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Abstract 
 

     This project is dedicated to study buckling of plates and plate type structures 

using finite strip method.  

     The study considered derivation of elastic stiffness and geometric stiffness 

matrices for finite strips and then assembled to produce the assembly matrices 

required for the determinant equation which produces the Eigen-value as 

buckling modes and eigenvectors for buckling modes. 

     The computer program is produced to solve the determinant equation for 

several types of structures and the result when compared with the solution 

obtained by classical methods showed very good agreement.    
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1 Buckling of Isotropic Plates 

 

1.1 Literature Survey   

 

1. The technique was first introduced in 1968 by W. Wittrick [1], The 

exact finite strip (, 1968), this method is based on large deformation 

theory and the de-stabilising effect of the in-plane stresses is 

considered. As a result, all modes of buckling regardless of the critical 

wave length can be singled out in the results of the analysis.  

2. The approximation finite strip (Y. Cheung, 1968) [2], Cheung method 

was based on small deformation theory, and an approximate deflection 

pattern is assumed, in the longitudinal direction the deflection shape is 

approximate by a Fourier series and in the transverse direction a 

polynomial is assumed and only overall buckling is computed. 

3. The finite strip for local instability (J.S. Przemieniecki, 1973), [3] the 

method which is also based on small deflection theory is particularly 

devised for use in study for the class of problems which fail by local 

instability. 

4. Other references used finite strip are [4] ,[5]  

 

In this project the finite strip method will be used for buckling analysis of 

plate type structure computer code is specially developed for handling a variety 

of buckling problems of thin walled structure. 

 

 

 

 



3 
 

1.2 Introduction [6] 
 

     There are two major factors leading to sudden failure of a mechanical 

component: material failure and structural instability. 

   For material failures you need to consider the yield stress for ductile materials 

and the ultimate stress for brittle materials. Tests on test specimen are used to 

determine material characteristics. 

  The geometry of such test specimens has been standardized.  Thus, geometry 

is not specifically addressed in defining material properties, such as yield 

stress.  Geometry enters the problem of determining material failure only 

indirectly as the stresses are calculated by analytic or numerical methods. 

    Long columns and thin plates and panels under axial load fail under buckling 

stress and their deformed shape known as buckling modes are shown in figure 

(1.1) 

 

Figure 1-1: Determination of Buckling Load for a Pin-Ended Colum.[6] 
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Figure 1-2(a) A Simply Supported Plate with a Uniform in a Plane Edge Loading in the x Direction, (b) 

The Buckling of a Long Thin Flat Plate. [7] 

 

1.3 Revision of Theory of Elasticity Fundamental  
 

1.3.1 Equation of Strain and Displacements in 3D [7] 
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Where: 

                are displacements in     , and z direction of orthogonal coordinate 

system axis and function of     , and z  coordinates . 

          are normal strains. 

   ,    ,     are shear strains. 

1.3.2 Stresses – Strain (Hooke’s Low) 
 

For 3D – Isotropic material (absent temperature): 
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Where 

    ,    ,     are  shear stresses.  

Hooke's low in presence of temperature [8] in explicit form become: 
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Where   is unit matrix, then  
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And for 2D structures we may write [8], 
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1.3.3 Equations of Equilibrium 

 

 

Figure 1-3Stresses on unit volume [ 7 ] 
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   These 3 equations must be satisfied at all points on a deformed body for equilibrium  
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Indicating direction cosines: by      and       

Where                                
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1.3.4 Equations of Compatibility of Strain 

 

     For solutions of 3D problems of elasticity normal strains   and shear strains   

must satisfy the following equations: 
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1.4 Linear and non Linear Structural Stability  
 

     In general, the literature for structural stability can be divided into two main 

topics [4]: 

a. Linier study: which deals primarily with critical equilibrium status  

b. Nonlinear study: This is concerned with the equilibrium path 

configuration in the vicinity of the equilibrium state. 
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  In the study of linear stability of structures [9], systems are classified into 

conservative systems and non conservative systems. Conservative systems are 

systems subject to conservative forces. 

  A non-conservative system is a system which is subject to at least one non 

conservative force. see table (2) 

 

Chart 1-1 Classification of Systems [ 4 ] 

 

   Conservative forces are forces which when their point of application is 

displaced from  a point A to  a point B, the work done is only a function of the 

initial and final positions and does not depend on the displacement path. 

Since forces are classified as reactions, and external loads. ,reactions can be 

considered conservative if they are nonworking (ex. Frictionless normal 

pressure). 

Non conservative reactions are dissipative or doing negative work.(ex. Kinetic 

dry friction). (It's to be noted here, that nonworking reactions are considered as 

conservative, although they do not admit potential). 

systems 

Conservative 

Non-
Gyroscopic 

Gyroscopic 

Non 
conservative  

Dissipative Circulatory 
Non-

Stationary 
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Loads are classified as follows: Stationary loads, which are independent of time 

but may be velocity dependent. 

 Non stationary loads, which depend explicitly on time and are non conservative 

(e.g. pulsating loads). 

Velocity dependent stationary loads include those which do zero work (e.g. 

gyroscopic) and are conservative and those which do negative work i.e. are 

dissipative (e.g. air drag) and are non conservative. 

 

Stationary velocity independent loads also fall into both categories. Those 

which can be derived from a potential (e.g. gravitational forces) and are 

conservative are called non circulatory whilst all others are non conservative 

and known as circulatory. 

Examples of non conservative systems are those which have a dissipative 

reaction, or dissipative load, circulatory or non stationary type. 
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Chart 1-2 Classification of Forces [4] 

 

   In the analysis which follows, systems which will be treated are those which 

are classified as non-gyroscopic, in which reactions are nonworking, and loads 

are stationary, and non-circulatory. 

 

    This category can be treated using the Energy Approaches EA, the Finite 

element method FEM, and the Finite strip method FSM which will be adopted 

throughout.  

    For axially loaded structures, the buckling load, [4] , is defined as the load at 

which small disturbances of the position of equilibrium of the structure will lead 

to large deformations which exceed the allowable limits specified under certain 

working conditions and working time. 

    In aircraft structures, for example, large use is made of slender columns and 

thin plates which are very likely to fail by buckling and thus the determination 

of buckling stress is a problem of extreme importance, .since in practical 

structures the object of design is to retain a well-defined shape, the critical 

buckling study will define the load at which this well-defined shape is lost.  

 

Forces 
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Stationary  

Stationary 

Velocity 
Dependent 
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Velocity 
independent 
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Circulatory 
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Reeactions 

Non-
Working 
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1.5 Methods for Buckling Analysis  
 

    In this section a survey of methods for buckling analysis will carried out, the 

methods which will be reviewed are as follow: 

1. Euler Method (The Equilibrium Method)  

2. Principle of Total Potential Energy  

3. Ritz Method  

4. Conservation of Energy Method  

5. Galerkin's Method  

6. Finite Difference Method   

7. Finite Element Method 

8. Finite Strip Method  

 

These methods will be presented in brief as follow: 

1 Euler Method (The Equilibrium Method)[4]: 

       This method is mostly encountered in the analysis of simple structural 

forms, for example, the axially loaded bar and the rectangular plate carrying in-

plane edge loadings, and it's based on the concept of the condition of neutral 

equilibrium.  

    This means that there is no loss of equilibrium when the bar or plate is 

displaced slightly from its initial straight or plane form. 

   The bent position is used to establish equilibrium between the external applied 

forces and the internal forces, and the analysis can be outlined as follows: 

a. The basic equilibrium equation between internal forces and external 

applied forces is set up, 

b. This equation is transformed in terms of stresses, 
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c. From Hooke's Law the basic equation is transformed into an equation in 

terms of strain, 

d. By expressing the strains in terms of the displacement, the equilibrium 

equation will become the differential equation which governs the 

deflection of the structure,  

e. Since it is a stability problem, the integration of the differential equation 

will lead to a set of Eigenvalues and corresponding eigenvectors and the 

critical load will be the smallest of the Eigenvalues.  

 

2 Principle of Total Potential Energy Method: 

   It is based on body in equilibrium total potential energy, which can be stated 

as follow [4]: 

'' An elastic body is in equilibrium if no change occurs in the total potential 

energy of the system for any small arbitrary displacement ''. 

This can be expressed as follow: 

 (    )                                                                   (    )    

   Where 

    is the strain energy of the elastic structure, and   is the potential energy of 

the applied external forces and their sum (     ) is known as the total 

potential energy  . 

   In the determination of the buckling load this method can be used in either 

one of the following procedure: 

 Assumed Deflection Shape:  

                 This procedure is attributed to Navier (1820) and applied to several 

examples in [10] 
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          The analysis is carried out as follows: 

a. The analytical expression of the total potential energy is found. 

b. A suitable displacement function is chosen in terms of unknown 

coefficients. 

The chosen displacement function must satisfy both the geometric 

boundary conditions represented by slope and deflection and the natural 

boundary conditions represented by shear and bending moment. 

If it is not possible to satisfy both, at least the geometric boundary 

condition must be satisfied. 

c. The total potential energy is then calculated in terms of the unknown 

parameters. 

d. The expression of minimum total potential energy    

 

 (    )    

        Is then obtained by equating to zero the partial differentials of this energy 

with respect to each one of those unknown coefficients. 

e. The critical load is found by elimination of the unknown parameters. 

   This procedure depends in the first place on the choice of the displacement 

function, if it is the exact one then the buckling load will be exact, if the 

assumed displacement function is not exact then the buckling load determined 

will be approximate and the degree of approximation depends on how closely 

the true buckling shape is represented. 

