t i o n  o f  t h e  
r a n d o m  e x c u r s i o n  ( v a r i a n t )  t e s t  i s  a p p r o x i m a t e l y  =  9 6  f o r  a  
s a m p l e  s i z e  =  1 0 0  b i n a r y  s e q u e n c e s .  
 

T h e  m i n i m u m  p a s s  r a t e  f o r  t h e  r a n d o m  e x c u r s i o n  ( v a r i a n t )  t e s t  
i s  a p p r o x i m a t e l y  =  5 1  f o r  a  s a m p l e  s i z e  =  5 4  b i n a r y  s e q u e n c e s .  
 

F o r  f u r t h e r  g u i d e l i n e s  c o n s t r u c t  a  p r o b a b i l i t y  t a b l e  u s in g  t h e  M A P L E  p r o g r a m  
p r o v i d e d  i n  t h e  a d d e n d u m  s e c t i o n  o f  t h e  d o c u m e n t a t i on .  
-  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -   
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The p-values reported in tables, and the average is calculated for test results of the non-

overlapping-templates, random-excursions and random-excursions variant, which are 

decomposable into a variety of subtests. Table 4.2 shows the results of the NIST test 

suite for the DGSC with regular changing of taps every 128 bits of keystream (n=128). 

It can be observed from the results that the DGSCR passes all the tests as the p-value for 

all tests are greater than 0.01. 

 

 

Table 4.2: NIST Test Results of the DGSCR128. 

# 
Statistical test P-value Result 

1 Frequency 0.678686 Pass 

2 Block-frequency 0.437274 Pass 

3 
Cumulative-sums(forward) 0.595549 Pass 

Cumulative-sums(reverse) 0.574903 Pass 

4 Runs 0.455937 Pass 

5 Longest-runs of ones 0.851383 Pass 

6 Rank 0.085587 Pass 

7 DFT (Spectral) 0.080519 Pass 

8 Non-overlapping-template 0.526587 Pass 

9 Overlapping-templates 0.437274 Pass 

10 Universal 0.678686 Pass 

11 Approximate entropy 0.019188 Pass 

12 Random-excursions 0.589688 Pass 

13 Random-excursions variant 0.363008 Pass 

14 
Serial1 0.739918 Pass 

Serial2 0.051942 Pass 

15 Linear complexity 0.759756 Pass 
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Figure 4.1: NIST Test Results of the DGSCR128. 

Figure 4.1 shows the NIST test analysis of the randomness of the proposed cipher. The 

horizontal line represents the passing rate, which is 0.01; the value 1 represents perfect 

randomness. In Figure 4.1, it is worth noting that all 15 statistical tests exceeded the 

passing rate. 

Table 4.3: NIST Test Results of the DGSCR256. 
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# Statistical test P-value Result 

1 Frequency 0.145326 Pass 

2 Block-frequency 0.616305 Pass 

3 
Cumulative-sums(forward) 0.048716 Pass 

Cumulative-sums(reverse) 0.224821 Pass 

4 Runs 0.657933 Pass 

5 Longest-runs of ones 0.494392 Pass 

6 Rank 0.181557 Pass 

7 DFT (Spectral) 0.637119 Pass 

8 Non-overlapping-template 0.454613 Pass 

9 Overlapping-templates 0.075719 Pass 

10 Universal 0.366918 Pass 

11 Approximate entropy 0.834308 Pass 

12 Random-excursions 0.4089375 Pass 

13 Random-excursions variant 0.517047 Pass 

14 
Serial1 0.911413 Pass 

Serial2 0.383827 Pass 

15 Linear complexity 0.366918 Pass 
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Another experiment is conducted in order to find a suitable adjustment for the number 

of bits after which the taps are changed. In this experiment, the taps are changed every 

256 bits. Table 4.3 and figure 4.2 shows the results of the NIST test suite for the DGSC 

with regular changing of taps after 256 bits of keystream (n=256) are generated. 

It can be observed from the results that the DGSC with regular changing of taps every 

256 bits of keystream passes all the tests because the p-values for all tests are greater 

than 0.01. 

 

 

 

Figure 4.2: NIST Test Results of the DGSCR256. 

