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Abstract

In this research, we consider the variable size vector bin packing problem
in the case when the dimension (d = 2). This problem is a generalization of
the vector bin packing problem where the bins have variable sizes (in our
case we have two sizes) and the objective is to pack a set of items into
a minimum number of bins. We propose five different strategies for solving
the variable size vector bin packing problem, these strategies are based on
first fit (FF) algorithm. We perform a computational experiment on two
randomly generated sets of instances in order to analyse the empirical
performance of these strategies. Each set of items has a fifteen bin types
and runs with small number of items up to 150 items and with large number
of items up to 3000 items. These proposed algorithms were run twice,
in the first case there were an equal number of items in each item type,
while in the second case the demand of each type of items is random.
Our numerical results show that the algorithms in strategy 5 (algorithm 9 and
algorithm 10) which rely on the average size and the weighted average size
are considered as the most effective methods to solve the variable size
vector bin packing problem since their performance is superior to other
strategies.



1. Introduction

Cutting and packing problems (C&P) is an active field of studies
during the past decades. Also Its significance lies in being relevant to the

industrial sector and services as well.

1.1. Packing problems

In order to distinguish between the cutting and packing problems
(C&P), Dyckhoff (1990) propose a typology in categorizing the cutting
and packing problems, these four criteria are dimensionality, the shape
of the assignment, the types of assortments and the availability of the
objects. The availability criterion differentiates between bin packing
problems and cutting stock problems. In the bin packing problems, there
are a little number of small objects while in the cutting stock problems,
the small objects are many (cited in Alves and Valério de Carvalho,
2007). However, the packing problems includes a wide variety of
problems, Dyckho and Finke (1992) differentiate these problems in terms
of items (size and shape) and bins (form and capacity) as well (cited in
Fleszar and Hindi, 2002).

1.2. Scope

The variable size vector bin packing problem (VSVBP)
is considered in this report due to the importance of multidimensionality
in the recent applications, in which it lies in enabling the items to carry
several incomparable attributes. For instance of these incomparable
attributes, the requirements of the memory and the requirements of the
bandwidth in the environment of computation (Rao et al., 2010). Also,
minimizing the number of bins used leads to having the (near-) optimal
solution which is always desirable, even when obtained high quality
solutions. Korf (2002) states the main four reasons behind this
orientation, firstly, the character of some of the applications may be
sometimes require the existence of optimal solutions. Especially, when
looking for a minimum number of bins, even a one more extra bin is

comparatively expensive. Secondly, the ability of identifying the optimal
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solutions could be consider as an accurate measurement in determining
the quality of approximate solutions. For example, it is possible to
compare the first fit decreasing (FFD) and the best fit decreasing (BFD)
solutions because we could compute their optimal solutions. In addition
to that, finding optimal solutions through anytime algorithm is beneficial
for devising better solutions with respect to running time than those
obtained by BFD or FFD algorithms. Indeed, this is important in practice.
Finally, optimal bin packing is a challenging computational problem
which may be result in better perception that could probably be applied
to other problems.

1.3. OQutline

The remaining parts are organized as follows. In Section 2,
an overview of literature about the bin packing problem and its variants,
also the main techniques that is used in solving these problems will be
reviewed. Section 3 includes the formulation of the variable size vector
bin packing problem, Section 4 shows different strategies that based on
first fit (FF) algorithm for solving the variable size vector bin packing
problem. In Section 5, results and analysis of those methods will be

compared. Finally, conclusion will be in the Section 6.



2. Literature Review

2.1. Bin packing problem (BPP)
2.1.1. Problem definition

Bin packing problems (BPPs) are represented as a one of the
challengeable combinatorial optimization problems (cited in
Haouari and Serairi, 2009). These problems appear as a principal
problem or  as an important subproblem in several industrial
applications (Camacho, Terashima-Marin, Ochoa, and Conant-
Pablos, 2013; Fleszar and Charalambous, 2011; Fleszar, 2012
cited in Dokeroglu and Cosar, 2014).

The classical bin packing problem is defined as follows.
We are given a set of items and infinite number of bins in which
each item has a specific size and each bin has the same capacity.
The goal is to pack all of the items into a minimum number of bins
while ensuring that the total sizes of all items loaded into a bin does

not exceed the bin's capacity.

The bin packing problems could be categorized according to

the bin size as single or multiple bin size.

Firstly, introducing the single bin packing problem which could be
explained through the one-dimensional bin packing problem.
Since this problem is consist of a number of items with given
weights and bins of identical size and the goal is to place these
items in the minimum number of bins in which it will fit without
violating the capacity constraints, which means that the total
capacity of the packed items in the bin should not exceed the
capacity of the bin (cf. Martello and Toth,1990; Scholl et al., 1997;
Schwerin and Wascher, 1997). There are also other names calling
for this kind of problem such as Vehicle Loading Problem (cf.
Golden,1976, p. 266) and Binary Cutting Stock Problem (cf.
Vance et al., 1994). Babel et al. (2004) study another type of this
problem named the k-ltem bin packing problem, in which for each
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bin, is allocated no more than k items.

Moving to the two-dimensional (Orthogonal) bin packing problem,
where in this problem the purpose is to pack a collection of various
rectangles into a minimum number of rectangular bins.
However, this type of problem is also mentioned as the
two-dimensional finite bin packing problem to know the difference
between it and the two-dimensional strip packing problem, where
the bins in this one have an infinite size in one dimension (Lodi et
al., 1999, 2002b, p. 379; Lodi et al., 2002a, p. 242; Martello and
Vigo, 1998). George et al. (1995, p. 693) indicate the cylindrical bin
packing problem that is a two-dimensional circular single bin sized
bin packing problem where the items are circles and the bins are
rectangles. In practice, this type of the problem is appearing in the

logistics issues.

Regarding the three-dimensional (Orthogonal) bin packing
problem, in this problem is supposed that the items are rectangular
boxes and the bins are rectangular with the same capacity (cf. Lodi
et al.,, 2002c). Miyazawa and Wakabayashi (2003) describe a
particular case of the three dimensional rectangular bin packing
problem, where that all of items and bins are cubes and it has been

named the cube packing problem.

Moving to the multiple bin sized bin packing problems, Chu and La,
(2001) and Kos and Duhovnik, (2002) consider the one-
dimensional variable sized bin packing problem which is a
generalization of the classical one-dimensional bin packing
problem where a number of bin types are added and each type of
these bins has its own cost and size. Also, the number of available
bins per bin type is infinite. The aim is to minimize the total costs of
the used bins during packing all of the items into bins (cf.Kang and
Park, 2003). As well as a specific case "rectangular case" in a two-
dimensional is studied by Tarasova et al. (1997) (Cited in Wascher,
HaufRner and Schumann, 2007).
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2.1.2. Usage BPP in real-world applications

The bin packing problems arises in the context of many
real-world applications for example in cutting, packaging, planning
of telecommunication, transportation, production, and supply-chain
systems.

The two and three dimensional bin packing problems are
usually appeared in the manufacture as well. For example, in all of
construction, clothing, glass, plastic, or metal industries, the aim is
to use the minimum number of sheets of these materials (Dahmani,
Clautiaux, Krichen, & Talbi, 2013). In the same way, in the case of
designing the page' layout of a newspaper, where the pages have
fixed dimensions and it is required to order the articles on them. In
the shipping and transportation industries, the minimum number of
rectangular bins is required when loading bundles of the same
heights (cited in Dokeroglu and Cosar, 2014).

2.1.3. Related work

The first fit decreasing (FFD) algorithm (Eilon and Christofides
1971, Johnson et al. 1974) and the best fit decreasing (BFD)
algorithm (Johnson et al. 1974) are the simple and most widely

used algorithms in the field of bin packing problems.

The first fit decreasing (FFD) algorithm is a simple approximation
algorithm and it works as follows: sort the items in non-increasing
order of sizes. Then starting packing with the first item in the list
(which is the largest item) and place it into the bin with the lowest
index, which it will fit this item while still meeting its capacity
constraint. Eilon and Christofides (1971) indicate that the
performance of FFD algorithm is quite good compared to the results
of the previous studies. The best fit decreasing (BFD) algorithm is
slightly better approximation algorithm. It works almost the same to
the first fit decreasing (FFD) algorithm. However, there is a
difference in determining which bin that the item will be placed in.

Where in the BFD algorithm will choose the bin with the highest
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load (fullest bin), provided it fits this item and without exceeding the
bin capacity. Although both of FFD and BFD algorithms could be
utilized in O (n logn) time, this is not promised to get optimal
solutions. However, the worst case bounds for both of these

algorithms is % * N + 4, where N is the optimal number of bins

(Johnson et al. ,1974).The main weakness of the FFD and BFD
algorithms lies in the deterioration of their performance in dealing
with the difficult problems (the problems that their optimal solution
need a totally filling for the most or all bins). Coffman et al. (1978)
show that the obtained solutions from the FFD and BFD algorithms
are usually need more bins than the ones of an optimal solution for
the difficult problems (cited in Gupta and Ho,1999).

Eilon and Christofides (1971) propose an improvement algorithm
for solving the bin packing problem with different objective functions
(cited in Kumar et al. ,2003).

Coffman et al. (1987) assert that the first fit decreasing (FFD)
algorithm provides an optimal solution for one-dimensional bin
packing problem under a divisibility condition. On the other hand,
Kang and Park (2003) show that this result is incorrect through

giving an opposing example.

Martello and Toth (1990) describe several simple heuristics and use
a reduction procedure (MTRP) and an exact algorithm (MTP) to
solve the bin packing problem (BPP) (cited in Loh et al, 2008).

Falkenauer (1996) propose a hybrid grouping genetic algorithm to
solve the bin packing problem (cited in Fleszar and Charalambous,
2011).

Scholl et al. (1997) improve a hybrid method by gathering
tabu search with a branch-and-bound method. Schwerin and
Wascher (1999) improve the MTP of Martello and Toth (1990) and
also found a new lower limits for the bin packing problem (BPP)
that is derived from the cutting stock problem. However, a

comprehensive review of approximation schemes for the bin
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packing problem is given by Coffman et al. (1997), as the most
important points dealt with is the analysis of the worst case of the
first fit decreasing (FFD) and the best fit decreasing (BFD)
algorithms (cited in Loh et al, 2008).

Vance (1998) propose an exact algorithm for solving the bin
packing problem and this algorithm is relied on the linear
programming methods which are proposed by Gilmore and Gomory
(1961). However, the running time of this algorithm is a bit slow
which is negatively impact on its practical use (cited in Kang and
Park, 2003).

Gupta and Ho (1999) introduce a minimal bin slack heuristic (MBS)
heuristic to solve the one-dimensional bin packing problem, which
is developed later by Fleszar and Hindi (2002). They show that their
proposed algorithm outperforms both of first fit decreasing (FFD)
algorithm and best fit decreasing (BFD) algorithm regarding the
optimality of solutions in particular for the problems that called
"difficult” problems.

Vanderbeck (1999) describe an exact algorithm which is based on
column generation for the cutting stock problem and show that this
algorithm could be used for some kinds of bin packing problem
(BPP) (cited in Fleszar and Charalambous, 2011).

