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I. INTRODUCTION 

Consider the difference equation, 

�̂�(𝑘 + 1) = 𝛼(𝑘) �̂�(𝑘) + 𝛽(𝑘)𝑎                                                                                                                             (1) 

where â is an n × 1 estimate vector, a is an n × 1 constant input vector, and α(k) and β(k) are time-variant n×n coefficient 

matrices. The question to be answered is, what set of conditions can be imposed on α(k) and β(k) so that the estimate 

vector â will approach a in steady state. In the following section, two theorems will be discussed that will offer an answer 

to this question, see [1]. 

II. FORMULATION OF ESTIMATION EQUATION 

Theorem 1. Assume that the matrices α(k) and β(k) in Equation (1) satisfy the following conditions. 

(1) The time response of the homogeneous equation  

�̂�(𝑘 + 1) = 𝛼(𝑘) �̂�(𝑘) 

associated with (1), approaches zero for any �̂�0 as 𝑘 → ∞. 

(2) 𝛼(𝑘) = 𝐼 − 𝛽(𝑘). 

Then  �̂� (𝑘) → 𝑎, 𝑎𝑠  𝑘 → ∞ for any constant a. 

Proof. From Eq. (1) with 𝛼(𝑘) = 𝐼 − 𝛽(𝑘), there results 

�̂�(𝑘 + 1) = (𝐼 − 𝛽(𝑘)) �̂�(𝑘) + 𝛽(𝑘)𝑎.                                                                                                      (2) 

Let �̂�(𝑘) = �̂� − 𝑎. From Eq. (2) it follows that 

�̂�(𝑘 + 1) = (𝐼 − 𝛽(𝑘))�̂�(𝑘)   

�̂�(𝑘 + 1) = 𝛼(𝑘)�̂�(𝑘).   

But from condition (1), �̂�(𝑘) → 0 𝑎𝑠 𝑘 → ∞  and so �̂�(𝑘) must approach a.                              □ 

Next condition (1) of Theorem 1 is investigated. The following theorem gives sufficient but not a necessary requirement 

for condition (1) in Theorem 1 to be true. 

Theorem 2. If there exist an integer 𝑗 ≥ 1 and constant 𝜎 < 1 such that for any given norm 

||𝐼 − 𝛽(𝑘)|| < 𝜎 

for all 𝑘 ≥ 𝑗, then condition (1) of Theorem 1 is satisfied. 

Proof. In view of Theorem 1, the term of the unforced response vector â at the iteration k+1 is 

 || �̂�(𝑘 + 1)||  = || 𝐼 − 𝛽(𝑘)�̂�(𝑘)|| ≤  ||𝐼 − 𝛽(𝑘)||||�̂�(𝑘).  

By assumption for 𝑘 ≥ 𝑗, 

|| �̂�(𝑘 + 1)||  = 𝜎𝑘||�̂�(𝑘)|| → 0 as 𝑘 → ∞.  

Since 𝜎 < 1.                                                                                                                                                   □ 
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As a demonstration, consider the following two examples: 

Example 1.  

Let 

𝛽(𝑘) = [
𝑘/(1 + 𝑘) 1/𝑘
1/(1 + 𝑘) 0.8

], and     𝑎𝑇 = [3   1], 

Then from Eq. (2) 

�̂�(𝑘 + 1) = ([
1 0
0 1

] − [
𝑘/(1 + 𝑘) 1/𝑘
1/(1 + 𝑘) 0.8

]) �̂�(𝑘) + [
𝑘/(1 + 𝑘) 1/𝑘
1/(1 + 𝑘) 0.8

] [
3
1

]   

In this example, for 𝜎 = 0.7 and 𝑗 = 2, the Euclidean norm of the matrix (I −β(k)) satisfies Theorem 2, see Fig. 1. 

As a consequence, the norm of the vector â (k )  for the time response of the homogeneous equation associated with Eq. 

2 converges to zero as can be seen from Fig. 2. 

�̂�(𝑘 + 1) = (𝐼 − 𝛽(𝑘)) �̂�(𝑘)                                                                                                                      (3) 

�̂�(𝑘 + 1) = ([
1 0
0 1

] − [
𝑘/(1 + 𝑘) 1/𝑘
1/(1 + 𝑘) 0.8

]) �̂�(𝑘). 

