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Abstract 

Fractional partial differential equations (FPDEs) have many applications in areas such as diffusion processes, 

electromagnetics, electrochemistry, material science and turbulent flow. In recent years, people start to consider the 

numerical methods for solving fractional partial differential equations. The numerical methods include finite difference 

method, finite element method and the spectral method. In this paper, mainly consider the finite element method, for the 

time fractional partial differential equation. And consider time discretization. This paper obtained the optimal error 

estimates in time. The numerical examples demonstrate that the numerical results are consistent with the theoretical 

results.    
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1 Introduction 

Time fractional partial differential equations have been used in various areas such as, diffusion processes material science, 

turbulent flow, electromagnetics, electrochemistry, etc.[1], [2], [3], [4], [5],. Analytical solutions of time fractional partial 

differential equations have been focused on using Green’s functions or Fourier-Laplace transforms [6], [7], [8], [19],[20]. 

Numerical methods for fractional partial differential equations were considered by some authors. Lin and Xu [9] proposed 

the numerical solution for a time-fractional diffusion equation. 

et al. [10] used the finite difference method in both space and time and analysed the stability condition. Sun and Wu [11] 

advised a finite difference method for the fractional diffusion-wave equation. Ervin and Roop [12] employed finite element 

method to get the variational solution of the fractional advection dispersion equation, where the fractional derivative based 

on the space, related to the nonlocal operator. Li et al. [13] studied a time fractional partial differential equation by using 

the finite element method and obtained error estimates in both semi-discrete Liu and fully discrete cases. 

Jiang et al. [14] considered a high-order finite element method for the time fractional partial differential equations and 

proved the optimal order error estimates.In [15], an unconditionally stable finite element (FEM) approach for solving a one-

dimensional Caputo-type fractional differential equation with singularity at the boundary was presented. 

The paper is organized as follows. In Section 2, we introduce the basic definition of fractional 

caculus. In Section 3, we consider the finite element method, In Section 4, we obtained the  

optimal order error estimates in time discretization. Finally in Section 5, we give two numerical  

examples and show that the numerical results are consistent with the theoretical results. 
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2   Basic definitions 

In this section, we set up notations, basic definitions and main properties of RiemannLiouville  

Integral, and the relation between Riemann-Liouville integral and Caputo fractional derivative is  

also given. 

Definition 2.1 ([16] pp.33) 

The Riemann-Liouville fractional integral of order  0 < 𝛼 < 1 , is denoted by the expression: 

                       𝐷𝑡
−𝛼

𝑎
𝑅 𝑓(𝑡)=

1

𝛤(𝛼)
∫ (𝑡 − 𝜏)𝛼−1𝑓(𝜏)𝑑𝜏 

𝑡

𝑎
.                                                                (2.1) 

Definition 2.2 ([16, pp.35]) 

Let  𝛼 > 0, the Riemann-Liouville fractional derivative is defined with  𝑛 − 1 < 𝛼 ≤ 𝑛  by, 

𝐷𝑡
𝛼

                                   𝑎
𝑅 𝑓(𝑡)=𝐷𝑛 [𝐷𝑡

𝛼−𝑛𝑓(𝑡)]=𝐷𝑛 1

𝛤(𝑛−𝛼)
∫ (𝑡 − 𝜏)𝑛−𝛼−1𝑡

𝑎
𝑓(𝜏)𝑑𝜏,                            (2.2) 

where  𝐷𝑛 =
𝑑𝑛

𝑑𝑡𝑛 denotes the standard nth derivative. 

Definition 2.3 

The Caputo fractional derivative of order 𝛼 > 0 is takes the form:               

                    𝐷𝑡
𝛼 𝑓(𝑡) 𝑎

𝐶 ={

1

𝛤(𝑛−𝛼)
∫ (𝑡 − 𝜏)𝑛−𝛼−1[𝐷𝑛𝑡

𝑎
𝑓(𝜏)]𝑑𝜏,     where 𝑛 − 1 < 𝛼 < 𝑛,        

𝑑𝑛

𝑑𝑡𝑛 𝑓(𝑡),                                                        where  𝛼 = 𝑛.                     
  (2.3) 

The relationship between the Caputo derivative and the Riemann-Liouville derivative is the following, K. Diethelm [17], 

Definition 2.4 [6] 

 The Gamma function Γ(𝑥) is defined by the integral  

                                               Γ(𝑥) = ∫ 𝑒−𝑡𝑡𝑥−1∞

0
𝑑𝑡  

 

Definition 2.5 [6] 

                                          β(𝑝, 𝑞) = ∫ (1 − 𝑢)𝑝−1𝑢𝑞−11

0
𝑑𝑢 =

Γ(𝑝)Γ(𝑞)

Γ(𝑝+𝑞)
,         𝑝, 𝑞 ∈ ℝ+.           (2.4) 

 

Definition 2.6 [6] 

The Mittag-Leffler function is defined by the following series: 

                                                     𝐸𝛼,𝛽(𝑧) = ∑
𝑧𝑘

𝛤(𝛼𝑘+𝛽)

∞
𝑘=0 ,         𝛼 > 0, 𝛽 > 0.                             (2.5)                         

There are some relationships to other functions given by: 

  𝐸1,1(𝑧) = ∑
𝑧𝑘

Γ(𝑘+1)
∞
𝑘=0 = ∑

𝑧𝑘

k!

∞
𝑘=0 = 𝑒𝑧 ,  

 𝐸1,2(𝑧) = ∑
𝑧𝑘

Γ(𝑘 + 2)
= 

∞

𝑘=0

∑
𝑧𝑘

(𝑘 + 1)!

∞

𝑘=0

= 
1

𝑧
∑

𝑧𝑘+1

(𝑘 + 1)!

∞

𝑘=0

=
𝑒𝑧 − 1

𝑧
,    

3   Finite element method for solving FPDEs 

This section considers how to solve the one dimension time fractional partial differential equation by using finite element 

method. 