Chu and La (2001) investigate four greedy approximation
algorithms to solve the one-dimensional bin packing problem and
study their absolute worst-case performances. They show that the
worst case for these algorithms are 2, 2, 3 and 2 + In2 in

succession.

Fekete and Schepers (2001) provide a new lower bounds for the
bin packing problem that based on dual-feasible functions (cited in

Fleszar and Charalambous, 2011).

Furthermore, Fleszar and Hindi (2002) introduce a number of
heuristics which rely on MBS and a variable neighbourhood search
metaheuristic (cited in Loh et al, 2008).
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Valério de Carvalho (2002) improve an exact algorithm by using the
branch and bound algorithm and investigate linear programming
(LP) models for the bin packing problem and the cutting stock

problem.

Fleszar and Hindi (2002) propose a number of algorithms to solve
the one dimensional bin packing problem. Some of these
algorithms relied on the minimal bin slack (MBS) heuristic that is
proposed by Gupta and Ho (1999), while there is a one based on
the variable neighbourhood search scheme. However, their most
efficient algorithm compared to other existing methods is based on
operating the modified version (MBS') of the minimal bin slack
heuristic then followed it by the variable neighbourhood search

metaheuristic.

The call bin completion algorithm for optimal bin packing is
proposed by Korf (2002) in which considering the methods of
packing each bin to be completed) instead of investigating the
possible bins that each item could be packed into. It is showed that

this algorithm is quicker than the existing optimal algorithms.

Kumar et al. (2003) propose an algorithm for solving the one-
dimensional bin packing problem with additional constraints. They
used this heuristic for a vehicle allocation problem where this
heuristic show its superiority over the first fit decreasing (FFD)
algorithm in terms of better performance and easily alteration with

other constraints.

Ross et al.,, (2003) investigate an approach based on genetic
algorithm (GA) to solve the bin packing problem. Caprara and
Pferschy (2004, 2005) consider the performance of the worst-case

of heuristics (cited in Dokeroglu and Cosar, 2014).

Bhatia and Basu (2004) present a multi-chromosomal grouping
genetic algorithm for BPP. Levine and Ducatelle (2004) introduce a
hybrid method that applies the ant colony optimization

metaheuristic (HACO — BP), which hasa technique for a local

15



search based on the dominance criterion from Martello and Toth
(1990). Singh and Gupta (2007) introduce a new heuristic that
combines a hybrid steady-state grouping genetic algorithm with a
developed minimal bin slack algorithm of Fleszar and Hindi (2002).
Additionally, evolutionary algorithms are considered in Poli et al.
(2007) and Rohlfshagen and Bullinaria (2007). Crainic et al.
(2007a,b) introduce better lower bounds and study their worst case
performance (cited in Fleszar and Charalambous, 2011).

Rohlfshagen and Bullinaria (2007) improve an algorithm that
adopted the theory of exon shuffling. Poli et al. (2007) present an
algorithm with discrete item sizes in which the histogram of item-
size is joined with the corresponding bin-gap histogram. Stawowy
(2008) propose a non-specialized and non-hybridized algorithm
which uses an adjusted permutation with separators encoding
strategy, unique concept of separators movements over mutation,
and separators removal as a strategy to reduce the size of problem
(cited in Dokeroglu and Cosar, 2014).

Roy et al. (2008) study the behavior patterns through practical
instances from an empirical study of bin packing heuristics.

Loh et al. (2008) introduce a new heuristic based on using the
weight annealing (W A) for solving the one-dimensional bin packing
problem (BPP). Their computational experiments show that this
technique is superior to most other previous approaches in terms
of the simplicity of the algorithm, the high quality of the obtained

solutions and the quickness of the running time.

Correa and Epstein (2008) consider a bin packing with controllable
item sizes, where is given list of pairs related to each item. These
pairs comprise of a permitted size for the item and a nonnegative
penalty for each pair. The objective is to choose a pair for each item
which minimizing the total number of bins that required to place the
sizes and the sum of penalties. They also provide an asymptotic

polynomial time approximation scheme (APTAS) which uses bins
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sizes are a little larger than 1.

Gomez-Meneses and Randall (2009) consider a new evolutionary
approach that applies the hybrid extremal optimization (HEO).
This concept is about eradicating the weakest element of a
population and then replacing it with another random element.
However, this method contains a local search which relies on the
strategy that is proposed by Falkenauer (1996) in order to enhance
the quality of the packing. Lewis (2009) introduce an intuitive hill-
climbing (HC) procedure which uses a simple improvement strategy
relies on the dominance criterion in order to make the bins more
full. This procedure gives positive solutions and its performance is
better than some other algorithms that considered in (Falkenauer,
1996; Gupta and Ho, 1999) while still less than the best state-of-
the-art algorithms (cited in Quiroz-Castellanos et al., 2015).

Khanafer et al. (2010) propose an outline for acquiring new dual
feasible functions that depend on data. Memetic algorithms is also
used for solving the one dimensional bin packing problem. In
particular, one of these strategies is based on using separate
individual learning or local improvement procedures (Le et al.,
2009; Ong et al., 2006). Segura et al. (2011) consider a multi-
objectivized memetic algorithm to solve the two-dimensional bin
packing problem which runs faster than the existing genetic
algorithms (cited in Dokeroglu and Cosar, 2014).

Fleszar and Charalambous (2011) study the bin-oriented heuristics
(BOHs) for the one dimensional bin packing problem (BPP).
In bin-oriented heuristics, the solutions are constructed by packing
one bin at a time. Fleszar and Charalambous (2011) propose a
controlling average weight method for items which packed by using
bin-oriented heuristics and give reduction methods for bin-oriented
heuristics. As well as, they provide an improvement heuristic rely
on this strategy. Their results show that both of controlling average
weight method and reduction methods provided improved solutions

with better computational times of some bin-oriented heuristics.
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Also, they indicate that the performance of the new improvement
heuristic is better than other previous heuristics with respect to the

average quality of the solution and processing time.

Alvim et al. (2004) use a highly effective hybrid improvement
heuristic (HI_BP) to solve the bin packing problem (BPP) and show

that its performance is extremely well (cited in Loh et al., 2008).

Dokeroglu and Cosar (2014) propose an island parallel grouping
genetic algorithms (GGAs) which are robust tools for solving the one
dimensional bin packing problem. Their findings indicate that these
proposed algorithms are probably one of the best algorithms to
solve the one dimensional bin packing problem because they give
a high quality of solution and a reasonable computation time in

comparison with the state-of-the-art heuristics.

Quiroz-Castellanos et al. (2015) propose a Grouping Genetic
Algorithm with Controlled Gene Transmission (GGA — CGT) to solve
the bin packing problem. This suggested algorithm is supported the
transmission of the best genes of the chromosomes while still
keeping the balance between the selective pressure and population

diversity.
2.1.4. Other versions of the bin packing problem

The basic bin packing problem is extended to several areas
in order to demonstrate the real world applications. Some examples
of the problem extensions are the two-dimensional packing
problem [Martello and Vigo (1998)] and three-dimensional packing
problem [Martello et al. (2002)], determining bounds of different bin
packing problems [Fekete et al. (2001), Fleszar et al. (2002), Labbe
et al. (2003), etc.], and considering more additional constraints
[Robb and Trietsch (1999), Ralphs et al. (2003), etc.]. However, the
classical bin packing problem could also extended to address
special constraints such as packing grouping of items and the
maximum number of items per bin. Anily and Federgruen (1991)

considered the packing problem in the case of items are combined
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into different groups. They used this procedure in vehicle routing
problem and partitioning problems. Rhee (1993) investigated the
packing problem with additional restrictions about the maximum
permitted number of items for each bin. He proved in his study that
the difference between the expected numbers of bins when the
maximum number of items is two and the expected number of bins
when the maximum number of items is three is of the order v/n ,
where n is an independent random variables uniformly distributed
over [0,1]. He also indicated that the difference will be smaller in
the case of considering higher values of the maximum number of

items (cited in Kumar et al.,2003).

Also, Xavier and Miyazawa (2005) consider the class constrained
shelf bin packing problem (CCSBP) which is aimed to pack the items
in a minimum number of bins, where the items should be separated
by a shelf division of size d, where d is non-negative values. They
propose hybrid algorithms relied on the first fit (decreasing) and
best fit (decreasing) algorithms and gave an asymptotic polynomial
time approximation scheme (APTAS) for CCSBP problem when

there is a bound C for the different classes, where C is constant.

Moreover, Filippi (2007) address a bin packing problem with a fixed
number of object weights (BPC) which is considered as a high-
multiplicity version of the classical bin packing problem because
each object has its own weight so it is required to deal with each
objects separately. His analysis leads to obtain a new bound on the
gap between the optimal values of this problem and the linear

relaxation of its Gilmore—Gomory formulation.

Furthermore, Epstein et al. (2011) consider a new kind of online bin
packing with conflicts as well as address both of online and semi-

online versions of this problem.

In addition to that, Masson et al. (2013) propose an efficient multi-
start iterated local search for packing problems (MS — ILS — PPs)
algorithm for multi-capacity bin packing problems (MCBPP). Their
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findings indicate that this approach (which is based on simple
neighborhoods) provides good solutions with respect to the quality
and the computational time, this also applies even for large problem

instances.

2.2. Variable sized bin packing problem (VSBPP)

2.2.1. Problem definition

The variable sized bin packing problem (VSBPP) is
a generalization of the classical one-dimensional bin packing
problem (BPP). In the variable sized bin packing problem, we have a
set of items in which each item has a specified size and different
types of bins, where the number of bins is unlimited. The aim is to
pack a set of items into a minimum number of bins while still meeting
the capacity constraint of each bin. The VSBPP is also a NP-hard
problem because BPP (which is a special case of VSBPP) is a NP-
hard problem (Garey and Johnson, 1979 cited in Correia et al. ,
2008).

2.2.2. Usage VSBPP in real-world applications

The variable sized bin packing problem (VSBPP) also has a
wide range of practical applications for example in loading problems
and in machine scheduling.
The VSBPP arises in loading truck problems in the case where just
the weight is taken into account and where a several trucks is
available, specifically more than one truck of every size/weight limit.
The objective is to minimize the overall cost of the chosen trucks.
In the case of machine scheduling, the VSBPP originates when there
are a given number of tasks and different types of processors,
where each job has a processing time value that is required for
its implementation. The aim is to minimize the cost related to the
processors that is used to schedule all the tasks (Correia et al. ,
2008).
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2.2.3. Related work

A number of previous studies have been considered the
methods of approximation solutions for variable sized bin packing
problem (VSBPP) and its variants. Friesen and Langston (1986)
describe three approximation algorithms for solving the variable
sized bin packing problem where it allowable only a fixed set of bin
sizes and the cost of the obtained solution is the total sizes of used
bins. Also they show their guarantee asymptotic worst-case
performance bounds which are 2, 3/2 and 4/3 in succession. Murgolo
(1987) obtain an asymptotic fully polynomial time approximation
scheme (AFPTAS) for this problem (Cited in Haouari and Serairi,
2009).