 

 Variational Approach : 

 

    This procedure first appeared in 1891 in a paper by G.H. Bryan [11]. In the 

previous procedure, an important feature is the choice of buckling shape 
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function which must, at least, satisfy the geometric boundary conditions, this 

second procedure is principally suitable for the study of the case when the 

assumed deflection shape cannot be easily found. 

    In this procedure, the variation calculus is used to find the conditions 

represented by the differential equation and the natural boundary conditions 

which the exact deflection shape must satisfy so that the total potential energy 

of the system becomes stationary( (    )   ) . It leads only to the 

governing equations of the problem.  

    An application can be found in the above reference where a circular plate was 

studied and in [9], in which this procedure was applied to the simple case of 

axially loaded simply supported column. 

 

3  Ritz Method: 

         This method is referred to by W. Ritz and first appeared in the literature in 

1909. In the Ritz method, an assumed shape is used to represent the deformation 

of the system. This reduces the number of degree of freedom and the critical 

load is found by using only ordinary calculus [12]. 

         This method procedure can be as follows: 

1. The analytical expression of the total potential energy is obtained. 

2. The deflection surface is expressed in expanded form as the sum of an 

infinite set of functions having undetermined coefficients. 

3. The total energy of the structure is computed for the deflection surface and 

then minimised with respect to the undetermined coefficients. 

4. This minimisation procedure leads to a set of linear homogeneous 

equations in the undetermined coefficients. 



19 
 

5. These equations have non vanishing solutions only if their coefficients 

vanish. The vanishing of this stability determinant provides the equation 

that may be solved for the buckling load. 

6. If the set of functions is complete and capable of representing slope, 

deflection, shape and curvature of any possible deformation, the solution 

is exact. 

 

    For the exact analysis the order of determinant will be infinite, and if only a 

reduced number of terms are used, an approximate buckling load will be 

obtained, which will be higher than the exact value. 

    An application of this method can be found in [13] where the lateral buckling 

of deep beam was analysed.  

 

4 Conservation of Energy Method  

    This method referred to as the Timoshenko method having been developed 

by Timoshenko, S. [14], 1910, and used extensively in [15] for the solution of a 

variety of instability problems. 

    This method is based on the energy concept which can best be explained by 

taking the axially loaded column as a particular example. This column when 

subjected to gradually increasing load remains stable in the straight form as long 

as the load is lower than the buckling load. 

   During this stage, the load does work by virtue of the shortening of the bar. 

   When the buckling load is reached, the straight form of equilibrium is no 

longer unique and another equilibrium condition represented by a bent form of 

the bar appears. 
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   The work done by the load is now associated with a displacement arising in 

part from the bending of the bar and in part from the axial deformation of the 

bar. 

  Because of the bending, the strain energy of the bar is also increased by an 

amount due to the bending deformation and so it can be said that at the instant 

prior to buckling, the increase in external work is equal to the increase in strain 

energy. 

 In mathematical term, before buckling the system is stable and we have  

                                                                   (    ) 

Where  

      is the strain energy 

      is the external work 

 

 After buckling stability is lost and          

 

 Whilst at transition            

 

   This last condition is characteristic of the incipient state of buckling, and can 

be stated in the following form: 

     '' A conservative system is in equilibrium, if the strain energy stored is equal 

to the work performed by the external loads. '' 

  Analysis procedure can be as follow: 

1. Expressions for the strain energy and the external work are obtained. 
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   In general, the deformation of the structure prior to buckling is neglected, 

because it is considered to be much smaller than the bending deformation. 

2. An assumed displacement function is chosen which must satisfy as many 

as possible of the boundary conditions. Generally, the function will 

involve n coefficients ai or parameters. 

 

3. From the equality        this equation is derived 

  
  (             )

 ̅ (             )
                                             (    ) 

   The parameters are then adjusted until   becomes a minimum; this leads to n 

equations of this type 

      (  ̅ 
 ⁄ ) *(

   

   
)  ̅  (

  ̅ 

   
)  +   ⁄                   (    )             

Which become  

   

   
  (

  ̅ 

   
)             (     )                               (    ) 

This final set of equations gives the n constants ai and the buckling load. 

    It can be seen that there is similarity of the procedures between the various 

energy approaches: 

a. All of them lead to a buckling load higher than the exact one if limited 

number terms are considered. 

b. All lead to the exact buckling load if the assumed displacement function 

represents exactly the true buckled shape and satisfies the boundary 

condition. 
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5 Galerkin's Method: 

   This method is attributed to B.G. Galerkin, and first appeared in 1915,[16]. 

     In the previous method a trial function was assumed for the deflection and 

then substituted in the analytical expression of total potential energy to find the 

buckling load. 

    This method also uses a trial function to represent the deflection shape, the 

trial functions satisfying term by term the geometric and natural boundary 

conditions. 

   The undetermined constants in which the trial function is expressed are then 

determined by considering each term of the trial function in turn to be a 

weighing function, and then setting the weighted average of the residual 

function to zero. 

    The physical meaning of this condition is that if the trial function is 

representing exactly the buckled shape then the residual become zero. If the trial 

function does not represent exactly the buckled shape then the weighted 

averages when set up equal to zero will provide the conditions which the trial 

function must satisfy so that the error of approximation becomes a minimum. 

Another method of obtaining Galerkin's conditions which is based on the 

principle of least square can be found in [17]. 

   Once the Galerkin's conditions are obtained, which are in number equal to the 

number of the unknowns in the assumed trial function, a set of the necessary 

number of equations is obtained. 

   The determinant of the coefficients of the undetermined constants will give 

the buckling load. 

    This method can be summarised as follows: 
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 The differential equation is obtained from equilibrium or the principal of 

total potential energy. 

Suppose this to be  

 ( )                                                                     (    ) 

 A trial function which satisfies geometric and natural boundary 

conditions is selected  

  ∑     

 

   

                                                   (    ) 

 The equation residual is then found from  

   ( )  ∑   (   )

 

   

                              (    ) 

 In general, if W(x) is a weighing function, the weighted average of a 

function f(x) in an interval a < x < b is 

∫       
 

 

∫     
 

 

                                                       (    ) 

In this case, setting the weighted average of the residual   equal to zero 

equivalent to  

∫    ( )   
 

                                           (    ) 

 

Where   is the domain of the differential equations. 

 

 This last step provides a system of n equations foe the n undetermined 

coefficients. The determinant of the coefficients of these unknowns 

provides the buckling load. 
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   An application of this method to the buckling of a column and to the buckling 

of a plate in shear can be found in [9] 

6 Finite Difference Method [18]:  

         In the previous article, the solution to a buckling problem is found by 

approximating the deformation shape by properly selecting a displacement 

function. 

     In addition to the problem of setting up the differential equation itself, there 

is also the problem of finding the right function to be used for the 

approximation, which must satisfy both geometric and natural boundary 

conditions. Unless a great deal of physical intuition is exercised the solution 

may differ greatly from the exact. 

     The finite difference method overcomes the second part of the problem 

associated with the differential equation by replacing the differential equation 

and the boundary condition by their finite difference approximations [18]. 

  The result is that instead of dealing with the differential equation the solution 

to the problem is found by analysing a set of equivalent algebraic equations. 

  The basis of this method is that a derivative of a function at a point can be 

replaced by an algebraic expression formed by the value of the function at that 

point and several nearby points. 

   Instead analysing a system of infinite degree of freedom an idealised structure 

formed by discrete element is used, even with a relatively large mesh a good 

approximation to the exact solution can be obtained. 

   In buckling analysis, by using the finite difference expressions to replace the 

derivatives at the number of points chosen, and introducing the boundary 

conditions, we form a system of homogeneous equations. The determinant of 
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the coefficients of these equations will be transformed into a characteristic 

equation and the smallest root will define the buckling load. 

  For the function  ( ), the derivatives can be replaced as follows: 

[
  

  
]
   

 
       

 
                                                                          (    ) 

 

Where ,      are values of  ( ) at     and at       , and   is the 

distance between those two points. 

*
   

   
+
   

 
             

  
                                                        (    )    

*
   

   
+
   

 
                           

  
                      (    ) 

  For the function  (   ), the derivatives in the governing differential equation 

assume the following expressions: 

Relative to   at point      

*
   

   
+
   

 
                 

  
                                                     (    ) 

And  

*
   

   
+
   

 
                                     

  
        (    ) 

 

Relative to   at point      
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*
   

   
+
   

 
                 

  
                                                      (    ) 

And  

*
   

   
+
   

 
                                     

  
        (    ) 

 

Application of this method can be found in ref [18]  

7 Finite Element Method [4] 

    In the previous article, the finite difference method overcome the difficulty of 

finding a solution to the differential equation of a structure by replacing the 

governing differential equation by a set of equivalent algebraic equations that 

are usually easier to solve.  

   When an adequate computer is available, method has the advantage of 

generality of application.    

    The finite element method transforms the structure into an assembly of finite 

elements connected at nodes, and, using the elastic stiffness matrix  of each 

single elements, the elastic stiffness of the complete structure is built up 

according to equilibrium and compatibility conditions dictated by the theory of 

elasticity and under the assumption of small displacements.  

    For the elastic structure, the following equation which relates applied forces 

on the complete structure to the displacements can be given: 

      

     For buckling analysis, in the finite element (displacement approach), the 

stiffness of the structure is no longer constant but is a function of the axial or in-
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plane load of the various elements and can be considered to be formed of two 

parts, one the constant elastic stiffness and the other the geometric stiffness, 

which is a function of the axial or in-plane loads.  