 

In the second experiment, the taps are changed irregularly when there is matching 

between the outputs bit of LFSR and NLFSR for 50, 100, 128, and 256 times. Table 4.4 

shows the results of the NIST test suite for 50 matching (m=50). 

 

Table 4.4 and Figure 4.3 show the results of the NIST test suite for 50 matching 

(m=50). 
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Table 4.4: NIST Test Results of the DGSCI50. 

 

 

Figure 4.3: NIST Test Results of the DGSCI50. 
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# Statistical test P-value Result 

1 Frequency 0.798139 Pass 

2 Block-frequency 0.350485 Pass 

3 
Cumulative-sums(forward) 0.534146 Pass 

Cumulative-sums(reverse) 0.955835 Pass 

4 Runs 0.719747 Pass 

5 Longest-runs of ones 0.657933 Pass 

6 Rank 0.987896 Pass 

7 DFT (Spectral) 0.55442 Pass 

8 Non-overlapping-template 0.552449 Pass 

9 Overlapping-templates 0.779188 Pass 

10 Universal 0.035174 Pass 

11 Approximate entropy 0.23681 Pass 

12 Random-excursions 0.33767225 Pass 

13 Random-excursions variant 0.365456 Pass 

14 
Serial1 0.637119 Pass 

Serial2 0.224821 Pass 

15 Linear complexity 0.437274 Pass 



41 
 

Table 4.5 and Figure 4.4 show the results of the NIST test suite for 100 matching 

(m=100). 

Table 4.5: NIST Test Results of DGSCI100. 

 

# Statistical test P-value Result 

1 Frequency 0.455937 Pass 

2 Block-frequency 0.191687 Pass 

3 
Cumulative-sums(forward) 0.213309 Pass 

Cumulative-sums(reverse) 0.181557 Pass 

4 Runs 0.191687 Pass 

5 Longest-runs of ones 0.383827 Pass 

6 Rank 0.224821 Pass 

7 DFT (Spectral) 0.798139 Pass 

8 Non-overlapping-template 0.493655 Pass 

9 Overlapping-templates 0.595549 Pass 

10 Universal 0.304126 Pass 

11 Approximate entropy 0.678686 Pass 

12 Random-excursions 0.427572 Pass 

13 Random-excursions variant 0.435763 Pass 

14 
Serial1 0.015598 Pass 

Serial2 0.181557 Pass 

15 Linear complexity 0.202268 Pass 

 

 

 

Figure 4.4: NIST Test Results of the DGSCI100. 
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Table 4.6 and Figure 4.5 show the results of the NIST test suite for 128 matching 

(m=128). 

Table 4.6: NIST Test Results of the DGSCI128. 

 
 

 
Figure 4.5: NIST Test Results of DGSCI128. 

# Statistical test P-value Result 

1 Frequency 0.637119 Pass 

2 Block-frequency 0.181557 Pass 

3 
Cumulative-sums(forward) 0.897763 Pass 

Cumulative-sums(reverse) 0.719747 Pass 

4 Runs 0.171867 Pass 

5 Longest-runs of ones 0.455937 Pass 

6 Rank 0.798139 Pass 

7 DFT (Spectral) 0.224821 Pass 

8 Non-overlapping-template 0.488985 Pass 

9 Overlapping-templates 0.897763 Pass 

10 Universal 0.971699 Pass 

11 Approximate entropy 0.574903 Pass 

12 Random-excursions 0.293469 Pass 

13 Random-excursions variant 0.322444 Pass 

14 
Serial1 0.911413 Pass 

Serial2 0.334538 Pass 

15 Linear complexity 0.851383 Pass 
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Table 4.7 and Figure 4.6 show the results of the NIST test suite for 256 matching 

(m=256). 

Table 4.7: NIST Test Results of the DGSCI256. 

