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Abstract 

 

In this research, we consider the variable size vector bin packing problem                      

in the case when the dimension (𝑑 = 2). This problem is a generalization of 

the vector bin packing problem where the bins have variable sizes (in our 

case we have two sizes) and the objective is to pack a set of items into                             

a minimum number of bins. We propose five different strategies for solving 

the variable size vector bin packing problem, these strategies are based on 

first fit (𝐹𝐹) algorithm. We perform a computational experiment on two 

randomly generated sets of instances in order to analyse the empirical 

performance of these strategies. Each set of items has a fifteen bin types 

and runs with small number of items up to 150 items and with large number 

of items up to 3000 items. These proposed algorithms were run twice,                           

in the first case there were an equal number of items in each item type,                     

while in the second case the demand of each type of items is random.                      

Our numerical results show that the algorithms in strategy 5 (algorithm 9 and 

algorithm 10) which rely on the average size and the weighted average size 

are considered as the most effective methods to solve the variable size 

vector bin packing problem since their performance is superior to other 

strategies. 
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1. Introduction 

           Cutting and packing problems (𝐶&𝑃) is an active field of studies 

during the past decades. Also Its significance lies in being relevant to the 

industrial sector and services as well.  

1.1. Packing problems 

In order to distinguish between the cutting and packing problems 

(𝐶&𝑃), Dyckhoff (1990) propose a typology in categorizing the cutting 

and packing problems, these four criteria are dimensionality, the shape 

of the assignment, the types of assortments and the availability of the 

objects. The availability criterion differentiates between bin packing 

problems and cutting stock problems. In the bin packing problems, there 

are a little number of small objects while in the cutting stock problems, 

the small objects are many (cited in Alves and Valério de Carvalho, 

2007). However, the packing problems includes a wide variety of 

problems, Dyckho and Finke (1992) differentiate these problems in terms 

of items (size and shape) and bins (form and capacity) as well (cited in 

Fleszar and Hindi, 2002). 

1.2. Scope 

The variable size vector bin packing problem (𝑉𝑆𝑉𝐵𝑃)                                 

is considered in this report due to the importance of multidimensionality 

in the recent applications, in which it lies in enabling the items to carry 

several incomparable attributes. For instance of these incomparable 

attributes, the requirements of the memory and the requirements of the 

bandwidth in the environment of computation (Rao et al., 2010). Also, 

minimizing the number of bins used leads to having the (near-) optimal 

solution which is always desirable, even when obtained high quality 

solutions. Korf (2002) states the main four reasons behind this 

orientation, firstly, the character of some of the applications may be 

sometimes require the existence of optimal solutions. Especially, when 

looking for a minimum number of bins, even a one more extra bin is 

comparatively expensive. Secondly, the ability of identifying the optimal 
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solutions could be consider as an accurate measurement in determining 

the quality of approximate solutions. For example, it is possible to 

compare the first fit decreasing (𝐹𝐹𝐷) and the best fit decreasing (𝐵𝐹𝐷) 

solutions because we could compute their optimal solutions. In addition 

to that, finding optimal solutions through anytime algorithm is beneficial 

for devising better solutions with respect to running time than those 

obtained by 𝐵𝐹𝐷 or 𝐹𝐹𝐷 algorithms. Indeed, this is important in practice. 

Finally, optimal bin packing is a challenging computational problem 

which may be result in better perception that could probably be applied 

to other problems. 

1.3. Outline 

The remaining parts are organized as follows. In Section 2,                

an overview of literature about the bin packing problem and its variants, 

also the main techniques that is used in solving these problems will be 

reviewed. Section 3 includes the formulation of the variable size vector 

bin packing problem, Section 4 shows different strategies that based on 

first fit (𝐹𝐹) algorithm for solving the variable size vector bin packing 

problem. In Section 5, results and analysis of those methods will be 

compared. Finally, conclusion will be in the Section 6. 
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2. Literature Review 
 

2.1. Bin packing problem (𝑩𝑷𝑷) 

2.1.1. Problem definition 

Bin packing problems (𝐵𝑃𝑃𝑠) are represented as a one of the 

challengeable combinatorial optimization problems (cited in 

Haouari and Serairi, 2009). These problems appear as a principal 

problem or    as an important subproblem in several industrial 

applications (Camacho, Terashima-Marin, Ochoa, and Conant-

Pablos, 2013; Fleszar and Charalambous, 2011; Fleszar, 2012 

cited in Dokeroglu and Cosar, 2014). 

       The classical bin packing problem is defined as follows.                    

We are given a set of items and infinite number of bins in which 

each item has a specific size and each bin has the same capacity. 

The goal is to pack all of the items into a minimum number of bins 

while ensuring that the total sizes of all items loaded into a bin does 

not exceed the bin's capacity.  

        The bin packing problems could be categorized according to 

the bin size as single or multiple bin size. 

Firstly, introducing the single bin packing problem which could be 

explained through the one-dimensional bin packing problem.                  

Since this problem is consist of a number of items with given 

weights and bins of identical size and the goal is to place these 

items in the minimum number of bins in which it will fit without 

violating the capacity constraints, which means that the total 

capacity of the packed items in the bin should not exceed the 

capacity of the bin (cf. Martello and Toth,1990; Scholl et al., 1997; 

Schwerin and Wascher, 1997). There are also other names calling 

for this kind of problem such as Vehicle Loading Problem (cf. 

Golden,1976, p. 266) and Binary Cutting Stock Problem (cf. 

Vance et al., 1994). Babel et al. (2004) study another type of this 

problem named the k-Item bin packing problem, in which for each 
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bin, is allocated no more than k items.  

Moving to the two-dimensional (Orthogonal) bin packing problem, 

where in this problem the purpose is to pack a collection of various 

rectangles into a minimum number of rectangular bins.                            

However, this type of problem is also mentioned as the                                 

two-dimensional finite bin packing problem to know the difference 

between it and the two-dimensional strip packing problem, where 

the bins in this one have an infinite size in one dimension (Lodi et 

al., 1999, 2002b, p. 379; Lodi et al., 2002a, p. 242; Martello and 

Vigo, 1998). George et al. (1995, p. 693) indicate the cylindrical bin 

packing problem that is a two-dimensional circular single bin sized 

bin packing problem where the items are circles and the bins are 

rectangles. In practice, this type of the problem is appearing in the 

logistics issues. 

Regarding the three-dimensional (Orthogonal) bin packing 

problem, in this problem is supposed that the items are rectangular 

boxes and the bins are rectangular with the same capacity (cf. Lodi 

et al., 2002c). Miyazawa and Wakabayashi (2003) describe a 

particular case of the three dimensional rectangular bin packing 

problem, where that all of items and bins are cubes and it has been 

named the cube packing problem. 

Moving to the multiple bin sized bin packing problems, Chu and La, 

(2001) and  Kos and Duhovnik, (2002) consider the one-

dimensional variable sized bin packing problem which is a 

generalization of the classical one-dimensional bin packing 

problem where a number of bin types are added and each type of 

these bins has its own cost and size.  Also, the number of available 

bins per bin type is infinite. The aim is to minimize the total costs of 

the used bins during packing all of the items into bins (cf.Kang and 

Park, 2003). As well as a specific case "rectangular case" in a two-

dimensional is studied by Tarasova et al. (1997) (Cited in Wäscher, 

Haußner and Schumann, 2007). 
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2.1.2. Usage 𝑩𝑷𝑷 in real-world applications 

           The bin packing problems arises in the context of many              

real-world applications for example in cutting, packaging, planning 

of telecommunication, transportation, production, and supply-chain 

systems.  

           The two and three dimensional bin packing problems are 

usually appeared in the manufacture as well. For example, in all of 

construction, clothing, glass, plastic, or metal industries, the aim is 

to use the minimum number of sheets of these materials (Dahmani, 

Clautiaux, Krichen, & Talbi, 2013). In the same way, in the case of 

designing the page' layout of a newspaper, where the pages have 

fixed dimensions and it is required to order the articles on them. In 

the shipping and transportation industries, the minimum number of 

rectangular bins is required when loading bundles of the same 

heights (cited in Dokeroglu and Cosar, 2014). 

2.1.3. Related work 

The first fit decreasing (𝐹𝐹𝐷) algorithm (Eilon and Christofides 

1971, Johnson et al. 1974) and the best fit decreasing (𝐵𝐹𝐷) 

algorithm (Johnson et al. 1974) are the simple and most widely 

used algorithms in the field of bin packing problems. 

The first fit decreasing (𝐹𝐹𝐷) algorithm is a simple approximation 

algorithm and it works as follows: sort the items in non-increasing 

order of sizes. Then starting packing with the first item in the list 

(which is the largest item) and place it into the bin with the lowest 

index, which it will fit this item while still meeting its capacity 

constraint. Eilon and Christofides (1971) indicate that the 

performance of 𝐹𝐹𝐷 algorithm is quite good compared to the results 

of the previous studies. The best fit decreasing (𝐵𝐹𝐷) algorithm is 

slightly better approximation algorithm. It works almost the same to 

the first fit decreasing (𝐹𝐹𝐷) algorithm. However, there is a 

difference in determining which bin that the item will be placed in. 

Where in the 𝐵𝐹𝐷 algorithm will choose the bin with the highest 
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load (fullest bin), provided it fits this item and without exceeding the 

bin capacity. Although both of 𝐹𝐹𝐷 and 𝐵𝐹𝐷 algorithms could be 

utilized in O (𝑛 log 𝑛) time, this is not promised to get optimal 

solutions. However, the worst case bounds for both of these 

algorithms is 
11

9
 ∗ 𝑁 + 4, where 𝑁 is the optimal number of bins 

(Johnson et al. ,1974).The main weakness of the 𝐹𝐹𝐷 and 𝐵𝐹𝐷 

algorithms lies in the deterioration of their performance in dealing 

with the difficult problems (the problems that their optimal solution 

need a totally filling for the most or all bins). Coffman et al. (1978) 

show that the obtained solutions from the 𝐹𝐹𝐷 and 𝐵𝐹𝐷 algorithms 

are usually need more bins than the ones of an optimal solution for 

the difficult problems (cited in Gupta and Ho,1999). 