 

Solution Procedure [4]: 

a. Each element stiffness is evaluated and each element of each stiffness 

matrix is given double subscript i and j, the first refers to force 

component and the second to the displacement component. 

 

b. An array of order equal to the number of degree of freedom for the 

complete structure is prepared and named the assembly array. 

 

c. A relation must be established between the element stiffness matrix labels 

i, j and the labels of the single components of the assembly array l, m. 

 

d. Each element from the element stiffness matrix is sent to a place in the 

assembly stiffness matrix and summed up to the previous value of the 

assembly stiffness element. 

 

e. This procedure is repeated for all the elements forming the idealised 

structure. 

 

f. If different types of elements are involved, to satisfy the rules of matrices 

summation  the stiffness of these element have to be of the same order 

and individual sub-matrices to be add have therefore to be built up of 

same number of individual components of force or displacement. 
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g. Having built up the assembly matrix, the constraint condition which is 

equivalent to zero displacement at certain nodes can be taken into account 

by eliminating the columns of stiffness coefficients multiplying this 

degree of freedom. 

 

h. The result from the previous step is more equations than unknowns; the 

rows corresponding to the eliminated columns are set aside for later use 

to find support reactions.  

 

i. The set of equations remaining after the elimination of rows and columns 

relative to the support conditions are solved for the displacements. 

 

j. The initial force system is found by back substitution of the 

displacements found in the previous step into the force displacement 

relationships for the elements. 

 

k. If it is necessary, the transformation from the global coordinate system to 

local coordinate must be performed before the stress computation is 

accomplished. 

 

Summarising, for the displacement direct approach the following matrix 

operations must be performed: 

 

      

By partitioning: 

[
  

  
]  [

      

      
] [

  

  
] 

Where  
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Subscripts   denote degree of freedom relative to support condition,   for the 

unsupported. 

Then for       

           

           

The solution for the displacement  

      
       

And the support reactions 

          
      

Application of this method can be found in ref [4]. 

8 Finite Strip Method  

   There are three different methods based on finite strip idealisation and these 

are: 

The exact finite strip (W. Wittrick, 1968), [1] 

The finite strip for local instability (J.S. Przemieniecki, 1973)  , [2]  

The approximation finite strip (Y. Cheung, 1968) [3] 

These methods have advantages of: 

1. Great saving in computer time. 

2. Less storage space because of the very narrow band width. 

3. A relatively large range of application, since many structures have 

geometric and material properties which do not vary along one 

direction. 

4.  Less input data because of the lower number of nodes involved. 
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In this project finite strip based on Prezemienieki approach will be 

used . 

Solution Procedure:  

This procedure has the following outline: 

 

      From a preliminary study it was found that the relation between 

buckling stresses and associated half wave length is of a parabolic form. 

 

     For a particular structure, the minimum point of this parabola 

represents the buckling stress and the critical wave length. 

  

    The suggested a simple iterative procedure in which the minimum of 

the parabola is found using Cramer's rule for a series of values of   and 

 : 

 

1. The relation between   and   is represented by this equation  

 

           

 

2. A typical plate component width is chosen, and three fractions of it, 

say  ,     ,     , are used to find three corresponding stresses. 

 

By substitution of these three pairs of values in the parabolic 

equation given above, a system of three equations in three 

unknowns, a, b and c are found. 

 

3. Cramer's rule is used to find the values of these unknowns. 
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4. Substitution of these values for a, b and c in the parabolic equation 

gives the actual parabolic equation for the structure. 

 

5. From  

  

  
   

 

        A critical wave length is found. 

 

6. Using this critical wave length another buckling stress is determined. 

 

7. Among these four pairs of values of stresses and the associated 

critical wave lengths a comparison is made and the pair of highest 

stress is neglected and the remainder used again in the parabolic 

equation to find new values of a, b and c. 

 

8. The procedure is repeated until convergence is obtained; only six 

steps were found to lead to very accurate results using program. 

 

1.6 Conclusion 
 

1. Finite strip is established method for local stability. 

2. The finite strip method (FSM) is a variant of the finite element method 

that has been put to highly effective use in the study of the stability of 

thin-walled structures. For any thin-walled structure which may 

effectively be modelled as "extruded" FSM provides an incredibly 

powerful simplification to FEM. 

3. In this project the finite strip method will be used for buckling analysis of 

plate type structure, computer code is specially developed for handling a 
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variety of buckling problems of thin walled structure and comparison of 

solutions with existing other methods will be shown. 
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2 Finite Strip Method for Isotropic Plates 

2.1 Introduction 
 

        In this chapter, method of analysis of buckling of Axially Loaded Plate by 

Principle of Total Potential Energy Method (P.T.P.E) and by Finite Strip 

Method (FSM). 

 

2.2 Principle of Minimum Total Potential Energy Method  
 

The theorem of minimum total potential energy [17]: 

     '' The total potential energy of an elastic system, i.e. the internal energy (in 

terms of displacements) plus the potential energy of the external forces, has 

stationary value for all small displacements when system is in equilibrium, and 

the stationary value is a minimum when the equilibrium is stable '' 

 

 (   )                                                                                   (   ) 

Total potential energy of plate [17]: 

      We can now express the total potential energy, i.e. the internal energy plus 

the potential energy of the external forces, first in terms of the three moments 

       and     , and then, by virtue of below equation, in terms of the 

displacement   . 

  

     (
   

   
  

   

   
)                                                               (   ) 

     (
   

   
  

   

   
)                                                               (   ) 

        (   )
   

     
                                                          (   ) 
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Where:  

  D is Flexural Rigidity of Plate 

     is Poison's Ratio 

Then, the internal energy of plate  

 

(  )  
 

 
                                                                               (   ) 

 

Where  

 

    
 

  
(
  

  
)    

   

   
    

 

 

Figure 2-1a) Strain energy of element due to bending, b) Strain energy due to twisting [17] 

 

From  

(  )   
 

 
   

   

   
      

(  )   
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(  )   
 

 
    

   

     
      

(  )    
 

 
    

   

     
      

 

 
    

   

     
      

 

since 

          

 

      The internal energy     due to the twisting moments is the sum of (  )   

and (  )   and so  

        
   

     
                                                             (   ) 

 

Adding to this the work done by     and    , we obtain the internal energy for 

the plate element      in the form   

 

    
 

 
(   

   

   
    

   

   
 )          

   

     
              (   ) 

 

Substituting the values of    ,  and      

 

   
 

 
[(

   

   
 )

 

 (
   

   
 )

 

   
   

   

   

   
]       (   ) (

   

     
 )

 

     

 

   
 

 
[.

   

   
 

   

   
 /

 

  (   ) {
   

   

   

   
 .

   

    
 /

 

}]                              

(   )            

The total internal energy is obtained by integrating this expression over the 

whole plate area to give the standard formula [17]: 
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∫ ∫ [.

   

   
 

   

   
 /

 

  (   ) {
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 /

 

}]     
 

 

 

 
             

(   )                               

  

 

Figure 2-2Buckling of thin plate 

 

Potential energy of external forces 

   
  

 
∫∫(

  

  
)
 

    

 

 

 

 

                                                                    (    ) 

 The displacement   normal to plane of plate 

 

  ∑ ∑    

 

   

   
   

 
   

   

 

 

   

                                                      (    ) 

 The boundary conditions are seen to be inherently satisfied by every term of the 

series, since each term gives 

       {  
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  Thus giving zero deflection and zero bending moment along all four edges of 

the plate.  

 

  Energies   and   expressed in terms of the unknown coefficients that define   

in above equation, the total potential energy is given  

 

         

 
∑ ∑    

  
   .

  

   
  

  /
 

 
   

  
  

 
   ∑ ∑      

  
   

 
           (    ) 

Then; the minimum of (U+V): 

 

 

    
(   )       

 
   .

  

  
 

  

  /
 

 
   

  
   

                (    ) 

 

Thus, either         trivial solution since it requires that the plate should 

remain flat or, by eliminating the unknown coefficient       relation is 

obtained between the load    and physical characteristic of the plate. Thus  

        
 

  
(
  

  
 

  

  
)

 

                                                       (    ) 

 

Which is the load required. 

 

   It only remain therefore to find the combination of   and   (i.e  the number 

of half- waves in the   and   directions respectively into which the plate 

deforms) that gives the lowest value of the critical load    . 

 

   Clearly in the    direction     gives a minimum value, so that whatever 

may be the values of the length   and the width   of the plate the deformation 



39 
 

across the width invariably takes the form of a single half-sine wave as would 

be expected from simple physical reasoning.  

 

The formula (2.14) takes therefore the simplified form  

 

        
 

  
(
  

  
 

 

  
)

 

                                                         (    ) 

        
 

  
(  

 

 
 
  

  
)

 

                                                     (    ) 

 

To explore the variation of    for different value of   and  , we consider 

certain special cases: 

I. Length   less than width  . as   must be an integer and as in this case 

        , we see eq. (2.16) that, for any particular values of   and  , 

the bracketed term takes the form of  

  (          ) 

Which clearly is least when    . Thus, if   less than  , the plate 

deforms into a simple half-wave in each direction. 

