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Abstract.  

 

       In this paper we analyze and study the Smarandache  idempotents (S-idempotents) in 

the ring of integers modulo n, n . We have shown in general that an idempotent element 

in a ring R may not be an S-idempotent. Also we have establish the existence of             

S-idempotents in n  for a specific value n . We have proved that n  has an                  

S-idempotents with n  is a perfect number, and n is of the form 2 ,i p  (where p be an odd 

prime), or 3i p ( p a prime greater than 3), or in general when 1 2
in p p=  ( 1p  and 2p are 

distinct odd primes). We provide many interesting properties and illustrate them with 

several examples. 

 

Keywords : idempotent, Smarandache idempotent. 

 

1. Introduction. 

 

      This section is devoted to the introduction of the basic notions concerning the 

Smarandache ring. The concept of Smarandache idempotents and Smarandache            

co- idempotents inis introduced. We recall only those results and definitions, which  n  

are very basically needed in this paper. 

 

Definition 1.1 [2] : Let R be a ring, an element \{0}a R  is called an idempotent in R if  

2a a= . If 1 is in R then 1 is called a trivial idempotent.   
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Definition 1.2 [3]: Let R be a ring with unit. An element \{0,1}a R is a Smarandache 

idempotent (S-idempotent) of R if,  

 

    1.      2a a=   

    2.      There exists \{0,1, }b R a such that:  

i)            2b a=  and 

ii) ab a= ( )ba a=     or     ab b=  ( )ba b= .  

  

Definition 1.3 [3]: Let \{0,1}a R  be a Smarandache idempotent i.e. 2a a=  and there 

exists \{0,1, }b R a  such that 2b a=  and  ( )ab a ba a= = or  ( ).ab b ba b= =  We call b 

the Smarandache co-idempotent (S-co-idempotent) and denote the pair by ( , ).a b  

 

Example 1.4 : Let 
10

{0,1,2,...,9}=  be the ring of integers modulo 10, then 
10

6  is 

an S-idempotent of 
10

 for 
26 6  (mod 10) and 

10
4  is an S-co-idempotent  such that 

24 6  (mod10)  and  6.4 4  (mod 10).  

 

Definition 1.5 [3] : Let R be a commutative ring with unit and G be a group. The group 

ring RG of the group G over the ring R consists of all finite formal sums of the form 

 i i

i

g (i-runs over a finite number), where ,i i R   and ig G satisfying the 

following conditions:   

    )i  .i i i i i i

i i

g g   =  =   

   )ii  ( ) .i i i i i i i

i i i

g g g   
   

+ = +   
   
    

        )iii        i i j j k k

i j k

g g g  
  

=    
   
   where ,k i j  = .k i jg g g=  

   )iv        i i i ig g = .  

    )v        ( )i i i i

i i

g g  =    for , i R    and  .i ig RG       
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RG  is a ring with 0 R  as its additive identity. 

Since 1 R we have 1. G G RG=   and . R R e RG=   where e  is the  identity 

element of .G  

Note that definition 1.1.5 can be defined for a semigroup with a unit. 

 

Example 1.6 : Let 
3
 be the prime field of characteristic 3, 2{ / 1}G g g= =  be the 

cyclic group of order 2. 
3

{0,  1,  2,  ,  2 ,  1 ,  1 2 ,  2 ,  2 2 }G g g g g g g= + + + + , clearly  

2 2g+  is an S-idempotent of 
3
G  as 2(2 2 ) 2 2g g+ = +  and (2 2 )(1 ) 1g g g+ + = + . 

Hence the claim. 

 

Example 1.7 :  Consider  the group ring QG of the group G over Q, where  

2{ / 1}G g g= =  be the cyclic group of order 2 and Q be the field of rationals. QG  has    

S-idempotent. 

 Take    
1

(1 )
2

a g QG= +   ,  
1

(1 )
2

b g QG
−

= +  .  