Eilon and Christofides (1971) propose an improvement algorithm 

for solving the bin packing problem with different objective functions 

(cited in Kumar et al. ,2003). 

Coffman et al. (1987) assert that the first fit decreasing (𝐹𝐹𝐷) 

algorithm provides an optimal solution for one-dimensional bin 

packing problem under a divisibility condition. On the other hand, 

Kang and Park (2003) show that this result is incorrect through 

giving an opposing example. 

Martello and Toth (1990) describe several simple heuristics and use       

a reduction procedure (𝑀𝑇𝑅𝑃) and an exact algorithm (𝑀𝑇𝑃) to 

solve the bin packing problem (𝐵𝑃𝑃) (cited in Loh et al, 2008). 

Falkenauer (1996) propose a hybrid grouping genetic algorithm to 

solve the bin packing problem (cited in Fleszar and Charalambous, 

2011). 

Scholl et al. (1997) improve a hybrid method by gathering                          

tabu search with a branch-and-bound method. Schwerin and 

Wäscher (1999) improve the 𝑀𝑇𝑃 of Martello and Toth (1990) and 

also found        a new lower limits for the bin packing problem (𝐵𝑃𝑃) 

that is derived from the cutting stock problem. However, a 

comprehensive review of approximation schemes for the bin 
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packing problem is given by Coffman et al. (1997), as the most 

important points dealt with is the analysis of the worst case of the 

first fit decreasing (𝐹𝐹𝐷) and the best fit decreasing (𝐵𝐹𝐷) 

algorithms (cited in Loh et al, 2008). 

Vance (1998) propose an exact algorithm for solving the bin 

packing problem and this algorithm is relied on the linear 

programming methods which are proposed by Gilmore and Gomory 

(1961). However, the running time of this algorithm is a bit slow 

which is negatively impact on its practical use (cited in Kang and 

Park, 2003). 

Gupta and Ho (1999) introduce a minimal bin slack heuristic (𝑀𝐵𝑆) 

heuristic to solve the one-dimensional bin packing problem, which 

is developed later by Fleszar and Hindi (2002). They show that their 

proposed algorithm outperforms both of first fit decreasing (𝐹𝐹𝐷) 

algorithm and best fit decreasing (𝐵𝐹𝐷) algorithm regarding the 

optimality of solutions in particular for the problems that called 

"difficult" problems. 

Vanderbeck (1999) describe an exact algorithm which is based on 

column generation for the cutting stock problem and show that this 

algorithm could be used for some kinds of bin packing problem 

(𝐵𝑃𝑃) (cited in Fleszar and Charalambous, 2011). 

Chu and La (2001) investigate four greedy approximation 

algorithms to solve the one-dimensional bin packing problem and 

study their absolute worst-case performances. They show that the 

worst case for these algorithms are 2, 2, 3 and 2 + ln 2 in 

succession. 

Fekete and Schepers (2001) provide a new lower bounds for the 

bin packing problem that based on dual-feasible functions (cited in 

Fleszar and Charalambous, 2011).  

Furthermore, Fleszar and Hindi (2002) introduce a number of 

heuristics which rely on 𝑀𝐵𝑆 and a variable neighbourhood search 

metaheuristic (cited in Loh et al, 2008).  
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Valério de Carvalho (2002) improve an exact algorithm by using the 

branch and bound algorithm and investigate linear programming 

(𝐿𝑃) models for the bin packing problem and the cutting stock 

problem.  

Fleszar and Hindi (2002) propose a number of algorithms to solve 

the one dimensional bin packing problem. Some of these 

algorithms relied on the minimal bin slack (𝑀𝐵𝑆) heuristic that is 

proposed by Gupta and Ho (1999), while there is a one based on 

the variable neighbourhood search scheme. However, their most 

efficient algorithm compared to other existing methods is based on 

operating the modified version (𝑀𝐵𝑆′) of the minimal bin slack 

heuristic then followed it by the variable neighbourhood search 

metaheuristic. 

The call bin completion algorithm for optimal bin packing is 

proposed by Korf (2002) in which considering the methods of 

packing each bin to be completed) instead of investigating the 

possible bins that each item could be packed into. It is showed that 

this algorithm is quicker than the existing optimal algorithms. 

Kumar et al. (2003) propose an algorithm for solving the one-

dimensional bin packing problem with additional constraints. They 

used this heuristic for a vehicle allocation problem where this 

heuristic show its superiority over the first fit decreasing (𝐹𝐹𝐷) 

algorithm in terms of better performance and easily alteration with 

other constraints. 

Ross et al., (2003) investigate an approach based on genetic 

algorithm (𝐺𝐴) to solve the bin packing problem. Caprara and 

Pferschy (2004, 2005) consider the performance of the worst-case 

of heuristics (cited in Dokeroglu and Cosar, 2014). 

Bhatia and Basu (2004) present a multi-chromosomal grouping 

genetic algorithm for 𝐵𝑃𝑃. Levine and Ducatelle (2004) introduce a 

hybrid method that applies the ant colony optimization 

metaheuristic (𝐻𝐴𝐶𝑂 − 𝐵𝑃), which hasa technique for a local 
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search based on the dominance criterion from Martello and Toth 

(1990). Singh and Gupta (2007) introduce a new heuristic that 

combines a hybrid steady-state grouping genetic algorithm with a 

developed minimal bin slack algorithm of Fleszar and Hindi (2002). 

Additionally, evolutionary algorithms are considered in Poli et al. 

(2007) and Rohlfshagen and Bullinaria (2007). Crainic et al. 

(2007a,b) introduce better lower bounds and study their worst case 

performance (cited in Fleszar and Charalambous, 2011). 

Rohlfshagen and Bullinaria (2007) improve an algorithm that 

adopted the theory of exon shuffling. Poli et al. (2007) present an 

algorithm with discrete item sizes in which the histogram of item-

size is joined with the corresponding bin-gap histogram. Stawowy 

(2008) propose a non-specialized and non-hybridized algorithm 

which uses an adjusted permutation with separators encoding 

strategy, unique concept of separators movements over mutation, 

and separators removal as a strategy to reduce the size of problem 

(cited in Dokeroglu and Cosar, 2014).  

Roy et al. (2008) study the behavior patterns through practical 

instances from an empirical study of bin packing heuristics.  

Loh et al. (2008) introduce a new heuristic based on using the 

weight annealing (𝑊𝐴) for solving the one-dimensional bin packing 

problem (𝐵𝑃𝑃). Their computational experiments show that this 

technique is superior to most other previous approaches in terms 

of the simplicity of the algorithm, the high quality of the obtained 

solutions and the quickness of the running time.  

Correa and Epstein (2008) consider a bin packing with controllable 

item sizes, where is given list of pairs related to each item. These 

pairs comprise of a permitted size for the item and a nonnegative 

penalty for each pair. The objective is to choose a pair for each item 

which minimizing the total number of bins that required to place the 

sizes and the sum of penalties. They also provide an asymptotic 

polynomial time approximation scheme (𝐴𝑃𝑇𝐴𝑆) which uses bins 
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sizes are a little larger than 1. 

Gómez-Meneses and Randall (2009) consider a new evolutionary 

approach that applies the hybrid extremal optimization (𝐻𝐸𝑂).                    

This concept is about eradicating the weakest element of a 

population and then replacing it with another random element.                                       

However, this method contains a local search which relies on the 

strategy that is proposed by Falkenauer (1996) in order to enhance 

the quality of the packing. Lewis (2009) introduce an intuitive hill-

climbing (𝐻𝐶) procedure which uses a simple improvement strategy 

relies on the dominance criterion in order to make the bins more 

full. This procedure gives positive solutions and its performance is 

better than some other algorithms that considered in (Falkenauer, 

1996; Gupta and Ho, 1999) while still less than the best state-of-

the-art algorithms (cited in Quiroz-Castellanos et al., 2015). 

Khanafer et al. (2010) propose an outline for acquiring new dual 

feasible functions that depend on data. Memetic algorithms is also 

used for solving the one dimensional bin packing problem. In 

particular, one of these strategies is based on using separate 

individual learning or local improvement procedures (Le et al., 

2009; Ong et al., 2006). Segura et al. (2011) consider a multi-

objectivized memetic algorithm to solve the two-dimensional bin 

packing problem which runs faster than the existing genetic 

algorithms (cited in Dokeroglu and Cosar, 2014). 

Fleszar and Charalambous (2011) study the bin-oriented heuristics 

(𝐵𝑂𝐻𝑠) for the one dimensional bin packing problem (𝐵𝑃𝑃).                          

In bin-oriented heuristics, the solutions are constructed by packing 

one bin at a time. Fleszar and Charalambous (2011) propose a 

controlling average weight method for items which packed by using 

bin-oriented heuristics and give reduction methods for bin-oriented 

heuristics. As well as, they provide an improvement heuristic rely 

on this strategy. Their results show that both of controlling average 

weight method and reduction methods provided improved solutions 

with better computational times of some bin-oriented heuristics. 
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Also, they indicate that the performance of the new improvement 

heuristic is better than other previous heuristics with respect to the 

average quality of the solution and processing time. 

Alvim et al. (2004) use a highly effective hybrid improvement 

heuristic (𝐻𝐼_𝐵𝑃) to solve the bin packing problem (𝐵𝑃𝑃) and show 

that its performance is extremely well (cited in Loh et al., 2008). 

Dokeroglu and Cosar (2014) propose an island parallel grouping 

genetic algorithms (𝐺𝐺𝐴𝑠) which are robust tools for solving the one 

dimensional bin packing problem. Their findings indicate that these 

proposed algorithms are probably one of the best algorithms to 

solve the one dimensional bin packing problem because they give 

a high quality of solution and a reasonable computation time in 

comparison with the state-of-the-art heuristics. 