 

II. Length a = width b. That m=1 gives a lower critical load for this case 

than any other value of m, so that  

 

                 
   

  
(  

  

  
)

 

 
   

  
(
 

 
 

 

 
)
 

                           (    ) 

  

Moreover, so long as    , we can prove at once that, for any given 

width  , the lowest value of    is obtained by making      , when 

from eq.(2.17) 
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                                                                                (    ) 

 

III. Still keeping m=1 and b=const. We see from eq.(2.17) that  

 

  

   
  ⁄

                                                                                   (    ) 

We can plot it as shown in figure (2.3). 

 

IV. Other values of   with constant width  . For other values of   and     

             

  

   
  ⁄

   (
  

 
 

 

  
)
 

                                          (    ) 

And we see that if we double m and also double the ratio  a   ,   (and therefore 

  ) remains unchanged. We need therefore only double the abscissa of the 

curve for     while keeping the ordinates   the same to get the appropriate 

curve for    . Similarly for     we treble the abscissa of every point on 

the curve    , and so on, for the higher values of  , so getting  a succession 

of curves as shown in fig.(2.3) 



41 
 

 

Figure 2-3Buckling coefficient k for simple supported plates [17] 

 

 

Substituting on   in eq. (2.19)  

We can write the critical stress equation as follow: 

 

    
    

  (    )
 
  

  
                                                                      (    ) 

 

 

2.3 Buckling of Axially Loaded Plate by Finite Strip Method 

(FSM) Procedure[4]. 
 

 Assumption: 

   

1. Edge lines at junction between flat plate components remain fixed 

in space. 

2. Component flat plates rotate about these edge lines. 

3. Angles between elements of junctions before and after buckling 

remain the same. 
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4. Effect of side constraint is neglected. 

5. Ends of structure are constrained to remain straight. 

  

2.4 Elastic Stiffness Matrix for Strip 
  

       For the analysis, the structure is divided into a series of finite strips, each of 

length equivalents to half wave length L as shown in figure (2.4).  A single strip 

with the relevant nodal displacements is represented in figure (2.5).  

 

 

Figure 2-4 finite strip for local stability idealisation 
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Figure 2-5 single finite strip with nodal displacement 

 

The deflected shape for each strip is assumed to be given by: 

 

           ( )    .
   

 
/            

 

 
                                 (    ) 

      

   Where a cubic polynomial is used to represent the deflection in the transverse 

direction and the trigonometric term is to describe deflection in the longitudinal 

direction. 

 

  The deflected shape as a function of the nodal displacement will be 

 

        ⌊                 ⌋    *  +                            (    ) 

 

Where  

     .
   

 
/                             ⌊                 ⌋  
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  ⌊(         )     (        )      (       )     (    

  ) ⌋ [

  

  

  

  

]                                                                                (2.23) 

 

Then from the expression for strain a plate in bending 

  

  [

  

  

   

]  
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[
 
 
 
 
 

  

  
      (   
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        (   
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       (   

 ⁄ )]
 
 
 
 
 

         (    ) 

 

Where primes indicate differentiation relative to y, or in matrix from 

 

                                                                                              (    )  

Then from  

   ∫           
 

                                                                    (    ) 

With  

  
 

(    )
[

   
   

  
(   )

 

] 

 

Integrating, the elastic stiffness matrix dependent on half wave length will be  

 

      
    

    
                                                                    (    ) 

 

Where  
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     (    )  
[

       

      

        
               

] 

 

   
 

       

   (    )   
[
 
 
 

      

(     )    

        
      (     )    ]

 
 
 
 

 

   
 

      

  (    )  
[

      

     

        
           

] 

 

 

2.5 Geometric Stiffness Matrix for Strip 
 

        The geometric stiffness matrix for the finite strip can be derived, by 

assuming middle plane constant stress    acting in x direction the 

geometric matrix will be given from 

 

   ∫∫ ∫   ́   ́

   

    

         

 

 

 

 

                                                             (    ) 

 

Where  ́ is first derivative of N relative to x and equal 

 

 ́  
 

 
  ( )    .

   

 
/ 

 

The geometric matrix for single strip is given: 
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[

       

      

        
               

] 

 

2.6 The Determinant Equation  

 

    Once the elastic stiffness matrix and geometric stiffness matrix has been 

found for all single strips forming the structure, the elastic and the geometric 

stiffness matrices for the complete structure are assembled and the free body 

degrees of freedom are eliminated. 

 

The equilibrium equation for the complete structure will be  

 

(     )    

 

Introducing the constant   so that 

 

       

 

And the geometric stiffness matrix becomes  

 

       
   

 

Where   
  is the geometric stiffness matrix for unit value of  . 

(       
 )       

And 

  (       
 )
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Which means that the displacement tends to infinity when 

 

|       
 |                                                              (    ) 

 

|       
 |     is the stability determinant. 

 

2.7 The Buckling Load & The Buckling Mode 
 

     From eq. (2.29); the smallest value of its roots will be the buckling load for 

the structure. 

 

And from        (       
 )    

      

Associated eigenvector will define the buckling shape. For the computer 

program, in this projector. 

 

Since the buckling wave length is unknown, the following procedure is used to 

find the buckling stress and mode. 

     

This procedure has the following outline: 

 

   From a preliminary study it was found that the relation between buckling 

stresses and associated half wave length is of a parabolic form. 

    

   For a particular structure, the minimum point of this parabola represents the 

buckling stress and the critical wave length. 
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  The suggested a simple iterative procedure in which the minimum of the 

parabola is found using Cramer's rule for a series of values of   and  ; with   is 

half wave length of buckling : 

 

9. The relation between   and   is represented by this equation  

 

           

 

10. A typical plate component width is chosen, and three fractions of it, say  , 

    ,     , are used to find three corresponding stresses. 

 

By substitution of these three pairs of values in the parabolic 

equation given above, a system of three equations in three 

unknowns, a, b and c are found. 

 

11. Cramer's rule is used to find the values of these unknowns. 

 

12. Substitution of these values for a, band c in the parabolic equation gives 

the actual parabolic equation for the structure. 

 

13. From  

  

  
   

 

           A critical wave length is found. 

 

14. Using this critical wave length another buckling stress is determined. 
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15. Among these four pairs of values of stresses and the associated critical 

wave lengths a comparison is made and the pair of highest stress is 

neglected and the remainder used again in the parabolic equation to find 

new values of a, b and c. 

 

16. The procedure is repeated until convergence is obtained; only six steps 

were found to lead to very accurate results using program. 

 

2.8   Conclusion 
  

1. This method is very efficient for the study of a structure which fails 

by local buckling. 

2. Band width is very small and computation time is, as can be see, 

shortest than the previous two methods.  

3. It is based on the concept of the geometric stiffness matrix, and the 

solution procedure converges a six iterations to the exact value. 
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3 Computer Program 

3.1 Introduction  
   

     In this chapter, layout procedure for the computer program is carried out, the 

program list is written in FORTRAN, based on the flow chart developed for the 

eigenvalue-eigenvector buckling problem of the elastic and geometric matrices 

for the assembled structure, the assembled structure is made of finite strips 

joined at the nodes.  
 

3.2 Computer Program   
 

        The program process is as follow: 

  

1. Following Run 1, geometric stiffness is computed for one strip element. 

  

2. Assembly matrix is initiated and each element of geometric strip matrix is 

sent to the proper place in the assembly geometric matrix. 

 

3. Boundary condition is introduced on the assembly matrix and reduced 

assembly geometric matrix   is formed. 

 

4. Following Run 2, steps 1, 2, 3 are repeated for elastic stiffness matrix and 

reduced assembly elastic stiffness matrix   for full plate is derived. 

 

5. To find Eigen-value and eigenvectors , and since subroutine require 

positive definite matrix to be introduced first, positions of matrices    and 

   are interchanged in characteristic determinant as follow:  

 



52 
 

|    
 ⁄    |    

 

|        |    

 

              Where    is the required Eigen-value. 

 

A number of half wave lengths are used in the iteration procedure and the 

minimum of the curve will give the buckling load required 

3.2.1 The Subroutines  

 
         For solving the characteristic equation for each step of the iteration 

process we proceed as follow [4]: 

 

 Eigen-values and eigenvectors of the problem in the  

form       should be found  

 

 The second matrix   is decomposed into   and    ,       . then using ( 

call CHOLDC {   , N , n}) 

 

Note:       and       

 

 The equation       becomes  

(        )(   )  (   )  

 

 

 Which can be written as      where             is the symmetric 

matrix (call PMAT{KEI, KG, KEIT, P, N}) . 
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 Householder's method is used to transform the matrix   into tridiagonal 

matrix. Using (call TRIDIAG{P, N, DP,EP})  

 

 QL Algorithm is used to find eigenvalues and eigenvectors using (call 

tgli{dp, ep, n, N,z}) 

 

  Note: the eigenvectors are related to the original   by the relations    . 
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Start 

 

3.2.2 Flow chart  
      

Input of data for strip calculation 

Selecting boundary condition 

Simply-free (sf), clamped –free (cf), clamped-clamped (cc) 

BB = BP/nel 

FLA = aa /jm 

Ks(nn,nn) 

Run : 

2 

Kg(I,J) = B(I,J) Ke(I,J) = B(I,J) 

Run 

=2 

Call Subroutines for Eigen-value & eigenvector 

Critical Stress   Str = 1/ DP(N) Stop 

Ks(I,J)=sum B(I,J) 

Run=2 

Reducing Kg(I,J) Reducing Ke(I,J) 

 

Computation of element elastic and geometric for 1 strip  

EQ 

EQ 

EQ 

LT 

LT 
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3.2.3 The Program Code List  

 

           The all details of program code list explain in the appendixes.   