For an initial value of 𝑎𝑇 = [2.2    1.3], the vector �̂�(𝑘)  converges to vector a, as k grows large, see Fig. 3. 
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Figure 1 : Norm of the matrix (I − β(k)) 
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Figure 2 : Norm of the vector â (k ) 
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Example 2. 

Consider the same previous example except for the input vector a is not constant, i.e., 

𝑎𝑇(𝑘) = [1 + 0.05𝑘,    sin(2𝜋𝑘/75)] 

Again, according to Eq. (2), 

�̂�(𝑘 + 1) = ([
1 0
0 1

] − [
𝑘/(1 + 𝑘) 1/𝑘
1/(1 + 𝑘) 0.8

]) �̂�(𝑘) + [
𝑘/(1 + 𝑘) 1/𝑘
1/(1 + 𝑘) 0.8

] [
1 + 0.05𝑘

sin(2𝜋𝑘/75)
]   

Fig. 4 shows a plot of the input vector a(k) and its estimate â (k ).  In this example, only an approximate estimate is 

obtained because the input vector a(k) is not constant. It is observed that the faster the decay of the time response of the 

homogeneous equation in Eq. 2, the better the estimate becomes. To show this, the matrix 𝛽(𝑘) of Example 1 is 

modified to 

𝛽(𝑘) = [
𝑘/(1 + 𝑘) 1/𝑘
1/(1 + 𝑘) 0.3

], 

so that it will cause the system of Eq. (3) to have a slower decaying unforced response. A comparison of Fig. 2 and Fig. 5 will show 

this. Fig. 6 shows the result of this modification on the estimated input vector�̂�(𝑘). It can be concluded then that the rate of 

convergence to zero of the norm of �̂�(𝑘) in Eq. (3) has direct relation to its tracking of vector a in Eq. (2). The faster the decay, the 

more accurate is the estimate. 

 

                                   Figure 4: Vector a(k) and its estimate â (k )  
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Figure 3 : Vector a and its estimate â (k )  
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III. DEVELOPMENT OF ESTIMATION ALGORITHM 

     Consider the following difference equation, 

�̂�(𝑘 + 1) = [𝐼 − 𝜇(𝑘)𝑣(𝑡)𝑣𝑇(𝑘)]�̂�(𝑘) + 𝜇(𝑘)𝑣(𝑡)𝑣𝑇(𝑘)𝜃                                                             (4) 

where θ is an unknown constant vector and v(k) is a nonzero vector that contains known quantities. The two vectors are chosen so that 

their inner product is the output of a given system at the time instant k+1, i.e., 𝑦(𝑘 + 1) = 𝑣𝑇(𝑘)𝜃, and 𝜇(𝑘) is an 

arbitrary coefficient which can be either a time-varying or a constant. Thus, Eq. (4) can be rewritten as 

�̂�(𝑘 + 1) = [𝐼 − 𝜇(𝑘)𝑣(𝑡)𝑣𝑇(𝑘)]�̂�(𝑘) + 𝜇(𝑘)𝑣(𝑡)𝑦(𝑘 + 1)                                                            (5) 

Eq. (5) shows that the output y(k) of a system is incorporated in estimating the unknown vector θ. Let Γ(𝑘) = 𝑣(𝑘)𝑣𝑇(𝑘), then Eq. (4) 

becomes 

�̂�(𝑘 + 1) = [𝐼 − 𝜇(𝑘)Γ(𝑘)]�̂�(𝑘) + 𝜇(𝑘)Γ(𝑘)𝜃                                                                                    (6) 

According to Theorem 1, in order for �̂� → 𝜃 as 𝑘 → ∞ in Eq. (4), the time response of the homogeneous 

�̂�(𝑘 + 1) = [𝐼 − 𝜇(𝑘)Γ(𝑘)]�̂�(𝑘) 

has to approach zero for any �̂�0 as 𝑘 → ∞. Since the matrix Γ is defined as Γ(𝑘) = 𝑣(𝑘)𝑣𝑇(𝑘), the matrix (𝐼 − 𝜇(𝑘)𝑣(𝑡)𝑣𝑇(𝑘)) in 

Eq. (4) will always have an eigenvalue of value one (Spectral Theorem), which will also make its norm  have a value of at least one, 

therefore it cannot be be made to satisfy Theorem 2. As a result, we will resort to linear algebra techniques that satisfy Condition (1) of 
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Figure 6 : Vector a(k) and its estimate â (k ) 



International Journal for Research in Engineering Application & Management (IJREAM) 

ISSN : 2454-9150    Vol-08,  Issue-09, Dec 2022 

171 | IJREAMV08I0993105                          DOI : 10.35291/2454-9150.2022.0512                    © 2022, IJREAM All Rights Reserved. 