Quiroz-Castellanos et al. (2015) propose a Grouping Genetic 

Algorithm with Controlled Gene Transmission (𝐺𝐺𝐴 − 𝐶𝐺𝑇) to solve 

the bin packing problem. This suggested algorithm is supported the 

transmission of the best genes of the chromosomes while still 

keeping the balance between the selective pressure and population 

diversity. 

2.1.4. Other versions of the bin packing problem  

The basic bin packing problem is extended to several areas 

in order to demonstrate the real world applications. Some examples 

of the problem extensions are the two-dimensional packing 

problem [Martello and Vigo (1998)] and three-dimensional packing 

problem [Martello et al. (2002)], determining bounds of different bin 

packing problems [Fekete et al. (2001), Fleszar et al. (2002), Labbe 

et al. (2003), etc.], and considering more additional constraints 

[Robb and Trietsch (1999), Ralphs et al. (2003), etc.]. However, the 

classical bin packing problem could also extended to address 

special constraints such as packing grouping of items and the 

maximum number of items per bin. Anily and Federgruen (1991) 

considered the packing problem in the case of   items are combined 
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into different groups. They used this procedure in vehicle routing 

problem and partitioning problems. Rhee (1993) investigated the 

packing problem with additional restrictions about the maximum 

permitted number of items for each bin. He proved in his study that 

the difference between the expected numbers of bins when the 

maximum number of items is two and the expected number of bins 

when the maximum number of items is three is of the order √𝑛 ,                   

where 𝑛 is an independent random variables uniformly distributed 

over [0, 1]. He also indicated that the difference will be smaller in 

the case of considering higher values of the maximum number of 

items (cited in Kumar et al.,2003). 

Also, Xavier and Miyazawa (2005) consider the class constrained 

shelf bin packing problem (𝐶𝐶𝑆𝐵𝑃) which is aimed to pack the items 

in a minimum number of bins, where the items should be separated 

by a shelf division of size 𝑑, where 𝑑 is non-negative values. They 

propose hybrid algorithms relied on the first fit (decreasing) and 

best fit (decreasing) algorithms and gave an asymptotic polynomial 

time approximation scheme (𝐴𝑃𝑇𝐴𝑆) for 𝐶𝐶𝑆𝐵𝑃 problem when 

there is a bound 𝐶 for the different classes, where 𝐶 is constant. 

Moreover, Filippi (2007) address a bin packing problem with a fixed 

number of object weights (𝐵𝑃𝐶) which is considered as a high-

multiplicity version of the classical bin packing problem because 

each object has its own weight so it is required to deal with each 

objects separately. His analysis leads to obtain a new bound on the 

gap between the optimal values of this problem and the linear 

relaxation of its Gilmore–Gomory formulation. 

Furthermore, Epstein et al. (2011) consider a new kind of online bin 

packing with conflicts as well as address both of online and semi-

online versions of this problem. 

In addition to that, Masson et al. (2013) propose an efficient multi-

start iterated local search for packing problems (𝑀𝑆 − 𝐼𝐿𝑆 − 𝑃𝑃𝑠) 

algorithm for multi-capacity bin packing problems (𝑀𝐶𝐵𝑃𝑃). Their 
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findings indicate that this approach (which is based on simple 

neighborhoods) provides good solutions with respect to the quality 

and the computational time, this also applies even for large problem 

instances. 

2.2. Variable sized bin packing problem (𝑽𝑺𝑩𝑷𝑷) 

2.2.1. Problem definition 

The variable sized bin packing problem (𝑉𝑆𝐵𝑃𝑃) is                                          

a generalization of the classical one-dimensional bin packing 

problem (𝐵𝑃𝑃). In the variable sized bin packing problem, we have a 

set of items in which each item has a specified size and different 

types of bins, where the number of bins is unlimited. The aim is to 

pack a set of items into a minimum number of bins while still meeting 

the capacity constraint of each bin. The 𝑉𝑆𝐵𝑃𝑃 is also a NP-hard 

problem because 𝐵𝑃𝑃 (which is a special case of 𝑉𝑆𝐵𝑃𝑃) is a NP-

hard problem (Garey and Johnson, 1979 cited in Correia et al. , 

2008). 

 

2.2.2. Usage 𝑽𝑺𝑩𝑷𝑷 in real-world applications 

The variable sized bin packing problem (𝑉𝑆𝐵𝑃𝑃) also has a 

wide range of practical applications for example in loading problems 

and in machine scheduling. 

The 𝑉𝑆𝐵𝑃𝑃 arises in loading truck problems in the case where just                   

the weight is taken into account and where a several trucks is 

available, specifically more than one truck of every size/weight limit. 

The objective is to minimize the overall cost of the chosen trucks. 

In the case of machine scheduling, the 𝑉𝑆𝐵𝑃𝑃 originates when there 

are a given number of tasks and different types of processors,                    

where each job has a processing time value that is required for                             

its implementation. The aim is to minimize the cost related to the 

processors that is used to schedule all the tasks (Correia et al. , 

2008). 
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2.2.3. Related work 

A number of previous studies have been considered the 

methods of approximation solutions for variable sized bin packing 

problem (𝑉𝑆𝐵𝑃𝑃) and its variants. Friesen and Langston (1986) 

describe three approximation algorithms for solving the variable 

sized bin packing problem where it allowable only a fixed set of bin 

sizes and the cost of the obtained solution is the total sizes of used 

bins. Also they show their guarantee asymptotic worst-case 

performance bounds which are 2, 3/2 and 4/3 in succession. Murgolo 

(1987) obtain an asymptotic fully polynomial time approximation 

scheme (𝐴𝐹𝑃𝑇𝐴𝑆) for this problem (Cited in Haouari and Serairi, 

2009). 

Han et al. (1994) consider an optimization problem for the two- 

dimensional variable sized vector bin packing problem (2 − 𝑉𝑆𝑉𝐵𝑃), 

where is given different types of bins (not identical bins). They 

propose three approaches:  a greedy heuristic, a method based on 

simulated annealing and an exact algorithm. In addition to use a 

method based on linear programming to improve lower bounds. 

Monacci (2002) suggest a branch-and-bound method to solve                        

the variable sized bin packing problem (𝑉𝑆𝐵𝑃𝑃). He assume in his 

study that for each bin, its cost is equal to its capacity and the amount 

of bins per bin type is equal to the total amount of items (cited in 

Correia et al., 2008). 

The column generation strategies are considered in (Belov and 

Scheithauer, 2002 ; Alves and Valério de Carvalho, 2007) and                           

are applied to solve the variable sized bin packing problem (𝑉𝑆𝐵𝑃𝑃) 

and the classical bin packing problem (𝐵𝑃𝑃) as well.                                   

Moreover, Pisinger and Sigurd (2005) develop these column 

generation techniques for solving the two-dimensional variable sized 

bin packing problem (2 − 𝐷𝑉𝑆𝑉𝐵𝑃) (cited in Correia et al., 2008). 

In addition to those existing methods, exact methods have been                        

also investigated for the variable sized bin packing problem (𝑉𝑆𝐵𝑃𝑃)       
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by Monaci (2002), Belov and Scheithauer (2002), Alves and Valério 

de Carvalho (2007), and Haouari and Serairi (2009). Nevertheless, 

these proposed exact algorithms is not capable for solving the large 

problem instances because the 𝑉𝑆𝐵𝑃𝑃 is NP-hard (Cited in Haouari 

and Serairi, 2009). 

Kang and Park (2003) propose two greedy algorithms where they 

are a different form of first fit decreasing algorithm (𝐹𝐹𝐷) and best fit 

decreasing algorithm (𝐵𝐹𝐷) respectively. They analyze the 

asymptotic worst-case performance of these algorithms in three 

specific cases regarding the divisibility of items weights and/or bins 

capacities. Firstly, when the sizes of items and the sizes of bins are 

divisible and show that the algorithms give optimal solutions. In the 

second case, when only the sizes of bins are divisible and prove that 

the algorithms give a solution whose value is less than 
11

9
 𝑧 + 4 

11

9
 . 

Finally, when the sizes of bins are not divisible and prove that the 

algorithms give a solution whose value is less than 
3

2
 𝑧 + 1 (where 𝑧 

is the value of an optimal solution). 

Correia et al. (2008) consider in their study the utilization of a 

discretized formulation for solving the variable sized bin packing 

problem (𝑉𝑆𝐵𝑃𝑃). They show that their proposed model after having 

some appropriate improvements gives better linear programming 

bounds and also this model could be used jointly with a commercial 

package in order to find 𝑉𝑆𝐵𝑃𝑃 optimal solution.  

Haouari and Serairi (2009) propose and evaluate the performance of 

six heuristics and also develop a genetic algorithm for the one 

dimensional variable sized bin packing problem (𝑉𝑆𝐵𝑃𝑃). Their 

results show that these heuristics which based on set covering 

performed well for large problem instances in terms of providing 

highly efficient solutions and taking short 𝐶𝑃𝑈 times.  

Hemmelmayr et al. (2012) propose a variable neighbourhood search 

metaheuristic to solve the variable sized bin packing problem 

(𝑉𝑆𝐵𝑃𝑃). This algorithm is based on using the lower bounds and                             
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dynamic programming. They indicate that this approach is more 

likely to have a better results than the current state-of-the-art 

methods, in particular when it is used with large-scale instances. 

The generalization of first fit decreasing (𝐹𝐹𝐷) algorithm in 

multidimensional case makes it necessary to define the methods of 

measuring and comparing items due to the fact that the largest item 

will be chosen and placed into a bin in the classical first fit decreasing 

(𝐹𝐹𝐷) algorithm (cited in Gabay and Zaourar, 2013). Panigrahy et al. 

(2011) use the DotProduct measure which defines the term "largest" 

as the item that maximizes the dot product between the vector of 

remaining capacities and the vector of demands for the item. 