Now we have  2 2 ,   ,  a a b a ab b= = = . So a is an S-idempotent in QG. 

 

Theorem 1.8 [3] : Let F be a field. F has no S-idempotent. 

   

Note : Let 
p
 be the ring of integers modulo p, p a prime, then 

p
 has no idempotents. 

For example 
2 3 5
, ,  has no idempotents, so has no S-idempotents.  

 

Now we have the following theorem.  

 

Theorem 1.9 [3] :  In a ring R, every S-idempotent is an idempotent and not vice versa. 

  

Example 1.10 : In  
10

, 
10

5  is an idempotent since 25 5  (mod 10) but it is not an     

S-idempotent. 

 

Example 1.11 : Let 
3 1 2 3 4 5

{1, , , , , }S p p p p p= , 
3

S  be the symmetric group of degree 3 

where  
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1 2 3
1

1 2 3

 
=  
 

   ,   
1

1 2 3
 

1 3 2
p

 
=  
 

 ,      
2

1 2 3

3 2 1
p

 
=  
 

 ,  

3

1 2 3

2 1 3
p

 
=  
 

    ,    
4

1 2 3

2 3 1
p

 
=  
 

   and  
5

1 2 3

3 1 2
p

 
=  
 

. 

 

2
{0,1}=  be the prime field of characteristic two. Clearly the group ring  

2 3
SZ  has 

idempotents which are S-idempotents. 

Now  
4 5

(1 )a p p= + +  is an S-idempotent in 
2 3
SZ  since 2

4 5 4 5
(1 ) 1p p p p+ + = + +  , and   

1 1 2 2 3
1b p p S= + + Z  is an S-co idempotent of a ,  such that  2

1
b a=  , 

1
ab a= .  

One can see that  the element 
2 1 2 3

b p p p= + +  is also an S-co-idempotent of a ,  such that  

2

2
b a=  , 

2
ab a= .  

 

This leads us to an interesting results that S-co-idempotent are not unique for a given     

S-idempotent. 

 

Theorem 1.12 [3] : Let R be a ring. a R be an S-idempotent. The S-co-idempotents of 

a in general is not unique. 

 
Example 1.13 : In 

40
, 25 is an S-idempotent has two S-co-idempotent 5 and 15.  

 

Theorem 1.14 : Let np
 be the set of integers modulo ,np  p a prime. Then np

 has no 

non trivial idempotent element . 

 

Proof : Let a be an idempotent element in np
  

 Then               2a a  (mod
np ) 

                       ( 1) na a kp− =   ,   .k   

 So we have   1a    (mod np )   or  0a   (mod np ).  

Then np

 has no non trivial idempotent.  
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Example 1.15 : Let 
9

{0,1,2,...,9}=  be the ring of integers modulo 9. It can easily be 

verified that 
9
  has no idempotents and so has no S-idempotents.  

 

Theorem 1.16 : Let n  be the ring of integers modulo n, 3n p= , 6p where p odd prime 

greater than 3,  4n p=  where p odd prime and  5n p=  where p a prime > 5.  If a is an       

S-idempotent and b an S-co-idempotent of a, then   a b n+  (mod n). 

 

Proof : Since a is an idempotent, then  2a a  (mod n)   and  \{0,1, }nb a  such that  

2b a  (mod n)   and  ab a  (mod n) or ab b  (mod n). 

i.e.                        2 2a b  (mod n). 

So                             2 2a b kn− = , k  , 

i.e.                            ( )( )a b a b kn− + = . 

Since                        
1

a b k− =  ,  
1

k   ,  
1

k n ,      

then                       
2

a b k n+ =  , 
2

k  , with  
1 2
.k k k= . 

So                          a b n+  (mod n). 

 

Example 1.17 : In 
15

; 10 is an S-idempotent, 5 is an S-co-idempotent and 10 5 15+ = . 