Consider the time fractional partial differential equation with the Caputo type (see definition2.3)   

𝐷𝑡
𝛼𝑢(𝑡, 𝑥) −

𝜕2𝑢(𝑡,𝑥)

𝜕𝑥2
= 𝑓(𝑡, 𝑥),       0 ≤ 𝑥 ≤ 1,      0 < 𝑡 ≤ 𝑇,                                    𝟎

𝑪                          (3.1) 

        𝐈𝐧𝐢𝐭𝐢𝐚𝐥 𝐜𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧:   𝑢(0, 𝑥) =  𝑢0,                               0 ≤ 𝑥 ≤ 1,                                         (3.2) 

𝐁𝐨𝐮𝐧𝐝𝐚𝐫𝐲  𝐜𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧:   𝑢(𝑡, 0) = 𝑢(𝑡, 1) = 0,                0 < 𝑡 < 𝑇 , 0 < 𝛼 < 1 .                (3.3) 
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We know that  

𝑫𝒕
𝜶𝒖(𝒙, 𝒕) = 𝑫𝒕

𝜶[𝒖(𝒙, 𝒕) − 𝒖𝟎]          𝟎
𝑹                                                                             𝟎

𝑪         
Hence the equations (3.1)-(3.3) reduces to  

                   𝐷𝑡
𝛼[𝑢(𝑡, 𝑥) − 𝑢0] −  

𝜕2𝑢(𝑡,𝑥)

𝜕𝑥2 = 𝑓(𝑡, 𝑥),     0 ≤ 𝑥 ≤ 1,    0 < 𝑡 < 𝑇 ,               𝟎
𝑹         (3.4) 

                         𝑢(𝑡, 0) = 𝑢(𝑡, 1) =  0,              0 ≤ 𝑡 ≤ 𝑇 .                                                                (3.5) 

      Here 𝐷𝑡
𝛼𝑢(𝑡, 𝑥),     0

𝑅   denotes the Riemann-Liouville fractional derivative (see definition 2.2) 

 with respect to the time variable t defined by 

𝐷𝑡
𝛼𝑢(𝑡, 𝑥) =

1

Γ(1−𝛼)

𝜕

𝜕𝑡
∫

𝑢(𝜏,𝑥)

(𝑡−𝜏)𝛼

𝑡

0
𝑑𝜏,     0 < 𝛼 < 1,                                                         0

𝑅                                (3.6) 

Where Γ denotes the Gamma function (see definition 2.4). 

The variational form is to find 𝑢(𝑡) ∈ 𝐻0
1(0,1)  such that 

     ( 𝐷𝑡
𝛼[𝑢(𝑡, 𝑥) − 𝑢0], 𝑣(𝑥))  𝟎

𝑹  + (
𝜕𝑢ℎ

𝜕𝑥
,
𝜕𝑣

𝜕𝑥
) = (𝑓, 𝑣),     ∀ 𝑣 ∈ 𝐻0

1  ,                                            (3.7)   

𝐻0
1(0,1) =  𝐻0

1 = {𝑣(𝑥)⎹ 𝑣(𝑥) 𝑎𝑛𝑑 𝑣′(𝑥)  are square integrable on (0,1), 

 i.e, {𝑣 ∈  𝐿2(𝛺), 𝑣′ ∈ 𝐿2(𝛺) 𝑎𝑛𝑑 𝑣(0) = 𝑣(1) = 0}. 

The inner product in 𝐿2(0,1) is defined by 

                       (𝑓, 𝑔) = ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥,       ∀ 𝑓, 𝑔 ∈ 𝐿2(0,1) .
1

0
                                                  

The finite element method is to find a solution  𝑢ℎ(𝑡) ∈ 𝑆ℎ  . Such that  

𝐷𝑡
𝛼[𝑢(𝑡, 𝑥) − 𝑢0], 𝜒)                 𝟎

  𝑹 + (
𝜕𝑢ℎ

𝜕𝑥
,
𝜕𝑣

𝜕𝑥
) = (𝑓, 𝜒),     ∀ 𝜒 ∈ 𝑆ℎ                                                 (3.8) 

Let 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 = 𝑇 be a time discretization 

                  𝐷𝑡
𝛼𝑦(𝑡)|𝑡=𝑡𝑗

= ∆𝑡−𝛼 ∑ 𝜔𝑘𝑗[ 𝑦(𝑡𝑗 − 𝑡𝑘) − 𝑦(0)] +
𝑗
𝑘=0

𝑡𝑗
−𝛼

𝛤(−𝛼)
  𝑅𝑗(𝑔) ,𝟎

𝑹                      (3.9) 

Where  

             Γ(2 − 𝛼)𝜔𝑘𝑗 = {

1,                                                                       for 𝑘 = 0,                   

−2𝑘1−𝛼 + (𝑘 − 1)1−𝛼 + (𝑘 + 1)1−𝛼,           for 𝑘 = 1,2, … , 𝑗 − 1,   

−(𝛼 − 1)𝑘−𝛼 + (𝑘 − 1)1−𝛼 − 𝑘1−𝛼,         for k = j,                      

 

And the remainder term 𝑅𝑗(𝑔) satisfies  

                                          ‖𝑅𝑗(𝑔)‖ ≤ 𝐶𝑗𝛼−2 sup0≤𝑡≤𝑇‖𝑦′′(𝑡𝑗 − 𝑡𝑗𝜔)‖,          0 < 𝜔 < 1. 

Denote  𝑈𝑗 ≈ 𝑢ℎ(𝑡𝑗)  as the approximation of  𝑢ℎ(𝑡)   at  𝑡 = 𝑡𝑗 . 

Then we can define the following time discretization, with  𝑓𝑗 = 𝑓(𝑡𝑗),  

(∆𝑡−𝛼 ∑ 𝜔𝑘𝑗
𝑗
𝑘=0 (𝑈𝑗−𝑘 − 𝑢0), 𝜒) + (

𝜕𝑈𝑗

𝜕𝑥
,
𝜕𝜒

𝜕𝑥
) = (𝑓𝑗, 𝜒),       𝑗 = 0,1,2, …      ∀𝜒 ∈ 𝑆ℎ           (3.10) 

Or 

∆𝑡−𝛼𝜔0𝑗(𝑈
𝑗 , 𝜒) + (

𝜕𝑈𝑗

𝜕𝑥
,
𝜕𝜒

𝜕𝑥
) = (𝑓𝑗 , 𝜒) − (∆𝑡−𝛼 ∑ 𝜔𝑘𝑗

𝑗
𝑘=1 (𝑈𝑗−𝑘 − 𝑢0), 𝜒)                         (3.11) 

+∆𝑡−𝛼𝜔0𝑗(𝑢0, 𝜒),        ∀𝜒 ∈ 𝑆ℎ, for   𝑗 = 0,1,2, … , 𝑛 

Now find   𝑈𝑗 , for  𝑗 = 0,1,2, … , 𝑛. 