2.2.4. Other versions of the variable sized bin packing problem 

  In light of previous studies, there are other suggested variants               

of the variable sized bin packing problem (𝑉𝑆𝐵𝑃𝑃) could be defined                 

as well. 

In the original version, there are unlimited number of bins available 

for each type of the bins (cf. Friesen and Langston, 1986 ; Murgolo, 

1987; Chu and La, 2001 ;Monacci, 2002 ;Kang and Park, 2003) 

(cited in Hemmelmayr et al , 2012). 

Also, Dawande et al. (2001) address the variable sized bin packing 

problem with new constraints, named the color constraints. In this 

problem, each item has colour and size and the objective is to 

minimize the number of used bins such that each bin should not 

contain more than 𝑝 distinct colors, where 𝑝 is a pre-determined 

positive integer. 

By the way, Seiden et al. (2003) study the variable sized online bin 

packing problem and propose algorithms which give better upper 

bounds compared to the existing ones as well as introduce the first 

lower bounds for this problem. 

Another different form is examined by Correia et al., (2008) and                    

Crainic et al., (2011), where in that case, an upper bounds on the 
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number of bins per bin type are considered.  

In addition to that, Correia et al. (2008) describe the variable cost 

and sized bin packing problem (𝑉𝐶𝑆𝐵𝑃𝑃) in which they consider the 

economic attributes (bin costs) in addition to physical attributes for 

the purpose of making more distinction between this case and the 

other case where it is not necessary to have a correlation between 

the fixed costs of the bins and their capacity. Epstein and Levin 

(2008) provide an asymptotic polynomial time approximation scheme 

(𝐴𝑃𝑇𝐴𝑆) for the generalized problem. Crainic et al. (2011) introduce 

a heuristics algorithms for 𝑉𝐶𝑆𝐵𝑃𝑃, which relies on the upper and 

lower bounds. Their findings prove that these algorithms are very 

effective for large problem instances as well. It is also show how the 

correlation between the bin costs and the bin volumes affects the 

quality of the solution. So, this approach compared with state-of-the-

art methods is provided better solutions regards to the computational 

effort and solution accuracy. 

Furthermore, Baldi et al. (2010) study a more general version of this 

problem, where other characteristics are added for instance required 

items and optional items which should be placed into the bins.                

Besides this, they consider that the number of bins per bin type have            

a lower bound (cited in Hemmelmayr et al., 2012). 

2.3. Vector bin packing problem (𝑽𝑩𝑷)

2.3.1. Problem definition 

The Vector bin packing (𝑉𝐵𝑃) problem or d-Dimensional vector 

packing (𝑑 − 𝐷𝑉𝑃) problem is introduced by Garey et al. (1976) which 

is a generalization of the classical bin packing problem. In this 

problem, a given set of items where each item is a d-dimensional 

vector with entries  ∈ [0,1]. The objective is to pack the items into a 

minimum number of bins where the sum of the sizes of all packed 

items must be less than or equal to 1 (cited in Alves et al. , 2014). 
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2.3.2. Usage 𝑽𝑩𝑷 in real-world applications 

There are many important applications of the vector bin 

packing (𝑉𝐵𝑃) problem, one of them is Data Placement problem which 

takes a place in a study by Shachnai and Tamir (2003). It is also used 

in a shared hosting platform which is aimed to allocate the jobs to 

servers, where each job requires a number of resources like a number 

of cycles per second, memory and bandwidth. Therefore, in this 

application the jobs represent the items, the servers are the bins and 

the number of resources is the dimension 𝑑 (Stillwell et al, 2010 cited 

in Kao, 2008). Another application of the vector packing problem is in 

modelling the virtual machine placements for the cases when all the 

machines have an identical capacities (Lee et al., 2011; Panigrahy et 

al., 2011; Stillwell et al., 2010). However, by the development of this 

area over the previous years, the new machines become with different 

capacities. A generalization of the vector bin packing problem (𝑉𝐵𝑃) 

called the variable size vector bin packing (𝑉𝑆𝑉𝐵𝑃) problem is 

introduced by Gabay and Zaourar (2013). The new in this problem is 

that each bin has a tuple of capacities and the aim is to pack the items 

in a minimum number of bins used. The 𝑉𝑆𝑉𝐵𝑃 problem efficiently 

modelling the virtual machine placements with heterogeneous cluster 

(cited in Gabay and Zaourar, 2013). 

2.3.3. Related work 

The first asymptotic polynomial-time approximation scheme 

(𝐴𝑃𝑇𝐴𝑆) is provided by Fernandez de la Vega and Lueker (1981) in 

which their method was based on rounding. Then Karmarkar and Karp 

(1982) improved this algorithm to a (1 + log2 ) -OPT bound (Cited in 

Rao et al., 2010). 

Maruyama et al. (1977) study a generalization of one dimensional bin 

packing heuristics within a general framework for vector bin packing 

problem. Kou and Markowsky (1977) investigate the lower and upper 

bounds in their study and indicate that for some generalized classical 

bin packing algorithms, the behavior ratio of worst case is larger than 
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the dimension (𝑑) (cited in Gabay and Zaourar, 2013). 

Yao (1980) proved that a worst case performance ratio of any time 

algorithm 𝑂(𝑛 log 𝑛 ) is bigger than dimension (𝑑). 

There are several algorithms used in solving the vector bin packing 

problem starting with the simple greedy heuristics for example: First 

Fit, Best Fit, Worst Fit and Next Fit algorithms which were studied in 

Kou and Markowsky,1977 ; Maruyama et al.,1977 (cited in Stillwell et 

al., 2010) 

Woeginger (1997) prove that there is no asymptotic polynomial time 

approximation scheme (𝐴𝑃𝑇𝐴𝑆) for the vector bin packing problem of 

higher dimension (𝑑 ≥ 2) (unless 𝑃 = 𝑁𝑃). Chekuri and Khanna 

(1999) show an 𝑂(ln 𝑑)-approximation algorithm for the vector bin 

packing which is a polynomial-time for the case where 𝑑 is constant. 

Bansal et al. (2006) improve this by a randomized (ln 𝑑 + 1 + 𝜀)-

approximation algorithm that runs in polynomial-time for any fixed 𝜀 >

0 and constant dimension 𝑑. As well as this approximation algorithm 

has been improved to extend to higher dimensions (𝑑 ≥ 2) by Rao et 

al. (2010), their proposed algorithm is dependent on combining both 

of (near-) optimal solution of the linear programming relaxation and a 

greedy heuristic. Karger et al. (2007) show the existence of the 

polynomial approximation scheme to the randomly perturbed 

instances through using smoothing analysis for multidimensional 

vector bin packing problems.  

Karp et al. (1984) consider in their study the vector bin packing 

problem where the size of all items are drawn independently from the 

uniform distribution over [0,1]. They prove the lower bounds on the 

expected wasted space in the optimal solution is Ω (𝑛
𝑑−1

𝑑
) for 𝑑 > 3. 

Also, they propose a new algorithms called 𝑉𝑃𝐴𝐶𝐾 that tries to place 

two objects in each bin, Since this heuristics shows a better usage of 

the bins where the wasted space is considered as a very little amount. 
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Spieksma (1994) study the two dimensional vector packing (2 − 𝐷𝑉𝑃) 

problem and propose a heuristic relies on the first fit decreasing (𝐹𝐹𝐷) 

algorithm to solve this problem. As well as examine the lower bounds 

for optimal solutions of the two-dimensional vector packing (2 − 𝐷𝑉𝑃) 

problem and using these bounds in a branch-and-bound algorithm.  

Chekuri and Khanna (1999) show that the 2-dimensional vector 

packing problem is APX-hard and It is a 𝑑
1

2⁄  − 𝜖 hardness of 

approximation, for any fixed 𝜖 > 0 . 

Caprara and Toth (2001) analyze many lower bounds for 2-

dimensional vector packing problem and prove that all of these lower 

bounds are dominated by the acquired lower bound from the huge 

linear programming relaxation. They propose exact algorithms and 

heuristic in order to obtain an optimal solutions. A two-dimensional 

vector packing is also used by Chang et al. (2005) in modelling the 

packing steel products problem, where there are special containers 

should be packaged steel products and they propose a heuristic 

algorithm for it.  

Alves et al. (2014) propose new functions called vector packing dual-

feasible functions to solve the two-dimensional vector packing 

problem which extend the concept of dual-feasible functions to the 

multidimensional case.  They show that theses proposed functions 

accomplish a considerable improvements on the convergence of 

branch and-bound algorithms and provide strong lower bounds. 

Shachnai and Tamir (2003) propose a polynomial-time approximation 

scheme (𝑃𝑇𝐴𝑆) for a subclass of instances for the vector bin packing 

problem. Caprara et al. (2003) prove in their study that for getting a 

𝑃𝑇𝐴𝑆 for d-DVP, the weight vectors of all items must be totally 

ordered.  

The genetic algorithms are also considered for solving the vector 

packing problems that arise from resource allocation problems (Rolia 

et al., 2003 ; Gmach et al. , 2009; Gmach, 2009 cited in Stillwell et al., 

2010). 
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Stillwell et al. (2010) propose and assess several algorithms for the 

resource allocation problem in shared hosting platforms. They point 

out that the chose pack vector packing algorithm which is proposed 

by Leinberger et al. (1999) has the best performance regards the 

running time, as it does not exceed a few seconds. They also show 

that this approach is working better than greedy algorithms, linear 

programming relaxations and a genetic algorithms. Therefore, the 

chose pack vector packing algorithm is considered as more effective. 

Panigrahy et al. (2011) study a various variants of the first fit 

decreasing (𝐹𝐹𝐷) algorithm for solving the vector bin packing problem 

and propose a geometric algorithm which has a better results than first 

fit decreasing (𝐹𝐹𝐷) heuristics for sensible values of 𝑛 and 𝑑. In 

addition to that, the number of bins used could be reduced by 10% 

through using this new geometric heuristics. 

