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Abstract
Fractional partial differential equations (FPDEs) have many applications in areas such as diffusion processes,
electromagnetics, electrochemistry, material science and turbulent flow. In recent years, people start to consider the
numerical methods for solving fractional partial differential equations. The numerical methods include finite difference
method, finite element method and the spectral method. In this paper, mainly consider the finite element method, for the
time fractional partial differential equation. And consider time discretization. This paper obtained the optimal error
estimates in time. The numerical examples demonstrate that the numerical results are consistent with the theoretical
results.
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1 Introduction

Time fractional partial differential equations have been used in various areas such as, diffusion processes material science,
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turbulent flow, electromagnetics, electrochemistry, etc.[1], [2], [3], [4], [5].. Analytical solutions of time fractional partial
differential equations have been focused on using Green’s functions or Fourier-Laplace transforms [6], [7], [8], [19],[20].
Numerical methods for fractional partial differential equations were considered by some authors. Lin and Xu [9] proposed
the numerical solution for a time-fractional diffusion equation.

et al. [10] used the finite difference method in both space and time and analysed the stability condition. Sun and Wu [11]
advised a finite difference method for the fractional diffusion-wave equation. Ervin and Roop [12] employed finite element
method to get the variational solution of the fractional advection dispersion equation, where the fractional derivative based
on the space, related to the nonlocal operator. Li et al. [13] studied a time fractional partial differential equation by using
the finite element method and obtained error estimates in both semi-discrete Liu and fully discrete cases.

Jiang et al. [14] considered a high-order finite element method for the time fractional partial differential equations and
proved the optimal order error estimates.In [15], an unconditionally stable finite element (FEM) approach for solving a one-
dimensional Caputo-type fractional differential equation with singularity at the boundary was presented.

The paper is organized as follows. In Section 2, we introduce the basic definition of fractional

caculus. In Section 3, we consider the finite element method, In Section 4, we obtained the

optimal order error estimates in time discretization. Finally in Section 5, we give two numerical

examples and show that the numerical results are consistent with the theoretical results.
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2 Basic definitions

In this section, we set up notations, basic definitions and main properties of RiemannLiouville

Integral, and the relation between Riemann-Liouville integral and Caputo fractional derivative is

also given.

Definition 2.1 ([16] pp.33)

The Riemann-Liouville fractional integral of order 0 < @ < 1, is denoted by the expression:
BDFf (s [1(E = D f (2T @

Definition 2.2 ([16, pp.35])

Let & > 0, the Riemann-Liouville fractional derivative is definedwith n — 1 < a < n by,
aDEf(©)=D™ [DF " f (D)]-D" ——— f (t =" f()dr, (2.2)

d‘l’l
where D™ = ey denotes the standard nth derivative.
Definition 2.3

The Caputo fractional derivative of order @ > 0 is takes the form:

[i(t =D [D"f(v)]dr, wheren—1<a<n,

F(n a)-a

aDf f(D= 4

(2.3)
dt"f( ), where a = n.

The relationship between the Caputo derivative and the Riemann-Liouville derivative is the following, K. Diethelm [17],
Definition 2.4 [6]

The Gamma function F(x) is defined by the integral

I'(x) = fooo e tt*"1dt

Definition 2.5 [6]
- — \p-1,,q-1 _ I'mr()
B(p, @) f (I-wPutdu=2725,  pgER,. (9

Definition 2.6 [6]

The Mittag-Leffler function is defined by the following series:

k
z
Ea,B(Z) = Z;?:om, a>0,>0. (2.5)
There are some relationships to other functions given by:
k
E11(Z) Zk or(k+1) = Zk 0o k' = e*

F12(2) = ZF(k+2) Z(k+1)' Z(k+1)' ezz_l’

3 Finite element method for solving FPDEs
This section considers how to solve the one dimension time fractional partial differential equation by using finite element
method.