 

# Statistical test P-value Result 

1 Frequency 0.213309 Pass 

2 Block-frequency 0.719747 Pass 

3 
Cumulative-sums(forward) 0.350485 Pass 

Cumulative-sums(reverse) 0.657933 Pass 

4 Runs 0.350485 Pass 

5 Longest-runs of ones 0.102526 Pass 

6 Rank 0.085587 Pass 

7 DFT (Spectral) 0.213309 Pass 

8 Non-overlapping-template 0.487295 Pass 

9 Overlapping-templates 0.834308 Pass 

10 Universal 0.816537 Pass 

11 Approximate entropy 0.759756 Pass 

12 Random-excursions 0.375971 Pass 

13 Random-excursions variant 0.242827 Pass 

14 
Serial1 0.514124 Pass 

Serial2 0.455937 Pass 

15 Linear complexity 0.678686 Pass 

 

 
 

Figure 4.6: NIST Test Results of the DGSC256. 
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All the NIST Test Results show that the proposed algorithms with dynamic switching 

taps pass all the tests because the p-values for all tests are greater than 0.01. 

4.4 PERFORMANCE OF THE PROPOSED ALGORITHM (DGSC) 

The second important factor is the Performance. Grain and the proposed modified Grain 

have been coded into C language to test their performance of them. Table 4.8 shows the 

comparison between Grain and the modified algorithms in the perspective of 

performance. The under consideration algorithms were tested on the same PC and same 

environment. In this test, the performance is done by measuring the number of 

generated keystream bits versus time. 

 

Table 4.8: Speed comparison between Grain and the DGSC. 

No Algorithm 

Performance in 

Megabyte per 

second(Mbps) 

Taps changing condition 

1 Grain  0.269459 --- 

2 DGSCR128 0.269318 Every 128 bits.  

3 DGSCR256 0.269418 Every 256 bits.  

4 DGSCI128 0.266941 

The output bit of the LFSR 

matches the output bit of the 

NFSR 128 times. 

5 DGSCI256 0.267322 

The output bit of the LFSR 

matches the output bit of the 

NFSR 256 times. 

6 DGSCI50 0.264457 

The output bit of the LFSR 

matches the output bit of the 

NFSR 50 times. 

7 DGSCI100 
0.265927 

 

The output bit of the LFSR 

matches the output bit of the 

NFSR 100 times. 

 



45 
 

 

Figure 4.7: Speed comparisons between Grain and the DGSC. 

From Figure 4.7, it is clear that there is no significant difference in speed between the 

original Grain and the modified algorithms with regular changing of taps. However, the 

speed decreases in the proposed algorithms with irregular changing of taps. This could 

be due to the comparisions that are needed to find match between the output of the 

LFSR and NLFSR. When the number of required maching is small, the times of  

changing taps  increases, therefore, the speed decreases. on the other hand, when the 

number of required maching increases, the times of  changing of taps decreases. Thus, 

the speed increases.  

Despite the fact that using irregular ways to change the feedback bits slows down the 

algorithm, it  is more secure than using regular ones, because these ways increase the 

nonlinearity of the produced sequence. 

4.5 COMPARISONS OF THE NIST TEST RESULTS 

In the following tables, the best result in each row is highlighted. In these tables, results 

that are close to 1 indicate better statistical properties. It is clear that the use of regular 

and irregular tap switching increases the security level of Grain algorithm. 

Table 4.9 shows the NIST results for DGSCR128 and DGSCR256. 
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Table 4.9: The NIST results of DGSCR128 and DGSCR256. 

 

# Statistical test DGSCR128 DGSCR256 

1 Frequency 0.678686 0.145326 

2 Block-frequency 0.437274 0.616305 

3 
Cumulative-sums(forward) 0.595549 0.048716 

Cumulative-sums(reverse) 0.574903 0.224821 

4 Runs 0.455937 0.657933 

5 Longest-runs of ones 0.851383 0.494392 

6 Rank 0.085587 0.181557 

7 DFT (Spectral) 0.080519 0.637119 

8 Non-overlapping-template 0.526587 0.45461 

9 Overlapping-templates 0.437274 0.075719 

10 Universal 0.678686 0.366918 

11 Approximate entropy 0.019188 0.834308 

12 Random-excursions 0.589688 0.408937 

13 Random-excursions variant 0.363008 0.517047 

14 
Serial1 0.739918 0.911413 

Serial2 0.051942 0.383827 

15 Linear complexity 0.759756 0.366918 

 

It is obvious that DGSCR128 has the highest number of highlighted cells. Therefore, 

DGSCR128 has better statistical properties than DGSCR256. 