Han et al. (1994) consider an optimization problem for the two-
dimensional variable sized vector bin packing problem (2 — VSVBP),
where is given different types of bins (not identical bins). They
propose three approaches: a greedy heuristic, a method based on
simulated annealing and an exact algorithm. In addition to use a

method based on linear programming to improve lower bounds.

Monacci (2002) suggest a branch-and-bound method to solve
the variable sized bin packing problem (VSBPP). He assume in his
study that for each bin, its cost is equal to its capacity and the amount
of bins per bin type is equal to the total amount of items (cited in
Correia et al., 2008).

The column generation strategies are considered in (Belov and
Scheithauer, 2002 ; Alves and Valério de Carvalho, 2007) and
are applied to solve the variable sized bin packing problem (VSBPP)
and the classical bin packing problem (BPP) as well
Moreover, Pisinger and Sigurd (2005) develop these column
generation techniques for solving the two-dimensional variable sized
bin packing problem (2 — DVSVBP) (cited in Correia et al., 2008).

In addition to those existing methods, exact methods have been

also investigated for the variable sized bin packing problem (VSBPP)
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by Monaci (2002), Belov and Scheithauer (2002), Alves and Valério
de Carvalho (2007), and Haouari and Serairi (2009). Nevertheless,
these proposed exact algorithms is not capable for solving the large
problem instances because the VSBPP is NP-hard (Cited in Haouari
and Serairi, 2009).

Kang and Park (2003) propose two greedy algorithms where they
are a different form of first fit decreasing algorithm (FFD) and best fit
decreasing algorithm (BFD) respectively. They analyze the
asymptotic worst-case performance of these algorithms in three
specific cases regarding the divisibility of items weights and/or bins
capacities. Firstly, when the sizes of items and the sizes of bins are
divisible and show that the algorithms give optimal solutions. In the

second case, when only the sizes of bins are divisible and prove that
the algorithms give a solution whose value is less than % z+4 % .
Finally, when the sizes of bins are not divisible and prove that the
algorithms give a solution whose value is less than % z + 1 (where z

is the value of an optimal solution).

Correia et al. (2008) consider in their study the utilization of a
discretized formulation for solving the variable sized bin packing
problem (VSBPP). They show that their proposed model after having
some appropriate improvements gives better linear programming
bounds and also this model could be used jointly with a commercial

package in order to find VSBPP optimal solution.

Haouari and Serairi (2009) propose and evaluate the performance of
six heuristics and also develop a genetic algorithm for the one
dimensional variable sized bin packing problem (VSBPP). Their
results show that these heuristics which based on set covering
performed well for large problem instances in terms of providing

highly efficient solutions and taking short CPU times.

Hemmelmayr et al. (2012) propose a variable neighbourhood search
metaheuristic to solve the variable sized bin packing problem

(VSBPP). This algorithm is based on using the lower bounds and
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dynamic programming. They indicate that this approach is more
likely to have a better results than the current state-of-the-art

methods, in particular when it is used with large-scale instances.

The generalization of first fit decreasing (FFD) algorithm in
multidimensional case makes it necessary to define the methods of
measuring and comparing items due to the fact that the largest item
will be chosen and placed into a bin in the classical first fit decreasing
(FFD) algorithm (cited in Gabay and Zaourar, 2013). Panigrahy et al.
(2011) use the DotProduct measure which defines the term "largest"
as the item that maximizes the dot product between the vector of

remaining capacities and the vector of demands for the item.

2.2.4. Other versions of the variable sized bin packing problem

In light of previous studies, there are other suggested variants
of the variable sized bin packing problem (VSBPP) could be defined

as well.

In the original version, there are unlimited humber of bins available
for each type of the bins (cf. Friesen and Langston, 1986 ; Murgolo,
1987; Chu and La, 2001 ;Monacci, 2002 ;Kang and Park, 2003)

(cited in Hemmelmayr et al , 2012).

Also, Dawande et al. (2001) address the variable sized bin packing
problem with new constraints, named the color constraints. In this
problem, each item has colour and size and the objective is to
minimize the number of used bins such that each bin should not
contain more than p distinct colors, where p is a pre-determined

positive integer.

By the way, Seiden et al. (2003) study the variable sized online bin
packing problem and propose algorithms which give better upper
bounds compared to the existing ones as well as introduce the first

lower bounds for this problem.

Another different form is examined by Correia et al., (2008) and

Crainic et al., (2011), where in that case, an upper bounds on the
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number of bins per bin type are considered.

In addition to that, Correia et al. (2008) describe the variable cost
and sized bin packing problem (VCSBPP) in which they consider the
economic attributes (bin costs) in addition to physical attributes for
the purpose of making more distinction between this case and the
other case where it is not necessary to have a correlation between
the fixed costs of the bins and their capacity. Epstein and Levin
(2008) provide an asymptotic polynomial time approximation scheme
(APTAS) for the generalized problem. Crainic et al. (2011) introduce
a heuristics algorithms for VCSBPP, which relies on the upper and
lower bounds. Their findings prove that these algorithms are very
effective for large problem instances as well. It is also show how the
correlation between the bin costs and the bin volumes affects the
quality of the solution. So, this approach compared with state-of-the-
art methods is provided better solutions regards to the computational
effort and solution accuracy.

Furthermore, Baldi et al. (2010) study a more general version of this
problem, where other characteristics are added for instance required
items and optional items which should be placed into the bins.
Besides this, they consider that the number of bins per bin type have

a lower bound (cited in Hemmelmayr et al., 2012).
2.3. Vector bin packing problem (VBP)

2.3.1. Problem definition

The Vector bin packing (VBP) problem or d-Dimensional vector
packing (d — DVP) problem is introduced by Garey et al. (1976) which
is a generalization of the classical bin packing problem. In this
problem, a given set of items where each item is a d-dimensional
vector with entries € [0,1]. The objective is to pack the items into a
minimum number of bins where the sum of the sizes of all packed

items must be less than or equal to 1 (cited in Alves et al. , 2014).
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2.3.2. Usage VBP in real-world applications

There are many important applications of the vector bin
packing (VBP) problem, one of them is Data Placement problem which
takes a place in a study by Shachnai and Tamir (2003). It is also used
in a shared hosting platform which is aimed to allocate the jobs to
servers, where each job requires a number of resources like a number
of cycles per second, memory and bandwidth. Therefore, in this
application the jobs represent the items, the servers are the bins and
the number of resources is the dimension d (Stillwell et al, 2010 cited
in Kao, 2008). Another application of the vector packing problem is in
modelling the virtual machine placements for the cases when all the
machines have an identical capacities (Lee et al., 2011; Panigrahy et
al., 2011; Stillwell et al., 2010). However, by the development of this
area over the previous years, the new machines become with different
capacities. A generalization of the vector bin packing problem (VBP)
called the variable size vector bin packing (VSVBP) problem is
introduced by Gabay and Zaourar (2013). The new in this problem is
that each bin has a tuple of capacities and the aim is to pack the items
in a minimum number of bins used. The VSVBP problem efficiently
modelling the virtual machine placements with heterogeneous cluster
(cited in Gabay and Zaourar, 2013).

2.3.3. Related work

The first asymptotic polynomial-time approximation scheme
(APTAS) is provided by Fernandez de la Vega and Lueker (1981) in
which their method was based on rounding. Then Karmarkar and Karp
(1982) improved this algorithm to a (1 + log? ) -OPT bound (Cited in
Rao et al., 2010).

Maruyama et al. (1977) study a generalization of one dimensional bin
packing heuristics within a general framework for vector bin packing
problem. Kou and Markowsky (1977) investigate the lower and upper
bounds in their study and indicate that for some generalized classical
bin packing algorithms, the behavior ratio of worst case is larger than
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the dimension (d) (cited in Gabay and Zaourar, 2013).

Yao (1980) proved that a worst case performance ratio of any time

algorithm O(nlogn ) is bigger than dimension (d).

There are several algorithms used in solving the vector bin packing
problem starting with the simple greedy heuristics for example: First
Fit, Best Fit, Worst Fit and Next Fit algorithms which were studied in
Kou and Markowsky,1977 ; Maruyama et al.,1977 (cited in Stillwell et
al., 2010)

Woeginger (1997) prove that there is no asymptotic polynomial time
approximation scheme (APTAS) for the vector bin packing problem of
higher dimension (d > 2) (unless P = NP). Chekuri and Khanna
(1999) show an O(Ind)-approximation algorithm for the vector bin
packing which is a polynomial-time for the case where d is constant.
Bansal et al. (2006) improve this by a randomized (Ind + 1 + ¢)-
approximation algorithm that runs in polynomial-time for any fixed ¢ >
0 and constant dimension d. As well as this approximation algorithm
has been improved to extend to higher dimensions (d = 2) by Rao et
al. (2010), their proposed algorithm is dependent on combining both
of (near-) optimal solution of the linear programming relaxation and a
greedy heuristic. Karger et al. (2007) show the existence of the
polynomial approximation scheme to the randomly perturbed
instances through using smoothing analysis for multidimensional

vector bin packing problems.

Karp et al. (1984) consider in their study the vector bin packing
problem where the size of all items are drawn independently from the

uniform distribution over [0,1]. They prove the lower bounds on the
expected wasted space in the optimal solution is Q (n %) ford > 3.

Also, they propose a new algorithms called VPACK that tries to place
two objects in each bin, Since this heuristics shows a better usage of

the bins where the wasted space is considered as a very little amount.
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Spieksma (1994) study the two dimensional vector packing (2 — DVP)
problem and propose a heuristic relies on the first fit decreasing (FFD)
algorithm to solve this problem. As well as examine the lower bounds
for optimal solutions of the two-dimensional vector packing (2 — DVP)

problem and using these bounds in a branch-and-bound algorithm.

Chekuri and Khanna (1999) show that the 2-dimensional vector

packing problem is APX-hard and It is a d'/2=¢ hardness of

approximation, for any fixed e > 0 .

Caprara and Toth (2001) analyze many lower bounds for 2-
dimensional vector packing problem and prove that all of these lower
bounds are dominated by the acquired lower bound from the huge
linear programming relaxation. They propose exact algorithms and
heuristic in order to obtain an optimal solutions. A two-dimensional
vector packing is also used by Chang et al. (2005) in modelling the
packing steel products problem, where there are special containers
should be packaged steel products and they propose a heuristic

algorithm for it.

Alves et al. (2014) propose new functions called vector packing dual-
feasible functions to solve the two-dimensional vector packing
problem which extend the concept of dual-feasible functions to the
multidimensional case. They show that theses proposed functions
accomplish a considerable improvements on the convergence of

branch and-bound algorithms and provide strong lower bounds.

Shachnai and Tamir (2003) propose a polynomial-time approximation
scheme (PTAS) for a subclass of instances for the vector bin packing
problem. Caprara et al. (2003) prove in their study that for getting a
PTAS for d-DVP, the weight vectors of all items must be totally

ordered.

The genetic algorithms are also considered for solving the vector
packing problems that arise from resource allocation problems (Rolia
et al., 2003 ; Gmach et al. , 2009; Gmach, 2009 cited in Stillwell et al.,
2010).
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Stillwell et al. (2010) propose and assess several algorithms for the
resource allocation problem in shared hosting platforms. They point
out that the chose pack vector packing algorithm which is proposed
by Leinberger et al. (1999) has the best performance regards the
running time, as it does not exceed a few seconds. They also show
that this approach is working better than greedy algorithms, linear
programming relaxations and a genetic algorithms. Therefore, the

chose pack vector packing algorithm is considered as more effective.