Consider the time fractional partial differential equation with the Caputo type (see definition2.3)
Cpeu(t,x) — L YD —f(tx), 0<x<1, 0<t<T, (3.1)
Initial condition: u(O, X) = U, 0<x<1, (3.2)
Boundary condition: u(t,0) = u(t,1) =0, 0<t<T,0<a<l1. (3.3)




We know that

gD‘tlu(x' t) = gD?[u('x' t) - uO]
Hence the equations (3.1)-(3.3) reduces to
RDau(t,x) — up] — = YD —f(tx), 0<x<1 0<t<T, (3.4)
u(t,0) =u(t,1) = 0, 0<t<T. (3.5)

Here ’E)Df‘u(t, X), denotes the Riemann-Liouville fractional derivative (see definition 2.2)

with respect to the time variable t defined by

Rna _ 1 t u(‘rx)
oDfu(t, x) = e a) atdo s ~dr, 0<a<l, (3.6)
Where I" denotes the Gamma function (see definition 2.4).
The variational form is to find U (t) € H(}(O 1) such that
6u av.
(®DEu(t, x) —upl, v(x)) + &2,—) = (f,v), VveEH}, (3.7)

ax ax
H&(O,l) = H& = {v(x) |v(x) and v'(x) are square integrable on (0,1),

ie,{v € L2(2),v' € [*(2) and v(0) = v(1) = 0}.
The inner product in L? (0,1) is defined by

(f.9) = [, f)g()dx, ¥ f,g€L*(01).

The finite element method is to find a solution Uy, (t) € Sh . Such that

dup @
T e -wlo+ (Z2.2)=(fx), YXES (9)
= Let0 =t; <ty <+ <t, =T beatime discretization
O u
5 SDEY(Dle=t; = AT Thg i [ ¥ (4 — t) = ¥(O] + 715 Ri(9), (39)
g Where
0 1, fork =0,
~ M2 —wyg; ={-2k7%+ (k= D%+ (k+ 1%, fork=12,..,j-1,

—(a— Dk %+ (k—1)t~% — 1~ fork =j,

And the remainder term Rj (g) satisfies

|R/(D|| € Cj* 2 suposesr ||yt — tjw)||, 0<w<1.
Denote U/ = uh(tj) as the approximation of Up, (t) at t = tj.
Then we can define the following time discretization, with fj = f(tj),

- j i ou’l ay i .

(Dt X wie; (UK —up), x) + ( ox ax) (F,x), j=012,.. Vxe€S, (10
Or

At™*w; (U7 x)+(aali ) = (f1,2) = (At They iy (U7 = ug), ) (3.11)

+At™%wg;(ug, x), VY €Sy, for j=0,12,..,n
Nowfind U/, for j =0,1,2,..,n
Step 1:if we set /=0, then we will get UO = Uy

Step 2: we put /=1, then we have

w0, (U 1) + (5, ) = (£, 1) = (A Bhy 010 (U° = u0), 2)

+At™woq (U, X), VX E Sh. (312)
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And we know that U1 = 2’1:_11 ap Pp(x), where Pq(x), Py (%), ..., Ppr—1(x), are the basis functions of
the finite element space Sh, and then we have
_ —_ _ dpy, Oy _
“wor (THL ap(§0(0), ) + T g (222, 25) = (1, 1) — (At~ %w1, (U° — ), 1)
+At™%woq (U, X), VX € Sp,
Choose ¥y = ¢m(x), for m = 1,2, ..., M — 1, and we substitute into equation (3.12)

At woy (THS €e( (), () + Bt ap (222 2000 (41,4, () -

(At %w11 (U° = up), Ppm (x)) +At"“a)01(u0, ¢m(x))' (3.13)
Then we get
At™%wy, (Mass * V1) + stiff* VI = F1 — At ™%w; VO + At™* Yi_ o wiqu® (3.14)
Denote
(P, P1) (P2.01) i (Pm-1,91)
| @192 G202 Gusf)
(S, Sy—1) (D2, Puus) v (Drro1, byr-1)
(2 20s) (22 20) L (2un 2013
ox ’ ox ox ’ ox ox ox
0¢1 0¢, 0¢, 09, 0py-1 0¢2
Stiff = (E'?) (E'?) ( dx 'E)
(2552 Ge8=) -~ (= 5e)
(f'. 1) aq U°, ¢1) (uo, 1)
po| e | o @ | oo @6 | oo s
(L) @1 W, ) (tt0, Byu—1)

Step 3: Let us compute Uz.