Patt-Shamir et al. (2012) study a multiple-choice vector bin packing 

which is another different form of bin packing problem where bins have 

various sizes and they propose an approximation algorithm with a rate                            

( ln 2𝑑 + 1 + 𝜀 ) for any 𝜀 > 0. 

 

 

 

 

 

 

 

 

 

 



29 
 

3. Problem definition 

3.1. Variable size vector bin packing problem (𝑽𝑺𝑽𝑩𝑷) 

3.1.1. Notations and formulation  

           Consider the following notation: 

               𝐼 = {1, … … … … … … … , 𝑁}      set of items 

               𝐽 = {1, … … … … … … … , 𝑛}      set of bins 

              𝐷 = {1, … … … … … … … , 𝑑}      the number of dimensions 

              𝑥𝑗𝑖                                          item 𝑖 is packed in bin 𝑗  ( 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 ) 

              𝑦𝑗                                            bin 𝑗 is used 

             𝑐𝑗
𝑘                                            capacity of bin 𝑗 in dimension 𝑘 

             𝑠𝑖
𝑘                                            size of item 𝑖 in dimension 𝑘 

 

The 𝑉𝑆𝑉𝐵𝑃𝑃 can be straightforwardly formulated as follows: 

                                 Min ∑ 𝑦𝑗𝑗∈𝐽                                                             (1)                                                   

           Subject to 

                        ∑ 𝑠𝑖
𝑘 𝑥𝑗𝑖𝑖∈𝐼  ≤ 𝑐𝑗

𝑘                     ∀  𝑗 ∈ 𝐽  , ∀  𝑘 ∈ 𝐷              (2)              

                        ∑ 𝑥𝑗𝑖𝑗∈𝐽  = 1                           ∀  𝑖 ∈ 𝐼                               (3) 

                        𝑥𝑗𝑖 ∈ {0,1}                             ∀  𝑗 ∈ 𝐽 , ∀  𝑖 ∈ 𝐼                 (4)              

                         𝑦𝑗 ∈ {0,1}                              ∀  𝑗 ∈ 𝐽                              (5) 

 

The objective function (1) minimizes the number of the bins used for 

packing all the given items. Inequalities (2) demonstrate the capacity 

constraints which state that the amount of items packed in the bin 𝑗        

in dimension 𝑘 should not exceed its capacity for each bin 𝑗                         

and dimension  𝑘 while constraints (3), (4) and (5) ensure that each 

item 𝑖 is packed to a bin 𝑗.     
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The optimization problem that we are addressing is a two-dimensional 

variable size vector packing problem (2𝐷𝑉𝑆𝑉𝑃). This problem is,                  

in fact, a special case of the variable size vector bin packing problem 

which was introduced by Michael and Zaourar (2013) when the 

dimension 𝑑 = 2. 

3.2. Two-dimensional variable size vector packing problem                         

(𝟐 − 𝑫𝑽𝑺𝑽𝑷) 

A given list of items 𝐼 = {1, … … … … … … … , 𝑁} and each item 𝑖 ∈ 𝐼 

has size 1 and size 2 (𝑎𝑖, 𝑏𝑖). Also the size 1 and the size 2 of the bins is 

𝐴 and 𝐵 respectively. The aim is to pack the items into a minimum 

number of bins such that the total sum of 𝑎𝑖 (size 1) of all the items which 

packed into the same bin should not exceed 𝐴. Likewise, the total sum 

of 𝑏𝑖 (size 2) of all the items which packed into the same bin should not 

exceed 𝐵. 

However, in order to meet the constraint that the entries (𝑎𝑖, 𝑏𝑖) ∈ [0,1] 

for each item 𝑖 ∈ 𝐼, it is required to scale the capacities of the bins (and 

items) so that the capacity of the bins will end up with the 1 for all 

dimensions. Hence, this could be obtained through dividing the capacity 

of each item by the capacity of the bin in that dimension.  
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4. Methodology 

In this section, we explain the different strategies that have been 

used in our study for solving the two-dimensional variable size vector bin 

packing problem (2 − 𝐷 𝑉𝑆𝑉𝐵𝑃) which is a special case of the variable 

size vector bin packing problem (𝑉𝑆𝑉𝐵𝑃) when the dimension 𝑑 = 2 . 

These strategies are based on the first fit (𝐹𝐹) algorithm with some                      

new variants. 

4.1. Strategy 1  

This strategy is applied the simple first fit (𝐹𝐹) algorithm which is used 

to solve the classical bin packing problem (𝐵𝑃𝑃) into variable size vector 

bin packing (𝑉𝑆𝑉𝐵𝑃) problem which is a multidimensional packing 

problem. We generalize this well-known algorithm in order to investigate                          

its performance in this multidimensional problem. In this research we refer 

to the first fit (𝐹𝐹) algorithm by algorithm 1. Since the asymptotic 

approximation ratio of First Fit bin packing is equal to 1.7, Dosa (2007) 

proved the absolute approximation ratio for the first fit bin packing is 

exactly equal to 1.7. 

Algorithm 1 works as follow: 

Step 1: Start packing with the first item in the list. 

Step 2: check the fitting condition [If the item did fit in the first bin] then                   

place the item into the first bin. Otherwise, open a new bin and put 

the item within the new bin. 

Step 3:  move to the next item and do the same procedure in the step 2 

until packing all the items. 

Note that the open bins they keep open in the hope that the remaining 

spaces will be filled later by other items. 
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4.2. Strategy 2  

The concept of this strategy is the same as the first fit decreasing 

(𝐹𝐹𝐷) algorithm which is one of the simple algorithms that is used to solve 

the bin packing problems (Eilon and Christofides 1971, Johnson et al. 

1974). Also, different variants of the first fit decreasing (𝐹𝐹𝐷) algorithm is 

studied by Panigrahy et al. (2011) to solve the vector bin packing problem. 

  In the 𝐹𝐹𝐷 algorithm the set of items is sorted in non-increasing order 

regards their sizes. However, in our case we are dealing with 

multidimensional (2 dimensions) so it is important to define how the largest 

items will be measured. Our approach is to propose two algorithms, where 

the first one takes into account one of the sizes to measure the largest 

items with respect to it while the other size does not have any effect, it is 

just dependent on the selected size and the second algorithm is vice 

versa. Hence, we dealt with each size separately. 

Algorithm 2 works as follows: 

Step 1: sort the set of items in non-increasing order regards their size1, 

where size1 is the size of the items in the first dimension. 

Step 2: apply the first fit (FF) algorithm to pack the items. 

Algorithm 3 works as follows: 

Step 1: sort the set of items in non-increasing order regards their size2, 

where size2 is the size of the items in the second dimension. 

Step 2: apply the first fit (FF) algorithm to pack the items. 
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4.3. Strategy 3 

This strategy is based on random permutation of items vector                               

and it includes one algorithm called algorithm 4. This approach is the same 

of the Random Fit (RF) algorithm which is a simple variant of the well-

know first fit (FF) algorithm (Albers and Mitzenmacher,1998). 

 

Algorithm 4 works as follows: 

Step 1: randomize the items vector. 

Step 2: apply the first fit (FF) algorithm to the new obtained items vector.  

To explain the randomization of items vector more precisely,                                

for example: if we have in the original version of the problem 10 types                    

of items, and there is 2 pieces from each item type except item type 1                              

and item type 7 there are 5 pieces from these items type. Thus, the total                 

number of items is 26. Therefore, the original items vector is 

{1,1,1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,7,7,7,8,8,9,9,10,10}, however , in this                

version the items vector would be randomize in any way such as 

{10,2,5,1,8,5,1,1,7,3,4,9,10,7,7,6,2,8,7,3,9,1,1,4,6,7}. So, the number of each 

type of items still as before just the order of these items change randomly. 

Note that this randomization of items is changed every time when the 

algorithm runs which leads to obtain different results in each running while 

the input instances of the problem are the same. 
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4.4. Strategy 4 

The strategy 4 rely on various probabilities rules and it is similar to 

the strategy 3 in terms of that both of them are selected the items randomly 

in each run of the algorithm. In other words, different results will be 

obtained for the same problem at every run of the algorithm. 

In this strategy, we have four algorithms named algorithm 5, 

algorithm 6, algorithm 7 and algorithm 8 respectively. These algorithms 

have the same procedure except that the probabilities rules are different 

in each version. 

Algorithm 5 is defined as follows: 

Step 1:  calculate the probability 𝑝𝑖 for each item type, in which the   

probability rule in this algorithm is defined as follows:                                                  

                 𝑝𝑖 = 
𝑑𝑒𝑚𝑎𝑛𝑑 (𝑖)

∑ 𝑑𝑒𝑚𝑎𝑛𝑑 (𝑖)𝑖∈𝐼
                                                                        

where 

𝑑𝑒𝑚𝑎𝑛𝑑 (𝑖)  is the number of units (items) of item type 𝑖 

  𝐼            is a set of item types 

Step 2: find the cumulative distribution function (CDF). 

Step 3:  

1.   Generate a random number 𝑟 between [0,1] 

2. If [the value of item (i-1) in CDF  < 𝑟 ≤ the value of item (i) in CDF ] then 

2.1.  select item(i) 

     where 𝑖 = 1,2, … … … , 𝑛  and n is the number of item types 

3. Check the availability of item (i) 

3.1. If the item (i) is still available then  

3.1.1. select item (i). 

3.1.2. remove the item (i) from the original set of items.      

3.2. Otherwise, If the item (i) ran out then go to the stage 1 in step 3.  

4. Iterate this procedure (step 3) until the original set of items is 

empty. 
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Step 4: construct a new set of items by the selected items via the 

previous rule so that their sequence will be the order of the items in 

this new set. 

Step 5: pack the new list of items by using the first fit (FF) algorithm. 