Step 1: if we set   j=0, then we will get  𝑈0 = 𝑢0 

Step 2: we put   j=1, then we have  

∆𝑡−𝛼𝜔01(𝑈
1, 𝜒) + (

𝜕𝑈1

𝜕𝑥
,
𝜕𝜒

𝜕𝑥
) = (𝑓1, 𝜒) − (∆𝑡−𝛼 ∑ 𝜔𝑘1

𝑗
𝑘=1 (𝑈0 − 𝑢0), 𝜒)               

+∆𝑡−𝛼𝜔01(𝑢0, 𝜒),     ∀𝜒 ∈ 𝑆ℎ.                                                                                                 (3.12) 
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And we know that     𝑈1 = ∑ 𝛼ℓ
𝑀−1
ℓ=1 𝜙ℓ(𝑥),   where 𝜙1(𝑥), 𝜙2(𝑥),… , 𝜙𝑀−1(𝑥),   are the basis functions of 

the finite element space  𝑆ℎ , and then we have 

∆𝑡−𝛼𝜔01(∑ 𝛼ℓ(
𝑀−1
ℓ=1 𝜙ℓ(𝑥), 𝜒) + ∑ 𝛼ℓ

𝑀−1
ℓ=1 (

𝜕𝜙ℓ,

𝜕𝑥
,
𝜕𝜒

𝜕𝑥
) = (𝑓1, 𝜒) − (∆𝑡−𝛼𝜔11(𝑈

0 − 𝑢0), 𝜒)  

   +∆𝑡−𝛼𝜔01(𝑢0, 𝜒),    ∀𝜒 ∈ 𝑆ℎ,       

Choose 𝜒 = 𝜙𝑚(𝑥), for  𝑚 = 1,2, … ,𝑀 − 1, and we substitute into equation (3.12) 

∆𝑡−𝛼𝜔01 (∑ 𝛼ℓ(
𝑀−1
ℓ=1 𝜙ℓ(𝑥), 𝜙𝑚(𝑥)) + ∑ 𝛼ℓ

𝑀−1
ℓ=1 (

𝜕𝜙ℓ(𝑥) 

𝜕𝑥
,
𝜕𝜙𝑚(𝑥)

𝜕𝑥
) = (𝑓1, 𝜙𝑚(𝑥)) −

(∆𝑡−𝛼𝜔11(𝑈
0 − 𝑢0), 𝜙𝑚(𝑥))  +∆𝑡−𝛼𝜔01(𝑢0, 𝜙𝑚(𝑥)),                                                          (3.13) 

Then we get  

∆𝑡−𝛼𝜔01(Mass ∗ V1) + stiff ∗ V1 = F1 − ∆𝑡−𝛼𝜔11V
0 + ∆𝑡−𝛼 ∑ 𝜔𝑘1𝑢

01
𝑘=0                          (3.14) 

Denote  

                   Mass=[

(𝜙1, 𝜙1)  (𝜙2, 𝜙1)        . ….       (𝜙𝑀−1, 𝜙1)
(𝜙1, 𝜙2)  (𝜙2, 𝜙2)       … . .       (𝜙𝑀−1, 𝜙2)

⋮                ⋮                                      ⋮     
(𝜙1, 𝜙𝑀−1)  (𝜙2, 𝜙𝑀−1) … ..    (𝜙𝑀−1, 𝜙𝑀−1)

] 

                   Stiff =

[
 
 
 
 
 ( 

𝜕𝜙1

𝜕𝑥
,
𝜕𝜙1

𝜕𝑥
 )     ( 

𝜕𝜙2

𝜕𝑥
,
𝜕𝜙1

𝜕𝑥
 )       ⋯        ( 

𝜕𝜙𝑀−1

𝜕𝑥
,
𝜕𝜙1

𝜕𝑥
 )

( 
𝜕𝜙1

𝜕𝑥
,
𝜕𝜙2

𝜕𝑥
 )     ( 

𝜕𝜙2

𝜕𝑥
,
𝜕𝜙2

𝜕𝑥
 )      ⋯        ( 

𝜕𝜙𝑀−1

𝜕𝑥
,
𝜕𝜙2

𝜕𝑥
 )

  ⋮                          ⋮                                            ⋮     

(
𝜕𝜙1

𝜕𝑥
,
𝜕𝜙𝑀−1

𝜕𝑥
)   (

𝜕𝜙2

𝜕𝑥
,
𝜕𝜙𝑀−1

𝜕𝑥
)    ⋯       (

𝜕𝜙𝑀−1

𝜕𝑥
,
𝜕𝜙𝑀−1

𝜕𝑥
)]
 
 
 
 
 

 

 

      F1 = (

(𝑓1, 𝜙1)

(𝑓1, 𝜙2)
⋮

(𝑓1, 𝜙𝑀−1)

) ,    V1 = (

𝛼1

𝛼2

⋮
𝛼𝑀−1

) ,      V0 = (

(𝑈0, 𝜙1)

(𝑈0, 𝜙2)
⋮

(𝑈0, 𝜙𝑀−1)

) ,    𝑢0 = (

(𝑢0, 𝜙1)
(𝑢0, 𝜙2)

⋮
(𝑢0, 𝜙𝑀−1)

) 

Step 3: Let us compute 𝑈2. 

To compute 𝑈2 we set 𝑗 = 2 into equation (2.7),   then we have  

∆𝑡−𝛼𝜔02(𝑈
2, 𝜒) + (

𝜕𝑈2

𝜕𝑥
,
𝜕𝜒

𝜕𝑥
) = (𝑓2, 𝜒) − (∆𝑡−𝛼 ∑ 𝜔𝑘2

2
𝑘=1 (𝑈2−𝑘 − 𝑢0), 𝜒)                         (3.15) 

+∆𝑡−𝛼 ∑ 𝜔𝑘2
2
𝑘=1 (𝑢0, 𝜒),        ∀𝜒 ∈ 𝑆ℎ. 

Let 𝑈2 = ∑ 𝛼ℓ
𝑀−1
ℓ=1 𝜙ℓ(𝑥)  as we have done before. Then the equation (3.15) is equivalent to  

∆𝑡−𝛼𝜔02(∑ 𝛼ℓ(
𝑀−1
ℓ=1 𝜙ℓ(𝑥), 𝜙𝑚(𝑥))) + ∑ 𝛼ℓ

𝑀−1
ℓ=1 (

𝜕𝜙ℓ,

𝜕𝑥
,
𝜕𝜙𝑚(𝑥)

𝜕𝑥
) = (𝑓2, 𝜙𝑚(𝑥)) −

(∆𝑡−𝛼 ∑ 𝜔𝑘2
2
𝑘=1 (𝑈2−𝑘 − 𝑢0), 𝜙𝑚(𝑥))  +(∆𝑡−𝛼 ∑ 𝜔𝑘2

2
𝑘=1 (𝑢0, 𝜙𝑚(𝑥)),  (3.16)  

And finally we get     

∆𝑡−𝛼𝜔02(Mass ∗ V2) + stiff ∗ V2 = F2 − (∆𝑡)−𝛼 ∑ 𝜔𝑘2
2
𝑘=1 V2−k + (∆𝑡)−𝛼 ∑ 𝜔𝑘2𝑢

02
𝑘=0   

Denote  

F2 = (

(𝑓2, 𝜙1)

(𝑓2, 𝜙2)
⋮

(𝑓2, 𝜙𝑀−1)

) ,    V2 = (

𝛼1

𝛼2

⋮
𝛼𝑀−1

) ,      V0 = (

(𝑈0, 𝜙1)