Theorem 1. This will be the topic of the next section. 

Estimation Algorithm Building Blocks 

Theorem 3. For any k, the matrix Γ(𝑘) = 𝑣(𝑘)𝑣𝑇(𝑘) is singular with 𝑛 − 1 zero eigenvalues and one eigenvalue equal to the inner 

product 𝑣(𝑘)𝑣𝑇(𝑘). The vector v(k) is an eigenvector of Γ(𝑘) for the eigenvector 𝑣(𝑘)𝑣𝑇(𝑘). 

Proof. We omit the index k for notation convenience. Let λ and r be and eigenvalue and eigenvector of the matrix Γ = 𝑣𝑣𝑇 

respectively, 

Γ𝑟 = 𝜆𝑟  or   𝑣𝑣𝑇𝑟 = 𝜆𝑟                                                                                                                          (7) 

If 𝑣𝑇𝑟 = 0, then λ must be zero. If on the other hand  𝑣𝑇𝑟 ≠ 0 and 𝜆 ≠ 0, then 

𝑟 =
𝑣𝑇𝑟

𝜆
 𝑣 

Thus, the vector r is a scalar multiple of the vector v. Substituting for r in Eq. (7) gives 

𝑣𝑇𝑟

𝜆
𝑣𝑣𝑇𝑣 =

𝑣𝑇𝑟

𝜆
𝜆𝑣, 

which yields 

(𝑣𝑇𝑣)𝑣 = 𝜆𝑣. 

It maybe concluded that the only nonzero eigenvalue of Γ is 𝜆 = 𝑣𝑇𝑣. Since the vector r is a scalar multiple of vector v, v must be the 

unique eigenvector of the matrix Γ for λ. Let 𝑤𝑙 , 𝑙 = 1, … , 𝑛 − 1, be a basis of the subspace given by 𝑣𝑇𝑤𝑙 = 0; then 𝑤𝑙 are the 

eigenvectors for the eigenvalue zero of multiplicity 𝑛 − 1. 

The following Theorem is standard [3]. Recall that for an analytic function f and a square matrix A,  f (A) is defined by substituting A 

into the power series of f . 

Theorem 4. (Spectral Theorem) For an analytic function f and a square matrix A, the eigenvalues of    f (A) are exactly f (λ) for all λ of 

A. 

Theorem 5. Consider the homogeneous equation 

�̂�(𝑘 + 1) = [𝐼 − 𝜇(𝑘)𝑣(𝑘)𝑣𝑇(𝑘)]�̂�(𝑘)                                                                                                  (8) 

associated with Eq. (4) and assume 𝜇(𝑘)𝑣𝑇(𝑘)𝑣(𝑘) 𝜖 (0,2), then 

||�̂�(𝑘 + 1)||2 ≤  ||�̂�(𝑘)||2.                                                                                                                       (9) 

Proof. From Eq. (8) 

||�̂�(𝑘 + 1)||2 = ||[𝐼 − 𝜇(𝑘)𝑣(𝑘)𝑣𝑇(𝑘)]�̂�(𝑘)||2  

which implies 

||�̂�(𝑘 + 1)||2 ≤ ||[𝐼 − 𝜇(𝑘)𝑣(𝑘)𝑣𝑇(𝑘)]||2||�̂�(𝑘)||2. 