3.3 Case Study Ⅰ 
 

    The analysis is based on study of relatively long plate of steel with young's 

modulus E equal              ,    equal           with length   

      and width          , thickness             . 

  

     Three boundary conditions column matrices    ( ) are as follow: 

 One side simply supported the other free       ( )  , - 

 One side clamped the other free    ( )  0
 
 
1 

 Two sides clamped    ( )  [

 
 
  
  

] 

 

 Simply Support – Free plate 

Table 3-1 Result of simply support – free plate 

a/b Critical stress       Buckling coefficient K 

0.449803 385.263 7.58598 

0.478657 352.788 6.94652 

0.510717 311.765 6.13877 

0.546549 263.736 5.19307 

0.58686 221.749 4.36633 

0.632546 185.999 3.6624 

0.684758 156.322 3.07805 

0.745003 132.221 2.60349 

0.815289 112.991 2.22484 

0.898354 97.8796 1.92729 
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0.998032 86.2259 1.69782 

1.11986 77.5589 1.52716 

1.27215 71.6685 1.41118 

1.46794 68.6985 1.3527 

1.729 63.8525 1.25728 

2.09449 43.9169 0.823811 

2.64272 35.2484 0.694054 

3.55643 27.5739 0.54294 

5.38386 22.8468 0.449863 

10.8661 20.3187 0.400082 

 

Figure 3-1 Result of buckling coefficient K for simply support - free plate 
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 Clamped – Free Plate  

Table 3-2 Result of clamped – free plate 

a/b 
Critical stress 

      
Buckling coefficient K 

0.449803 402.23 7.92007 

0.478657 345.302 6.79911 

0.510717 295.172 5.81204 

0.546549 251.875 4.95952 

0.58686 215.177 4.23691 

0.632546 184.587 3.63459 

0.684758 159.446 3.13955 

0.745003 139.026 2.73748 

0.815289 122.64 2.41483 

0.898354 109.716 2.16035 

0.998032 99.858 1.96624 

1.11986 92.8926 1.82909 

1.27215 88.9383 1.75123 

1.46794 88.555 1.74368 

1.729 93.1065 1.8333 

2.09449 105.714 2.08156 

2.64272 134.12 2.64087 
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Figure 3-2 Result of buckling coefficient K for clamped - free plate 

 

 Clamped – Clamped Plate  

Table 3-3 Result of clamped – clamped plate 

a/b 
Critical stress 

      
Buckling coefficient K 

0.449803 611.022 12.0313 

0.473477 589.275 11.6031 

0.499781 572.405 11.2709 

0.529180 560.755 11.0415 

0.562254 554.828 10.9248 

0.599738 555.360 10.9352 

0.642576 548.035 10.7910 

0.692005 541.122 10.6549 

0.749672 542.458 10.6812 

0.817824 554.427 11.9169 
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Figure 3-3 Result of clamped – clamped plat 

 

3.4 Comparison  

 

     The results obtained from the program were compared using classical 

approach solution [20] the results found to be very closed as will be seen. 
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   At the simply support – free plate     equal    , buckling coefficient equal 

0.85  the buckling stress from the above calculation equation equals          

    and from the program     equal       , buckling coefficient equal 0.82 

the buckling stress result            . 

 

     At the clamped – free plate     equal    , buckling coefficient equal 1.8 the 

buckling stress from the above calculation equation equals             and 

from the program     equal      , buckling coefficient equal 1.75 the buckling 

stress result            . 

 

     At the clamped – clamped plate     equal      , buckling coefficient equal 

12 the buckling stress from the above calculation equation equals           

    and from the program     equal       , buckling coefficient equal 11.91 

the buckling stress result              
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   Clamped – free plate comparison of results obtained by program with results 

obtained by classical theory, as shown  in figure (3.4), the results are very close. 

Table 3-4 Results of clamped–free plate obtained by classical theory 

a/b 
Critical stress 

      

Buckling 

coefficient K 

0.5 275.124 6 

0.6 174.2452 3.8 

0.7 137.562 3 

0.8 100.8788 2.2 

0.9 87.1226 1.9 

1 82.5372 1.8 

1.25 77.9518 1.7 

1.5 73.3664 1.6 

1.75 80.2445 1.65 

 

 

Figure 3-4 Comparison of results for clamped – free plate 

 

 

0

1

2

3

4

5

6

7

8

9

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

k  

a/b 

Classical Theory

FSM



 

 

 

 

 

Chapter IV 
Conclusion and Recommendations 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



62 
 

4 Conclusion and Recommendations 
 

4.1 Conclusion 

1. Finite strip is established method for local stability. 

2. The finite strip method (FSM) is a variant of the finite element method that 

has been put to highly effective use in the study of the stability of thin-walled 

structures. 

3. In this project the finite strip method was used for buckling analysis of plate 

type structure. 

4. In this project a computer code is specially developed for handling buckling 

problems of thin pates with different types of side constraints and comparison 

of solutions with existing classical approach was carried out. 

5. The comparison showed that the method is very efficient for the study of a 

structure which fails by local buckling. 

6. Order of element elastic and geometric matrices is small and computation 

time is shorter than Finite Element Method. 

7-The buckling mode and buckling load found from the formulation of the           

eigenvalue -eigenvector problem of the elastic and geometric assembly 

            matrices of the structure and the solution is based on iteration  procedure 

            built  in the program 

 

4.2 Recommendation  

 

This study led to the appearance of different ideas that could be the focus of a 

future research work using finite strip method such as: 

1. Developing of elastic and geometric stiffness’s matrices for orthotropic plates 

with different stiffness’s in different directions. 
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2. Buckling analysis of orthotropic plates using finite strip procedure. 

3. Comparison of solutions between finite strip method and experimental work. . 

4. Developed of more general computer program to solve buckling problems of 

isotropic and orthotropic panels. 

5. Use of Finite strip method for design of thin walled panel based on local 

buckling criteria. 
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 Appendices 

 

- Main program:  
program finite_strip_for_buckling_of_isotropic_plate 

 

  implicit none 

  real(8),allocatable,Dimension(:,:) :: nd,ko,kg,ke,b,ks,KEI,KEIT,P,z 

  real(8),allocatable,Dimension(:) :: NB,eP,dP,str 

  real(8) PI,aa,bp,un,PHA,PHB,PHC,PHD,FLA,FLABP,E,BB,TT,x7 

  integer :: i,j,k,nn,noc,m1,m2,run,nel,ll,ind,nod,bd,n,JM,jmm 

 

  character(len=2) choice 

 

! open(1,File='example.dat') 

  open(2,File='finite-strip1.out') 

  open(3,File='finite-strip_jm.out') 

  open(4,File='finite-strip_jm.plt') 

  open(44,File='finite-strip_strcr.out') 

! open(14,File='finite-strip_1.plt') 

! open(15,File='finite-strip_2.plt') 

 

! Input Data 

 

  e=210000       ! Young's modulus 

  tt=0.79        ! Thickness of plate 

  AA=12.7  !457  ! Length of plate 

  BP=50.8        ! Width of plate 

  un=0.3         ! Poison's ratio 

  PI=3.141593    ! Pi 

  nel=6          ! Number of elements 

  ind=nel+1      ! Number of nodes 
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  ll=2           ! Degrees of freedom 

  nn=ind*ll      ! Total number DOF (Size of assembly matrix) 

  NOD=2          ! Number of nodes for element 

  bd=ll*nod      ! Matrix b dimension 

 

! Boundary Condition 

 

  write(*,'("Enter boundary condition case "/"ss/free-->(sf)"/"clamped/free--

>(cf)"/"clamped/clamped-->(cc)")') 

  read(*,*)choice 

  select case(choice) 

  case('sf','SF') 

   noc=1          ! Number of constraints 

   write(2,*)"Simply suported and free (sf)" 

  case('cf','CF') 

    noc=2          ! Number of constraints 

    write(2,*)"Clamped and free (cf)" 

  case('cc','CC') 

    noc=4          ! Number of constraints 

    write(2,*)"Clamped and clamped (cc)" 

  case default 

    write(2,*)"Error .. Enter valid boundary condition" 

  end select 

    n=nn-noc       ! size number of reduced matrix 

 

  allocate(nd(ind,nod),KO(n,n),KG(n,n),KE(n,n),b(bd,bd),ks(nn,nn),& 

     nb(noc),KEI(n,n),KEIT(n,n),P(n,n),eP(n),dP(n),z(n,n),str(60*n)) 

 

  select case(choice) 

  case('sf','SF') 

  write(2,*)"Simply supported and free (sf)" 
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    NB(1)=1 

  case('cf','CF') 

  write(2,*)"Clamped and free (cf)" 

    NB(1)=1 

    NB(2)=2 

  case('cc','CC') 

  write(2,*)"Clamped and clamped (cc)" 

    NB(1)=1 

    NB(2)=2 

    NB(3)=nn-1 

    NB(4)=nn 

  case default 

  write(2,*)"Error .. Enter valid boundary condition" 

  end select 

 

! Nodal numbering 

  ND=0 

  k=0 

  do i=1,ind 

    do j=1,nod 

      k=k+1 

      if    (i > 1 .and. j == 1)then 

        k=k-1 

        nd(i,j)=k 

      else 

        nd(i,j)=k 

      endif 

    enddo 

 enddo 

  Write(2,'(//,2(2X,f5.2),/)')((ND(I,J),J=1,nod),I=1,ind) 
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  Write(2,'(//,2X,"AA=",g9.4,/,2X,"BP=",g9.4,/,2X,"E 