 

Algorithm 6 is defined as follows:  

It has the same steps as in the algorithm 5 but it uses another 

probabilities rule. Its probabilities rule is 

         𝑝𝑖 = 
𝑑𝑒𝑚𝑎𝑛𝑑 (𝑖) ∗ 𝑠𝑖𝑧𝑒1  (i) 

∑ (𝑑𝑒𝑚𝑎𝑛𝑑 (𝑖) ∗ 𝑠𝑖𝑧𝑒1  (i))𝑖∈𝐼
 

where  

𝑑𝑒𝑚𝑎𝑛𝑑 (𝑖)  is the number of units (items) of item type 𝑖 

𝑠𝑖𝑧𝑒1 (𝑖) is the size of the item 𝑖 in the first dimension. 

     𝐼            is a set of item types 

 

Algorithm 7 is defined as follows: 

It runs with the same procedure of algorithm 5 except that the 

probabilities rule in this algorithm is defined as: 

𝑝𝑖 = 
𝑑𝑒𝑚𝑎𝑛𝑑 (𝑖) ∗ 𝑠𝑖𝑧𝑒2  (i) 

∑ (𝑑𝑒𝑚𝑎𝑛𝑑 (𝑖) ∗ 𝑠𝑖𝑧𝑒2  (i))𝑖∈𝐼
 

where  

 𝑑𝑒𝑚𝑎𝑛𝑑 (𝑖)  is the number of units (items) of item type 𝑖 

𝑠𝑖𝑧𝑒2 (𝑖) is the size of the item 𝑖 in the second dimension. 

      𝐼            is a set of item types 
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Algorithm 8 is defined as follows: 

This algorithm is also follows the same instructions as the 

previous algorithms (algorithm 5, algorithm 6 and algorithm 7). 

However, it uses different probabilities rule which is defined as: 

𝑝𝑖 = 
𝑑𝑒𝑚𝑎𝑛𝑑 (𝑖) ∗ average (i)  

∑ (𝑑𝑒𝑚𝑎𝑛𝑑 (𝑖) ∗ average (i))𝑖∈𝐼  
 

where  

 𝑑𝑒𝑚𝑎𝑛𝑑 (𝑖)  is the number of units (items) of item type 𝑖 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑖)   = 
𝑠𝑖𝑧𝑒1 (𝑖)+𝑠𝑖𝑧𝑒2 (𝑖)

2
 

𝑠𝑖𝑧𝑒1 (𝑖) is the size of the item 𝑖 in the first dimension. 

𝑠𝑖𝑧𝑒2 (𝑖) is the size of the item 𝑖 in the second dimension. 

      𝐼            is a set of item types 
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4.5. Strategy 5 

The strategy 5 is also based on the first fit decreasing (FFD) algorithm 

and it is associated with strategies 1 and 2 in terms of that all of them are 

deterministic algorithms. Within this strategy we have two algorithms, we 

denote them by algorithm 9 and algorithm 10. Since these algorithms are 

deterministic algorithms, their output are always the same for the same 

input instances. 

Algorithm 9 is defined as follows: 

Step 1: calculate the average size for each type of items,  

where  

 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑖) = 
𝑠𝑖𝑧𝑒1 (𝑖) + 𝑠𝑖𝑧𝑒2 (𝑖)

2
 

 𝑠𝑖𝑧𝑒1 (𝑖) is the size of the item 𝑖 in the first dimension. 

𝑠𝑖𝑧𝑒2 (𝑖) is the size of the item 𝑖 in the second dimension. 

Step 2: sort the list of items in non-increasing order of their averages. 

Step 3: pack the items using the first fit (FF) algorithm. 

 

Algorithm 10 is defined as follows: 

Step 1: calculate the weighted average size for each type of items,                                         

 where  

 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑖)  = 
𝑎∗ 𝑠𝑖𝑧𝑒1 (𝑖)+𝑏∗ 𝑠𝑖𝑧𝑒2 (𝑖)

2
 

𝑠𝑖𝑧𝑒1 (𝑖) is the size of the item 𝑖 in the first dimension. 

𝑠𝑖𝑧𝑒2 (𝑖) is the size of the item 𝑖 in the second dimension. 

𝑎, 𝑏 are the minimum number of bins that is required to pack the  

items of size 1 and size 2 respectively and they defined as follows: 

𝑎 = 
∑ (𝑠𝑖𝑧𝑒1 (𝑖)∗ 𝑑𝑒𝑚𝑎𝑛𝑑 (𝑖))𝑖∈𝐼  

𝑀𝑎𝑥𝑖𝑛𝑢𝑚 𝑠𝑖𝑧𝑒1 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑖𝑛
 

𝑏 = 
∑ (𝑠𝑖𝑧𝑒2 (𝑖)∗ 𝑑𝑒𝑚𝑎𝑛𝑑 (𝑖))𝑖∈𝐼  

𝑀𝑎𝑥𝑖𝑛𝑢𝑚 𝑠𝑖𝑧𝑒2 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑖𝑛
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𝑑𝑒𝑚𝑎𝑛𝑑 (𝑖)  is the number of units (items) of item type 𝑖 

𝐼            is a set of item types 

Step 2: sort the list of items in non-increasing order of their weighted averages. 

Step 3: pack the items using the first fit (FF) algorithm. 

The algorithm 9 is consider as a special case of algorithm 10 when both of  

𝑎 and 𝑏 are equal to 1.  
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5. Experiments 

   We consider the variable size vector bin packing (𝑉𝑆𝑉𝐵𝑃) problem 

when the dimension 𝑑 = 2. All the described algorithms in section 4                              

is experimented on two different sets of random instances in two cases: 

firstly, with an equal demand for each type of items. Secondly, with a random 

demand for each type of items. For each of these cases, the proposed 

algorithms will be run twice, in the first time with small-scale of instances and 

then with large-scale of instances. In this experiment we consider for each 

bin that the maximum size 1 and the maximum size 2 is 500 and 700 

respectively. The instances that used in this experiment (set 1 and set 2 with 

different demands) is attached into the Appendix I. The proposed algorithms 

was implemented in Visual Basic (𝑉𝐵) and it is attached into the Appendix II.  

 

5.1. Results: 

In this section, we show the results of using the proposed strategies 

with two different data (set 1 and set 2) with different demand in each case. 

Regarding the deterministic strategies which are the strategy 1,                                  

the strategy 2 and the strategy 5 their results are obtained from the first run 

of the algorithm. On the other hand, the strategy 3 and the strategy 4 which 

are random strategies their results are obtained by run each algorithm                      

ten times and take the average of the results. 

The results are divided into two cases depending on the demand                  

(the number of items for each type of items) either equal or random. 

5.1.1. Results for case 1 (equal demand): 

The given tables below (Table 1, Table 2, Table 3 and Table 4) 

show the obtained results from applying the suggested strategies into                

the set 1 and the set 2 of instances with an equal demand for both 

small-scale and large-scale of instances. 
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Table 1: Set 1 of instances with small-scale and equal demand. 

 

Number 

of bins 

Average Volume 

Size 2  %  

Average Volume               

Size 1  %  
Strategies 

102 59.31373 81.76471 Algorithm 1 1 

95 63.68421 87.78947 Algorithm 2 

2 

95 63.68421 87.78947 Algorithm 3 

93 66.70839 91.95835 Algorithm 4 3 

93 65.28109 89.99079 Algorithm 5 

4 

96 62.84837 86.63725 Algorithm 6 

93 65.13054 89.78326 Algorithm 7 

94 64.18706 88.48266 Algorithm 8 

90 67.22222 92.66667 Algorithm 9 
5 

90 67.22222 92.66667 Algorithm 10 

Table 2: Set 2 of instances with small-scale and equal demand. 

Number 

of bins 

Average Volume 

Size 2  %  

Average Volume               

Size 1  %  
Strategies 

73 84.73581 79.45205 Algorithm 1 1 

73 84.73581 79.45205 Algorithm 2 

2 

80 77.32143 72.5 Algorithm 3 

71 89.55734 83.97293 Algorithm 4 3 

72 86.09126 80.72298 Algorithm 5 

4 

72 85.56944 80.2337 Algorithm 6 

71 86.78322 81.3718 Algorithm 7 

72 86.42671 81.03751 Algorithm 8 

67 92.32409 86.56716 Algorithm 9 
5 

68 90.96639 82.35294 Algorithm 10 
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Table 3: Set 1 of instances with large-scale and equal demand. 

 

Number 

of bins 

Average Volume 

Size 2  %  

Average Volume               

Size 1  %  
Strategies 

2029 59.63529 82.20798 Algorithm 1 1 

1900 63.68421 87.78947 Algorithm 2 

2 

1900 63.68421 87.78947 Algorithm 3 

1816 66.67831 91.91688 Algorithm 4 3 

1817 66.59412 91.80082 Algorithm 5 

4 

1913 63.26283 87.2086 Algorithm 6 

1840 65.76045 90.6516 Algorithm 7 

1876 64.5113 88.92962 Algorithm 8 

1800 67.22222 92.66667 Algorithm 9 
5 

1800 67.22222 92.66667 Algorithm 10 

Table 4: Set 2 of instances with large-scale and equal demand. 

Number 

of bins 

Average Volume 

Size 2  %  

Average Volume               

Size 1  %  
Strategies 

1466 84.38901 79.12688 Algorithm 1 1 

1450 85.3202 80 Algorithm 2 

2 

1600 77.32143 72.5 Algorithm 3 

1346 91.98882 86.2528 Algorithm 4 3 

1402 88.27945 82.77473 Algorithm 5 

4 

1422 87.03597 81.60878 Algorithm 6 

1393 88.7946 83.25775 Algorithm 7 

1394 88.76961 83.23432 Algorithm 8 

1325 93.36927 87.54717 Algorithm 9 
5 

1325 93.36927 87.54717 Algorithm 10 
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    Firstly, comparing the results between set 1 and set 2 for both 

cases small-scale and large-scale. Data from Table 1 can be 

compared with the data in Table 2 which shows that their results are 

consistent in the first three best results that means in other words in 

the strategy 5 and the strategy 3. However, there are some differences 

in the rest of the results, in particular with the strategy 4 as the 

performance of some of their algorithms is different in both of the set 

1 and set 2. This also applies when comparing Table 3 with Table 4 

as in this case (large-scale instances) the differences in the 

performance of the algorithms of strategy 4 is clearer. 