(𝑈0, 𝜙2)
⋮

(𝑈0, 𝜙𝑀−1)

) ,    𝑢0 = (

(𝑢0, 𝜙1)
(𝑢0, 𝜙2)

⋮
(𝑢0, 𝜙𝑀−1)

), 

Step 4:   We continue this process to obtain   𝑼𝒏 ≈ 𝒖𝒉(𝒕𝒏),   the approximation solution of 𝒖𝒉(𝒕𝒏)  at time  𝑡 = 𝑡𝑛  

for   𝑛 = 0,1,2, …. .  
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  ∆𝑡−𝛼𝜔0𝑛(𝑈𝑛, 𝜒) + (
𝜕𝑈𝑛

𝜕𝑥
,
𝜕𝜒

𝜕𝑥
) = (𝑓𝑛, 𝜒) − (∆𝑡−𝛼 ∑ 𝜔𝑘𝑛

𝑀−1
𝑘=1 (𝑈𝑛−𝑘 − 𝑢0), 𝜒)  

                                                         +∆𝑡−𝛼 ∑ 𝜔𝑘𝑛
𝑀−1
𝑘=1 (𝑢0, 𝜒),        ∀𝜒 ∈ 𝑆ℎ.                          (3.17) 

To calculate 𝑈𝑛  we have to follow the same steps as in step 2 and 3. Based on the idea above, we can design the algorithm 

of the finite element method and solve the system by using MATLAB software. 

4   Time discretization 

In this section will consider the error estimate of the finite element approximation and the stability result of the following 

fractional partial differential equation with the                 Riemann-Liouville type 

𝐷𝑡
𝛼[𝑢(𝑡, 𝑥) − 𝑢0] −  

𝜕2𝑢(𝑡,𝑥)

𝜕𝑥2 = 𝑓(𝑡, 𝑥),     0 ≤ 𝑥 ≤ 1,    𝑡 > 0 ,      0
𝑅                                          (4.1) 

                        𝑢(𝑡, 0) = 𝑢(𝑡, 1) =  0,         0 ≤ 𝑡 ≤ 1 , 0 < 𝛼 < 1.                                         (4.2) 

Define  𝐴 =
𝜕2

𝜕𝑥2 , 𝐷(𝐴) = 𝐻0
1 ∩ 𝐻2 = {𝑢⎹ 𝑢′, 𝑢′′ ∈ 𝐿2(0,1), 𝑢(0) = 𝑢(1) = 0},  

Where   𝐿2(0,1) = {𝑓: ∫ 𝑓2𝑑𝑥 < ∞
1

0
}, then the system (4.1)-(4.2) can be written in the abstract form 

          FODE: 𝐷𝑡
𝛼[𝑢(𝑡) − 𝑢0] + 𝐴𝑢(𝑡) = 𝑓(𝑡), 0 ≤ 𝑥 ≤ 1,    𝑡 > 0.             0

𝑅                           (4.3) 

First let us consider the error estimates for the time discretization of the abstract problem (4.3). 

Let  0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 = 1 be the time partition of [0, 1]. Then, for fixed 𝑡𝑗 , 𝑡𝑗 =
𝑗

𝑛
, 

𝑗 = 1,2, … , 𝑛, ∆𝑡 = 1/𝑛 ,  is the time step,  we have  

𝐷𝑡
𝛼[𝑢(𝑡) − 𝑢0]|𝑡=𝑡𝑗

=
𝑡𝑗
−𝛼

Γ(−𝛼)
∑ 𝛼𝑘𝑗[ 𝑢(𝑡𝑗 − 𝑡𝑘) − 𝑢0] +

𝑗

𝑘=0

  𝑅𝑗(𝑔) ,0
𝑅  

Where  

𝛼(1 − 𝛼)𝑗−𝛼𝛼𝑘𝑗 = {

−1,                                                                  for 𝑘 = 0,                   

2𝑘1−𝛼 − (𝑘 − 1)1−𝛼 − (𝑘 + 1)1−𝛼,           for 𝑘 = 1,2, … , 𝑗 − 1,   

(𝛼 − 1)𝑘−𝛼 − (𝑘 − 1)1−𝛼 + 𝑘1−𝛼,         for k = j,                    

 

and  

‖𝑅𝑗(𝑔)‖ ≤ 𝐶𝑗𝛼−2 sup0≤𝑡≤1‖𝑢𝑡𝑡
′′ (𝑡𝑗 − 𝑡𝑗𝑡)‖, 

where 

 sup0≤𝑡≤1‖𝑢𝑡𝑡
′′ (𝑡𝑗 − 𝑡𝑗𝑡)‖=‖𝑢𝑡𝑡

′′ (𝑡𝑗 − 𝑡𝑗𝑡)‖𝐿∞
. 

   

                      
𝑡𝑗
−𝛼

Γ(−𝛼)
[∑ 𝛼𝑘𝑗[ 𝑢(𝑡𝑗 − 𝑡𝑘) − 𝑢0] +

𝑗
𝑘=0   𝑅𝑗(𝑔)] + 𝐴𝑢(𝑡𝑗) = 𝑓(𝑡𝑗),                       (4.4) 

Rewriting equation (4.4) when 𝑘 = 0 we obtain  

[𝛼0𝑗+𝑡𝑗
𝛼Γ(−𝛼)𝐴]𝑢(𝑡𝑗) = 𝑡𝑗

𝛼Γ(−𝛼)𝑓𝑗 − ∑ 𝛼𝑘𝑗𝑢(𝑡𝑗 − 𝑡𝑘) + ∑ 𝛼𝑘𝑗𝑢0 −
𝑗
𝑘=0

𝑗
𝑘=1   𝑅𝑗(𝑔)            (4.5) 

Denote 𝑈𝑗 ≈ 𝑢(𝑡𝑗) as the approximation of  𝑢(𝑡𝑗). We can define the following time stepping method  

                      [𝛼0𝑗+𝑡𝑗
𝛼Γ(−𝛼)𝐴]𝑈𝑗 = 𝑡𝑗

𝛼Γ(−𝛼)𝑓𝑗 − ∑ 𝛼𝑘𝑗𝑈
𝑗−𝑘 + ∑ 𝛼𝑘𝑗𝑈

0𝑗
𝑘=0

𝑗
𝑘=0                   (4.6) 

Let 𝜀𝑗 = 𝑈𝑗 − 𝑢(𝑡𝑗) denotes the error. Then we have the following error estimate: 

Theorem 4.1 Let 𝑈𝑗  and 𝑢(𝑡𝑗) be the solution of (4.1)-(4.2), then we have 

𝜀𝑗 ≤ 𝐶∆𝑡2−𝛼 + ‖𝑢(𝑡0) − 𝑈0 ‖, where 𝜀0 = ‖𝑢(𝑡0) − 𝑈0 ‖  
Proof:  