To compute U? we setj = 2 into equation (2.7), then we have

ou? a - —
M w0, (U2, ) + (3, 2) = (F2, ) — (A 52y wip (U2 — ug), %) (3.15)
AT Yo Wk (uo»)()» VX € Sh.
Lee U? = 21;1;11 ay P, (x) aswe have done before. Then the equation (3.15) is equivalent to

A0y (TN ap(he (), b () + BT ap (22,2225 = (£2, ¢, (x)) —

ox
(At Y7y Wi (UPF —ug), () +(AL™* Xfioy Wk (uo, ‘Pm(x)), (3.16)
And finally we get

At=%wg,(Mass * V?) + stiff x V2 = F2 — (At) " Y2_, wip V2K + (M) "% Y2_, wyou®

Denote
(fzrd)l) a4 (UO' $1) (uo, #1)
F2 — (fz,.cbz) vz=| % | yo= (UO,.¢2) w0 = (uo;'¢2)
(%, du) Q-1 (WU°, fwr_1) (tto, b —1)

Step 4: We continue this process to obtain U™ = up(t,), the approximation solution of Up (t;,) attime t = t,
for n =0,1,2, ...

—
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A won (U™, ) + (55, 25) = (£, 2) — (A SH 0 (U™ — 10), 1)
At~ Y wpen (o, X)), VX E S (317)
To calculate U™ we have to follow the same steps as in step 2 and 3. Based on the idea above, we can design the algorithm

of the finite element method and solve the system by using MATLAB software.
4 Time discretization

In this section will consider the error estimate of the finite element approximation and the stability result of the following

fractional partial differential equation with the Riemann-Liouville type
RDE[u(t, x) — up] — 2 ;‘;x) f(tx), 0<x<1, t>0, @.1)
u(t0)=u(t1)—0 0<t<1,0<a<l (4.2)
Define A = —— 2,D(A) =HinH?={u|u,u" € L,(0,1),u(0) =u(1) =0},
Where L, (0,1) = {f fO fzdx < 00}, then the system (4.1)-(4.2) can be written in the abstract form
FoDE:  BD&[u(t) —up]l + Au(®) = f(t), 0<x <1, t>0. (4.3)

First let us consider the error estimates for the time discretization of the abstract problem (4.3).
et 0 =¢ty) <ty <+ <t, = lbethetime partition of [0, 1]. Then, for fixed tj, tj = ﬁ,
j =12,..,n At = 1/TL , is the time step, we have

= 8D (8) — wollmy, = rps Z aglult = te) = o] + Ry(9),
d Where
=
@) -1, fork =0,
2 a(l—a)j %ay; ={2k% = (k= D" = (k + 1)'7%, fork =1,2,..,j — 1,
i (@ — Dk~ = (k— 1"+ k7%, fork =],
B and
”Rj(g)” < Cja_z SuPost51||u£’t(tj - tjt)”f
where
suposes [[uze (6 — GO |[=l[uit (6 — O,
- [Zk sarilu(ti —t) —uol + Ri(9)] + Au(t;) = f(¢)). (4.4)

Rewriting equation (4.4) when k = 0 we obtain
— J Jj
[ao;+t T(—a)AJu(ty) = tfT(—a)fj — Yieq aiju(t; — i) + Xico tijtio — Ri(g)  @5)
Denote U] = u(t) as the approximation of u(t-). We can define the following time stepping method
[ag+t/T(— a)AJU’ = t'T(—a)f; — e oak]UJ k+2k ok U° (4.6)
Let Ej = Uj — u(tj) denotes the error. Then we have the following error estimate:

Theorem 4.1 Let U7 and u(tj) be the solution of (4.1)-(4.2), then we have

gl < CAL?>™® + ||lu(ty) = U° |, where g, = |[u(ty) — U° ||
Proof:

Subtracting (4.6) from (4.4), we get the error equation
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(@j+t/ T(—a)A)g; = —Z{;zo Ay gl~k — R;, (4.7)
Rewriting (4.7), then we have
el = (—ay; — tFT(—a)A)~ 1(Zk 0 Qj €17F + R]-), (4.8)
Where
| Bill < suposesa|fute (& — ;0|

Taking the L2 norm for (4.8), we get

e/l < (=0 = T (=D [[Zhco @i lgell + I BT a9
2

Note that A is a positive definite elliptic operator. The eigenvalues of 4 are /1 =J]°m 2

Jj =123, ... For any function g(x) we have, by spectal method,
g (DI = supasolg (D
From (4.9), we have
[(—ao; — t#T(~a)4)™" || = (a(l_—jma — tAT(~a)4)
= [« = @)j74(1 - a1 - wj~“tfT(-)4) "'
||(—a0j — tj"F(—a:)A)_1 || =a(l—a)j *sup;so (1 —a(l-
@)j~tET(—a)d)

Here a(l— a)j‘“akj =

-1, fork =0,

2k — (k — 1) — (k + 1)1, fork =12, ..,j—1, (410)

(a — Dk — (k— 1% + ke, fork =j.

Since F(—(Z) > 0, we find that

supso (1 — (1 — @) “tfT(-a)2) < 1.

-1

Hence
|(—ao; — tfT(—a)A) ™ || < a(1 —a)j™@
Thus (4.9) implies that

Je3) < et — @[ maty eall + I Estpucemiect — 0l 0
Where we use the fact, noting that £, = n * At =1,
up(t; — t5t) =u''(t; — t;t) - t7 = j2 Ac2u"' (8 — t;¢)
= j2n 2" (¢ — tt).

Further (4.9) can be written into the form
j
||sj|| <a(l-a)j*Cn ?lu"|l,, +a(l - a)j‘“z Ay ||£j_k||.
k=0
Denotea = a(1 — a)j~*Cn~2||u"|l,,,.

Choose: ] =1
Then we have

letll < a+ a1l — a)1 %y |l&l

—



g
)
2
O
(%]
D
7]
L
=

=a-d; +nllell

Here dl = 1,7‘1 = 0((1 - af)l_aall .

Choose ] = 2, we get
2—-1
le!ll <a+a(l—a)2™ Z iz g2kl + a22||£0||]

Lk=1

2—-1
lell < a+a(l— 02| ) aw (ads i + 15 illeol) + a22||30||]
L k=1

=a

2-1
1+a(l—a)2” Eakzdz k]

+a(l -2 [Z i T k] ol

= ad, + 1;|&l.
Here
2—-1
dz =1+ af(l 4 a)Z_“ z (04753 dZ—k
k=1

r,=a(l—a)2™® z Ao To—ir o = 1

In general, we obtain
/|| < ad; + rilleoll,  j=123, ... 412)
Next we will find dj and T},where
j-1

d] =1+ O!(l - a)j_“z akj d]'_k, ] = 2,3, ey

k=1
j

T = a(l— a)j‘“z gjTj—k, J =123,.., =1
k=1

Lemma4.1[18] for 0 < a < 1, letthe sequence {dj},j = 1,2, ...be given by d; = 1and

j—1

d] =1+ Of(l - a)j_“z (ij dj—k' ] = 2,3, —

k=1

Then,
sina
<d;: < j & | =
1_d] ST a)] , ] 1,2, ...
Lemma4.2 Assume thatif 7y = 1, = a(l — a)] k 1 Xkj Vi—k» ] =123, ..,
Then,
<1

Proof:

Step 1: If we have 75 = 1.Then
n=a(l—-a)1 % rp=a(l—a)a;; =(a—1D1*+11"*=a < 1.
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Step 2: Assume that 7} < a < 1,thet

J J
Tjt1 = a(l - (l)j_az ArjTi-k < (Z(l - a)j"“z Agj 1
k=1 k=1
j
. ! 1
i =a(l—a)j ;akj—ao;' =a(l—-a)j [_E+a(1——a)j‘“]
1 1-(1—a)j @
=a(l-a)j"|-= —] 1-a)™@
a(l-a)j |« + a(l—a)j@ < a(l-a) a(l—a)j@
Hence, we get
< a(l )j % ! 1
T - _ =1
s AT Ty