=",g9.4,/,2X,"tt=",g9.4)')AA,BP,E,tt 

  Write(3,'(5x,"a/b",10x,"Critical stress",8x,"Buckling coefficient")') 

  Write(44,'(10x,"Critical stress",8x,"Buckling coefficient",5x,"QM")') 

 

   Do jm=1,30 

    Write(2,'(//," ************** jm=",i2," **************")')jm 

 

     BB=BP/nel 

     jmm=(31-jm) 

     Fla=aa 

     FLABP=aa/BP 

!     FLABP=fla/BP  ! a/b 

 

! Computation of Elastic Stiffness of Single Strip+ Goemetric Stiff Constant 

 

  PHA=(PI**4)*E*BB*(TT**3)/(10080*(1-UN**2)*FLA**3) 

  PHB=(PI**2)*E*(TT**3)/(360*(1-UN**2)*BB*FLA) 

  PHC=E*FLA*(TT**3)/(24*(1-UN**2)*BB**3) 

  PHD=(PI**2)*BB*TT/(840*FLA) 

  

Write(2,'(//,2x,"PHA=",g9.4,/,2x,"PHB=",g9.4,/,2x,"PHC=",g9.4,/,2x,"PHD=",g9.4)')PH

A,PHB,PHC,PHD 

 

  do run=1,2 

    KS=0.0 

    if (run == 1)then 

!    Computation of geometric stiffness for single strip 

      B(1,1)=PHD*156 

      B(2,1)=PHD*22*BB 

      B(3,1)=PHD*54 
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      B(4,1)=PHD*(-13)*BB 

      B(2,2)=PHD*4*BB*BB 

      B(3,2)=PHD*13*BB 

      B(4,2)=PHD*(-3)*BB*BB 

      B(3,3)=PHD*156 

      B(4,3)=PHD*(-22)*BB 

      B(4,4)=PHD*BB*BB*4 

 

      do i=1,bd 

        do j=1,bd 

          b(i,j)=b(j,i) 

        end do 

      end do 

      write(2,'(//,1X,"b=",/,6("---"))') 

      do i=1,bd 

        write(2,'(30(2X,es12.5))')(b(i,j),j=1,bd) 

      enddo 

 

! building of assembly matrix from single components for geometric matrix 

       m1=1 

       m2=0 

       do i=1,nel 

         ks(m1:bd+m2,m1:bd+m2)=ks(m1:bd+m2,m1:bd+m2)+b 

         m1=m1+2 

         m2=m2+2 

      enddo 

      write(2,'(//,1X,"ks=",/,6("---"))') 

      do i=1,nn 

      write(2,'(30(2X,g14.5))')(ks(i,j),j=1,nn) 

      enddo 
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!   reduced geometric matrix 

     !   reduced elastic matrix 

      if(choice == 'sf')then 

        write(2,'(//a)')"Simply supported and free (sf)" 

        kg(1:n,1:n)=ks(ll:nn,ll:nn) 

!        write(2,'(//,1x,"Kg=",/,6("---"),/,5(2X,f14.3))')kg 

      elseif(choice == 'cf')then 

        write(2,'(//a)')"Clamped and free (cf)" 

        kg(1:n,1:n)=ks(ll+1:nn,ll+1:nn) 

!        write(2,'(//,1x,"Kg=",/,6("---"),/,4(2X,f14.3))')kg 

      elseif(choice == 'cc')then 

        write(2,'(//a)')"Clamped and clamped (cc)" 

        kg(1:n,1:n)=ks(ll+1:nn-2,ll+1:nn-2) 

!        write(2,'(//,1x,"Kg=",/,6("---"),/,2(2X,f14.3))')kg 

      else 

        write(2,*)"Error .. Enter valid boundary condition" 

      endif 

      write(2,'(//,1X,"kg=",/,6("---"))') 

      do i=1,n 

      write(2,'(30(2X,g14.5))')(kg(i,j),j=1,n) 

      enddo 

 

    else 

!  Elastic Stiffness matrix for single strip 

      B(1,1)=PHA*156+PHB*36+PHC*12 

      B(2,1)=PHA*22*BB+PHB*(3+15*UN)*BB+PHC*6*BB 

      B(3,1)=PHA*54+PHB*(-36)+PHC*(-12) 

      B(4,1)=PHA*(-13)*BB+PHB*(3)*BB+PHC*6*BB 

      B(2,2)=4*BB*BB*(PHA+PHB+PHC) 
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      B(3,2)=PHA*13*BB+PHB*(-3)*BB+PHC*(-6)*BB 

      B(4,2)=PHA*BB*BB*(-3)+PHB*BB*BB*(-1)+PHC*BB*BB*2 

      B(3,3)=PHA*156+PHB*36+PHC*12 

      B(4,3)=PHA*(-22)*BB+PHB*(-3-15*UN)*BB+PHC*(-6)*BB 

      B(4,4)=4*BB*BB*(PHA+PHB+PHC) 

 

      do i=1,bd 

        do j=1,bd 

          b(i,j)=b(j,i) 

        end do 

      end do 

      write(2,'(//,1X,"b=",/,6("---"))') 

      do i=1,bd 

        write(2,'(30(2X,es12.5))')(b(i,j),j=1,bd) 

      enddo 

 

!  Building of assembly matrix from single components for elastic matrix 

       m1=1 

       m2=0 

       do i=1,nel 

         ks(m1:bd+m2,m1:bd+m2)=ks(m1:bd+m2,m1:bd+m2)+b 

         m1=m1+2 

         m2=m2+2 

      enddo 

      write(2,'(//,1X,"ks=",/,6("---"))') 

      do i=1,nn 

      write(2,'(30(2X,g14.5))')(ks(i,j),j=1,nn) 

      enddo 

 

 !   calculating of reduced elastic matrix for certain boundary conditions 
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      if(choice == 'sf')then 

        write(2,'(//a)')"Simply supported and free (sf)" 

        ke(1:n,1:n)=ks(ll:nn,ll:nn) 

      elseif(choice == 'cf')then 

        write(2,'(//a)')"Clamped and free (cf)" 

        ke(1:n,1:n)=ks(ll+1:nn,ll+1:nn) 

      elseif(choice == 'cc')then 

        write(2,'(//a)')"Clamped and clamped (cc)" 

        ke(1:n,1:n)=ks(ll+1:nn-2,ll+1:nn-2) 

      else 

        write(2,*)"Error .. Enter valid boundary condition" 

      endif 

      write(2,'(//,1X,"ke=",/,6("---"))') 

      do i=1,n 

        write(2,'(30(2X,g14.5))')(ke(i,j),j=1,n) 

      enddo 

    endif 

 

  enddo 

 

     CALL CHOLDC(KE,N,n) 

!================== PRINTING LOWER MATRIX OF A 

========================= 

      write(2,'(//,1X,"LOWER MATRIX IS: ke=",/,6("---"))') 

      do i=1,n 

        write(2,'(30(2X,g14.5))')(ke(i,j),j=1,n) 

      enddo 

 

      CALL LMI(KE,KEI,KEIT,N) 

!=============== FINDING TRANSPOSE OF LOWER MATRIX 

====================== 



74 
 

 

      write(2,'(//,1X,"INVERSE OF LOWER MAT: kei=",/,6("---"))') 

      do i=1,n 

        write(2,'(30(2X,g14.5))')(kei(i,j),j=1,n) 

      enddo 

!================== FINDING A= L * L TRANSPOSE 

========================= 

      write(2,'(//,1X,"TRANS OF INV MAT IS: keit=",/,6("---"))') 

      do i=1,n 

        write(2,'(30(2X,g14.5))')(keit(i,j),j=1,n) 

      enddo 

 

      CALL PMAT(KEI,KG,KEIT,P,N) 

      write(2,'(//,1X,"P MAT IS: p=",/,6("---"))') 

      do i=1,n 

        write(2,'(30(2X,g14.5))')(p(i,j),j=1,n) 

      enddo 

 

      CALL TRIDIAG(P,N,DP,EP) 

       Z=P 

      write(2,'(//,1X,"Tridiagonal mat: p=",/,6("---"))') 

      do i=1,n 

        write(2,'(30(2X,g14.5))')(p(i,j),j=1,n) 

      enddo 

      CALL tqli(dP,eP,n,n,z) 

      write(2,'(//,1X,"Z MAT EIGENVECTORS IS: z=",/,6("---"))') 

      do i=1,n 

        write(2,'(30(2X,g14.5))')(z(i,j),j=1,n) 

      enddo 

      WRITE(2,'(//,1X,"EIGENVALUES:",/,6("---"),/,1(2X,F10.8))')(DP(I),I=1,N) 
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     str(jm)=1.0/maxval(dp) 

     x7=str(jm)/(E*((TT/BP)**2)) 

 

     Write(3,'(2X,g14.6,5x,g14.6,5x,g14.6)')FLABP,str(jm),x7 

 

     if(  jm > 20 .and. (str(jm)-str(jm-1)) > 0.0 )exit 

     aa=aa+5.0 

 

enddo  !jm 

 

  call plot 

 

  end program finite_strip_for_buckling_of_isotropic_plate 

 

Subroutines: 

! Subroutines $ Functions 

 