Subtracting (4.6) from (4.4), we get the error equation  
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                                      (𝛼0𝑗+𝑡𝑗
𝛼Γ(−𝛼)𝐴)𝜀𝑗 = −∑ 𝛼𝑘𝑗

𝑗
𝑘=0 𝜀𝑗−𝑘 −   𝑅𝑗 ,                                        (4.7) 

 

Rewriting (4.7), then we have 

                      𝜀𝑗 = (−𝛼0𝑗 − 𝑡𝑗
𝛼Γ(−𝛼)𝐴)−1(∑ 𝛼𝑘𝑗

𝑗
𝑘=0 𝜀𝑗−𝑘 +   𝑅𝑗),                                         (4.8) 

Where  

‖  𝑅𝑗‖ ≤ sup0≤𝑡≤1‖𝑢𝑡𝑡
′′ (𝑡𝑗 − 𝑡𝑗𝑡)‖, 

Taking the 𝐿2 norm for (4.8), we get  

                            ‖𝜀𝑗‖ ≤ ‖(−𝛼0𝑗 − 𝑡𝑗
𝛼Γ(−𝛼)𝐴)−1 ‖[∑ 𝛼𝑘𝑗

𝑗
𝑘=0 ‖𝜀𝑗−𝑘‖ + ‖  𝑅𝑗‖]                  (4.9) 

 

Note that 𝐴 is a positive definite elliptic operator. The eigenvalues of 𝐴 are 𝜆𝑗 = 𝑗2𝜋2, 

 𝑗 = 1,2,3, …. . For any function 𝑔(𝑥) we have, by spectal method,  

‖𝑔(𝐴)‖ = supλ>0|𝑔(𝜆)| 
From (4.9), we have 

‖(−𝛼0𝑗 − 𝑡𝑗
𝛼Γ(−𝛼)𝐴)−1 ‖ = ‖(

1

𝛼(1−𝛼)𝑗−𝛼
− 𝑡𝑗

𝛼Γ(−𝛼)𝐴)
−1

‖  

                                                  = ‖𝛼(1 − 𝛼)𝑗−𝛼(1 − 𝛼(1 − 𝛼)𝑗−𝛼𝑡𝑗
𝛼Γ(−𝛼)𝐴)

−1
‖    

                             ‖(−𝛼0𝑗 − 𝑡𝑗
𝛼Γ(−𝛼)𝐴)−1 ‖ = 𝛼(1 − 𝛼)𝑗−𝛼sup𝜆>0 (1 − 𝛼(1 −

𝛼)𝑗−𝛼𝑡𝑗
𝛼Γ(−𝛼)𝜆)

−1
 

Here 𝛼(1 − 𝛼)𝑗−𝛼𝛼𝑘𝑗 =

{

−1,                                                                     for 𝑘 = 0,                   

2𝑘1−𝛼 − (𝑘 − 1)1−𝛼 − (𝑘 + 1)1−𝛼,               for 𝑘 = 1,2, … , 𝑗 − 1,   

(𝛼 − 1)𝑘−𝛼 − (𝑘 − 1)1−𝛼 + 𝑘1−𝛼,            for k = j.                     

(4.10) 

Since Γ(−𝛼) > 0, we find that  

sup𝜆>0 (1 − 𝛼(1 − 𝛼)𝑗−𝛼𝑡𝑗
𝛼Γ(−𝛼)𝜆)

−1
≤ 1. 

Hence  

‖(−𝛼0𝑗 − 𝑡𝑗
𝛼Γ(−𝛼)𝐴)−1 ‖ ≤ 𝛼(1 − 𝛼)𝑗−𝛼 . 

Thus (4.9) implies that  

    ‖𝜀𝑗‖ ≤ 𝛼(1 − 𝛼)𝑗−𝛼[∑ 𝛼𝑘𝑗
𝑗
𝑘=0 ‖𝜀𝑗−𝑘‖ + 𝐶𝑗𝛼𝑛−2sup0≤𝑡≤1‖𝑢𝑡𝑡

′′ (𝑡𝑗 − 𝑡𝑗𝑡)‖],              (4.11) 

Where we use the fact, noting that  𝑡𝑛 = 𝑛 ∙ ∆𝑡 = 1,  

𝑢𝑡𝑡
′′ (𝑡𝑗 − 𝑡𝑗𝑡) = 𝑢′′(𝑡𝑗 − 𝑡𝑗𝑡) ∙ 𝑡𝑗

2 = 𝑗2 ∆𝑡2𝑢′′(𝑡𝑗 − 𝑡𝑗𝑡) 

                                                        = 𝑗2 𝑛−2𝑢′′(𝑡𝑗 − 𝑡𝑗𝑡). 

 

Further (4.9) can be written into the form 

‖𝜀𝑗‖ ≤ 𝛼(1 − 𝛼)𝑗−𝛼𝐶𝑛−2‖𝑢′′‖𝐿∞
+ 𝛼(1 − 𝛼)𝑗−𝛼 ∑ 𝛼𝑘𝑗

𝑗

𝑘=0

‖𝜀𝑗−𝑘‖. 

Denote 𝑎 =  𝛼(1 − 𝛼)𝑗−𝛼𝐶𝑛−2‖𝑢′′‖𝐿∞
.  

Choose:  𝑗 = 1. 

Then we have  

‖𝜀1‖ ≤ 𝑎 + 𝛼(1 − 𝛼)1−𝛼𝛼11‖𝜀0‖ 
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                                                           = 𝑎 ∙ 𝑑1 + 𝑟1‖𝜀0‖, 

Here   𝑑1 = 1, 𝑟1 = 𝛼(1 − 𝛼)1−𝛼𝛼11 . 

Choose   𝑗 = 2, we get 

‖𝜀2‖ ≤ 𝑎 + 𝛼(1 − 𝛼)2−𝛼 [∑ 𝛼𝑘2

2−1

𝑘=1

‖𝜀2−𝑘‖ + 𝛼22‖𝜀0‖]                               

     ‖𝜀2‖   ≤  𝑎 + 𝛼(1 − 𝛼)2−𝛼 [∑ 𝛼𝑘2

2−1

𝑘=1

(𝑎𝑑2−𝑘 + 𝑟2−𝑘‖𝜀0‖) + 𝛼22‖𝜀0‖]               

                                

= 𝑎 [1 + 𝛼(1 − 𝛼)2−𝛼 ∑ 𝛼𝑘2

2−1

𝑘=1

𝑑2−𝑘]

+ 𝛼(1 − 𝛼)2−𝛼 [∑ 𝛼𝑘2

2−1

𝑘=1

𝑟2−𝑘] ‖𝜀0‖          

                                = 𝑎𝑑2 + 𝑟2‖𝜀0‖.      
Here  

𝑑2 = 1 + 𝛼(1 − 𝛼)2−𝛼 ∑ 𝛼𝑘2

2−1

𝑘=1

𝑑2−𝑘  

       𝑟2 =  𝛼(1 − 𝛼)2−𝛼 ∑ 𝛼𝑘2

2−1

𝑘=1

𝑟2−𝑘, 𝑟0 = 1 

 

