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Abstract  

 Following Rao's idea to use the Fisher information matrix (FIM) as a Riemannian metric, we 

show that the family of Gumbel distributions determines a two dimensional Riemannian manifold.  In 

this paper we illustrates the information geometry of the Gumbel space, and derive he geometry as; 

connections, curvature tensor, Ricci curvature with its eigenvalues and eigenvectors, scalar curvature, 

sectional curvature and mean curvature, where we show that Gumbel space has a negative constant scalar 

curvature. Moreover, we prove that log-Gumbel manifold is an isometric isomorphic of the origin 

manifold, which is important in stochastic process since Gumbel distributions are related to exponential 

distributions.  
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1 Introduction  

The origin work on information geometry was due to Rao [1], who considered a family of probability 

distributions as a Riemannian manifold using the Fisher information matrix (FIM) as a Riemannian 

metric. In 1975, Efron [2] defined the curvature in statistical manifolds, and gave a statically interpretation 

for the curvature with application to second order efficiency. Then Amari [3] introduced a one-parameter 

family of affine connections (α-connection), where the 0-connection is correspond to the Levi-Civita 

connection. He further proposed a differential-geometrical framework for constructing a higher-order 

asymptotic theory of statistical inference.   

Several researchers studied the information geometry and its applications for some families of 

distributions. Amari [3] showed that the family of univariate Gaussian distributions has a constant 

negative curvature, and Sato [4] obtained the geometrical structure of the parameter space of the two-

dimensional normal distribution. Gamma manifold studied by many researcher eg [3], also Arwini and 

Dodson [5] proved that every neighbourhood of an exponential distribution contains a neighbourhood of 

gamma distributions, using an information theoretic metric topology. Abdel-All, Mahmoud and Add-

Ellah [6] showed that the family of Pareto distributions is a space with constant positive curvature and 

they obtained the geodesics, and they showed the relation between the geodesic distance and the J-

divergence.  

The family of Gumbel distributions does not form an exponential family, hence in the present paper we 

derive the geometrical quantities, as connections and curvatures objects on the Gumbel manifold without 

using the concept of potential function.  
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2- Gumbel distributions  

 The Gumbel distribution, also known as the Extreme Value Type I distribution has event space 

Ω = R. and the following probability density function (pdf).  

 

 

 

  

Figure 1 : In the left: Gumbel distributions where μ = 0 and β = 0.5, 1, 1.5 for the range x ∈ (−3,7). In 

the right: Gumbel distributions where μ = 1 and β = 0.5, 1, 1.5 for the range x ∈ (−3,7). 

𝐆(𝐱;  𝛃, 𝛍) =
𝟏

𝛃
𝐞

−(
𝐱−𝛍
𝛃

)
𝐞−𝐞

−(
𝐱−𝛍
𝛃 )

 𝐟𝐨𝐫 𝐱 ≥  𝛍                   (𝟐. 𝟏) 

Where β > 0 is the scale parameter, and μ ∈ R is location parameter. In the case where β = 1 and μ = 0 

the Gumbel distribution has the standard form                             

𝐆(𝐱) = 𝐞−𝐱𝐞−𝐞−𝐱
 . 

Figure 1 shows Gumbel distributions, in the cases where the location parameter μ = 0 and μ = 1 with 

different shape parameters β = 0.5, 1, 1.5 for the range xϵ(−3,7). Note that the shape of the Gumbel 

distribution does not depend on the parameters.  

The Gumbel distribution has mean e(x) =  γβ + μ where γ = 0.577 is the Euler gamma constant, 

variance var(x) =
1

6
π2β2, and standard deviation std. dev(x) = 1.28255 β. 

 

2.1 Log-likelihood function and Shannon's entropy  

The log-likelihood function for the Gumbel distribution (2.1) is  

𝐥(𝐱;  𝛃, 𝛍) = 𝐥𝐨𝐠(𝐆(𝐱;  𝛃, 𝛍)) =  − 𝐥𝐨𝐠(𝛃) − (
𝐱 −  𝛍

𝛃
) − 𝐞

−(
𝐱−𝛍
𝛃

)
. 

 

By direct calculation Shannon's information theoretic entropy for the Gumbel distribution, which is the 

negative of the expectation of the log-likelihood function, is given by  
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𝐒𝐆(𝛃, 𝛍) =  − ∫ 𝐥(𝐱; 𝛃, 𝛍)
∞

−∞

 𝐆 (𝐱;  𝛃, 𝛍)𝐝𝐱 

= 𝟏 +  𝛄 + 𝐥𝐨𝐠(𝛃)      (𝟐. 𝟐) 

 

Figure 2: A surface and a contour plot for the Shannon's information entropy SG, for bivariate gamma 

exponential distributions in the domain b ∈ (0,3). 