Table 4.10 shows the NIST results of DGSCI50, DGSCI100, DGSCI128, and 

DGSCI256. 
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Table 4.10: The NIST results of DGSCI50, DGSCI100, DGSCI128, and DGSCI256. 

 

# Statistical test DGSCI50 DGSCI100 DGSCI128 DGSCI256 

1 Frequency 0.798139 0.455937 0.637119 0.213309 

2 Block-frequency 0.350485 0.191687 0.181557 0.719747 

3 
Cumulative-sums(forward) 0.534146 0.213309 0.897763 0.350485 

Cumulative-sums(reverse) 0.955835 0.181557 0.719747 0.657933 

4 Runs 0.719747 0.191687 0.171867 0.350485 

5 Longest-runs of ones 0.657933 0.383827 0.455937 0.102526 

6 Rank 0.987896 0.224821 0.798139 0.085587 

7 DFT (Spectral) 0.55442 0.798139 0.224821 0.213309 

8 Non-overlapping-template 0.552449 0.493655 0.488985 0.487295 

9 Overlapping-templates 0.779188 0.595549 0.897763 0.834308 

10 Universal 0.035174 0.304126 0.971699 0.816537 

11 Approximate entropy 0.23681 0.678686 0.574903 0.759756 

12 Random-excursions 0.33767 0.427572 0.293469 0.375971 

13 
Random-excursions 

variant 
0.365456 0.435763 0.322444 0.242827 

14 
Serial1 0.637119 0.015598 0.911413 0.514124 

Serial2 0.224821 0.181557 0.334538 0.455937 

15 Linear complexity 0.437274 0.202268 0.851383 0.678686 

 

From Table 4.10, it can be seen that DGSCI50 and DGSCI128 have the highest 

number of highlighted cells. Furthermore, the DGSCI128 is faster than DGSCI50. 

Therefore, it can be concluded that the DGSCI128 attained the best result. 

DGSCR128 and DGSCI128 are chosen to be compared with the original Grain in order 

to conform that the modification improves the original algorithm. Table 4.11 shows 

NIST results for Grain, DGSCR128, and DGSCI128. 
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Table 4.11: NIST results of Grain, DGSCR128, and DGSCI128. 

 

# Statistical test Grain DGSCR128 DGSCI128 

1 Frequency 0.026948 0.678686 0.637119 

2 Block-frequency 0.494392 0.437274 0.181557 

3 

Cumulative-

sums(forward) 
0.55442 0.595549 0.897763 

Cumulative-

sums(reverse) 
0.12962 0.574903 0.719747 

4 Runs 0.334538 0.455937 0.171867 

5 Longest-runs of ones 0.779188 0.851383 0.455937 

6 Rank 0.595549 0.085587 0.798139 

7 DFT (Spectral) 0.037566 0.080519 0.224821 

8 
Non-overlapping-

template 
0.517810 0.526587 0.488985 

9 Overlapping-templates 0.153763 0.437274 0.897763 

10 Universal 0.350485 0.678686 0.971699 

11 Approximate entropy 0.066882 0.019188 0.574903 

12 Random-excursions 0.256454 0.589688 0.293469 

13 
Random-excursions 

variant 
0.414677 0.363008 0.322444 

14 
Serial1 0.595549 0.739918 0.911413 

Serial2 0.171867 0.051942 0.334538 

15 Linear complexity 0.699313 0.759756 0.851383 

In Table 4.11, the first observation is that the range of p-values (the difference 

between the highest p-value and the lowest p-value in a test) is high in some tests. For 

example, in the Overlapping-templates, original algorithm has the lowest p-value 

(0.153763), while DGSCI128 has the highest p-value (0.897763). Therefore, the 

range of p-values is 0. 744. This indicates that there is a significant gap in Overlapping-

templates between the compared algorithms. On the other hand, the p-values in some 

tests of the compared algorithms are convergent.  

The second observation is that using dynamic polynomial switching improves the 

statistical properties of the keystream generated by Grain; and that can be seen from the 

number of highlighted cells. In addition, the best results are obtained when DGSCI128 

is used to generate the keystream. Graphical comparisons of the results are displayed in 

Figures 4.8–4.22.  
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Figure 4.8: Frequency Test. 