In general, we obtain 

                                  ‖𝜀𝑗‖ ≤ 𝑎𝑑𝑗 + 𝑟𝑗‖𝜀0‖,         𝑗 = 1,2,3, …,                                                (4.12) 

Next we will find 𝑑𝑗  and 𝑟𝑗 , where 

𝑑𝑗 = 1 + 𝛼(1 − 𝛼)𝑗−𝛼 ∑ 𝛼𝑘𝑗

𝑗−1

𝑘=1

𝑑𝑗−𝑘,    𝑗 = 2,3, …, 

           𝑟𝑗 = 𝛼(1 − 𝛼)𝑗−𝛼 ∑ 𝛼𝑘𝑗

𝑗

𝑘=1

𝑟𝑗−𝑘,   𝑗 = 1,2,3, …,   𝑟0 = 1. 

Lemma 4.1 [18] for  0 < 𝛼 < 1, let the sequence {𝑑𝑗},  𝑗 = 1,2, … be given by  𝑑1 = 1 and  

𝑑𝑗 = 1 + 𝛼(1 − 𝛼)𝑗−𝛼 ∑ 𝛼𝑘𝑗

𝑗−1

𝑘=1

𝑑𝑗−𝑘,    𝑗 = 2,3, …, 

Then,  

1 ≤ 𝑑𝑗 ≤
sin𝜋𝛼

𝜋𝛼(1−𝛼)
𝑗𝛼,    𝑗 = 1,2, ….    

Lemma 4.2   Assume that if   𝑟0 = 1, 𝑟𝑗 = 𝛼(1 − 𝛼)𝑗−𝛼 ∑ 𝛼𝑘𝑗
𝑗
𝑘=1 𝑟𝑗−𝑘,    𝑗 = 1,2,3, … , 

Then,  

𝑟𝑗 ≤ 1. 

Proof: 

Step 1:  If we have   𝑟0 = 1. Then  

𝑟1 = 𝛼(1 − 𝛼)1−𝛼𝛼11𝑟0 = 𝛼(1 − 𝛼)𝛼11 = (𝛼 − 1)1−𝛼 + 11−𝛼 = 𝛼 < 1. 
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Step 2:  Assume that  𝑟𝑗 < 𝛼 < 1, thet 

𝑟𝑗+1 = 𝛼(1 − 𝛼)𝑗−𝛼 ∑ 𝛼𝑘𝑗

𝑗

𝑘=1

𝑟𝑗−𝑘 ≤ 𝛼(1 − 𝛼)𝑗−𝛼 ∑ 𝛼𝑘𝑗

𝑗

𝑘=1

∙ 1                                  

𝑟𝑗+1   = 𝛼(1 − 𝛼)𝑗−𝛼 [∑ 𝛼𝑘𝑗 −

𝑗

𝑘=0

𝛼0𝑗]  = 𝛼(1 − 𝛼)𝑗−𝛼 [−
1

𝛼
+

1

𝛼(1 − 𝛼)𝑗−𝛼
] 

                = 𝛼(1 − 𝛼)𝑗−𝛼 [−
1

𝛼
+

1

𝛼(1 − 𝛼)𝑗−𝛼
]      <  𝛼(1 − 𝛼)𝑗−𝛼

1 − (1 − 𝛼)𝑗−𝛼

 𝛼(1 − 𝛼)𝑗−𝛼
  

Hence, we get 

                      𝑟𝑗+1 <  𝛼(1 − 𝛼)𝑗−𝛼
1

 𝛼(1 − 𝛼)𝑗−𝛼
= 1.                                       

The proof of the Lemma 4.2 is complete. 

By using Lemma 4.1 and Lemma 4.2, we obtain from (4.12) the follows 

‖𝜀𝑗‖ ≤  𝑎𝑑𝑗 + 𝑟𝑗‖𝜀0‖ ≤ 𝛼(1 − 𝛼)𝐶𝑛−2‖𝑢′′‖𝐿∞
∙ 𝑑𝑗 + 𝑟𝑗‖𝜀0‖         

                             ≤ 𝛼(1 − 𝛼)𝐶𝑛−2‖𝑢′′‖𝐿∞

sin 𝜋𝛼

𝜋𝛼(1 − 𝛼)
𝑗𝛼 + ‖𝜀0‖ ≤ 1 ≤ 𝐶∆𝑡2−𝛼 + ‖𝜀0‖. 

The proof of the Theorem 4.1 is complete. 

Second: we will consider a stability result of the time discretization of the FPDEs (4.1) and (4.2). 

Theorem 4.2    Let  𝑈𝑗  be the approximate solution of (4.6), then we have  

‖𝑈𝑗‖ ≤ 2‖𝑈0‖ +
sin 𝜋𝛼

𝜋
|Γ(−𝛼)|𝑡𝑗

𝛼‖𝑓‖𝐿∞
 

Before proving this Theorem we have the following steps: 

Step 1:  Substituting by the expression   ∑ 𝛼𝑘𝑗
𝑗
𝑘=0 = −

1

𝛼
 , into (4.6), we get 

(𝛼0𝑗+𝑡𝑗
𝛼Γ(−𝛼)𝐴)𝑈𝑗 = 𝑡𝑗

𝛼Γ(−𝛼)𝑓𝑗 − ∑ 𝛼𝑘𝑗𝑈
𝑗−𝑘𝑗

𝑘=1 −
1

𝛼
𝑈0,   for 𝑗 = 1,2,3, …. 

Or  

           (−𝛼0𝑗 − 𝑡𝑗
𝛼Γ(−𝛼)𝐴)𝑈𝑗 = ∑ 𝛼𝑘𝑗𝑈

𝑗−𝑘𝑗
𝑘=1 +

1

𝛼
𝑈0 − 𝑡𝑗

𝛼Γ(−𝛼)𝑓𝑗,                            (4.13) 

 

Multiplying on both sides of (4.13) by   𝛼(1 − 𝛼)𝑗−𝛼 , and use the fact, 

𝛼(1 − 𝛼)𝑗−𝛼(−𝛼0𝑗) = 1,                         

Then we obtain the follows 

[1 + 𝛼(1 − 𝛼)𝑗−𝛼(−𝑡𝑗
𝛼)Γ(−𝛼)𝐴]𝑈𝑗 = 𝛼(1 − 𝛼)𝑗−𝛼 (∑ 𝛼𝑘𝑗𝑈

𝑗−𝑘

𝑗

𝑘=1

+
1

𝛼
𝑈0 − 𝑡𝑗

𝛼Γ(−𝛼)𝑓𝑗). 