! Cholesky's Decomposition 

! NUMERICAL RECIPES FORTRAN POWER STATION 4.0 

!--------------------------------------------- 

! MODIFIED BY AHMAD AL-MAKHLUFI 21-3-2013 

 

      SUBROUTINE choldc(a,n,np) 

      INTEGER n,np 

      DOUBLE PRECISION a(np,np),p(n),sum 

      INTEGER i,j,k 

   !  REAL sum 

      do 13 i=1,n 

        do 12 j=i,n 

          sum=a(i,j) 

          do 11 k=i-1,1,-1 
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            sum=sum-a(i,k)*a(j,k) 

11        continue 

          if(i.eq.j)then 

            if(sum.le.0.)THEN 

            WRITE(*,*)"choldc failed" 

            STOP 

            ENDIF 

            p(i)=sqrt(sum) 

            a(j,i)=p(i) 

          else 

            a(j,i)=sum/p(i) 

          endif 

12      continue 

13    continue 

      DO I=1,N 

      DO J=1,N 

      IF (J.GT.I)THEN 

      A(I,J)=0.0 

      ELSE 

      A(I,J)=A(I,J) 

      END IF 

      END DO 

      END DO 

      return 

      END 

 

 

 

!     inversion of lower matrix 

 

      SUBROUTINE LMI(A,X,Y,N) 

      DIMENSION A(n,n),X(n,n),y(n,n) 
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      DOUBLE PRECISION A,X,Y,SUM 

      INTEGER N,I,J,M,IN 

      DO 10 I=1,N 

      DO 10 J=1,N 

10    X(I,J)=0.0 

      Do 20 I=1,N 

      J=I 

20    X(I,J)=X(I,J)+1/A(I,I) 

      DO 11 I=2,N 

      IN=I-1 

      DO 12 J=1,N 

      DO 13 M=J,IN 

      SUM=0.0 

      SUM=SUM+A(I,M)*X(M,J)/A(I,I) 

      X(I,J)=X(I,J)-SUM 

13    CONTINUE 

12    CONTINUE 

11    CONTINUE 

!        Transpose of the inverse of L=Y: 

      Do 30 I=1,N 

      Do 30 J=1,N 

30    Y(I,J)=X(J,I) 

      RETURN 

      END 

 

      SUBROUTINE PMAT(XLI,A,XLIT,Y,N) 

      DIMENSION XLI(N,N),A(N,N),XLIT(N,N),Y1(N,N),Y(N,N) 

      DOUBLE PRECISION XLI,A,XLIT,Y,Y1 

      INTEGER N,I,J,K 

      DO 10 I=1,N 

      DO 10 J=1,N 

      Y1(I,J)=0.0 
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      DO 10 K=1,N 

10    Y1(I,J)=Y1(I,J)+XLI(I,K)*A(K,J) 

      DO 20 I=1,N 

      DO 20 J=1,N 

      Y(I,J)=0.0 

      DO 20 K=1,N 

20    Y(I,J)=Y(I,J)+Y1(I,K)*XLIT(K,J) 

      RETURN 

      END 

 

 

      SUBROUTINE TRIDIAG(A,N,D,SD) 

      INTEGER N,I,J,K,KK,KKK,M,N1 

      Real*8 SUM 

      Real*8 A1,R1 

      REAL*8,DIMENSION(N,N)::A,Z,P,PP,Z1,Z2,Z3 

      REAL*8,DIMENSION(N,1)::X 

      REAL*8,DIMENSION(1,N)::Y 

      REAL*8,DIMENSION(N)::D,SD 

 

 

! Open(2,FILE='MAT.DAT') 

! Open(1,FILE='MAT.OUT') 

!   DATA((A(I,J),J=1,4),I=1,4) & 

! /4.0,1.0,-2.0,2.0,1.0,2.0,0.0,1.0,-2.0,0.0,3.0,-2.0,2.0,1.0,-2.0,-1.0/ 

!    N =10 

!  write(*,*)"n=",n 

!   read(2,*)((A(I,J),J=1,n),I=1,n) 

!   write(1,'("A",/,7(3x,f10.8),/)')((A(I,J),J=1,N),I=1,N) 

      KK=1 

100    KKK=KK+1 

      SUM=0.0 



79 
 

      DO I=KKK,N 

      SUM=SUM+A(I,KK)*A(I,KK) 

      END DO 

      A1=-SQRT(SUM) 

      R1=SQRT(0.5*(A1**2.-A(KKK,KK)*A1) ) 

      DO I=1,KK 

      X(I,1)=0.0 

      END DO 

      X(KKK,1)=(A(KKK,KK)-A1)/(2*R1) 

      M=KKK+1 

      DO I=M,N 

      X(I,1)=A(I,KK)/(2.*R1) 

      END DO 

!     write(1,'("x",/,(3x,f10.5),/)') ((X(I,J),J=1,1),I=1,N) 

      Do 30 I=1,N 

      Do 30 J=1,1 

30    Y(1,I)=X(I,J) 

!     write(1,'("y",/,7(3x,f10.5),/)') ((Y(I,J),J=1,N),I=1,1) 

      DO I=1,N 

      DO J=1,N 

      Z(I,J)=X(I,1)*Y(1,J) 

      END DO 

      END DO 

!     write(1,'("z",/,7(3x,f10.5),/)')  ((Z(I,J),J=1,N),I=1,N) 

      DO I=1,N 

      DO J=1,N 

      Z1(I,J)=2.*Z(I,J) 

      END DO 

      END DO 

!   write(1,'("z1",/,7(3x,f10.5),/)')  ((Z1(I,J),J=1,N),I=1,N) 

      DO I=1,N 

      DO J=1,N 
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      Z2(I,J)=0.0 

      END DO 

      END DO 

      DO I=1,N 

         J=I 

      Z2(I,J)=Z2(I,J)+1.0 

      END DO 

!   write(1,'("z2",/,7(3x,f10.5),/)')  ((Z2(I,J),J=1,N),I=1,N) 

      DO I=1,N 

      DO J=1,N 

      Z3(I,J)=Z2(I,J)-Z1(I,J) 

      END DO 

      END DO 

!     write(1,'("Z3",/,7(3x,f10.5),/)')  ((Z3(I,J),J=1,N),I=1,N) 

      DO I=1,N 

      DO J=1,N 

      P(I,J)=0 

      DO K=1,N 

      P(I,J)=P(I,J)+Z3(I,K)*A(K,J) 

      END DO 

      END DO 

      END DO 

!     write(1,'("P",/,7(3x,f10.5),/)')  ((P(I,J),J=1,N),I=1,N) 

      DO I=1,N 

      DO J=1,N 

      pp(i,j)=0.0 

      DO K=1,N 

         PP(I,J)=PP(I,J)+P(I,K)*Z3(K,J) 

      END DO 

      END DO 

      END DO 

!   write(1,'("PP",/,7(3x,f10.8),/)')  ((PP(I,J),J=1,N),I=1,N) 
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      DO I=1,N 

      DO J=1,N 

      A(I,J)=PP(I,J) 

      END DO 

      END DO 

      N1=N-2 

      KK=KK+1 

      IF(KK.LE.N1) GOTO 100 

!===================================== 

      DO I=1,N 

      DO J=1,N 

      IF(I.EQ.J)THEN 

       D(I)=A(I,J) 

      ELSEIF(J.EQ.I+1)THEN 

        SD(1)=0 

        SD(J)=A(I,J) 

      ENDIF 

      ENDDO 

      ENDDO 

!===================================== 

      RETURN 

!     STOP 

      END 

 

      !  tqli.for 

 

      SUBROUTINE tqli(d,e,n,np,z) 

      INTEGER n,np 

      DOUBLEPRECISION d(np),e(np),z(np,np) 

!     USES pythag 

      INTEGER i,iter,k,l,m 

      DOUBLEPRECISION b,c,dd,f,g,p,r,s 
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      DOUBLEPRECISION pythag 

 

!   WRITE(2,'(2X,F10.5)')(D(I),I=1,NP) 

!   WRITE(2,'(2X,F10.5)')(E(I),I=1,NP) 

 

      do 11 i=2,n 

        e(i-1)=e(i) 

11    continue 

      e(n)=0. 

      do 15 l=1,n 

        iter=0 

1       do 12 m=l,n-1 

          dd=abs(d(m))+abs(d(m+1)) 

          if (abs(e(m))+dd.eq.dd) goto 2 

12      continue 

        m=n 

2       if(m.ne.l)then 

        if(iter.eq.30) then 

        write(*,*) 'too many iterations in tqli' 

          iter=iter+1 

          g=(d(l+1)-d(l))/(2.*e(l)) 

          r=pythag(g,1.D0) 

 

          g=d(m)-d(l)+e(l)/(g+sign(r,g)) 

          s=1. 

          c=1. 

          p=0. 

          do 14 i=m-1,l,-1 

            f=s*e(i) 

            b=c*e(i) 

            r=pythag(f,g) 

            e(i+1)=r 



83 
 

            if(r.eq.0.)then 

              d(i+1)=d(i+1)-p 

              e(m)=0. 

              goto 1 

            endif 

            s=f/r 

            c=g/r 

            g=d(i+1)-p 

            r=(d(i)-g)*s+2.*c*b 

            p=s*r 

            d(i+1)=g+p 

            g=c*r-b 

 

!     Omit lines from here ... 

            do 13 k=1,n 

              f=z(k,i+1) 

              z(k,i+1)=s*z(k,i)+c*f 

              z(k,i)=c*z(k,i)-s*f 

13          continue 

!     ... to here when finding only eigenvalues. 