Turning to compare the results of the small-scale instances 

with large-scale instances for each data set. In the set 2, it can be 

seen from the Table 2 and Table 4 that there is no differences between 

the results of the small-scale instances and the large-scale instances 

regards the order of superiority algorithms starting with the algorithms 

9 and 10 which give the best results until the algorithm 1 which gives 

the worst results. In other words, the superior algorithms with the 

small-scale instances are still superior with the large-scale instances 

at the same order which is consider as a good indicator. As well as,     

in the set 1 as shown in Table 1 and Table 3 the order of superiority 

algorithms is the same in both small-scale and large-scale instances 

except that the algorithm 6 which gives the fourth-best result in the 

small-scale instances while in the large- scale its order in terms of 

superiority is the sixth. 

    Overall of case 1, the main observations that can be seen from 

Tables (1,2,3,4) above that the best results are obtained by the 

algorithm 9 and the algorithm 10 . Moreover, the algorithm 4 provides 

a roughly good result (the second best result). On the other hand,                  

the algorithm 1 and the algorithm 3 give the worst result in set 2 and 

set 1 respectively. 
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5.1.2. Results for case 2 (random demand): 

The next four tables (Table 5, Table 6, Table 7 and Table 8) 

show the results of using the proposed strategies into the data set 1 

and the data set 2 with a random demand for items in both the small-

scale and the large-scale of instances. 

 

Number 

of bins 

Average Volume 

Size 2  %  

Average Volume               

Size 1  %  
Strategies 

73 84.73581 79.45205 Algorithm 1 1 

73 84.73581 79.45205 Algorithm 2 

2 

80 77.32143 72.5 Algorithm 3 

71 89.55734 83.97293 Algorithm 4 3 

72 86.09126 80.72298 Algorithm 5 

4 

72 85.56944 80.2337 Algorithm 6 

71 86.78322 81.3718 Algorithm 7 

72 86.42671 81.03751 Algorithm 8 

67 92.32409 86.56716 Algorithm 9 
5 

68 90.96639 82.35294 Algorithm 10 

Table 5: Set 1 of instances with small-scale and random demand. 
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Table 6: Set 2 of instances with small-scale and random demand. 

Number 

of bins 

Average Volume 

Size 2  %  

Average Volume               

Size 1  %  
Strategies 

1800 67.81746 77.61111 Algorithm 1 1 

1700 71.80672 82.17647 Algorithm 2 

2 

1800 67.81746 77.61111 Algorithm 3 

1654 73.8351 84.49777 Algorithm 4 3 

1715 71.20286 81.4854 Algorithm 5 

4 

1702 71.71475 82.07122 Algorithm 6 

1703 71.68957 82.0424 Algorithm 7 

1686 72.41667 82.8745 Algorithm 8 

1650 73.98268 84.66667 Algorithm 9 
5 

1650 73.98268 84.66667 Algorithm 10 

Table 7: Set 1 of instances with large-scale and random demand. 

Number 

of bins 

Average Volume 

Size 2  %  

Average Volume               

Size 1  %  
Strategies 

104 57.3489 79.47115 Algorithm 1 1 

92 64.82919 89.83696 Algorithm 2 

2 

93 64.1321 88.87097 Algorithm 3 

92 66.39077 91.90362 Algorithm 4 3 

92 64.63678 89.57032 Algorithm 5 

4 

96 62.02797 85.95516 Algorithm 6 

92 65.12192 90.2426 Algorithm 7 

93 64.36163 89.18904 Algorithm 8 

90 66.26984 91.83333 Algorithm 9 
5 

90 66.26984 91.83333 Algorithm 10 
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Number 

of bins 

Average Volume 

Size 2  %  

Average Volume               

Size 1  %  
Strategies 

2200 54.38312 80.72727 Algorithm 1 1 

2150 55.64784 82.60465 Algorithm 2 

2 

2100 56.97279 84.57143 Algorithm 3 

2052 58.33392 86.59192 Algorithm 4 3 

2066 57.90054 85.9486 Algorithm 5 

4 

2119 56.46956 83.82443 Algorithm 6 

2077 57.6046 85.50929 Algorithm 7 

2115 56.5891 84.00187 Algorithm 8 

2050 58.36237 86.63415 Algorithm 9 
5 

2050 58.36237 86.63415 Algorithm 10 

Table 8: Set 2 of instances with large-scale and random demand. 

Firstly, we compare the results of each data set in both cases 

(small-scale and large-scale). From Table 5 and Table 6 we can see 

that best results is given by the strategy 5 and then followed by                                             

the strategy 3 in terms of better results. Whereas the performance of 

strategies 1, 2 and 4 is different between data set 1 and data set 2. 

Similarly for the large-scale of instances, so that Table 7 and Table 8 

have the same trend but we observe that there are more differences                     

in the performance of strategy 2 between the two sets (set 1 and set 

2) in which the algorithm 2 gives better results in data set 1 while the 

algorithm 3 provides better results in data set 2. 

Secondly, we turn to compare the results of the small-scale 

instances and the large-scale instances for each set (set 1 and set 2) 

in the case of random demand.  

In set 1, as can be seen from Table 5 and Table 7 that the 

strategy 5 outperform the other strategies in which their algorithms 
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provide solutions that used a number of bins less than other 

strategies. Also, the strategy 3 still the second strategy that gives good 

solutions. In contrast, the performance of strategy 4 is varied between 

the small-scale and large-scale. For example, the algorithm 5 and the 

algorithm 7 gives better results with small-scale of instances while the 

algorithm 8 performs better with the large-scale of instances.                            

As well as, the performance of algorithm 2 (which is within strategy 2) 

is better with the large-scale of instances.  

Concerning set 2, Table 6 and Table 8 present the results of 

the data set 2 with random demand in small-scale and large-scale of 

instances respectively. The results of strategy 5 are still the dominant 

results throughout all the strategies. However, the performance of 

other algorithms is similar in both small and large instances except the 

algorithm 2 which gives the best fourth solution with small-scale                                  

of instances whereas it gives the ninth solution with the large-scale                     

of instances. 

Therefore, in this case the results suggest outperformed of the                         

strategy 5, as well as a reasonable performance of the strategy 3.             

On the other hand, the performance of the strategy 1, the strategy 2                    

and the strategy 4 is various between the tables. 

 

5.1.3. Summary of the results: 

Summarising we can say that the strategy 5 gives the best 

results throughout all of the cases in both set 1 and set 2. However, 

the strategy 3 also gives a reasonable results in solving the variable 

size vector bin packing (𝑉𝑆𝑉𝐵𝑃) problem. 
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5.2. Discussion 

5.2.1. The superiority of strategy 5 

The superiority of strategy 5 in our computational results is 

probably due to the algorithm 9 and algorithm 10 that are included in 

this strategy are taking into account both of size 1 and size 2 in the 

same time. In other words, the standards adopted by these algorithms 

is not biased to a certain size (dimension) without the other.  

  The observed difference between the algorithm 9 and                            

the algorithm 10 in this study was not significant. However, it was 

expected to surpass the algorithm 10 even albeit slightly but we found 

the opposite. In Table 5, it has shown that the algorithm 10 packed 

the items in 68 bin while the algorithm 9 packed the same items                            

in 67 bin. As we indicated that this difference is not great but it was 

expected that this superiority is in favour of the algorithm 10 because 

it is based on the weighted average. 

Strategy 5 has another important advantage that their algorithms 

are deterministic algorithms so they give the same output even when 

the algorithms run several times. To illustrate the importance of this 

property for example, in the case where the strategy 3 gives the same 

obtained results from the strategy 5, then the preference will be for 

strategy 5 because their output is constant while the output of the 

strategy 3 changeable in each time we run the algorithm since it is 

based on randomization. Except in the case that the worst solution for 

strategy 3 is still better than the solution of strategy 5 therefore the 

strategy 3 is better in this case. 

5.2.2. The relatively good performance of Strategy 3 

The algorithm 4 (which is within the strategy 3) gives satisfactory 

results to some extent, due to it based on randomizing the items 

vector. Therefore, it arranges the items randomly and pack them                       

in bins, this method is not like any of the deterministic methods that 

packing all the items of the selected type before moving to another 

type of items. 
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The randomization property is quite good because sometimes one 

or more of the items type have large size in one (or more) of its 

dimension. So it cannot be placed with another item of the same type 

and this makes the algorithm opens many of the new bins. In 

particular, when this type of items occurs as a one of the last items in 

the list. In this case, there is a less chance in having items with small 

sizes that could be placed with those large items in the same bin. On 

the other hand, the property of randomizing the items vector is more 

likely to reduce the number of bins because it puts the items in random 

order which will probably result in increasing the utilization of the bins 

used as we can see in Table 6 that the average utilization of size 1 

and the average utilization of size 2 for the strategy 3 is 91.90362                    

and 66.39077 respectively which is better than the average utilization 

of strategy 5. 

The principle which this algorithm is dependent on it 

(randomizing the vector items) gives different results in each run of 

the algorithm and this probably consider as a negative point for this 

approach. However, we could run the algorithm for several times and 

take the average of the obtained results, as well as taking into account 

the best solution and the worst solution of the obtained results. 

5.2.3. The worst results 

It is expected that the worst result will be by the algorithm 1 

(first fit (𝐹𝐹) algorithm) because it is packing the items based on                          

a very simple rule and it does not take into account any of                                    

the dimensions of the problem. It is packing all the items of the first 

type in the given set, then moving to the followed type of items and                 

so on until packing all the set. However, we noted that the algorithm 3 

(which is within strategy 2) gives the worst results in the data set 1, 

which is worse than the results of the algorithm 1 (first fit (𝐹𝐹) 

algorithm).  