 

2.2 Fisher information matrix FIM  

The Fisher Information (FIM) is given by the expectation of the covariance of partial derivatives of the 

log-likelihood function. Here the Ffisher information metric components of the family of Gumbel 

distributions M with coordinate system (θ) = (θ1, θ2) = (β, μ) are give by  

𝐠𝐢𝐣 =  ∫
𝛛𝟐𝐥(𝐱, 𝛉)

𝛛𝛉𝐢𝛛𝛉𝐣

∞

−∞

 𝐆(𝐱) 𝐝𝐱. 

𝐇𝐞𝐧𝐜𝐞 , 𝐠 = [𝐠𝐢𝐣] =

[
 
 
 
 
𝟔(𝛄 − 𝟏)𝟐 + 𝛑𝟐

𝟔𝛃𝟐
   

𝛄 − 𝟏

𝛃𝟐
 

𝛄 − 𝟏

𝛃𝟐

𝟏

𝛃𝟐

 

]
 
 
 
 

       (𝟐. 𝟑) 

and the variance covariance matrix is  

𝐠−𝟏 = [𝐠𝐢𝐣]

[
 
 
 

𝟔𝛃𝟐

𝛑𝟐
   

−𝟔(𝛄 − 𝟏)𝛃𝟐

𝛑𝟐
 

−𝟔(𝛄 − 𝟏)𝛃𝟐

𝛑𝟐

(𝟔(𝛄 − 𝟏)𝟐 + 𝛑𝟐)𝛃𝟐

𝛑𝟐

 

]
 
 
 

       (𝟐. 𝟒) 

 

2.3 Log – Gumbel manifold  

Here we introduce the log-Gumbel distribution, which arises from the Gumbel distribution (2.1) for non-

negative random variable y =  e−x. So the log-Gumbel distribution, has probability density function  
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Figure 3: In the left: Log-Gumbel distributions where μ = 0 and β = 0.5, 1, 1.5 for the range  xϵ(−3,7). 

In the right: Log-Gumbel distributions where μ = 1 and β = 0.5, 1, 1.5 in the domain y ϵ (0.3). 

 

𝐋𝐆 (𝐲;  𝛃, 𝛍) =
𝟏

𝛃
  𝐲

𝟏
𝛃
−𝟏

  𝐞
𝛍
𝛃
−𝐞

𝛍
𝛃

 𝐲
𝟏
𝛃      , 𝐲 ∈  𝐑+          (𝟐. 𝟓) 

 

Where β > 0, 𝜇 ∈ 𝑅. Figure 3 shows plos of the log-Gumbel family of densisties with central location 

parameters μ and β = 0.5, 1, 1.5 where μ > 0 the graphics getting smaller, and where  

μ < 0 the graphics getting bigger.  

This family of densities determines a Riemannian 2-manifold which is isometric with the Gumbel 2-

manifold M.  

3 Geometry of the Gumbel manifold  

3.1. Gumbel 2-manifold  

Let M be the family of all Gumbel distributions  

𝐌 = {𝐆(𝐱;  𝛃, 𝛍) =
𝟏

𝛃
𝐞

−(
𝐱−𝛍
𝛃

)
𝐞−𝐞

−(
𝐱−𝛍
𝛃 )

|𝛃 ∈ 𝐑+, 𝛍 ∈ 𝐑} , 𝐱 ∈ 𝐑    (𝟑. 𝟔) 

So the parameter space is R+ × R and the random variables are x ∈ Ω = R 

We can consider M as a Riemannian 2-manifold with coordinate system (θ1, θ2) = (β, μ) and Fisher 

information metric g (2.3).  

 

3.2 Connections  

Here we give the analytic expressions for the connections with respect to coordinates (θ1, θ2) = (β, μ) 

the independent components Γjk
i  are 
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𝚪𝐥𝟏
𝟏 = 

𝟔(𝛄 − 𝟏)𝟐 − 𝛑𝟐

𝛑𝟐𝛃
 

𝚪𝟏𝟐
𝟏 = 

𝟔(𝛄 − 𝟏)

𝛑𝟐𝛃
 

𝚪𝟐𝟐
𝟏 = 

𝟔

𝛑𝟐𝛃
 

 

𝚪𝟏𝟏
𝟐 = − 

𝟔(𝛄 − 𝟏)𝟑 + (𝛄 − 𝟏)𝛑𝟐

𝛑𝟐𝛃
 

𝚪𝟏𝟐
𝟐 = −

𝟔(𝛄 − 𝟏)𝟐 + 𝛑𝟐

𝛑𝟐𝛃
 

𝚪𝟐𝟐
𝟐 = 

𝟔 − 𝟔𝛄

𝛑𝟐𝛃
               (𝟑. 𝟕) 

 

3.3 Curvatures  

By direct calculation we provide various curvature objects of the bivariate gamma exponential Gumbel 

manifold, as: the curvature tensor, the Ricci curvature, the scalar curvature. The sectional curvature, and 

the mean curvature.  