 

Remark 1.18 : The last theorem is not true for all n. The case if 

2 22 ,  2 ,  in m m i=   , we have m2 is an S-idempotent and m is an S-co idempotent , 

but 2m m n+  ( mod n ). For example in 
18

,
2(18 2.3 )= ,  9a =  is an S-idempotent 

since 29 9  (mod 18) and 3b =  is an S-co-idempotent with 
23 9,  3.9 9=   (mod 18), 

but   9 3 12 18+ =   (mod 18). 

 

Note : In n , if a is an  S-idempotent  which has two S-co-idempotent, then one of them 

must satisfies the condition a b n+  (mod n).  

 

Theorem 1.19 : Let n  be the ring of integers modulo n, and let a be an idempotent 

element, then  ( 1)n a+ −  is also an idempotent . 

 

Proof : If a is an idempotent, then  
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    2a a kn− = , k   

  2 2 2[( 1) ] [( 1) ] ( 1) 2 ( 1) ( 1)n a n a n a n a n a+ − − + − = + − + + − + +  

                                             2 2( 1) 2 ( 1)n na n a a= + − − + + −  

                                             2 2n n na nk= + − +                       

                       ( 1 2 )n a k n= + − +                                 

                                             hn= , 1 2h n a k= + − + . 

Then   ( 1)n a+ −  is an idempotent in n . 

 

2. The existence of  S-idempotent in n . 

   

      In this section we have proved the existence of an S-idempotent in the ring n , when  

5  ( 5),  8n p p n p=  =  (p odd prime ) , and some more cases have been proved. 

  

Theorem 2.20 : Let 
2 p

be a ring of integers modulo 2p , where p is an odd prime, then  

       i)         p  and 1p +  are two idempotents .   

ii) 1p +  is an S-idempotent . 

 

Proof :  i)   Since  2 \ ( 1),p −  then 2 \ ( 1)p p p − .  

So          
2 2 ,p p pk− =  ,k     i.e. 

2p p  (mod 2p). 

Also      2 \ ( 1),p +  then 
2 2 ,p p pk+ =  .k   

So          2( 1) 1p p+  +  (mod 2p). 

Hence    p  and   1p +  are idempotents in 
2

.
p

 

 

ii)     Take             
2

1
p

a p= +     and     
2

1
p

b p= −   

                           
2 2( 1) 1a p p= +  +   (mod 2p)    

Therefore,              2a a  (mod 2p). 

Also                       
2 2( 1) ( 1)b p p= −  +   (mod 2p) 

 Therefore             2b a  (mod 2p). 

And                       ( 1)( 1)ab p p= − +   
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                                   2 1p= −  

                            1p −   (mod 2p). 

Therefore 

                   ab b  (mod 2p). 

So    1a p= +  is an S-idempotent in 
2 p

. 

Then 
2 p

 has idempotents which are not S-idempotent. 

 

Example 2.21 : In 
14

; 7 and 8 are two idempotents. On the other hand, only 8 is an      

S-idempotents since 
14

6 , 26 8  (mod 14) and 6.8 6  (mod 14). 

 

Theorem 2.22 : In the ring of integers modulo 5 ,p  with  5p  .  If  the first digit of p is   

i)      1,  then  p  is an idempotent . 

                 ii)     9,  then  2p  is an idempotent . 

                iii)     3,7 , then  4p  is an idempotent . 

 

 

proof:        i)       If  p starts with 1, then 5 \ ( 1)p − . So p is an idempotent . 

ii)   If  p starts with 9, then 5   p and 5 \ ( 1)p − . Hence p is not an         

idempotent. But 5 \ ( 1)p + . So 2p  is an idempotent. 

iii)     If  p start  with 3, 7 then 5  p, 5  ( 1)p − , and 5  ( 1)p + , i.e. p and 2p   

are not  idempotents . On the other hand, 5  2( 1)p + , i.e. 
4p is an idempotent.  

A similar result can be obtain for the ring 
10 p

. 

