Search for researchers, publications, and more

References (4)

Q

•••

Add new

Conterence raper run-text available

Stats

Abstract: Evaluation of vertebral fracture assessment images for the detection of abdominal aortic calcification

Comments

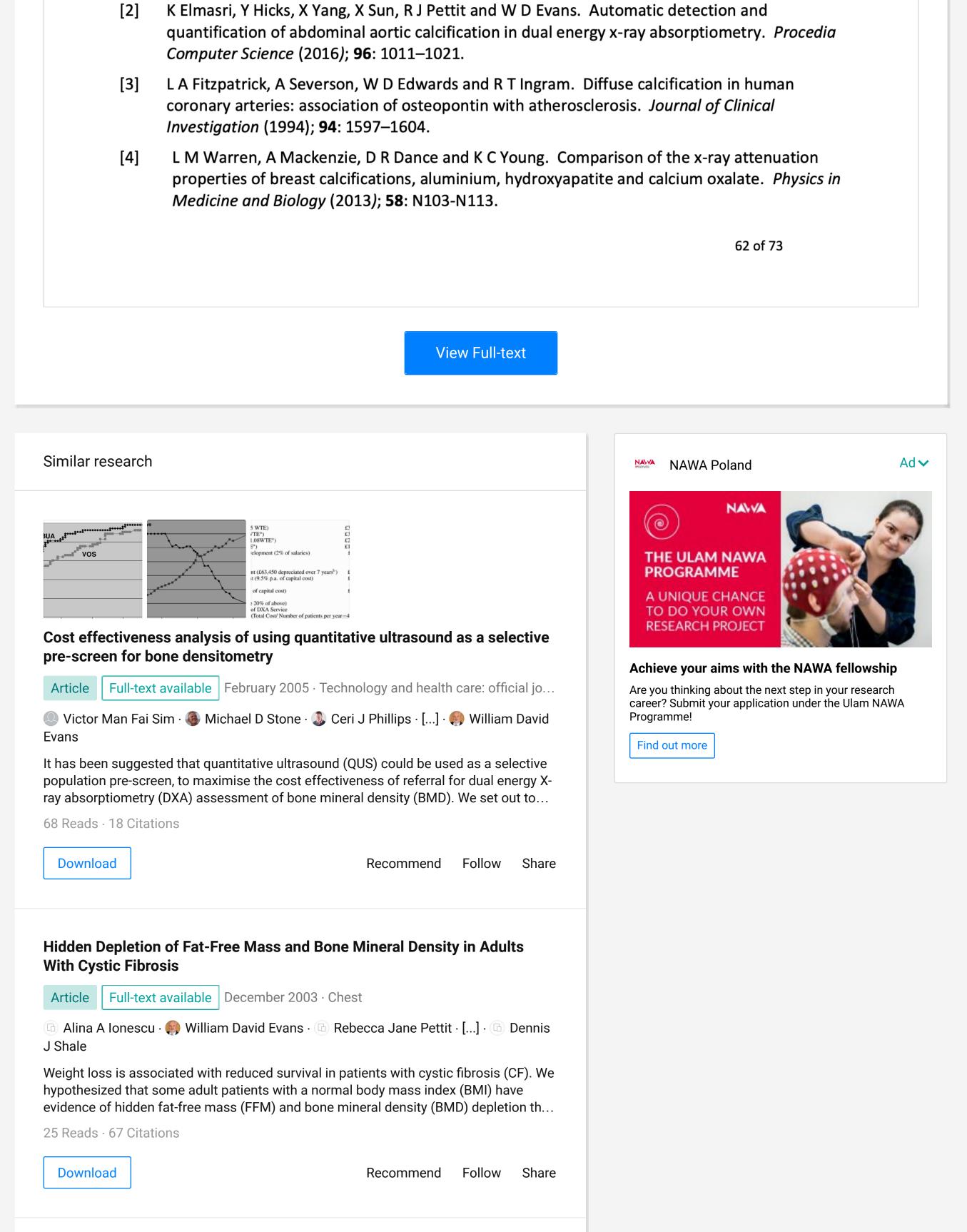
June 2017

Overview

Conference: All Wales Medical Physics and Clinical Engineering Summer Meeting 16 June 2017 · At: Village Hotel, Swansea, Wales, UK