The proof of the Lemma 4.2 is complete.
By using Lemma 4.1 and Lemma 4.2, we obtain from (4.12) the follows

/|| € ad; + rilleoll < a(l — a)Cn2|lu |l - d; + 7ll &l
sinmma

—j¢ <1< CA> .
=yt ol S 1< €A 4 gl

<a(l-a)n2u"|l,,

The proof of the Theorem 4.1 is complete.
Second: we will consider a stability result of the time discretization of the FPDEs (4.1) and (4.2).
Theorem 4.2 Let U/ be the approximate solution of (4.6), then we have

sinmma
— P (=)t If s,

|U7|| < 211U°) +
Before proving this Theorem we have the following steps:
i 1
Step 1: Substituting by the expression Z{(=0 Arj = — ;,into (4.6), we get
i _ j -k _ 1 .
(o j+t]T(—a) AU’ = tfT(—a)fj — Xy =y iU’ —;UO, forj =123, ...
Or
i _ v -k 4 1
(—ap; — tfT(—a) AU =% _; apU/7F + ZUO — t*T(—a)f;, (4.13)

Multiplying on both sides of (4.13) by (1 — @)j ™%, and use the fact,
a(l — a)j‘“(—aoj) =1,

Then we obtain the follows

j
. . 1
[1+a(l—a)j (-t M)AV = a(1l — a)j™* Z a U7 + EUO — tfT(-a)f;
k=1
Step 2: Assume that U; = a(l— a)j‘“(—tf‘)l"(—a), then we get
j
, . 1
UV =0+uyd)ta(l—a)j™@ Z aijJ"k + EUO —t/T(—a)f;
k=1

We denote that the norm ”(1 + ujA)‘1|| = sup,1>0|(1 + uj/l)‘1| < 1, then
7]l < || (1 +wa) || @t = @)= (Bhoy il 5| + 20Ol + [T (= I, )

—
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J
< a(t— | D ay[vH] |+ @ - @y

=1
+a(l — a)At*|T(—a)lllf L,
<a(l—a)j * iy a||U7F||+ 1 = )i ~#|U°) + a, (4.14)

Here

a=a(l-aAt*|IT(—a)llf ..
Denote thatwhenj =1,
UM < a+ a(l —a)1™ %y IU°] + (1 — a)17¥||U°I.
Supposethat d =1, by =(1—a)17% r =a(l—a)l17%,
Then we have
NUM < ady + by |lU°|l + 7 [IU°]].

In general, we can write that

|U7|| < ad; + b;llUCN + 7 1IUCN, j =123, ... (4.15)
Here
dl = 11
j-1

d] =1+ a(l i a)j_“ z akjdj_k, _] — 2,3,4, ol 1
> b1 = (1 - 0()1_“,
- i
8 r—a f— .
o] bj=(1-a)j ™ +a(l—a)j Z agibi_k, j =234, ..,
-2, k=1
a and
E ro — 1,

J
T = a(l — a)j‘“z agTi-r, j =123, ...
k=1
Step 3: Suppose that, for some fixed numbersj =1,2,3 ..,
|U7]| < ad; + blIUCIl + 1 11U°].
Then by (4.15), we have
J
U7+ < (1 — a)j‘“z ;|07 + (1 = )i |U°]| + a
k=1
]
< a(l- a)]'_az ayjlad;_x + b IU°I + 7, 1 U°]I]
k=1
+(1—a)j lU° +a
[ J
=[a(l- “)]'_az ayjdj—

k=1

j
|- @+ el = @)™ ayby i 10°]
k=1
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j
+ @l =@ ) agri 1001
k=1
= adjy, + bj+1||U0|| + 7'j+1||U0||-
Which shows that (4.15) holds.
Lemma4.3: Assume that, for 0 < a < 1,

Choose: J =1, then b, = (1- a)j_a’

J
b] = (1 - a)j_“ + a(l - a)j_“E akjbj—kl forj = 2,34, ..,
k=1
Then we have
b < 1.
Proof: we know that
by=(1—a)j~® < 1.
By mathematics induction principle, suppose that
bj < 1, then we have
j 1
by =0-a)(+1)“+a(l—a)j™@ ak] bj_
1
<A-a)+D)*+a(l—-—a)j @ ayj —
=0

1
<=0+ D al- 0 (4 a>

1-(1-
<1-a)(+ 1) +a(l —a)j™ a(l( ‘)X)Ja

<A-a)(+D“+1-(1-a) <L

The proof of the Lemma 4.3 is complete.