14        continue 

          d(l)=d(l)-p 

          e(l)=g 

          e(m)=0. 

          goto 1 

          endif 

        endif 

15      continue 

         return 

         end 
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! pythag.for 

 

 

      FUNCTION pythag(a,b) 

      DOUBLEPRECISION pythag 

      DOUBLEPRECISION a,b 

      DOUBLEPRECISION absa,absb 

      absa=abs(a) 

      absb=abs(b) 

      if(absa.gt.absb)then 

        pythag=absa*sqrt(1.+(absb/absa)**2) 

      else 

        if(absb.eq.0.)then 

          pythag=0. 

        else 

          pythag=absb*sqrt(1.+(absa/absb)**2) 

        endif 

      endif 

      return 

      END 

 

 

!================================= Plotting the output by using gnuplot 

================================== 

subroutine plot 

  write(4,'(a/,a,a/a/a/a/a)')" set terminal wxt 0",                                                      & 

               &     "plot 'finite-strip_jm.out' using 1:2 with lp title 'Critical stress', ",           & 

               &     "'finite-strip_jm.out' using 1:3 with lp title 'Buckling coefficient', ",           & 

               &     " set title 'finite strip for buckling of isotropic plates '",                      & 

               &     " set xlabel 'a/b'",                                                                & 

               &     " set ylabel 'Critical stress & Buckling coefficient'   ",                          & 

               &     " pause -1" 
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  call system('gnuplot finite-strip_jm.plt') 

end subroutine plot 

!=====================================================================

==================================== 

 

!!================================= Plotting the output by using gnuplot 

================================== 

!subroutine plot 

!  write(14,'(12(a/))')" set terminal win 0" ,                                                             & 

!               &     " plot 'finite-strip_jm.out' using 1:2 with lp title 'Critical stress' " ,           & 

!               &     " set title 'finite strip for buckling of isotropic plates '" ,                      & 

!               &     " set xlabel ' a/b ' " ,                                                             & 

!               &     " set ylabel ' Critical stress '   ",                                                & 

!               &     "  ",                                                                                & 

!!  write(15,'(12(a/))')" set terminal wxt 0" ,                                                             & 

!               &     " set terminal win 1 ",                                                             & 

!               &     " plot 'finite-strip_jm.out' using 1:3 with lp title 'Buckling coefficient ' " ,     & 

!               &     " set title 'finite strip for buckling of isotropic plates '" ,                      & 

!               &     " set xlabel ' a/b '" ,                                                              & 

!               &     " set ylabel ' Buckling coefficient '   " ,                                          & 

!               &     " pause -1 " 

!  call system('gnuplot finite-strip_1.plt') 

!!  call system('gnuplot finite-strip_2.plt') 

!end subroutine plot 

!!=====================================================================

================================
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Explain Solution Finite Strip Local 
Buckling Problem  

 Givine: 
    

 
steel plate 

   

 
t 0.79 mm thickness  

 
E 210000 N/mm² young's modulus 

 
δe 600 N/mm² elastic stress 

 
a 457 mm lenght of plate 

 
b 50.8 mm width of plate 

 
b/2 25.4 mm width for two strips 

 
L 101.6 mm half wave lengh  

 
ν 0.3 

  
 

π 3.14 
   

 

 

 

 

 

 

 

for this case the boundary condition : simply support-free 

Assembly matrix     KS 
    

 
u1 u2 u3 u4 u5 u6 

 

  

 

k¹11 k¹12 k¹13 k¹14 0 0 

 

 

k¹21 k¹22 k¹23 k¹24 0 0 

 

KS  = 
k¹31 k¹32 k¹33 + k²11 

k¹34 + 
k²12 

 k²13  k²14 

 

 

k¹41 k¹42 k¹43 + k²21 
k¹44 + 
k²22 

 k²23  k²24 

 

 

0 0 k²31 k²32  k²33  k²34 
 

 
0 0 k²41 k²42  k²43  k²44 

6*6 

 
      

 
k¹   for strip 

one 
 

k²   for strip two 
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Elastic stiffness matrix     KE 

    

 

KE = ɸ1 Ke1 + ɸ2 Ke2 + ɸ3 Ke3 

 

Where : 
 

 

ɸ1 0.0266 

 

ɸ2 1.2 

 

ɸ3 29.39 

 

ɸ4 0.0023 

 

  

156 22b 54 13b- 

 Ke1  = ɸ1 22b 4b² 13b 3b²- 

 

  

54 13b 156 22b- 

 

  

13b- 3b²- 22b- 4b² 
4*4 

      

 
4.15 14.85 1.44 -8.77 

 
Ke1  = 

14.85 68.58 8.77 -51.43 

 

1.44 8.77 4.15 -14.85 

 

-8.77 -51.43 -14.85 68.58 

 

  

36 3+15ν -36 3b- 

 Ke2  = ɸ2 3+15ν 4b² 3b b²- 

 

  

-36 3b 36 (3+15ν)b- 

 

  

3b- b²- (3+15ν)b- 4b² 
4*4 

      

 
43.47 230.03 -43.47 -92.01 

Ke2  = 230.03 3116.13 92.01 779.03 

 

-43.47 92.01 43.47 -230.03 

 

-92.01 779.03 -230.03 
3116.1

3 

 

  

12 6b -12 6b- 

 Ke3  = ɸ3 6b 4b² 6b- 2b² 

 

  

-12 6b- 12 6b- 

 

  

6b- 2b² 6b- 4b² 
4*4 
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352.71 4479.46 -352.71 
-

4479.46 

Ke3  = 4479.46 75852.2 
-

4479.46 
37926.1 

 

-352.71 -4479.5 352.71 
-

4479.46 

 

-4479.5 37926.1 
-

4479.46 
75852.2 

 

Elastic  matrix    Ke   
  

       

 
400.33 4724.34 -394.75 -4580.24 

  

 
4724.34 79036.87 -4378.67 38653.68 

  B= -394.75 -4378.67 400.33 -4724.34 
  

 
-4580.2 38653.68 -4724.34 79036.87 

  

       

       

 

400.33 4724.34 -394.75 -4580.24 0.00 0.00 

 
4724.34 79036.9 -4378.7 38653.68 0.00 0.00 

 

-394.75 -4378.7 800.66 0.00 -394.75 -4580.24 

KS  = -4580.2 38653.7 0.00 158073.7 -4378.7 38653.7 

 

0.00 0.00 -394.75 -4378.67 400.33 -4724.34 

 

0.00 0.00 -4580.2 38653.68 -4724.3 79036.9 

 
 

Geometric stiffness matrix     Kg 
    

        

   

156 22b 54 13b- 

 

 

Kg  = ɸ4 22b 4b² 13b 3b²- 

 

   

54 13b 156 22b- 

 

   

13b- 3b²- 22b- 4b² 
4*4 

       

 
0.36 1.30 0.13 -0.77 

Kg  = 1.30 5.98 0.77 -4.49 

 
0.13 0.77 0.36 -1.30 

 

-0.77 -4.49 -1.30 5.98 

 

 

 

 

 

Geometric matrix 
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0.36 1.30 0.13 -0.77 

  

 
1.30 5.98 0.77 -4.49 

  B= 0.13 0.77 0.36 -1.30 
  

 
-0.77 -4.49 -1.30 5.98 

  

       

       

 
0.36 1.30 0.13 -0.77 0.00 0.00 

 
1.30 5.98 0.77 -4.49 0.00 0.00 

 
0.13 0.77 0.72 0.00 0.13 -0.77 

KS  = -0.77 -4.49 0.00 11.96 0.77 -4.49 

 
0.00 0.00 0.13 0.77 0.36 -1.30 

 
0.00 0.00 -0.77 -4.49 -1.30 5.98 

 

from boundary condition the reduced matrix Ko for elastic stiffness matrix     
KE 

        

  

k¹22 k¹23 k¹24 0 0 

 

 Ke  = 

k¹32 k¹33 + k²11 k¹34 + k²12  k²13  k²14 
 

 
k¹42 k¹43 + k²21 k¹44 + k²22  k²23  k²24 

 

 
0 k²31 k²32  k²33  k²34 

 

  

0 k²41 k²42  k²43  k²44 
5*5 

       

       

  

79036.9 -4378.7 38653.68 0 0 

Ko  for elastic  = 

-4378.7 800.66 0.00 -394.75 -4580.2 

38653.7 0.00 158073.7 
-

4378.6
7 

38653.7 

0 -394.75 -4378.67 400.33 -4724.3 

  

0 -4580.2 38653.68 
-

4724.3
4 

79036.9 

       
from boundary condition the redused matrix Ko for geometric stiffness 

matrix     Kg 

        

  

k¹22 k¹23 k¹24 0 0 

 

 Kg  = 

k¹32 k¹33 + k²11 k¹34 + k²12  k²13  k²14 
 

 

k¹42 k¹43 + k²21 k¹44 + k²22  k²23  k²24 
 

 
0 k²31 k²32  k²33  k²34 

 

  

0 k²41 k²42  k²43  k²44 
5*5 
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Ko  for geometric = 

5.98 0.77 -4.49 0 0 

0.77 0.72 0.00 0.13 -0.77 

-4.49 0.00 11.96 0.77 -4.49 

  
0 0.13 0.77 0.36 -1.30 

  

0 -0.77 -4.49 -1.30 5.98 

 

from  
   

  KE      -   λ Kg     =   0 

 

Then can be found Eigen-value and Eigen-vector. 