 Step 2: Assume that  𝑢𝑗 = 𝛼(1 − 𝛼)𝑗−𝛼(−𝑡𝑗
𝛼)Γ(−𝛼),   then we get 

𝑈𝑗 = (1 + 𝑢𝑗𝐴)−1𝛼(1 − 𝛼)𝑗−𝛼 (∑ 𝛼𝑘𝑗𝑈
𝑗−𝑘

𝑗

𝑘=1

+
1

𝛼
𝑈0 − 𝑡𝑗

𝛼Γ(−𝛼)𝑓𝑗).                         

We denote that the norm   ‖(1 + 𝑢𝑗𝐴)−1‖ = sup𝜆>0|(1 + 𝑢𝑗𝜆)−1| < 1,   then 

   ‖𝑈𝑗‖ ≤ ‖(1 + 𝑢𝑗𝐴)
−1

‖𝛼(1 − 𝛼)𝑗−𝛼 (∑ 𝛼𝑘𝑗‖𝑈𝑗−𝑘‖
𝑗
𝑘=1 +

1

𝛼
‖𝑈0‖ + |𝑡𝑗

𝛼Γ(−𝛼)|‖𝑓‖𝐿∞
)                                                                                                                                             
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             ≤ 𝛼(1 − 𝛼)𝑗−𝛼 (∑ 𝛼𝑘𝑗‖𝑈𝑗−𝑘‖

𝑗

𝑘=1

) + (1 − 𝛼)𝑗−𝛼‖𝑈0‖

+ 𝛼(1 − 𝛼)∆𝑡𝛼|Γ(−𝛼)|‖𝑓‖𝐿∞
     

            ≤ 𝛼(1 − 𝛼)𝑗−𝛼 ∑ 𝛼𝑘𝑗‖𝑈𝑗−𝑘‖
𝑗
𝑘=1 + (1 − 𝛼)𝑗−𝛼‖𝑈0‖ + 𝑎,                                   (4.14) 

Here   

𝑎 = 𝛼(1 − 𝛼)∆𝑡𝛼|Γ(−𝛼)|‖𝑓‖𝐿∞
. 

Denote that when  𝑗 = 1, 

‖𝑈1‖ ≤ 𝑎 + 𝛼(1 − 𝛼)1−𝛼𝛼11‖𝑈0‖ + (1 − 𝛼)1−𝛼‖𝑈0‖. 
Suppose that   𝑑1 = 1,   𝑏1 = (1 − 𝛼)1−𝛼,   𝑟1 = 𝛼(1 − 𝛼)1−𝛼, 

Then we have 

‖𝑈1‖ ≤ 𝑎𝑑1 + 𝑏1‖𝑈0‖ + 𝑟1‖𝑈0‖. 
In general, we can write that 

                                                     ‖𝑈𝑗‖ ≤ 𝑎𝑑𝑗 + 𝑏𝑗‖𝑈0‖ + 𝑟𝑗‖𝑈0‖,   𝑗 = 1,2,3, ….                    (4.15) 

Here 

{

  𝑑1 = 1,                                                                                

𝑑𝑗 = 1 + 𝛼(1 − 𝛼)𝑗−𝛼 ∑ 𝛼𝑘𝑗𝑑𝑗−𝑘,   𝑗 = 2,3,4, … ,

𝑗−1

𝑘=1

 

               {

  𝑏1 = (1 − 𝛼)1−𝛼,                                                                                

𝑏𝑗 = (1 − 𝛼)𝑗−𝛼 + 𝛼(1 − 𝛼)𝑗−𝛼 ∑ 𝛼𝑘𝑗𝑏𝑗−𝑘,   𝑗 = 2,3,4, … ,

𝑗−1

𝑘=1

 

and 

{

  𝑟0 = 1,                                                                                

𝑟𝑗 = 𝛼(1 − 𝛼)𝑗−𝛼 ∑ 𝛼𝑘𝑗𝑟𝑗−𝑘,   𝑗 = 1,2,3, … .

𝑗

𝑘=1

        
 

Step 3: Suppose that, for some fixed numbers  𝑗 = 1,2,3, …, 

‖𝑈𝑗‖ ≤ 𝑎𝑑𝑗 + 𝑏𝑗‖𝑈0‖ + 𝑟𝑗‖𝑈0‖. 

Then by (4.15), we have 

          ‖𝑈𝑗+1‖ ≤  𝛼(1 − 𝛼)𝑗−𝛼 ∑ 𝛼𝑘𝑗‖𝑈𝑗−𝑘‖

𝑗

𝑘=1

+ (1 − 𝛼)𝑗−𝛼‖𝑈0‖ + 𝑎                  

        ≤  𝛼(1 − 𝛼)𝑗−𝛼 ∑ 𝛼𝑘𝑗⌈𝑎𝑑𝑗−𝑘 + 𝑏𝑗−𝑘‖𝑈0‖ + 𝑟𝑗−𝑘‖𝑈0‖⌉

𝑗

𝑘=1

  

+(1 − 𝛼)𝑗−𝛼‖𝑈0‖ + 𝑎                                                    

    = [ 𝛼(1 − 𝛼)𝑗−𝛼 ∑ 𝛼𝑘𝑗𝑑𝑗−𝑘

𝑗

𝑘=1

]                                        

   + [(1 − 𝛼)𝑗−𝛼 + 𝛼(1 − 𝛼)𝑗−𝛼 ∑ 𝛼𝑘𝑗𝑏𝑗−𝑘

𝑗

𝑘=1

] ‖𝑈0‖   
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  + [𝛼(1 − 𝛼)𝑗−𝛼 ∑ 𝛼𝑘𝑗𝑟𝑗−𝑘

𝑗

𝑘=1

] ‖𝑈0‖                               

                                         =  𝑎𝑑𝑗+1 + 𝑏𝑗+1‖𝑈0‖ + 𝑟𝑗+1‖𝑈0‖.        

Which shows that (4.15) holds. 

Lemma 4.3:  Assume that, for    0 < 𝛼 < 1,  

Choose:  𝑗 = 1,   then   𝑏1 = (1 − 𝛼)𝑗−𝛼,                                                                                                 

                                       𝑏𝑗 = (1 − 𝛼)𝑗−𝛼 + 𝛼(1 − 𝛼)𝑗−𝛼 ∑ 𝛼𝑘𝑗𝑏𝑗−𝑘,    for 𝑗 = 2,3,4, … ,

𝑗

𝑘=1

    

Then we have   

 𝑏𝑗 ≤ 1.                               