Citations

Karima Elmasri ·


ShareView your saved researchNecourierYou can access your Saved List at any time in
your profile's new Saved List tab.RecommendaticOKReads (i)Image: Construction of the second sec

See details

Abstract Dual-energy x-ray absorptiometry (DXA) is an established modality for the assessment of bone mineral density. DXA has also been used for the detection of abdominal aortic calcification (AAC) using lateral images taken for vertebral fracture assessment (VFA). In this phantom study, the capability of VFA for the detection of AAC was investigated. A Perspex phantom of variable width in the range 15-30 cm was used to simulate abdominal soft tissue. Aluminium strips of thickness 0.05-2.0 mm were sandwiched between two halves of the phantom to mimic aortic calcification. VFA images of the phantom were acquired in single-energy mode and analysed by placing regions of interest over the aluminium strip and an adjacent area of Perspex. For each phantom width, the minimum detectable aluminium thickness was tested by linear regression and correlation. Repeatability was measured with five repeated scans for selected phantom configurations. The minimum thickness of aluminium that could be visualised increased with phantom width and varied from 0.05 mm at 15 cm Perspex to 0.5 mm at 30 cm Perspex; the CNR threshold was about 0.03. At all phantom widths, the variation of pixel value with aluminium thickness was strongly linear (r²>0.98, p<0.001). Repeatability was good with a coefficient of variation of less than 0.04%. The results of the study suggest that under idealised imaging conditions, VFA is capable of detecting small thicknesses of calcification with good linearity and repeatability.	<page-header></page-header>			
Public Full-texts (2) Ø Private Full-text (1)	Invite co-authors Not now Image: Constant of the second			
Elmasri Abstract.pdf	nt uploaded by <u>William David Evans</u> Author content Content may be subject to copyright.			
Page 1 Evaluation of vertebral fracture assessme for the detection of abdominal aortic ca Karima Elmasri, Research Student Yulia Hicks, Senior Lecturer Xin Yang, Lecturer Xianfang Sun, Lecturer Rebecca Pettit, Principal Clinical Scient William Evans, Consultant Clinical Scient Cardiff University ElmasriKM@cardiff.ac.uk Dual-energy x-ray absorptiometry (DXA) is an established modality for	alcification htist ntist or the assessment of bone mineral			
 density [1]. DXA has also been used for the detection of abdomin lateral images taken for vertebral fracture assessment (VFA) [2]. In to of VFA for the detection of AAC was investigated. A Perspex phantom of variable width in the range 15-30 cm was tissue. Aluminium strips of thickness 0.05-2.0 mm were sandwice phantom to mimic aortic calcification [3,4]. VFA images of the phantom mode and analysed by placing regions of interest over the aluminin Perspex. For each phantom width, the minimum detectable aluminin and related to contrast-to-noise ratio (CNR). Linearity of pixel value tested by linear regression and correlation. Repeatability was meas selected phantom configurations. The minimum thickness of aluminium that could be visualised incovaried from 0.05 mm at 15 cm Perspex to 0.5 mm at 30 cm Perspe 0.03. At all phantom widths, the variation of pixel value with aluminin (r²>0.98, p<0.001). Repeatability was good with a coefficient of variant of the phantom of pixel value with alumining that could be variable with a coefficient of variable widths, the variation of pixel value with alumining the phantom widths. 	al aortic calcification (AAC) using this phantom study, the capability used to simulate abdominal soft ched between two halves of the om were acquired in single-energy ium strip and an adjacent area of um thickness was assessed visually ue with aluminium thickness was sured with five repeated scans for creased with phantom width and tex; the CNR threshold was about nium thickness was strongly linear			

References:

 [1] A El Maghraoui and C Roux. DXA scanning in clinical practice. *Quarterly Journal of Medicine* (2008); **101**: 605–617.