 

Example 2.23 : In 
55

 , (55 5.11)= , 11 is an idempotent. In 
95

, (95 5.19)= , 
2(19) 76  

(mod 95) is an idempotent. Also in 
65

,  (65 5.13)= , 
4(13) 26  (mod 65) is                  

an idempotent.  

 

Theorem 2.24: Let 
8 p

be the ring of integers modulo 8p,  p be an odd prime, then 
2p   is 

an idempotent . 
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Proof :   Let   2 1p r= +  , r Z .    Then   ( 1)( 1) 4 (2 1)( 1)p p p r r r− + = + +  

If r is odd  1r +  is even 1 2  ,r l + =  l Z . 

So we have      ( 1)( 1) 8(2 1)( )( ).p p p r r l− + = +  

Then                 8 \  ( 1)( 1)p p p− + . 

If r is even  2r m = , m Z . 

So                    8 \  ( 1)( 1)p p p− + . 

Then 2p  is an idempotent.  

 

Example 2.25 : In 
24

, (24 8.3)= , 2(3) 9=  is an idempotent which is an S-idempotent.  

 

Similar result one can establish from the last theorem are given in the next two 

corollaries.  

 

Corollary 2.26 :  In n ,  3 ,  4 ,  12 ,  24n p p p p= where p is an odd prime, 2p  is an 

idempotent . 

Clearly 
4(2 )p and 

2(3 )p is also an idempotent in 
24 p

.  

 

Corollary 2.27 :  In n , 5 ,  10 ,  16 ,  48n p p p p= , where p is an odd prime, 5p  ,  
4p  

is an idempotent. 

 

Example 2.28 : Consider 
120

, (120 24.5)= , it can be calculated that 
2 25p   (mod 120), 

4(2 ) 40p   (mod 120) and 
2(3 ) 105p   (mod 120) as non-trivial idempotents, and 96,81 

and 16 are the other idempotents in 
120

. One can easily verified that all these 

idempotents are S-idempotents. Now the S-co-idempotent for 25 is 95, for 40 is 80, 150 it 

is 15, for 96 the S-co-idempotent is 24, for 81 is 39, and for 16 the S-co-idempotent is 

104. 

    

Theorem 2.29 : In the ring of integers modulo 2pq , p,q  are odd primes, pq  is an 

idempotent.  

 



 9 

Proof : Since 2 \ ( 1)pq − , then  ( 1) 2pq pq pqk− = , k  . Hence pq is an  idempotent. 

 

Example 2.30 : Consider 
30

, (30 2.3.5)= , 15 is an idempotent which is not                  

an S-idempotent.  

 

Theorem 2.31:  In the ring of integers modulo 2 i jp q , ,p q are odd primes,  i jp q  is an 

idempotent. 

 

Proof : Since 2 \ ( 1)i jp q − ,  then  ( 1) 2i j i j i jp q p q p q k− = ,  k  .   

Hence i jp q  is an idempotent. 

 

Example 2.32 : Consider 
90

, 2(90 2.3 .5)= , 45 is an idempotent which is not                   

an S-idempotent.  

 

Definition 2.33 [5] : A positive integer n is said to be a perfect number if n is equal to the 

sum of all its positive divisors, excluding n itself.  e.g. 6 is   a perfect number. As             

6 = 1 + 2 + 3. 

 

Theorem 2.34 : Let n  be the ring of integers modulo n, where n is an even perfect 

number of the form  12 (2 1)t tn += − , where 12 1t + −  is a prime, for some 1t  , then 

12t
na +=   is an S-idempotent. 

 

Proof :   For                         12t
na +=  ,  

             choose                    1( 2 )t
nb n += −  .  

             Clearly                   2 1 2(2 )ta +=   

                                                 2 22 .2 t=   ( 
1 2 .2 2t t t+   (mod n ) ) 

                                                 2.2t     ( mod n )  

                                       a= . 

             Now                       2 1 2( 2 )tb n += −  

                                                 2.2t  ( mod n ) 
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                                                 a= . 