But, 

||[𝐼 − 𝜇(𝑘)𝑣(𝑘)𝑣𝑇(𝑘)]�̂�(𝑘)||2 = √𝜌([𝐼 − 𝜇(𝑘)𝑣(𝑘)𝑣𝑇(𝑘)]𝑇[𝐼 − 𝜇(𝑘)𝑣(𝑘)𝑣𝑇(𝑘)]) 

where ρ denotes the spectral radius of a matrix. Let 𝛼(𝑘) = 𝜇(𝑘)𝑣(𝑘)𝑣𝑇(𝑘), then 

𝜌 = max
𝜆𝑖

[𝐼 − 2𝜇(𝑘)𝑣(𝑘)𝑣𝑇(𝑘) + 𝛼(𝑘)𝜇(𝑘)𝑣(𝑘)𝑣𝑇(𝑘)] 

𝜌 = max
𝜆𝑖

[𝐼 − 2
𝛼(𝑘)

𝑣𝑇(𝑘)𝑣(𝑘)
𝑣(𝑘)𝑣𝑇(𝑘) +

𝛼2(𝑘)

𝑣𝑇(𝑘)𝑣(𝑘)
𝑣(𝑘)𝑣𝑇(𝑘)] 

𝜌 = max
𝜆𝑖

𝑓(𝐴), where 𝐴 =
1

𝑣𝑇(𝑘)𝑣(𝑘)
𝑣(𝑘)𝑣𝑇(𝑘)𝑣(𝑘) with  eigenvalues given by Theorem 3 as 𝜆1 = 1, 𝜆2 = 𝜆3 = ⋯ = 𝜆𝑛 = 0, 

and 𝑓(𝜆) = 1 − 2𝛼(𝑘)𝜆 + 𝛼2(𝑘)𝜆2(𝑘). Theorem 4 gives, 

𝜌 =  max
𝜆𝑖

(1 − 2𝛼(𝑘)𝜆𝑖 + 𝛼2(𝑘)𝜆𝑖
2) = (1 − 𝛼(𝑘))

2
. 

Since 𝛼(𝑘)𝜖 (0,2), the proof is concluded.                                                                                                  □ 

The next question to consider is when Eq. (9) has a strict inequality, i.e., 

||�̂�(𝑘 + 1)||2 <  ||�̂�(𝑘)||2. 

To answer this, the following Theorem is required. 
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Theorem 6. Given any two nonzero n-order vectors v and x, 

||(𝐼 − 𝑣𝑣𝑇)𝑥|| = ||𝑥|| 

if and only if  𝑣𝑇𝑥 = 0  or 𝑣𝑇𝑣 = 2. 

Proof. For the vectors v and x there always exists a vector w and a nonzero real constant ξ such that 

𝑥 = 𝜁𝑣 + 𝑤,   𝑣𝑇𝑤 = 0. 

Then 

||(𝐼 − 𝑣𝑣𝑇)𝑥|| = ||𝑥|| 

Is equivalent to 

||(𝐼 − 𝑣𝑣𝑇)(𝜁𝑣 + 𝑤)|| = ||𝜁𝑣 + 𝑤|| 

which is equivalent to, since 𝑣𝑇𝑤 = 0, 

||(𝐼 − 𝑣𝑣𝑇)𝜁𝑣 + 𝑤|| = ||𝜁𝑣 + 𝑤|| 

or 

||𝜁(1 − 𝑣𝑇𝑣)𝑣 + 𝑤|| = ||𝜁𝑣 + 𝑤|| 

Using 𝑣𝑇𝑤 = 0 again gives that the last equation is again equivalent to 

||𝜁(1 − 𝑣𝑇𝑣)𝑣||2 + ||𝑤||2 = ||𝜁𝑣||2 + ||𝑤||2 

or 

||𝜁(1 − 𝑣𝑇𝑣)𝑣||2 = ||𝜁𝑣||2 

or 

|𝜁(1 − 𝑣𝑇𝑣)| ||𝑣|| = |𝜁| ||𝑣||. 

Because 𝑣 ≠ 0, this is equivalent to 

|𝜁(1 − 𝑣𝑇𝑣)|  = |𝜁|. 

This is true only if ξ = 0 or |𝜁(1 − 𝑣𝑇𝑣)| = 1. But 𝑣𝑇𝑣 ≠ 0, concluding the proof.                             □ 

      The next Theorem offers a solution to the problem of making the time response of the homogeneous equation associated 

with Eq. (4) go to zero. 