 

Figure 4.9: Block-Frequency Test. 

 

Figure 4.10: Cumulative-sums Test 
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Figure 4.11: Runs Test. 

 

Figure 4.12: Longest-runs of ones Test. 

 

Figure 4.13: Rank Test. 
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Figure 4.14: Discrete Fourier Transform test. 

 

Figure 4.15: Non-overlapping-template Test. 

 

Figure 4.16: Overlapping-templates Test. 
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Figure 4.17: Universal Test. 

 

Figure 4.18: Approximate Entropy Test. 

 

Figure 4.19: Random-excursions Test. 
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Figure 4.20: Random-excursions Variant Test. 

 

Figure 4.21: Serial Test. 

 

Figure 4.22: Linear Complexity Test. 
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Figure 4.23: comparison of NIST Test results 

Figure 4.23 displayed the comparison of NIST Test results between Grain, DGCR128 

and DGCI128. It is clear that the proposed algorithm have best results in the most tests 

(thirteen from fifteen).  

4.6 SUMMARY 

This chapter presented the NIST Test Suite and its tests. NIST Test suite was used to 

evaluate the randomness of several versions of the proposed algorithm. Security and 

performance analysis were conducted in order to prove the level of security and the 

efficiency of the proposed design with different strategies to change the taps. In 

addition, the proposed algorithm was compared with the original algorithm; the results 

indicated that the proposed algorithm outperforms the original cipher in several tests. 
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CHAPTER FIVE: CONCLUSIONS AND FUTURE WORK 

 

5.1 INTRODUCTION 

To promote the design of efficient and secure stream ciphers suitable for widespread 

adoption, an effort must be made to investigate the security issues of stream ciphers in 

current use. One important issue in stream cipher design is to investigate the 

relationship between using dynamic polynomial switching and the security level. To 

address this issue, extensive research on previous works was conducted. Then, a new 

algorithm was proposed. In this chapter, the contribution of this research is presented 

and discussed. Finally, possible future work is suggested at the end of this chapter.   

5.2 CONCLUSIONS 

The main goal of this chapter is to summarize the conclusions and highlight the 

contributions of this research, which are detailed as follows: 

1. This study proposed a new algorithm called DGSC which is based on Grain stream 

cipher. It has been shown that the produced keystreams possess a high linear 

complexity, and good statistical properties. These characteristics and properties 

make DGSC suitable encryption system for stream cipher applications. 

2. In the proposed algorithm, two ways (regular and irregular) are used for switching 

the feedback polynomials of the LFSR. In the regular way, the taps are changed 

every specific amount of time. Two options are used, which are changing the taps 

every 128 bits and changing the taps every 256 bits. In the irregular way, changing 

the taps happens when there is matching between the output of LFSR and NLFSR 

for 50, 100, 128, and 256 times. 

3. NIST test suite was used to evaluate the statistical properties of the keystream that 

are generated by the proposed algorithm with several ways of changing the taps. In 

addition, the proposed algorithm was compared with Grain stream cipher. The 

results showed that the proposed algorithm outperforms the original Grain in many 

tests. 

4. A performance analysis of the proposed algorithm was carried out. Furthermore, a 

comparison between the proposed algorithm and the original Grain was performed. 

The results showed that there is no significant difference in speed between the 

original Grain and the modified algorithm with regular changing of taps. However, 

the speed of the proposed algorithm with irregular changing of taps decreases.  
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5. Despite the fact that using irregular ways to change the feedback bits slows down 

the algorithm, it  is more secure than using regular ones, because these ways 

increase the nonlinearity of the produced sequence. 

6. Overall, the DLFSR could be used instead of LFSR in stream ciphers design to 

enhance the security of these ciphers. Using regular or irregular ways to change the 

taps may depend on the need of specific industries. For instance, the mobile 

industry can customize its stream ciphers to be light weight by using regular ways 

for changing the taps; while banking and military industries can use irregular tap 

switching to enhance the security level. 

5.3 FUTURE WORK 

As a future work, the proposed algorithm can be exposed to several attacks in order to 

prove the security of this cipher. Moreover, a comparison between the proposed stream 

cipher and several currently used stream ciphers might be conducted. 
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