Panigrahy et al. (2011) study a various variants of the first fit
decreasing (FFD) algorithm for solving the vector bin packing problem
and propose a geometric algorithm which has a better results than first
fit decreasing (FFD) heuristics for sensible values of nand d. In
addition to that, the number of bins used could be reduced by 10%

through using this new geometric heuristics.

Patt-Shamir et al. (2012) study a multiple-choice vector bin packing
which is another different form of bin packing problem where bins have
various sizes and they propose an approximation algorithm with a rate
(In2d +1+¢) forany € > 0.
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3. Problem definition

3.1. Variable size vector bin packing problem (VSVBP)
3.1.1. Notations and formulation

Consider the following notation:

I={1,......cc........., N} set of items
J={1,.cucuceuce......,n}  setof bins
D=A{1,.........,d} the number of dimensions
X;ji item i is packedinbinj (i€l,je€])
Vi bin j is used
¢f capacity of bin j in dimension k
sk size of item i in dimension k

The VSVBPP can be straightforwardly formulated as follows:

Min X je; v, (D

Subject to
Yier st xji < ¢f Vj€EJ,V keED (2)
Yje X =1 Vi€el 3)
x;; € {0,1} VjeEJ,Viel (4)
y; €{0,1} vV j€e] ()

The objective function (1) minimizes the number of the bins used for
packing all the given items. Inequalities (2) demonstrate the capacity
constraints which state that the amount of items packed in the bin j
in dimension k should not exceed its capacity for each bin j
and dimension k while constraints (3), (4) and (5) ensure that each

item i is packed to a bin j.
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The optimization problem that we are addressing is a two-dimensional
variable size vector packing problem (2DVSVP). This problem is,
in fact, a special case of the variable size vector bin packing problem
which was introduced by Michael and Zaourar (2013) when the

dimension d = 2.

3.2. Two-dimensional variable size vector packing problem
(2 — DVSVP)

A given list of items I = {1, ...... ... .e. .. ... ..., N} @nd each item i € [
has size 1 and size 2 (a;, b;). Also the size 1 and the size 2 of the bins is
A and B respectively. The aim is to pack the items into a minimum
number of bins such that the total sum of a; (size 1) of all the items which
packed into the same bin should not exceed A. Likewise, the total sum
of b; (size 2) of all the items which packed into the same bin should not

exceed B.

However, in order to meet the constraint that the entries (a;, b;) € [0,1]
for each item i € I, it is required to scale the capacities of the bins (and
items) so that the capacity of the bins will end up with the 1 for all
dimensions. Hence, this could be obtained through dividing the capacity
of each item by the capacity of the bin in that dimension.
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4. Methodology

In this section, we explain the different strategies that have been
used in our study for solving the two-dimensional variable size vector bin
packing problem (2 — D VSVBP) which is a special case of the variable
size vector bin packing problem (VSVBP) when the dimension d = 2 .
These strategies are based on the first fit (FF) algorithm with some

new variants.
4.1. Strategy 1

This strategy is applied the simple first fit (FF) algorithm which is used
to solve the classical bin packing problem (BPP) into variable size vector
bin packing (VSVBP) problem which is a multidimensional packing
problem. We generalize this well-known algorithm in order to investigate
its performance in this multidimensional problem. In this research we refer
to the first fit (FF) algorithm by algorithm 1. Since the asymptotic
approximation ratio of First Fit bin packing is equal to 1.7, Dosa (2007)
proved the absolute approximation ratio for the first fit bin packing is
exactly equal to 1.7.

Algorithm 1 works as follow:
Step 1: Start packing with the first item in the list.

Step 2: check the fitting condition [If the item did fit in the first bin] then
place the item into the first bin. Otherwise, open a new bin and put

the item within the new bin.

Step 3. move to the next item and do the same procedure in the step 2

until packing all the items.

Note that the open bins they keep open in the hope that the remaining

spaces will be filled later by other items.
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4.2. Strategy 2

The concept of this strategy is the same as the first fit decreasing
(FFD) algorithm which is one of the simple algorithms that is used to solve
the bin packing problems (Eilon and Christofides 1971, Johnson et al.
1974). Also, different variants of the first fit decreasing (FFD) algorithm is
studied by Panigrahy et al. (2011) to solve the vector bin packing problem.

In the FFD algorithm the set of items is sorted in non-increasing order
regards their sizes. However, in our case we are dealing with
multidimensional (2 dimensions) so it is important to define how the largest
items will be measured. Our approach is to propose two algorithms, where
the first one takes into account one of the sizes to measure the largest
items with respect to it while the other size does not have any effect, it is
just dependent on the selected size and the second algorithm is vice

versa. Hence, we dealt with each size separately.
Algorithm 2 works as follows:

Step 1: sort the set of items in non-increasing order regards their sizel,

where sizel is the size of the items in the first dimension.
Step 2: apply the first fit (FF) algorithm to pack the items.
Algorithm 3 works as follows:

Step 1: sort the set of items in non-increasing order regards their size2,

where size2 is the size of the items in the second dimension.

Step 2: apply the first fit (FF) algorithm to pack the items.
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4.3. Strategy 3

This strategy is based on random permutation of items vector
and itincludes one algorithm called algorithm 4. This approach is the same
of the Random Fit (RF) algorithm which is a simple variant of the well-
know first fit (FF) algorithm (Albers and Mitzenmacher,1998).

Algorithm 4 works as follows:
Step 1: randomize the items vector.
Step 2: apply the first fit (FF) algorithm to the new obtained items vector.

To explain the randomization of items vector more precisely,
for example: if we have in the original version of the problem 10 types
of items, and there is 2 pieces from each item type except item type 1
and item type 7 there are 5 pieces from these items type. Thus, the total
number of items is 26. Therefore, the original items vector is
{1,1,1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,7,7,7,8,8,9,9,10,10}, however , in this
version the items vector would be randomize in any way such as
{10,2,5,1,8,5,1,1,7,3,4,9,10,7,7,6,2,8,7,3,9,1,1,4,6,7}. So, the number of each

type of items still as before just the order of these items change randomly.

Note that this randomization of items is changed every time when the
algorithm runs which leads to obtain different results in each running while

the input instances of the problem are the same.
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4.4, Strategy 4

The strategy 4 rely on various probabilities rules and it is similar to
the strategy 3 in terms of that both of them are selected the items randomly
in each run of the algorithm. In other words, different results will be

obtained for the same problem at every run of the algorithm.

In this strategy, we have four algorithms named algorithm 5,
algorithm 6, algorithm 7 and algorithm 8 respectively. These algorithms
have the same procedure except that the probabilities rules are different

in each version.
Algorithm 5 is defined as follows:

Step 1. calculate the probability p; for each item type, in which the

probability rule in this algorithm is defined as follows:

__ demand (i)
pi = Yiedemand (i)

where
demand (i) is the number of units (items) of item type i

1 is a set of item types

Step 2: find the cumulative distribution function (CDF).
Step 3:

1. Generate a random number r between [0,1]

2. If [the value of item (i-1) in CDF < r < the value of item (i) in CDF ] then

2.1. select item(i)

wherei =1,2,......... ,n and n is the number of item types

3. Check the availability of item (i)
3.1. If the item (i) is still available then
3.1.1. select item (i).

3.1.2. remove the item (i) from the original set of items.

3.2. Otherwise, If the item (i) ran out then go to the stage 1 in step 3.

4. lterate this procedure (step 3) until the original set of items is

empty.
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Step 4. construct a new set of items by the selected items via the
previous rule so that their sequence will be the order of the items in
this new set.

Step 5: pack the new list of items by using the first fit (FF) algorithm.

Algorithm 6 is defined as follows:

It has the same steps as in the algorithm 5 but it uses another

probabilities rule. Its probabilities rule is

~__ _ demand (i) = size1 (i)
Pi= Yiei(demand (i) * sizel (i)

where
demand (i) is the number of units (items) of item type i
sizel (i) is the size of the item i in the first dimension.

I is a set of item types

Algorithm 7 is defined as follows:

It runs with the same procedure of algorithm 5 except that the
probabilities rule in this algorithm is defined as:

o demand (i) * size2 (i)
Pi= Yier(demand (i) » size2 (i)

where
demand (i) is the number of units (items) of item type i
size2 (i) is the size of the item i in the second dimension.

I is a set of item types
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Algorithm 8 is defined as follows:

This algorithm is also follows the same instructions as the
previous algorithms (algorithm 5, algorithm 6 and algorithm 7).

However, it uses different probabilities rule which is defined as:

demand (i) * average (i)

p; =

" Yier(demand (i) * average (i))
where

demand (i) is the number of units (items) of item type i

sizel (i)+size2 (i)
2

average (i) =
sizel (i) is the size of the item i in the first dimension.
size2 (i) is the size of the item i in the second dimension.

I is a set of item types

36



4.5. Strategy 5

The strategy 5 is also based on the first fit decreasing (FFD) algorithm
and it is associated with strategies 1 and 2 in terms of that all of them are
deterministic algorithms. Within this strategy we have two algorithms, we
denote them by algorithm 9 and algorithm 10. Since these algorithms are
deterministic algorithms, their output are always the same for the same

input instances.
Algorithm 9 is defined as follows:
Step 1: calculate the average size for each type of items,

where

sizel (i) + size2 (i)

average (i) = >

sizel (i) is the size of the item i in the first dimension.
size2 (i) is the size of the item i in the second dimension.
Step 2: sort the list of items in non-increasing order of their averages.

Step 3: pack the items using the first fit (FF) algorithm.

Algorithm 10 is defined as follows:
Step 1: calculate the weighted average size for each type of items,

where

ax sizel (i)+bx size2 (i)
2

weighted average (i) =

sizel (i) is the size of the item i in the first dimension.
size2 (i) is the size of the item i in the second dimension.
a, b are the minimum number of bins that is required to pack the

items of size 1 and size 2 respectively and they defined as follows:

_ Yiei(sizel (i)x demand (i))
" Maxinum sizel of the bin

_ Sici(size2 (i)x demand (i)
" Maxinum size2 of the bin

b
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demand (i) is the number of units (items) of item type i

I Is a set of item types
Step 2: sort the list of items in non-increasing order of their weighted averages.
Step 3: pack the items using the first fit (FF) algorithm.

The algorithm 9 is consider as a special case of algorithm 10 when both of

a and b are equal to 1.
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5. Experiments

We consider the variable size vector bin packing (VSVBP) problem
when the dimension d = 2. All the described algorithms in section 4
is experimented on two different sets of random instances in two cases:
firstly, with an equal demand for each type of items. Secondly, with a random
demand for each type of items. For each of these cases, the proposed
algorithms will be run twice, in the first time with small-scale of instances and
then with large-scale of instances. In this experiment we consider for each
bin that the maximum size 1 and the maximum size 2 is 500 and 700
respectively. The instances that used in this experiment (set 1 and set 2 with
different demands) is attached into the Appendix |. The proposed algorithms

was implemented in Visual Basic (VB) and it is attached into the Appendix II.