Theorem 7. Let 

�̂�(𝑘 + 1) = [𝐼 − 𝜇(𝑘)𝑣(𝑘)𝑣𝑇(𝑘)]�̂�(𝑘)   

where v(k) are nonzero vectors and 𝜇(𝑘)𝑣(𝑘)𝑣𝑇(𝑘) = 𝛼(𝑘) 𝜖 (0,2). If �̂�(𝑘) ≠ 0  and there are n linearly independent vectors 

v(i) between the vectors 𝑣(𝑘), … , 𝑣(𝑘 + 𝑚), then  

||�̂�(𝑘 + 𝑚)||2 <  ||𝜃(𝑘)||2  

Proof. Assume �̂�(𝑘) ≠ 0  and 

||�̂�(𝑘 + 𝑚)||2 = ||�̂�(𝑘)||2 

Then it follows from Eq. (9) that 

||�̂�(𝑘 + 𝑚)||2 =, … , ||�̂�(𝑘 + 1)||2 = ||�̂�(𝑘)||2 

Thus 

||(𝐼 − 𝜇(𝑘)𝑣(𝑘)𝑣𝑇(𝑘))�̂�(𝑘)||2 = ||�̂�(𝑘)||2   

Since 𝛼(𝑘)𝜖 (0,2), then from Theorem 6 it follows that 

𝑣𝑇(𝑘)�̂�(𝑘) = 0  

or 

�̂�(𝑘 + 1) = �̂�(𝑘).   

Similarly  

||�̂�(𝑘 + 2)||2 = ||�̂�(𝑘 + 1)||2 

or 

||(𝐼 − 𝜇(𝑘 + 1)𝑣(𝑘 + 1)𝑣𝑇(𝑘 + 1))(𝐼 − 𝜇(𝑘)𝑣(𝑘)𝑣𝑇(𝑘))�̂�(𝑘)||2 = ||�̂�(𝑘)||2   

or 

||(𝐼 − 𝜇(𝑘 + 1)𝑣(𝑘 + 1)𝑣𝑇(𝑘 + 1))�̂�(𝑘)||2 = ||�̂�(𝑘)||2   
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and again, this means 

𝑣𝑇(𝑘 + 1)�̂�(𝑘) = 0.   

By induction, it follows that 

�̂�(𝑘 + 𝑚) = ⋯ =  �̂�(𝑘 + 1) = �̂�(𝑘) 

and thus 

𝑣𝑇(𝑖)�̂�(𝑘) = 0  

for all 𝑖 = 𝑘, … , 𝑘 + 𝑚. Because the vectors 𝑣(𝑖), 𝑖 = 𝑘, … , 𝑘 + 𝑚, span the space of all n-dimensional vectors, this means 

that �̂�(𝑘) = 0 , which is a contradiction.                                       □ 

The above results and Eq. (4) suggest the following: if the vector 𝑣(𝑘) varies with time sufficiently enough, then there is some 

number m in which there are an n linearly independent vectors 𝑣(𝑘) (𝑘 = 1,2, … ). Therefore according to Theorem 7 the norm 

of the time response of �̂�(𝑘)  of the homogeneous equation associated with Eq. (4) becomes smaller each time m occurs. As k 

grows indefinitely, the number m repeats a number of times hopefully decreasing the time response of �̂�(𝑘) to zero, therefore 

the condition stated in the introduction is satisfied and the proposed algorithm guarantees con- vergence of �̂�(𝑘). It is also 

worth noting that if the sequence of vectors 𝑣(𝑘) in Eq.  ( 4) are orthogonal and if 𝛼(𝑘) = 1, then the time response 

of  �̂�(𝑘)  of the homogeneous equation will go to zero in n iterations where n is the dimension of the vectors 𝑣(𝑘). 

IV. FINAL FORM OF THE PROPOSED ALGORITHM 

Rearranging Eq. (5) terms yields 

�̂�(𝑘 + 1) = �̂�(𝑘) +
𝛼(𝑘)𝑣(𝑘)

𝑣𝑇(𝑘)𝑣(𝑘)
[𝑦(𝑘 + 1) − 𝑣𝑇(𝑘)�̂�(𝑘)                                                                             (10) 

Defining 𝐾(𝑘 + 1) =
𝛼(𝑘)𝑣(𝑘)

𝑣𝑇(𝑘)𝑣(𝑘)
, we have 

�̂�(𝑘 + 1) = �̂�(𝑘) + 𝐾(𝑘 + 1)[𝑦(𝑘 + 1) − 𝑣𝑇(𝑘)�̂�(𝑘)                                                                  (11) 

Eq. (11) has the same general form as those of Kalman filtering [4], Recursive Least-Squares [5], and Stochastic 

approximation [6]. The only difference is the gain vector K(k). Table 1 shows that they are all linear in form. Depending on the 

formulation of the problem, all algorithms can be used to either identify system parameters or observe system states, see 

[7,8,9]. 