             Also                        1 12 ( 2 )t tab n+ += −  

                                                   b  ( mod n ). 

So we get       2  a a (mod n ),  2b a  (mod n )  and  ab b (mod n ). 

Therefore        12s +=   is an S- idempotent .   

 

Example 2.35 : Take the ring 
6
 . Here 6 is an even perfect number . As    26 2.(2 1)= − , 

so  22a =  is an S-idempotent. 

Since      
2a a  (mod 6). 

For          2b = . 

Then     2  a a (mod 6 ),  2b a  (mod 6 )  and  ab b (mod 6 ). 

So  4a =  is an S-idempotent. 

 

Theorem 2.36 : Let 
2i p

 be a ring of integers modulo 2i p  ,where p is an odd prime 

with  1\ (2 1)tp + −  for some t i , then 1

2
2

i

t

p
a +=   is an S-idempotent.  

 

Proof :  Note that  1\ (2 1)tp + −   for some  t i . 

Therefore  

12 1t +  ( mod p )  for some  t i . 

12 .2 2t t t+   ( mod 2i p )    as  gcd (2 ,2 ) 2t i ip = , t i . 

Now take   1

2
2

i

t

p
a +=     and    1

2
(2 2 ) i

i t

p
b p += −  . 

Then it easy to see that : 

2  a a (mod 2i p ),  2b a  (mod 2i p )  and  ab b (mod 2i p ). 

Hence  12ta +=  is an idempotent. 

 

Example 2.37 : Take the ring  32 .7
. Here  

5 17 \ (2 1)+ − ,  so 5t = . 

Take  8 ,  48a b= = . 

Then it easy to see that 2  a a (mod 32 .7 ),  2b a  (mod 32 .7 )  and  ab b (mod 32 .7 ). 
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Theorem 2.38 : Let 
3i p

be the ring of integers modulo 3i p , where p is an odd prime 

such that \ (2.3 1)tp −  for some  t i , then  
3

2.3 i

t

p
a =   is an S-idempotent. 

 

Proof :  Suppose \ (2.3 1)tp −  for some  t i . 

Take  
3

2.3 i

t

p
a =     and    

3
(3 2.3 ) i

i t

p
b p= −  . 

Then                                       

                                              2 2(2.3 )ta =  

                                                    2 22 . 3 t=  

                                                     2.3t ( mod 3i p ) 

                                                     .a=  

As  2.3 1 (mod )t p for some t i  

 2.3 .3 3  (mod3 )t t t i p   as  gcd  (3 ,3 ) 3 ,  t i ip t i=  . 

Similarly     2b b  (mod 3i p )  and   ab b (mod 3i p ). 

So  2.3ta =  is an S-idempotent. 

 

Example 2.39 : Take the ring 
23 .5

. Here 55 \ 2.3 1−  ,   so  5t = . 

Take        52.3 36 =   (mod 45)   and     
2 5(3 .5 2.3 ) 9b = −   (mod 45) . 

2  a a (mod 45),  2b a  (mod 45)  and  ab b (mod 45). 

 

We can generalize Theorem  2.36 , 2.38 as follows :  

 

Theorem 2.40 :  Let ip q
 be the ring of integers modulo ip q ,Where ,p q  are distinct 

odd primes and \ 2. 1tq p −  for some  t i , then 2 i

t

p q
a p=   is an S-idempotent. 

 

Proof :  Suppose   \ 2. 1tq p −   for some  t i . 

Take     2 i

t

p q
a p=        and     ( 2 ) i

i t

p q
b p q p= −  . 

Easily we can show that  
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 2  a a (mod ip q ),  2b a  (mod ip q )  and  ab b (mod ip q ). 

So  2 ta p=  is an S- idempotent. 

 

3. Conclusion . 

  

      One can see in the last section, we have establish the existence of at last one non-

trivial S-idempotent. On the other hand, the existence of S-idempotent in the ring n  for 

every  n  has not been yet established.  
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