5.1. Results:

In this section, we show the results of using the proposed strategies
with two different data (set 1 and set 2) with different demand in each case.
Regarding the deterministic strategies which are the strategy 1,
the strategy 2 and the strategy 5 their results are obtained from the first run
of the algorithm. On the other hand, the strategy 3 and the strategy 4 which
are random strategies their results are obtained by run each algorithm

ten times and take the average of the results.

The results are divided into two cases depending on the demand

(the number of items for each type of items) either equal or random.
5.1.1. Results for case 1 (equal demand):

The given tables below (Table 1, Table 2, Table 3 and Table 4)
show the obtained results from applying the suggested strategies into
the set 1 and the set 2 of instances with an equal demand for both

small-scale and large-scale of instances.
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Average Volume

Average Volume

Number

Strategles Size 1% Size 2% of bins
Algorithm 1 79.45205 84.73581 73
Algorithm 2 79.45205 84.73581 73
Algorithm 3 72.5 77.32143 80
Algorithm 4 83.97293 89.55734 71
Algorithm 5 80.72298 86.09126 12
Algorithm 6 80.2337 85.56944 72
Algorithm 7 81.3718 86.78322 71
Algorithm 8 81.03751 86.42671 12
Algorithm 9 86.56716 92.32409 67
Algorithm 10 82.35294 90.96639 68

Table 1: Set 1 of instances with small-scale and equal demand.

Strategies Averége Volume Avera.ge Volume | Number
Size 1% Size 2% of bins
Algorithm 1 81.76471 59.31373 102
Algorithm 2 87.78947 63.68421 95
Algorithm 3 87.78947 63.68421 95
Algorithm 4 91.95835 66.70839 93
Algorithm 5 89.99079 65.28109 93
Algorithm 6 86.63725 62.84837 96
Algorithm 7 89.78326 65.13054 93
Algorithm 8 88.48266 64.18706 94
Algorithm 9 92.66667 67.22222 90
Algorithm 10 92.66667 67.22222 90

Table 2: Set 2 of instances with small-scale and equal demand.
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Average Volume

Average Volume

Number

Strategies Size 1% Size 2% of bins
Algorithm 1 79.12688 84.38901 1466
Algorithm 2 80 85.3202 1450
Algorithm 3 72.5 77.32143 1600
Algorithm 4 86.2528 91.98882 1346
Algorithm 5 82.77473 88.27945 1402
Algorithm 6 81.60878 87.03597 1422
Algorithm 7 83.25775 88.7946 1393
Algorithm 8 83.23432 88.76961 1394
Algorithm 9 87.54717 93.36927 1325
Algorithm 10 87.54717 93.36927 1325

Table 3: Set 1 of instances with large-scale and equal demand.

Strategies Average Volume | Average Volume | Number
Size 1% Size 2% of bins
Algorithm 1 82.20798 59.63529 2029
Algorithm 2 87.78947 63.68421 1900
Algorithm 3 87.78947 63.68421 1900
Algorithm 4 91.91688 66.67831 1816
Algorithm 5 91.80082 66.59412 1817
Algorithm 6 87.2086 63.26283 1913
Algorithm 7 90.6516 65.76045 1840
Algorithm 8 88.92962 64.5113 1876
Algorithm 9 92.66667 67.22222 1800
Algorithm 10 92.66667 67.22222 1800

Table 4: Set 2 of instances with large-scale and equal demand.
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Firstly, comparing the results between set 1 and set 2 for both
cases small-scale and large-scale. Data from Table 1 can be
compared with the data in Table 2 which shows that their results are
consistent in the first three best results that means in other words in
the strategy 5 and the strategy 3. However, there are some differences
in the rest of the results, in particular with the strategy 4 as the
performance of some of their algorithms is different in both of the set
1 and set 2. This also applies when comparing Table 3 with Table 4
as in this case (large-scale instances) the differences in the

performance of the algorithms of strategy 4 is clearer.

Turning to compare the results of the small-scale instances
with large-scale instances for each data set. In the set 2, it can be
seen from the Table 2 and Table 4 that there is no differences between
the results of the small-scale instances and the large-scale instances
regards the order of superiority algorithms starting with the algorithms
9 and 10 which give the best results until the algorithm 1 which gives
the worst results. In other words, the superior algorithms with the
small-scale instances are still superior with the large-scale instances
at the same order which is consider as a good indicator. As well as,
in the set 1 as shown in Table 1 and Table 3 the order of superiority
algorithms is the same in both small-scale and large-scale instances
except that the algorithm 6 which gives the fourth-best result in the
small-scale instances while in the large- scale its order in terms of

superiority is the sixth.

Overall of case 1, the main observations that can be seen from
Tables (1,2,3,4) above that the best results are obtained by the
algorithm 9 and the algorithm 10 . Moreover, the algorithm 4 provides
a roughly good result (the second best result). On the other hand,
the algorithm 1 and the algorithm 3 give the worst result in set 2 and

set 1 respectively.
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5.1.2. Results for case 2 (random demand):

The next four tables (Table 5, Table 6, Table 7 and Table 8)
show the results of using the proposed strategies into the data set 1

and the data set 2 with a random demand for items in both the small-

scale and the large-scale of instances.

Strategies Average Volume | Average Volume | Number

Size 1% Size 2% of bins
Algorithm 1 79.45205 84.73581 73
Algorithm 2 79.45205 84.73581 73
Algorithm 3 72.5 77.32143 80
Algorithm 4 83.97293 89.55734 71
Algorithm 5 80.72298 86.09126 72
Algorithm 6 80.2337 85.56944 72
Algorithm 7 81.3718 86.78322 71
Algorithm 8 81.03751 86.42671 72
Algorithm 9 86.56716 92.32409 67
Algorithm 10 82.35294 90.96639 68

Table 5: Set 1 of instances with small-scale and random demand.
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Average Volume

Average Volume

Number

Strategies Size 1% Size 2% of bins
Algorithm 1 79.47115 57.3489 104
Algorithm 2 89.83696 64.82919 92
Algorithm 3 88.87097 64.1321 93
Algorithm 4 91.90362 66.39077 92
Algorithm 5 89.57032 64.63678 92
Algorithm 6 85.95516 62.02797 96
Algorithm 7 90.2426 65.12192 92
Algorithm 8 89.18904 64.36163 93
Algorithm 9 91.83333 66.26984 90
Algorithm 10 91.83333 66.26984 90

Table 6: Set 2 of instances with small-scale and random demand.

Strategies Averége Volume Averége Volume | Number

Size 1% Size 2% of bins
Algorithm 1 77.61111 67.81746 1800
Algorithm 2 82.17647 71.80672 1700
Algorithm 3 77.61111 67.81746 1800
Algorithm 4 84.49777 73.8351 1654
Algorithm 5 81.4854 71.20286 1715
Algorithm 6 82.07122 71.71475 1702
Algorithm 7 82.0424 71.68957 1703
Algorithm 8 82.8745 72.41667 1686
Algorithm 9 84.66667 73.98268 1650
Algorithm 10 84.66667 73.98268 1650

Table 7: Set 1 of instances with large-scale and random demand.
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Strategies Averége Volume Averége Volume Num.ber
Size 1% Size 2% of bins
Algorithm 1 80.72727 54.38312 2200
Algorithm 2 82.60465 55.64784 2150
Algorithm 3 84.57143 56.97279 2100
Algorithm 4 86.59192 58.33392 2052
Algorithm 5 85.9486 57.90054 2066
Algorithm 6 83.82443 56.46956 2119
Algorithm 7 85.50929 57.6046 2077
Algorithm 8 84.00187 56.5891 2115
Algorithm 9 86.63415 58.36237 2050
Algorithm 10 86.63415 58.36237 2050

Table 8: Set 2 of instances with large-scale and random demand.

Firstly, we compare the results of each data set in both cases
(small-scale and large-scale). From Table 5 and Table 6 we can see
that best results is given by the strategy 5 and then followed by
the strategy 3 in terms of better results. Whereas the performance of
strategies 1, 2 and 4 is different between data set 1 and data set 2.
Similarly for the large-scale of instances, so that Table 7 and Table 8
have the same trend but we observe that there are more differences
in the performance of strategy 2 between the two sets (set 1 and set
2) in which the algorithm 2 gives better results in data set 1 while the

algorithm 3 provides better results in data set 2.

Secondly, we turn to compare the results of the small-scale
instances and the large-scale instances for each set (set 1 and set 2)

in the case of random demand.

In set 1, as can be seen from Table 5 and Table 7 that the

strategy 5 outperform the other strategies in which their algorithms
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provide solutions that used a number of bins less than other
strategies. Also, the strategy 3 still the second strategy that gives good
solutions. In contrast, the performance of strategy 4 is varied between
the small-scale and large-scale. For example, the algorithm 5 and the
algorithm 7 gives better results with small-scale of instances while the
algorithm 8 performs better with the large-scale of instances.
As well as, the performance of algorithm 2 (which is within strategy 2)

is better with the large-scale of instances.

Concerning set 2, Table 6 and Table 8 present the results of
the data set 2 with random demand in small-scale and large-scale of
instances respectively. The results of strategy 5 are still the dominant
results throughout all the strategies. However, the performance of
other algorithms is similar in both small and large instances except the
algorithm 2 which gives the best fourth solution with small-scale
of instances whereas it gives the ninth solution with the large-scale

of instances.

Therefore, in this case the results suggest outperformed of the
strategy 5, as well as a reasonable performance of the strategy 3.
On the other hand, the performance of the strategy 1, the strategy 2
and the strategy 4 is various between the tables.

5.1.3. Summary of the results:

Summarising we can say that the strategy 5 gives the best
results throughout all of the cases in both set 1 and set 2. However,
the strategy 3 also gives a reasonable results in solving the variable

size vector bin packing (VSVBP) problem.
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5.2. Discussion

5.2.1. The superiority of strategy 5

The superiority of strategy 5 in our computational results is
probably due to the algorithm 9 and algorithm 10 that are included in
this strategy are taking into account both of size 1 and size 2 in the
same time. In other words, the standards adopted by these algorithms

is not biased to a certain size (dimension) without the other.

The observed difference between the algorithm 9 and
the algorithm 10 in this study was not significant. However, it was
expected to surpass the algorithm 10 even albeit slightly but we found
the opposite. In Table 5, it has shown that the algorithm 10 packed
the items in 68 bin while the algorithm 9 packed the same items
in 67 bin. As we indicated that this difference is not great but it was
expected that this superiority is in favour of the algorithm 10 because

it is based on the weighted average.