 

The curvature tensor components, which are defined as :  

𝐑𝐢𝐣𝐤𝐥 = ∑  𝐠𝐡𝐥 (𝛛𝐢𝚪𝐣𝐤
𝐡 − 𝛛𝐣𝚪𝐢𝐤

𝐡 + ∑ 𝚪𝐢𝐦
𝐡 𝚪𝐣𝐤

𝐦 − 𝚪𝐣𝐦
𝐡 𝚪𝐢𝐤

𝐦

𝟐

𝐦=𝟏

)

𝟐

𝐡=𝟏

 , (𝐢, 𝐣, 𝐤, 𝐥 = 𝟏, 𝟐) 

 

Are given by :  

𝐑𝟐𝟏𝟏𝟐 = −
𝟏

𝛃𝟒
  

𝐑𝟐𝟏𝟐𝟏 =
𝟏

𝛃𝟒
  

𝐑𝟏𝟐𝟏𝟐 =
𝟏

𝛃𝟒
  

𝐑𝟏𝟐𝟐𝟏 = −
𝟏

𝛃𝟒
              (𝟑. 𝟖) 

While the other independent components are zero.  

Contracting Rijkl with gil we obtain the components Rjk of the Ricci tensor  
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𝐑 = [𝐑𝐣𝐤] =  

[
 
 
 
 −

𝟔(𝛄 − 𝟏)𝟐 + 𝛑𝟐

𝛑𝟐𝛃𝟐
   

𝟔 − 𝟔𝛄

𝛑𝟐𝛃𝟐
 

𝟔 − 𝟔𝛄

𝛑𝟐𝛃𝟐
−

𝟔

𝛑𝟐𝛃𝟐

 

]
 
 
 
 

       (𝟑. 𝟗) 

The eignevalues and the eigenvectors of the Ricci tensor are given by  

(

 
 
 
 

− (𝟏𝟐 + 𝟔(𝛄 − 𝟐)𝛄 + 𝛑𝟐 + √𝟑𝟔(𝟐 + (𝛄 − 𝟐)𝛄)𝟐 + 𝟏𝟐(𝛄 − 𝟐)𝛄 𝛑𝟐 + 𝛑𝟒)

𝟐𝛑𝟐𝛃𝟐

−(𝟏𝟐 + 𝟔(𝛄 − 𝟐)𝛄 + 𝛑𝟐 − √𝟑𝟔(𝟐 + (𝛄 − 𝟐)𝛄)𝟐 + 𝟏𝟐(−𝛄 − 𝟐)𝛄 𝛑𝟐 + 𝛑𝟒)

𝟐𝛑𝟐𝛃𝟐 )

 
 
 
 

. . (𝟑. 𝟏𝟎) 

 

(

 
 

𝟔(𝛄 − 𝟐)𝛄 + 𝛑𝟐 + √𝟑𝟔(𝟐 + (𝛄 − 𝟐)𝛄)𝟐 + 𝟏𝟐(𝛄 − 𝟐)𝛄 𝛑𝟐 + 𝛑𝟒

𝟏𝟐(𝛄 − 𝟏)
         𝟏

𝟔(𝛄 − 𝟐)𝛄 + 𝛑𝟐 − √𝟑𝟔(𝟐 + (𝛄 − 𝟐)𝛄)𝟐 + 𝟏𝟐(𝛄 − 𝟐)𝛄 𝛑𝟐 + 𝛑𝟒

𝟏𝟐(𝛄 − 𝟏)
         𝟏

)

 
 

  (𝟑. 𝟏𝟏) 

 

By contracting the Ricci curvature components Rij with the inverse components gij we obtain the scalar 

curvature R:  

 

𝐑 = −
𝟏𝟐

𝛑𝟐
                        (𝟑. 𝟏𝟐) 

Note that the scalar curvature R is negative constant.  

The sectional curvatures Q(i,j) where Q(i,j) = 
Rijij

giigjj−gij
2  (i, j = 1,2), are 

Q(𝟏, 𝟐) =  −
𝟔

𝛑𝟐
           (𝟑. 𝟏𝟑) 

The mean curvatures Q(i) where Q(i) = ∑
𝟏

𝟑
 Q(i, j)  , (i = 1,2), are2

j=1  

𝐐(𝟐) =  𝐐(𝟏) =  −
𝟐

𝛑𝟐
  .      (𝟑. 𝟏𝟒) 

 

4 Conclusion  

In this paper we derived the geometrical properities for the 2-manifold of the Gumbel distributions, using 

the Fisher information matrix (FIM) as a Riemannian metric. The connections and curvatures objects as: 

curvature tensor, Ricci curvature, scalar curvature, sectional curvature and mean curvature are obtained, 

where we showed that the Gumbel manifold has a negative constant scalar curvature. Moreover, we 

showed that the log-Gumbel manifold is an isometric isomorph of the Gumbel manifold.  
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