Group 1 (Patients with Breast Cancer) 84 60.0	Group 2 (Control) 103 62.4	bra	L4 Vertebra	L2 Vert	ebra			
27 (32.1%) 57 (67.8%) 34 (40.5%)	66 (64.0%) 37 (35.9%)	2%)	27(33.7%)	7 (8.69	%)			
48 (57.1%) 2 (2.4%)	-	-3%)	47(47%)	13 (12.0	5%)			
Osteopo menopa				aromatas	se inhib	oitors is differ	ent from	post-
Article	Full-te	ext ava	ilable Dec	ember 201	2			
🌍 Hasaı	n Mutlu	· 🕞 Tı	ıncay Aslan	· 💽 Güler	Silov · [.] · 🔤 Abdullah	ı Büyükçeli	k
osteopor	osis. Ac e knowi	dv Lab I n side e	Med Int. 20	12; 3(1): 1 ·	5. ABST	different from p RACT Osteopor that are used in	otic effect	s are
Downlo	oad					Recommend	Follow	Shar
Abstrac females				y in hypot	hyroid	and treated h	yper-thyı	roid
Confere	-		- Full-text ava		vember	1996 · Nuclear I	Medicine (omm
								,011111.
-	H Lazar			n David Ev		Declan P. Coler	nan · [] ·	
14 Reads						Recommend	Follow	Sha
2,0 AaBMD = 0.3799 + 0.0 r = 0.8621; p < 0.05; r	ax [kN] 2439*Fmax 2= 0.7432	r = 0.869;	Poss[MPa] 0.4448 + 0.0488*Poss < 0.05; r ² = 0.755	Cortica	endplate			
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	15 20 21 ax [kN]	0.20	5 10 15 20 P _{mp} [MPa]	ι _p μ ₁	ŀ			
-	_		-	_	_	Heights Reinfo	orces the	Utilit
of DXA i	in Asse	essme	ent of Vert	ebrae Str	ength	•		Utilit
of DXA	in Asse	essme ext ava	ent of Vert ilable May	ebrae Str 2014 · Ca	ength cified Ti	issue Internation	nal	
of DXA i Article Crzeg The objec with grea	in Asse Full-to forz Tato ctive of iter precometry),	ext ava on · O the stu cision th , which	ent of Vert ilable May Eugeniusz idy was to in han the wid	ebrae Str 2014 · Ca Rokita · (ntroduce a ely used ar	ength cified Ti Marius new par ntero-po	•	nal Andrzej Wra Ing bone st al-energy X	obel trength -ray
of DXA i Article Grzeg The object with great absorption	in Asse Full-to forz Tato ctive of ter prec ometry), s · 9 Cita	ext ava on · O the stu cision th , which	ent of Vert ilable May Eugeniusz idy was to in han the wid	ebrae Str 2014 · Ca Rokita · (ntroduce a ely used ar	ength cified Ti Marius new par ntero-po	issue Internation z Korkosz · 🍘 A rameter describi sterior DXA (dua	nal Andrzej Wra Ing bone st al-energy X	obel trength -ray
of DXA i Article Crzeg The objec with grea absorptic 58 Reads	in Asse Full-to forz Tato ctive of ter prec ometry), s · 9 Cita	ext ava on · O the stu cision th , which	ent of Vert ilable May Eugeniusz idy was to in han the wid measures a	ebrae Str 2014 · Ca Rokita · (ntroduce a ely used ar	ength cified Ti Marius new par ntero-po mineral	issue Internation z Korkosz · 🍘 A rameter describi sterior DXA (dua density (aBMD) Recommend	nal Andrzej Wra Ing bone st al-energy X . The adjus	obel trengt -ray sted