Strategy 5 has another important advantage that their algorithms
are deterministic algorithms so they give the same output even when
the algorithms run several times. To illustrate the importance of this
property for example, in the case where the strategy 3 gives the same
obtained results from the strategy 5, then the preference will be for
strategy 5 because their output is constant while the output of the
strategy 3 changeable in each time we run the algorithm since it is
based on randomization. Except in the case that the worst solution for
strategy 3 is still better than the solution of strategy 5 therefore the

strategy 3 is better in this case.
5.2.2. The relatively good performance of Strategy 3

The algorithm 4 (which is within the strategy 3) gives satisfactory
results to some extent, due to it based on randomizing the items
vector. Therefore, it arranges the items randomly and pack them
in bins, this method is not like any of the deterministic methods that
packing all the items of the selected type before moving to another

type of items.
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The randomization property is quite good because sometimes one
or more of the items type have large size in one (or more) of its
dimension. So it cannot be placed with another item of the same type
and this makes the algorithm opens many of the new bins. In
particular, when this type of items occurs as a one of the last items in
the list. In this case, there is a less chance in having items with small
sizes that could be placed with those large items in the same bin. On
the other hand, the property of randomizing the items vector is more
likely to reduce the number of bins because it puts the items in random
order which will probably result in increasing the utilization of the bins
used as we can see in Table 6 that the average utilization of size 1
and the average utilization of size 2 for the strategy 3 is 91.90362
and 66.39077 respectively which is better than the average utilization

of strategy 5.

The principle which this algorithm is dependent on it
(randomizing the vector items) gives different results in each run of
the algorithm and this probably consider as a negative point for this
approach. However, we could run the algorithm for several times and
take the average of the obtained results, as well as taking into account
the best solution and the worst solution of the obtained results.

5.2.3. The worst results

It is expected that the worst result will be by the algorithm 1
(first fit (FF) algorithm) because it is packing the items based on
a very simple rule and it does not take into account any of
the dimensions of the problem. It is packing all the items of the first
type in the given set, then moving to the followed type of items and
so on until packing all the set. However, we noted that the algorithm 3
(which is within strategy 2) gives the worst results in the data set 1,
which is worse than the results of the algorithm 1 (first fit (FF)

algorithm).

The reason behind the algorithm 3 gives the worst results in the

data set 1 is that the items of type 5 has the smallest size regards
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size 2 and the largest size in terms of size 1 which leads the algorithm
3 to put the items of this type as the last items for packing. To explain
in more detail, the items of type 5 have a large size (475) in size 1 and
that the maximum size 1 is 500 per bin this leads to open new bin for
each of these items because the bin cannot hold two items of this type
as well as this type is the last type packed in this algorithm so there is
no other types of items will fit with them in the same bin such as items
of type 3 or 10 because these items placed before the items of type 5.
This is the cause why the algorithm 3 uses more bins than in the

algorithm 1.
5.2.4. The different performance of strategy 4

In general, by comparing the results we find that the
performance of the strategy 4 is variable and its results usually in the
middle, so are not good as the obtained results by the strategy 5 and
are not bad as the results of strategy 1. In addition, as we indicated
previously that both of the strategy 3 and the strategy 4 based on the
randomization, but the results indicate that the performance of
strategy 3 is superior to the performance of strategy 4 in all cases,
as well as the performance of strategy 3 is constant, in other words,
it consider as the second-best strategy for all cases. However, we did
not expect this performance of the strategy 4, especially for the
algorithm 8 which its probability rule rely on the average and the
demand, so it was expected that the algorithm 8 gives good results
because it takes into account all the dimensions of the problem and

the demand as well.
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6. Conclusion

6.1. Summary

In this study, we consider a special case of the variable size vector
bin packing (VSVBP) problem when the dimension d = 2. The VSVBP
problem is a generalization of the vector bin packing (VBP) problem.
At the present, the VSVBP is very useful in modeling many real-world
applications because in recent years several real-life problems have
a number of incomparable variables that are required to be consider
at the same time whereas the variable size vector bin packing (VSVBP)
problem takes into account the multidimensionality so this makes this
type of problem capable to deal with those applications. We propose five
different strategies that are based on the well-known first fit (FF)
algorithm and with some new variants for the variable size vector bin
packing problem in order to minimize the number of bins used for packing
a given set of items. These proposed algorithms are easy to implement
and their running time is fast. The obtained results show that the
algorithms 9 and 10 in the strategy 5 which are based on the average
size of items and the weighted average size of items respectively
produce the best solutions compared with the other proposed strategies,
even for large-scale instances of both data sets. However, the
strategy 3 which is rely on randomizing the items vector also gives

a reasonable solutions in all the discussed cases.

6.2. Limitation

The most important limitation lies in the fact that this study did not
take into account the minimum space needed between each pair of
adjacent items which is probably required in some practical applications.

So, this assumption was not addressed in this study.

6.3. Recommendations

In the future, it is strongly recommended to do further investigation
and experimentation on the impact of the number of items for each item

type into the suggested algorithms in this study. For example, in the case
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where there are more large items or more small items (after selecting
a certain criteria for measuring the large and small) and it would be
interesting to compare the findings. Further research could also be
conducted to determine the effectiveness of the proposed strategies
in solving the variable size vector bin packing problem when the
dimensiond > 2 .
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Glossary

c&P
BPP
VBP
d—DVP
VSVBP
2 - DVSVBP
VCSBPP
CCSBP
BPC
PTAS
APTAS
FF

FFD
BFD
MBS

LP

GA

HACO — BP

Cutting and packing problems

Bin packing problem

Vector bin packing problem

d-Dimensional vector packing problem

Variable size vector bin packing problem

Two - dimensional variable size vector bin packing problem

Variable cost and sized bin packing problem

Class constrained shelf bin packing problem

Bin packing problem with a fixed number of object weights

Polynomial-time approximation scheme

Asymptotic polynomial time approximation scheme

First fit algorithm

First fit decreasing algorithm

Best fit decreasing algorithm

Minimal bin slack heuristic

Linear programming

Genetic algorithm

Ant colony optimization metaheuristic
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WA Weight annealing

HEO Hybrid extremal optimization

HC Hill-climbing

BOHs Bin-oriented heuristics

HI_BP Hybrid improvement heuristic

GGAs Grouping genetic algorithms

GGA — CGT Grouping Genetic Algorithm with Controlled Gene Transmission

MS — ILS — PPs Multi-start iterated local search for packing problems

MCBPP Multi-capacity bin packing problem
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Appendices

Appendix |

The small-scale of set 1 instances with equal demand

Item Type Size 1 Size 2 Demand
1 50 200 10
2 175 150 10
3 25 600 10
4 450 550 10
5 475 20 10
6 250 500 10
7 425 450 10
8 40 80 10
9 70 60 10
10 20 245 10
11 120 575 10
12 350 450 10
13 50 175 10
14 175 25 10
15 225 250 10
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The large-scale of set 1 instances with equal demand

Item Type Size 1l Size 2 Demand
1 50 200 200
2 175 150 200
3 25 600 200
4 450 550 200
5 475 20 200
6 250 500 200
7 425 450 200
8 40 80 200
9 70 60 200
10 20 245 200
11 120 575 200
12 350 450 200
13 50 175 200
14 175 25 200
15 225 250 200
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The small-scale of set 1 instances with random demand

Item Type Size 1l Size 2 Demand
1 50 200 15
2 175 150 5
3 25 600 10
4 450 550 15
5 475 20 10
6 250 500 10
7 425 450 5
8 40 80 20
9 70 60 5
10 20 245 10
11 120 575 10
12 350 450 10
13 50 175 10
14 175 25 5
15 225 250 10
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The large-scale of set 1 instances with random demand

Item Type Size 1l Size 2 Demand
1 50 200 300
2 175 150 100
3 25 600 100
4 450 550 200
5 475 20 400
6 250 500 200
7 425 450 200
8 40 80 100
9 70 60 200
10 20 245 200
11 120 575 200
12 350 450 400
13 50 175 100
14 175 25 200
15 225 250 100
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The small-scale of set 2 instances with equal demand

Item Type Size 1l Size 2 Demand
1 350 275 10
2 475 300 10
3 225 175 10
4 400 100 10
5 200 160 10
6 480 620 10
7 375 275 10
8 275 300 10
9 450 550 10
10 20 50 10
11 225 150 10
12 300 440 10
13 225 370 10
14 150 400 10
15 20 70 10

63



The large-scale of set 2 instances with equal demand

Item Type Size 1l Size 2 Demand
1 350 275 200
2 475 300 200
3 225 175 200
4 400 100 200
5 200 160 200
6 480 620 200
7 375 275 200
8 275 300 200
9 450 550 200
10 20 50 200
11 225 150 200
12 300 440 200
13 225 370 200
14 150 400 200
15 20 70 200
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The small-scale of set 2 instances with random demand

Item Type Size 1l Size 2 Demand
1 350 275 10
2 475 300 15
3 225 175 5
4 400 100 10
5 200 160 20
6 480 620 5
7 375 275 5
8 275 300 10
9 450 550 10
10 20 50 10
11 225 150 10
12 300 440 10
13 225 370 10
14 150 400 15
15 20 70 5
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The large-scale of set 2 instances with random demand

Item Type Size 1l Size 2 Demand
1 350 275 300
2 475 300 300
3 225 175 200
4 400 100 200
5 200 160 100
6 480 620 200
7 375 275 300
8 275 300 200
9 450 550 100
10 20 50 300
11 225 150 200
12 300 440 250
13 225 370 200
14 150 400 100
15 20 70 50
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Appendix Il

This is the class that would be called from all the algorithms (clsBin)
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This is the configuration code of the algorithm 1

Frivate Sulb RunFirstFit Click()

Dim StartTime As Double
Dim SecondsElapsed As Double

StartTime = Timer
Range ("&A8:ZZ10000™) .Clear

Dim i, j &= Integer

Dim items() &A= Double
Dim items2 () As Double
Dim demand() As Double

Dim demandsMet () As Double
Dim Bin=() A= cl=sBin

Dim MaximumSizeOfABin As Double
Dim MaximumSize20OfABin A= Double

MaximumSizeCfABin = Cells (5, 2)
MaximumSizeZOfRBin = Cells (6, 2)

Dinm NoQOfItems A= Integer
With ActiwveSheet
NoCfItems = .Cells(l, .Columns.Count).End(x1ToLeft) .Column
End With
HoCfItems = HolOfItems - 1

FEeDin items (NoOfItems)
FeDin itemsZ (NoOfItems)
FEelin demand (NoOfItems)

Din foundAplaceForThelven As Boolean

Cells (8, 1) = "Bin 1"

Cells (7, 2) = "Volume Size 1 Perct"

Cell=(7, 3) = "Volume Size 2 Perci"

For 1 = 0 To UBound(items) - 1
items (i) = Cells(2, 1 + 2)
items2 (1) = Cells (3, 1 + 2)
demand (1) = Cells(4, 1 + 2)

Next 1

Dim SumDemands As Double

SumDemands = 0

For 1 = 0 To UBound(items) - 1

SumDemands = SumDemands + demand (1)

Next 1
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ReDin Bins(SunDemands) As cls3in

For 3 = 0 To SumDemands
Ses Binm(1] = Newx clsiin
Bins{i) .updatelastUsedPlace = 2
Bina{1) .updateSize = 0
Bins(1}.updateSizeZ = O

Naxt L

Dir LascUsedBin As Double
LascUsed8in = 0

Far 1 = O Te UBsund(izens) - 1

eforTheltes = False

foundiplie

Tor 3 = 0 Ta LascUsedSin
If (Bina(3) .51zeCTEin + lrems(i) <« MaximunSizeOfABiAn And 2ins()).242eJ0fBin « icemal (i) <« MaximunSizeZOrARin) Then