Algorithm 𝐾(𝑘 + 1) 𝑃(𝑘 + 1) 

Kalman 𝑃(𝑘)𝑣𝑇(𝑘)

𝑣(𝑘)𝑃(𝑘)𝑣𝑇(𝑘) + �̂�
 

[𝐼 − 𝐾(𝑘 + 1)𝑣𝑇(𝑘)]𝑃(𝑘) 

Recursive 

exponentially weighted least-

squares 

𝑃(𝑘)𝑣𝑇(𝑘)

𝑣(𝑘)𝑃(𝑘)𝑣𝑇(𝑘) + 𝛾
 

[𝐼 − 𝐾(𝑘 + 1)𝑣𝑇(𝑘)]𝑃(𝑘)/𝛾 

Stochastic 

approximation 

1

1 + 𝑘

𝑣(𝑘)

||𝑣(𝑘)||2
2 

-------------- 

 

Proposed algorithm 1

1 + 𝑘

𝑣(𝑘)

||𝑣(𝑘)||2
2 

-------------- 

 

Table 1: Comparison of Estimation Algorithms. 

Error of The Proposed Algorithm 

Let  𝑒(𝑘 + 1) = �̂�(𝑘 + 1) − 𝜃 be the error at time 𝑘 + 1, then 𝛼(𝑘) = 1 gives the minimum least-squares error. This can be 

seen as follows: from Eq. (4),  

𝑒(𝑘 + 1) = [𝐼 −
𝛼(𝑘)𝑣(𝑘)

𝑣𝑇(𝑘)𝑣(𝑘)
𝑣𝑇(𝑘)] 𝑒(𝑘) 

where 𝑒(𝑘) = �̂�(𝑘) − 𝜃. The least-squares error is given by 
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𝑒𝑇(𝑘 + 1)𝑒(𝑘 + 1) = [𝑒(𝑘) −
𝛼(𝑘)𝑣(𝑘)

𝑣𝑇(𝑘)𝑣(𝑘)
𝑣𝑇(𝑘)𝑒(𝑘)]

𝑇

[𝑒(𝑘) −
𝛼(𝑘)𝑣(𝑘)

𝑣𝑇(𝑘)𝑣(𝑘)
𝑣𝑇(𝑘)𝑒(𝑘)] 

= 𝑒𝑇(𝑘)𝑒(𝑘) − 2
𝛼(𝑘)

𝑣𝑇(𝑘)𝑣(𝑘)
𝑒𝑇(𝑘)𝑣(𝑘)𝑣𝑇(𝑘)𝑒(𝑘) +

𝛼2(𝑘)

𝑣𝑇(𝑘)𝑣(𝑘)
𝑒𝑇(𝑘)𝑣(𝑘)𝑣𝑇(𝑘)𝑒(𝑘). 

If 𝑣(𝑘)𝑒(𝑘) ≠ 0, then 

0 =
𝜕𝑒𝑇(𝑘 + 1)𝑒(𝑘 + 1)

𝜕𝛼(𝑘)
=

(𝛼(𝑘) − 1)

𝑣𝑇(𝑘)𝑣(𝑘)
𝑒𝑇(𝑘)𝑣(𝑘)𝑣𝑇(𝑘)𝑒(𝑘). 

Stability of The Proposed Algorithm 

The system of Eq. (4) is BIBO (bounded-input bounded-output) for a bounded vector θ(k). Also, according to 

reference [2] the homogeneous part of Eq. (4) is stable and if �̂�(𝑘) → 0 as 𝑘 → ∞, then it is asymptotically stable. 

V. CONCLUSION 

A proposed new estimation algorithm was developed in which state space and linear algebra were utilized in its derivation. It 

was shown that the sequence of vectors v(k) are function of the system input signal u(k), and in order for them to have enough 

linearly independent vectors, u(k) must be sufficiently rich. Sufficiently rich means that u(k) must vary enough so that the 

sequence of vectors v(k) cause the homogeneous response of Eq. (4) go to zero. 
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