Proof: we know that  

𝑏1 = (1 − 𝛼)𝑗−𝛼 < 1. 
By mathematics induction principle, suppose that  

 𝑏𝑗 < 1, then we have 

  𝑏𝑗+1 = (1 − 𝛼)(𝑗 + 1)−𝛼 + 𝛼(1 − 𝛼)𝑗−𝛼 ∑ 𝛼𝑘𝑗

𝑗−1

𝑘=1

𝑏𝑗−𝑘  

                   ≤ (1 − 𝛼)(𝑗 + 1)−𝛼 + 𝛼(1 − 𝛼)𝑗−𝛼 (∑ 𝛼𝑘𝑗

𝑗−1

𝑘=0

− 𝛼0𝑗) 

                            ≤ (1 − 𝛼)(𝑗 + 1)−𝛼 + 𝛼(1 − 𝛼)𝑗−𝛼 (−
1

𝛼
+

1

𝛼(1 − 𝛼)𝑗−𝛼
) 

                    ≤ (1 − 𝛼)(𝑗 + 1)−𝛼 + 𝛼(1 − 𝛼)𝑗−𝛼
1 − (1 − 𝛼)𝑗−𝛼

𝛼(1 − 𝛼)𝑗−𝛼
      

  ≤ (1 − 𝛼)(𝑗 + 1)−𝛼 + 1 − (1 − 𝛼)𝑗−𝛼 < 1.    
The proof of the Lemma 4.3 is complete. 

Proof of the Theorem 4.2:  by the expression (4.15), we have  

                                           ‖𝑈𝑗‖ ≤ 𝑎𝑑𝑗 + 𝑏𝑗‖𝑈0‖ + 𝑟𝑗‖𝑈0‖,   𝑗 = 1,2,3, …,                      

here   𝑑𝑗 , 𝑏𝑗  and 𝑟𝑗  are given before. 

Using Lemma 4.1-4.3, we obtain 

‖𝑈𝑗‖ ≤ 𝑎𝑑𝑗 + 𝑏𝑗‖𝑈0‖ + 𝑟𝑗‖𝑈0‖ ≤ 𝑎
sin 𝜋𝛼

𝜋𝛼(1 − 𝛼)
𝑗−𝛼 + ‖𝑈0‖ + ‖𝑈0‖                           

                                                                       

= 𝛼(1 − 𝛼)∆𝑡𝛼|Γ(−𝛼)|‖𝑓‖𝐿∞

sin 𝜋𝛼

𝜋𝛼(1 − 𝛼)
𝑗−𝛼 + 2‖𝑈0‖  

                                    ≤ 2‖𝑈0‖ +
sin 𝜋𝛼

𝜋
|Γ(−𝛼)|𝑡𝑗

𝛼‖𝑓‖𝐿∞
. 

The proof of the Theorem 4.2 is complete. 

5   Numerical simulation 

In this section, we will consider two numerical examples. 

Example  5.1   Consider the time fractional partial differential equation, with  0 < 𝛼 < 1, 

             
𝜕𝛼

𝜕𝑡𝛼 𝑢(𝑡, 𝑥) −
𝜕2

𝜕𝑥2 𝑢(𝑡, 𝑥) = 𝑓(𝑡, 𝑥)                                                                                (5.1) 
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    𝐈. 𝐜:  𝑢(0, 𝑥) =  𝑢0,                               0 ≤ 𝑥 ≤ 1,                                                                     (5.2) 

   𝐁. 𝐜:  𝑢(𝑡, 0) = 𝑢(𝑡, 1) = 0,                      𝑡 > 0,      0 < 𝛼 < 1                                               (5.3) 

 

The exact solution is  

𝑢(𝑡, 𝑥) = sin(𝜋𝑡) sin(𝜋𝑥). 
The write hand side of the function 

𝑓(𝑡, 𝑥) =
1

Γ(1 − 𝛼)
 ∫𝜋(𝑡 − 𝑠)−𝛼

𝑡

0

cos(𝜋𝑠) sin(𝜋𝑥) 𝑑𝑠 − 𝜋2 sin(𝜋𝑡) sin(𝜋𝑥) 

We choose   𝛼 = 0.2,      ∆𝑥 = ℎ = 0.01,    𝑇 = 1,   ∆𝑡 = 𝑘 = 1/32,   𝑁 = 𝑇/∆𝑡 .   

Let  𝑈𝑛   denote the approximate solution and  𝑢(𝑡𝑛)  denote the exact solution at  𝑡 = 𝑡𝑛  .  

Let  𝜀𝑛 = 𝑈𝑛 − 𝑢(𝑡𝑛)  denote their error at  𝑡 = 𝑡𝑛.  We plot the exact solution, approximate solution at   𝑡𝑁 = 1, 

in Figure 1. We plot the error at  𝑡𝑁 = 1  in Figure 2. 

 

 

 

                              Figure 1.  The approximate and exact solutions at  𝑡𝑁 = 1 
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                                                 Figure 2: The error at  𝑡𝑁 = 1  

Example  5.2    Consider, with  0 < 𝛼 < 1 

             
𝜕𝛼

𝜕𝑡𝛼 𝑢(𝑡, 𝑥) −
𝜕2

𝜕𝑥2 𝑢(𝑡, 𝑥) = 𝑓(𝑡, 𝑥),           𝑡 > 0,      0 < 𝑥 < 1                                   (5.4) 

    𝐈. 𝐜:  𝑢(0, 𝑥) =  𝑢0,                                                                                                                  (5.5) 

   𝐁. 𝐜:  𝑢(𝑡, 0) = 𝑢(𝑡, 1) = 0,                                                                                                     (5.6) 

The exact solution is  

𝑢(𝑡, 𝑥) = 𝑡2 sin(2𝜋𝑥). 
The right hand side functions  

𝑓(𝑡, 𝑥) = 2𝑡2−𝛼 sin(2𝜋𝑥) /Γ(3 − 𝛼) − 4𝜋2 sin(2𝜋𝑥)𝑡2. 
We choose  𝛼 = 0.2,    ∆𝑥 = 0.01,    𝑇 = 1,   ∆𝑡 = 0.01,   𝑁 = 𝑇/∆𝑡. 

Let  𝑈𝑛  denote the approximate solution and  𝑢(𝑡𝑛) denote the exact solution at  𝑡 = 𝑡𝑛.  

Let  𝜀𝑛 = 𝑈𝑛 − 𝑢(𝑡𝑛)  denote the error at   𝑡 = 𝑡𝑛 . We plot the exact solution and the approximate solution at  

𝑡𝑁 = 1  in Figure 3, and we plot the error at  𝑡𝑁 = 1  in Figure 4. 
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                                  Figur 3.  The approximate and exact solutions at  𝑡𝑁 = 1 

 

 
                                                  Figure 4. The error at  𝑡𝑁 = 1  
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6   Conclusion  

In this paper we discuss the finite element method for the time fractional partial differential equations. We introduce the 

finite element method for solving time fractional partial differential equation. We obtain the error estimates in the L2-norm 

between the exact solution and the approximate solution in fully discrete case. The numerical examples show that the 

numerical results are consistent with the theoretical results. 
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