Bine ) .updatedize =« Bing ()] . 0i2e0f8in « 1tenma |1}
Bine |3} .updateSizel = Dine(]).21z2el0fB1n + itenad (1)
Bins |3) .updetelastUsedFilace = Bins(3j) .LastUsedPlace0fBin - 1
Cells(l + 8, Bins()).iastUsedPFlaceCfBin + 1) = 1 + 1
faundiplaceForThelten = True
Exic For

Zna If

Bext 3

If (Mot foundiAplaceForTheltem) Then

LastUsedBin = LastUsedBin + 1

Cells (LastUsedBin + &, 1) = "Bin " & C5tr(LastUsedBin + 1)

Bins (LastUsedBin) .updateSize = Bins (LastUsedBin) .s3izeCfBin + items (i)

Bins (LastUsedBin) .updateSize2 = Bins (LastUsedBin) .=size2CfBin + items2 (1)

Bins (LastUsedBin) .updatelastUsedPlace = Bins(LastUsedBin) .LastUsedPlaceCfBin + 1
Cells (LastUsedBin + 8, Bins(LastUsedBin) .LastUsedPlaceCfBin + 1) = i + 1
foundAplaceForTheltem = True

End If
' the following i=s necessary in case demand will be count and handled whenever met (no randomizing wvector)

demand (1) = demand (i) - 1
If (demand(i) > 0) Then
i=1i-1

End If

Next i
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dTotal 4= Double
dTotal2 4s Doukle
diverage L= Double
diverage2 A=z Double

Dim
Dim
Dim
Dim

dTotal = 0
dTotalz = 0

For j = 0 To LastUs=sedBin
Cells(j + 8, 2) = Round(Bins(j) .=sizeCfBin / MaximumSizeOfRBin * 100, 3)
Cells(j + &, 3) = Round(Bins(j) .=2ize20fBin / MaximumSize2OfABin = 100, 3)
dTotal = dTotal + (Bins(j).=size0fBin / MaximumSizeOfLBin * 100)
dTotal? = dTotal? + (Bins=(j).=2ize20fBin / MaximumSizeZOfABin * 100)

Hext Jj

dhiverage = dTotal / (LastUsedBin + 1)

dhverage? = dTotal2 / (LastUsedBin + 1)

Cells (LastUsedBin + 9, 1) = "Avg Volume Size™

Cells (LastUsedBin + 9, 2) = "Awvg Volume Size2"™

Cells (LastUsedBin + 10, 1) = dAwverage

Cells (LastUsedBin + 10, 2) = dAveragel

Cells (LastUsedBin + 11, 1) = "Run Time (in Seconds)"™

Second=sElap=sed = Round (Timer - StartTime, 2)

Cells (LastUsedBin + 11, 2} = SecondsElapsed

End Sub

Sub BubbleSort (ByRef arr() &s Double, ByRef arr2() As Double, ByRef arr3() Rs Double)

Dim
Dim
Dim
Dim
Dim

Temp &=z Double
i 4s Long
j As Long
lngMin 4= Long
IngMax As Long

IngMax = UBound (arr)

For i = 0 To 1lngMax - 1
For j = 1i + 1 To lngMax
If arr(i) < arr(j) Then
Temp = arr (i)
arr(i) = arr(j)
arr(j) = Temp
Temp = arr2 (i)
arrZ (i) = arrd(]j)
arr2 {j) = Temp
Temp = arrS(i”
arr3 (i) = arr3(j)
arr3(j) = Temp
End If
Hext j
Next 1
End Sub
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This is the configuration code of the algorithm 8

SamaTypel| 34 Duasie
o Teabie

Sun ltemalypedrisced () As Dosmis
ThA TCeMATY ORI () Ba Desk

fix lvemslcmeredl I} Az Tew
Lix semmazi) As Sssbie]

= P As beakie

Fha DN s Doskie

Six semeataMeri) b Dostie
Tix Bina(| b in

TiA MALLAaS i IecERBIL As Dosie
i MawimyaSianiS0ADin S Didir

®in AsviveSteer
SoOfivame = .Callarl, .Cxlusms. Coumt) Eneclloiafr) Coluss
k2d Rz
BT Theme = M
Selzy 3rexalypeSolt
Balcy lvess e0fl

20T vamn |

.hu);-b-thv-oonqb-l-‘mn.-‘-m . x
BR-d 89 DI A T

areet o] | Wefete One |
L - 3

To Uhrendidyeme.
AVI0 » S:alRLIVIR 4 (2esend

S jlstemnis) < tvemud i)

e 2 il
Irenatraaresd | Smlusards)

f =3 Tr Chessalitene) - §
femmndis) ¢ titcemalll o 1vemaliil)

far 3 = | To Dhesediivenss ~ |
i) = Oz « L)« BLy
1

89



Pl =
-®x

b . %X - @ ismcas

P

o] |Wefwete_ Cne

1A ADS CemSAAResiIniacIel As Beiiaan
I lsentiantverBeiovied = Pajem

alnd As Beclese
= Paies

fer t = Sedemarrdy ~ 1
Selaczetinl = Pl
RlecTaIled * Falss
InThmmtaebeendeienied = Fulew

TP L2 %= COPGI| B Wemarsd (D) » O) Thenm
Toematypelrdernd i) = ivecaTypecd)
Itemataoered 14y = Ltamscd)
TTeaTANRALI (11 = Liewad (T3
Sroaxs|0) = texmed () :

Antteabusbersielecies = fiua
Palesiening = Tree

Llaalg 12 o= J060) o3
for © = 1 ¥ k)
I temanaiy| v
InmmaTypeOrdeseticll * 1temalypeit)
ATy
ANz {5y
wemand 0] = demendiv) <}

8 e b Yee bt boew Devwy Bee Dk Abibe Bvbe ey o
Q- IR % x5 - @ smcas
v o [Weteete nn

IT (RATIesllanBeerdnledied = Faime| Thes

Pis & % B YC TRscca(itend) - 2

1£ 4x » CAVINY dod ©
IrameTypeccoarad () * Lresatype b
TERMALAIRERE 4] = Slaa |
1 reneOeteresd
demancih) * e

At demmrst(dl >

CIN (8| REd T oow LH(R e ) S52 oeeasrill v 2 Ma kaltscissbescis

1 Ther

ER-d LI M %X - @ wimcar

RaTen Wiad (FeaOmasesn| 34 Ianie
Pzt & = ) Te Sumlesands
et Sizxiz) ~ Saw clalux
Bara L} - opaatelasttisedsiace * 4
L TR S
Baneiil cepdutelizsd = D
Meaz 1
T e —
eeiite = 0
Szlesarads - L
Faclzalzew = False

pizeOfBcy « [senplcderetil) o MemtmgnlienCfABin Aot Bineill .oieeddDin «
Jpsatelize = Ring 1), at2e0fiy « Izemalcoersd |3

Bisa)) . g BLE83 * RLsar & srdLs + v

AERELL LAt ieed P aenar
tOsedtFivce0fets « 1| = Ivemal

emptotereil (1) <~ Eax

umfsreiCEAin] Ther

1) = "Bly * & COer(leseUoesun » I
e = Biasbarrlsectun) simwdfiie « [resaOroeres i)

T LaseOtN.
= IreeaTypeireeredic

Bt

Sts eToval e Scutde
Tia Slotall A Tockle
Tis Serhge Le Teslls
T Wreraged Ay Prble

9l |

90



lade [itewrd Cocm
S e T T e S O S ]

BQ-u "9 . %X - @ tsutcan
H“

ATelal = ¢

T 2=0

AAresaQe = VoA
A3seangel & GTurs

(lasclesctiiz + 4}
B e

ZastTeeiis o Al = "Awg Volums Sime®
LA ILANTINAGHLIE 4 &, J) Ay Vel iaal

LastTwadiis + 10, 1) = Shvesage

+ 24,

Iwilastieediis « L1, 0 - s Yims |in Seszcaal*
o L L I e ~ BLasiTine, T)
iz(ZastTreiir ¢ 11, I) = Seroncellepren

LANtiusdtis ¢ L3, L) =
TatiTeeamia ¢ 13

PaE 3 % 3 fo Kmlesacas - 4

¢ Ppadizr & L2, & 4 21 = DlvemgOzoerasil)
LascUsedlan + L3, 3 + &) = ltssacmdesedd (1)

ael aftes sasdom ordssang®
wandem bt i

i

c 2 3 fv USouzs) -
Tallaclasctiseinis + 14, 3 ¢ 3] = bed)
TelieCasitisadlen + 1Y, 4+ §1 = CITI
Sear 1
Tag 3cn
3 maELesiat (ay

£ slaeimiseitavioedagd | Ab tosle

=n 3 A Loog
Tae IAgEEe A6 Theg
Pzv Inas Az lrre

LagMax = Aeaund (asz|

Fex | = Ty Laghs = 3

R E Lygtan

If wize
g

3832 BAITAVIARAIE (1)

szelitradlnvidestyd
Tasp = arvd (i)
sekth) = 2zl

= Terg

SEEILL) * mEEagy)
ety = T

Wpeaf aiiil As Heal

130eni00vidaeiyin) + sizessismdlevidedtyd )| Than

Ll = sienifiselTevigndiad 11}

Wbet avesi)

91

[




This is the configuration code of the algorithm 9

B e b faw e tpvw Doveg fe Sook Addbem Jiedes by e

EE-W + o8 s s aM¥XT D et
farewi DR =
Brivace aop maarisecric S -

Zax Suarzlise As Cockls
ToA IeClileblagesc Lk Ielbis

Szartlone = Tises

Harpe (*ASICIIINNL®) Tlues

F=» 2. 3 K> Inveges

323 sivelfizedlivinetiyd i) As Doubile
is izematypec) As Boazie

Ten ALewa |} Be Testile

Pix toempd |l A Dootle

223 demazz|) Ay feanla

Tan demanteties (| be Seadie
Tz Buime) e clabun
Pen Meetmendl evSeEDn Se Doble
Ty HewimanZize)XEASLz 33 Doakle
MersmmSteeOfARLe = Ceils (%, 3}
ManzmmSizedGzAtie = Calimit, 3
TaA WOTTEemA 30 TRimges

Wird Acvivefteer

FoOfivems = Zwilscl, .Colamms. Crmsars . Ersfieilclels) . Colams
oa waze

g
R Vi

B Ve v I RSy — . et g e % ™
B e b faw e Pevw Ooheg fw Sook Addbe fiedes by e
BE- B9 s s aMBXF @ bnca

haeheain o Joser

Szitlzemy = Noltitems - I

Setun 3 7
Selir L vemeTyre (O] vane)
Falir Lrmmy (RoOfizea)
Belux izemad oiflzaza)
L e T PSR e

o toxdipleceTrzTialites Ao 3colmmt

el bl LU 04
Celles(7y 3 = "Frlime Sz 1 Pecch*
Celle¥, 3 = *Folome Size 3 Bescw*

PRe 4 ST T TRaskd (| bewe) - B
atemaTypeitl = Celleli, 1+ 0
szemadly = Callaids s e