The reason behind the algorithm 3 gives the worst results in the 

data set 1 is that the items of type 5 has the smallest size regards                      
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size 2 and the largest size in terms of size 1 which leads the algorithm 

3  to put  the items of this type as the last items for packing. To explain 

in more detail, the items of type 5 have a large size (475) in size 1 and 

that the maximum size 1 is 500 per bin this leads to open new bin for 

each of these items because the bin cannot hold two items of this type 

as well as this type is the last type packed in this algorithm so there is 

no other types of items will fit with them in the same bin such as items 

of type 3 or 10 because these items placed before the items of type 5. 

This is the cause why the algorithm 3 uses more bins than in the 

algorithm 1. 

5.2.4. The different performance of strategy 4 

In general, by comparing the results we find that the 

performance of the strategy 4 is variable and its results usually in the 

middle, so are not good as the obtained results by the strategy 5 and 

are not bad as the results of strategy 1. In addition, as we indicated 

previously that both of the strategy 3 and the strategy 4 based on the 

randomization, but the results indicate that the performance of 

strategy 3 is superior to the performance of strategy 4 in all cases,                  

as well as the performance of strategy 3 is constant, in other words,                     

it consider as the second-best strategy for all cases. However, we did 

not expect this performance of the strategy 4, especially for the 

algorithm 8 which its probability rule rely on the average and the 

demand, so it was expected that the algorithm 8 gives good results 

because it takes into account all the dimensions of the problem and 

the demand as well. 
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6. Conclusion 

6.1. Summary 

In this study, we consider a special case of the variable size vector 

bin packing (𝑉𝑆𝑉𝐵𝑃) problem when the dimension 𝑑 = 2.  The 𝑉𝑆𝑉𝐵𝑃 

problem is a generalization of the vector bin packing (𝑉𝐵𝑃) problem.                  

At the present, the 𝑉𝑆𝑉𝐵𝑃 is very useful in modeling many real-world 

applications because in recent years several real-life problems have                        

a number of incomparable variables that are required to be consider                    

at the same time whereas the variable size vector bin packing (𝑉𝑆𝑉𝐵𝑃) 

problem takes into account the multidimensionality so this makes this 

type of problem capable to deal with those applications. We propose five 

different strategies that are based on the well-known first fit (𝐹𝐹) 

algorithm and with some new variants for the variable size vector bin 

packing problem in order to minimize the number of bins used for packing 

a given set of items. These proposed algorithms are easy to implement 

and their running time is fast. The obtained results show that the 

algorithms 9 and 10 in the strategy 5 which are based on the average 

size of items and the weighted average size of items respectively 

produce the best solutions compared with the other proposed strategies, 

even for large-scale instances of both data sets. However, the                     

strategy 3 which is rely on randomizing the items vector also gives                    

a reasonable solutions in all the discussed cases.   

6.2. Limitation 

The most important limitation lies in the fact that this study did not 

take into account the minimum space needed between each pair of 

adjacent items which is probably required in some practical applications. 

So, this assumption was not addressed in this study. 

6.3. Recommendations 

In the future, it is strongly recommended to do further investigation 

and experimentation on the impact of the number of items for each item 

type into the suggested algorithms in this study. For example, in the case 
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where there are more large items or more small items (after selecting                   

a certain criteria for measuring the large and small) and it would be 

interesting to compare the findings. Further research could also be 

conducted to determine the effectiveness of the proposed strategies                         

in solving the variable size vector bin packing problem when the 

dimension 𝑑 > 2 . 
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Glossary 

 

Cutting and packing problems 𝑪&𝑷 

Bin packing problem 𝑩𝑷𝑷 

Vector bin packing problem 𝑽𝑩𝑷 

d-Dimensional vector packing problem 𝒅 − 𝑫𝑽𝑷 

Variable size vector bin packing problem  𝑽𝑺𝑽𝑩𝑷 

Two - dimensional variable size vector bin packing problem  𝟐 − 𝑫𝑽𝑺𝑽𝑩𝑷 

Variable cost and sized bin packing problem  𝑽𝑪𝑺𝑩𝑷𝑷 

Class constrained shelf  bin packing problem 𝑪𝑪𝑺𝑩𝑷 

Bin packing problem with a fixed number of object weights  𝑩𝑷𝑪 

Polynomial-time approximation scheme  𝑷𝑻𝑨𝑺 

Asymptotic polynomial time approximation scheme  𝑨𝑷𝑻𝑨𝑺 

First fit algorithm 𝑭𝑭  

First fit decreasing algorithm 𝑭𝑭𝑫  

Best fit decreasing algorithm 𝑩𝑭𝑫 

Minimal bin slack heuristic 𝑴𝑩𝑺 

Linear programming 𝑳𝑷 

Genetic algorithm 𝑮𝑨 

Ant colony optimization metaheuristic 𝑯𝑨𝑪𝑶 − 𝑩𝑷 
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Weight annealing  𝑾𝑨 

Hybrid extremal optimization 𝑯𝑬𝑶 

Hill-climbing 𝑯𝑪 

Bin-oriented heuristics 𝑩𝑶𝑯𝒔 

Hybrid improvement heuristic 𝑯𝑰_𝑩𝑷 

Grouping genetic algorithms  𝑮𝑮𝑨𝒔 

Grouping Genetic Algorithm with Controlled Gene Transmission 𝑮𝑮𝑨 − 𝑪𝑮𝑻 

Multi-start iterated local search for packing problems 𝑴𝑺 − 𝑰𝑳𝑺 − 𝑷𝑷𝒔 

Multi-capacity bin packing problem 𝑴𝑪𝑩𝑷𝑷 
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Appendices 

Appendix I 

  

The small-scale of set 1 instances with equal demand 

  

Item Type Size 1 Size 2 Demand 

1 50 200 10 

2 175 150 10 

3 25 600 10 

4 450 550 10 

5 
475 

20 10 

6 
250 

500 10 

7 
425 

450 10 

8 40 80 10 

9 70 60 10 

10 20 
245 

10 

11 120 575 10 

12 350 450 10 

13 50 175 10 

14 175 25 10 

15 225 250 10 
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The large-scale of set 1 instances with equal demand 

 

Item Type Size 1 Size 2 Demand 

1 50 200 200 

2 175 150 200 

3 25 600 200 

4 450 550 200 

5 
475 

20 200 

6 
250 

500 200 

7 
425 

450 200 

8 40 80 200 

9 70 60 200 

10 20 
245 

200 

11 120 575 200 

12 350 450 200 

13 50 175 200 

14 175 25 200 

15 225 250 200 
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 The small-scale of set 1 instances with random demand 

 

Item Type Size 1 Size 2 Demand 

1 50 200 15 

2 175 150 5 

3 25 600 10 

4 450 550 15 

5 
475 

20 10 

6 
250 

500 10 

7 
425 

450 5 

8 40 80 20 

9 70 60 5 

10 20 
245 

10 

11 120 575 10 

12 350 450 10 

13 50 175 10 

14 175 25 5 

15 225 250 10 
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The large-scale of set 1 instances with random demand 

 

Item Type Size 1 Size 2 Demand 

1 50 200 300 

2 175 150 100 

3 25 600 100 

4 450 550 200 

5 
475 

20 400 

6 
250 

500 200 

7 
425 

450 200 

8 40 80 100 

9 70 60 200 

10 20 
245 

200 

11 120 575 200 

12 350 450 400 

13 50 175 100 

14 175 25 200 

15 225 250 100 
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The small-scale of set 2 instances with equal demand  

 

Item Type Size 1 Size 2 Demand 

1 350 275 10 

2 475 300 10 

3 225 175 10 

4 400 100 10 

5 
200 

160 10 

6 
480 

620 10 

7 
375 

275 10 

8 275 300 10 

9 450 550 10 

10 20 
50 

10 

11 225 150 10 

12 300 440 10 

13 225 370 10 

14 150 400 10 

15 20 70 10 
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The large-scale of set 2 instances with equal demand  

 

Item Type Size 1 Size 2 Demand 

1 350 275 200 

2 475 300 200 

3 225 175 200 

4 400 100 200 

5 
200 

160 200 

6 
480 

620 200 

7 
375 

275 200 

8 275 300 200 

9 450 550 200 

10 20 
50 

200 

11 225 150 200 

12 300 440 200 

13 225 370 200 

14 150 400 200 

15 20 70 200 
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The small-scale of set 2 instances with random demand 

 

Item Type Size 1 Size 2 Demand 

1 350 275 10 

2 475 300 15 

3 225 175 5 

4 400 100 10 

5 
200 

160 20 

6 
480 

620 5 

7 
375 

275 5 

8 275 300 10 

9 450 550 10 

10 20 
50 

10 

11 225 150 10 

12 300 440 10 

13 225 370 10 

14 150 400 15 

15 20 70 5 
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The large-scale of set 2 instances with random demand 

 

Item Type Size 1 Size 2 Demand 

1 350 275 300 

2 475 300 300 

3 225 175 200 

4 400 100 200 

5 
200 

160 100 

6 
480 

620 200 

7 
375 

275 300 

8 275 300 200 

9 450 550 100 

10 20 
50 

300 

11 225 150 200 

12 300 440 250 

13 225 370 200 

14 150 400 100 

15 20 70 50 

 

 

 

 



67 
 

Appendix II 

 

This is the class that would be called from all the algorithms (clsBin) 
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This is the configuration code of the algorithm 1 
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This is the configuration code of the algorithm 2 
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This is the configuration code of the algorithm 3 
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This is the configuration code of the algorithm 4 
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This is the configuration code of the algorithm 5 
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This is the configuration code of the algorithm 6 
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This is the configuration code of the algorithm 7 
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This is the configuration code of the algorithm 8 
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This is the configuration code of the algorithm 9 
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This is the configuration code of the algorithm 10 
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