Proof of the Theorem 4.2: by the expression (4.15), we have
|U7]| < ad; + b IIUCN + U, j=123,..
here dj, bj and Tj are given before.

Using Lemma 4.1-4.3, we obtain

|U7]| < ad; + B;lIU°N| +7lIU°| < a0 e o) + U0
7o J ma(l — a)
sin ta
= a(l — a)At¥|T (- —j 7+ 2||U°
a(l — a)At¥|I( a)IIIfIIme(l_a)J + 2||U°|

sinm
< 2||U°| +

S IrC=a) e Ifll,.,.

The proof of the Theorem 4.2 is complete.
5 Numerical simulation
In this section, we will consider two numerical examples.

Example 5.1 Consider the time fractional partial differential equation, with 0<a<l,

Py u(t,x) — u(t x) = f(t, x) (5.1)



Lc: u(0,x) = uy, 0<x<1, (5.2)
B.c: u(t,0) =u(t,1) =0, t>0, 0<a<l1 (5.3)

The exact solution is

u(t, x) = sin(mt) sin(mx).
The write hand side of the function

f60) =+

t
1;_0() f nt(t — s)~% cos(ms) sin(mx) ds — 2 sin(mt) sin(mx)
0

(

Wechoose ¢ = 0.2, Ax=h=001, T=1 At=k= 1/32, N = T/At.

Let U™ denote the approximate solution and U(t,,) denote the exact solutionat t = ¢, .

Let €™ = U™ — u(t,) denote theirerrorat t = t;,. We plot the exact solution, approximate solutionat ty = 1,

in Figure 1. We plot the errorat ty = 1 in Figure 2.

; ; N - -
The exact solution u(t, x) at t=1 for o —@he approximate solution U™ at t,=1 for a =0.2

0.8

0.6.

L. %

0.2,

JESUS.ORG.LY |

I,

R
ST

i
D0

Ry

N

R

SN

SS=
i

SRES
S

S5
TN
=5
ey,
PN

L
®

55

AN
SR

TR

Y

SRS
%
o=

Figure 1. The approximate and exact solutionsat ty = 1
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The error at t=1 for o =0.2

x 10

D
U~
Yyl
{/‘

Figure 2: Theerrorat ty = 1

Example 5.2 Consider, with 0<ax<l1
aa aZ

atau(t, x) — ﬁu(t, x)=f(tx), t>0 0<x<l1 (5.4)
Lc: u(0,x) = uyg, (5.5)
B.c: u(t,0) =u(t,1) =0, (5.6)

The exact solution is

u(t,x) = t? sin(2mx).
The right hand side functions
f(t,x) = 2t?7%sin(2nx) /T (3 — ) — 4m? sin(2mx)t2.
Wechoose @ = 0.2, Ax =0.01, T=1, At=0.01, N = T/At.
Let U™ denote the approximate solution and U(t;,) denote the exact solution at t = t,,.
Let € = U™ — u(t,) denotetheerrorat t = t;. We plot the exact solution and the approximate solution at

ty = 1 inFigure 3,and we plotthe errorat t)y = 1 in Figure 4.
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Figur 3. The approximate and exact solutionsat ty = 1
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6 Conclusion

In this paper we discuss the finite element method for the time fractional partial differential equations. We introduce the
finite element method for solving time fractional partial differential equation. We obtain the error estimates in the Ly-norm
between the exact solution and the approximate solution in fully discrete case. The numerical examples show that the
numerical results are consistent with the theoretical results.
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