Fremes () = SeRieid, 4+ J)

fzz 1 = 1 Iz UWScacditrems) « 1
PLEMTILIAIDLYLARENGI (4] * Chhemail] o STewaZ 41y /2

LTI

AAA SIEN Biene baand be MRSESRLIg SLIATALEST MINEANM By T

Zall Surpledcrt iesaelSizadSivisediyl, itema, itwmsl. Seswsi. ioemslypel

@ o

92



Oveg e Jooh Asdbm  Jiwdow  tvy

P AMEYT D mos:
Jewn

Ty Samdezards 3z Dodie

Aaatusanze = 8
¥z 1= § Jc Woscditveny) - 1
BAACeRAASE * TAATEALLA + DemasATL]
Beat 4
WALAE Wik [FaSesaiae) 34 GLeRik
L R S i
Tl Wasald) = e aleBie
Bing i) cpdateleamIsecllece ~ 3
Bine s} updatelize = §
L N e
LT
e LastTesamis As Secsie
laszlsadlan = 4
Feé 3 % 3 TH DR ciiene) - 5

tzentiglacefaritalm = Talse

lh&bl—-wmvhmhpﬁ-h

EBR-W + B9 s s aM BT D ncen !
-

fawreani

For 3 » O Te LaszUseddiz
1T mspads) TALE + JTemail) <= SO WIAN (1) . AL3AIOTHLA - ITeAZ (1) % MKIEAIIIAICCREIN| Than

Bizwi) | apdeteliee = S0za i) aiee0fSls « Ltwmril)
Rirapl) apletalioed = Bara ()] asaedOfisn + Ltemalil

WEEH (1) dpeatal - BaEA()) .k .3
Cedisis = &, lt.“ul. RIS 1
frandglee - Trom
taiz far

et ze

Pexs 5
12 ot Tooalplacerasitalen) Toes
TASETRO e = LaniThedia ¢ 3

Zallelassdpaciin « 8. 1) = *Bia * & S8z laesleecun - 4

Bine - L i)

®. " dieed = Rirrl e ¢ stemadinr

Bizail Japcatal - Rarail P ol
Teile Blas - 1L

fomiiolerieTnices = T

Eed IR

‘ tae fallowisy is sarvmssry &= =
=) -3

3T (Besesari| b 01 Thes
1*8-3

Eza IF

* Semazt vill Tm coRST a5 Tariisd WARFAVET mET 82 FEscImsfing wesrEs|

.’lﬂ&' hhbhmhﬁﬂ

LR
HE-W B89 s aMEXY 0 o 5
{amdwseln Jess =
ear L ?l

Tre dTztel Ae ocbic
Zax dlazall As Dectls
SER SATeEREs A Denie
Tan dwrraged As Drwieis

dfceal » 8
aricals = ¥

oz 3 = 8 Tc lenlwediis

COSINED = B, T1 % Pt TRAAR L] RAeCEIL | AT AeCTARAE ul, n
Callwis » L 31 = Pmed (Paneis) ¢ L

A3zoal * SYoral o (BAnA()).Alzectiiz mmm ]
ATHRALD = ATWARIS ¢ TR (D) - *wn

Scex 1

Ahvaemge * STSTAL J (Lasstusdicn ¢ L)
direreyed = dTake3d J LeasalevdBin 30

Calisclarzlesdiiz + 4 = “Avy Voluze dize*
CRIIALANTINGIELE + W, 3) % “hay Valaas mise

2nilad + 43, 1) = Ak
13, N

Telisclascieediiz ¢ Lf, 3) % Chen Time (1A Seccode|
BeAMrINTIapamd © Bhidad (TiMmd = BLATITIN, 3|
fcun siL -

1 —

93



B et Yo e fuvw Ocheg P Sk Addbe Niwdos twy oo x
HE-W B9 s aKEXT O mon 5
Jewn

S (EaseOondiie ¢ L1, 33 = "J%em Toaw afver Sdsed semering”
Certlrecticz ¢ 1), 1) = “"Szzel aftes sised ordecing®
AlaclarzDastiis « 14, &) = “22303 afcas sised ondesing®

¥z 3= § Jc Moscditveny) - 1

Telly (LasdpetBin + 33, L * 33 = ttemeTrgeitl

Colls (LamTpetiin « 13 L « I\ = tzemscil

Cxils(Lascoesbin o 4. Lo« &1 = 3temadsil
LI

2ar BESlescatiighel SLAAIALMeIDIvAGAEY (1 A2 Uoceie, ByheT aaaq) A Soakie, BpReT arcd)) A Sockie, MpRer wczay) As Docals, MpRer saied) Ae Scaxis)

SRz ) 3 ARARIEL 4| Teen
Terp = myeellieed Dividetlod (4}

e2smiiizeiDiataeckyi{)| = Teg

Texp = arzd (44
wsziill = ars2 iy

areir)) = teey -r:’

N e | s . .ot . h e b | wlt b

B e b faw e Pevw Ooheg Be Sooh Addbw Jiedes by LR
HE-W A9 s aKEXT O monm !

I £ -

Tis Tesp Re Iesliie
Dix 1t 32 Too
tur & Ae Long
s Locg

If szawlit sl « atae a3t Than
fang = aiasidisedOivicasigd i)
SAMRLTLEOITHNASREI T (A] 4 SlaeiRiaeI AN dean 312}
riewlfizeiDividestnl i3} = Temp

R e
RIS
wxzicy) = Tom

Taag s wEadid
.

a

teng « asnid)
areidl = errcd)
azzitl » Tep

Tewg * asaeid)
arriit) = erre i)
arzbiy = Ty

94



This is the configuration code of the algorithm 10

] V1o Vot Surs e Sabumrems €% Pk P4 Sgatern wat ey e 13dre Dhewt] oo To o
Bt i Yaw e Tpve Duhag M Jook Addbe iedes  tey E
Be-d MM s AMEYY @ man

[hwhvane - fem

PEVACe ek ROAPLARCTIL Siiek || -

Sas Smartiiss As Comls

Tes Emsandatinmgesd S Teabds
Starriine =

Farge (“AN:CIZLOE

%y .Claax

Sxw L. 2 Ae Inveger

fox 1temalypedl A Douzie
2Cx 1cemal) AN fucDie
Tan Aemel ) Teakle
Iz tewplcrzil Az Double

Lin ameasa|) Ab Dusle
Tre demanteties (| e Doudle
Tan Wine ) Be alemin

o Meximaasiseldabin As Do
$5a MAXLBGESISedOTAAIA A4 DO

» Az Docutile
b As Lochie
AL ARTTARLL - O
SanzmmSieeiOfASr -

33ein, 3}
adioh, 3

Sue moGTitess As Integes
Wibe BenfeaThew
EcOfTvese » Zalladl, Oslam=s Coxzt) ExdielTclel:) .Colums
Ent Wath
MUETITens # HASEICME - 3

#H P A ETS 0 s

LEeaaTy (RO L
Lreme (ROfIvewe |
Leenad 1Bl lzems)
Salax oemaraieifizess)
Relun Lemplart ERCTTUEL

Tem Tsndlaiaen PaaTietien S Senimmy

' T o= "Trlame Sixe

Paz 3 = § Tc Ulsacscitvess) - 2
SAeeeTE N | * Twlla(, 4o+ 34

1oty & 4 2}
lu(4, &4 30

PRE 4 ST To SRAsA[ilAse) - 3

amyih) * demassdidl)
TAMAd (30 T deeand i)

95



) Vet i bree o bt 0 bk St b bty ey e |

# " e A ETE 0 incer

x = i
L R e L e e S ) «®x
ES-u BT s aETT 0 min i
=T ] [ows
" =% RaxamamdiIsOfAlit 3
LI Resimamd i CINEL —
o=
S
"=
o2 3 % 2 Yo Maoacitaes 3
tempdartidl * (4 * trempll) - b ¢ teemmiin)) 3
'
tn S0aIN BIre $0ens basw| 4n Weeteeing vireltatees MivESOW &
1 Bospledirt itespisct, ltess. itessal. dessnd, Ltesstpel |
v Sedwsards ke Doddle
2alwuanis ~ 0
fzz 1 = 1 To Wcacditrene) H
FBOABALEn = B ERIa v dunaiah)
i
Belis Mils [ Dadesatas| 34 clenis
Ic Salemsyts - |
b
lane - 3
=[5 o =
- o T -
i
— - — o il -
s / ''m " B "1 [«
F) vt e S1es e Sabasams i bond o S 4 et ey o -
L R L L e R S ) «®x

[ty

weat 4

fxy ZastTaedia As Do

e |

ErunakglscefasTae
Fox ¢ = 0 7o LamUsedfin
1F (hisag WItRiE 4 Maxizoadiseltalin Aco Bias

Birw(s) apdenes

= Reagii) w0l ¢ Lteme (L)
d = Siray el

cafzzltmlzant Thes

SANIINAANLY * LasTIeedsin - 3

1) =" 4 O

larrdsnsfizn « §

Cullsilamrisechin « 8,

Deiie (LasiTeemmin

tondp

L B L i L
- Ire

() Vv Vi b St 3 ok P Sy et vy
L R i I e R i )
#H DR S TR

JOTRLE - 3vemad i) o~ Maximandisadlehbing

WA LasiTesamin] SPSEAE | L SARRTERAR + SEeweCh]
Sing LLemTsedlin) y
Bing ilarOyettan . recileceliiiy « 1

R Lt el

Ttas

SazixmiizeOfAlir ¢
e e T

Baxisse®s redthdin * 1
Maaimam2szelOfARLe

size0MLy /
Fei0fiLr

dictal = M
ticcall = aforali «

divezege = dlvtel
Ahrerages = alatall

CelisescDovddn:

3 gy
31 = Deeregedf

Dpedien +
Denilse ¢




) Vvt Vil b e S | 3 ook it e

L R L T U e ) .ox
- BAC L s aMETT 0 i i

| foeer =

*Ran Time 4k Becssda)* >

FellsilamtsrdBin + L %22 = iemmeTyre i
Collys (Law a8in « 15, L & 1) = ttemedd)
Colloilasoedln » 24, L « &) = Lressd (il

et |

SUavideahyd || As Ducmie, SpAet wxi)| As Suatie, Mpeed Al )l As bickis, bybet a

. et waaeg| ke Suasde)

a3
tas lapuo A Loeg
Dur Toghes &y Tond

irgtas = (magazjess|
For L = T Ta 3agMes -~ 3 {

for 3 =1 a5 T lagten
It azzeltizedDiv

B B A Yew et Fuvet Deby B
Q-4 B0 s s a¥TS
=T

Tob MM liede by

0 1 isn ‘

=8
Daw

Sir dosmiy

Rix +

Tang Ah DEanis
[
Ax

0T {Ayhad AL2aiAlsallivioesiyd (| hs D=

/ML arri) ha Bounia, B

arzd i) Ar Bostile, Syfef arzd() As Bosils, MRaf axTe | As &

tax lagun As Long
PaN Laghas Ar Lum

20Dy <
Tang * s23midisadlividadty
LELIRIUIOLARAIYE (3] = WLbe3iledlavidednyT i)
sellieelDividedfnl (1] = Temp

teng = arzdizl

T4l = ezrily
arséist = Tey

24

et

Fexr 1

97



