Smarandache idempotent in the ring of integers modulo n

Shaban.A.Traina
Department of mathematics
University of Garyounis
E-mail: Shabantraina@yahoo.com

Abir.K.Salibi
Department of mathematics
University of Omar-El Mukhtar
E-mail: Abir_sss@yahoo.com

Abstract

.

In this paper we analyze and study the Smarandache idempotents (S-idempotents) in the ring of integers modulo n, \square_{n}. We have shown in general that an idempotent element in a ring R may not be an S-idempotent. Also we have establish the existence of S-idempotents in \square_{n} for a specific value n. We have proved that \square_{n} has an S-idempotents with n is a perfect number, and n is of the form $2^{i} p$, (where p be an odd prime), or $3^{i} p$ (p a prime greater than 3), or in general when $n=p_{1}^{i} p_{2}\left(p_{1}\right.$ and p_{2} are distinct odd primes). We provide many interesting properties and illustrate them with several examples.

Keywords : idempotent, Smarandache idempotent.

1. Introduction.

This section is devoted to the introduction of the basic notions concerning the Smarandache ring. The concept of Smarandache idempotents and Smarandache co- idempotents inis introduced. We recall only those results and definitions, which Π_{n} are very basically needed in this paper.

Definition 1.1 [2] : Let R be a ring, an element $a \in R \backslash\{0\}$ is called an idempotent in R if $a^{2}=a$. If 1 is in R then 1 is called a trivial idempotent.

Definition 1.2 [3]: Let R be a ring with unit. An element $a \in R \backslash\{0,1\}$ is a Smarandache idempotent (S-idempotent) of R if,

1. $a^{2}=a$
2. There exists $b \in R \backslash\{0,1, a\}$ such that:
i) $\quad b^{2}=a$ and
ii) $\quad a b=a(b a=a) \quad$ or $\quad a b=b \quad(b a=b)$.

Definition 1.3 [3]: Let $a \in R \backslash\{0,1\}$ be a Smarandache idempotent i.e. $a^{2}=a$ and there exists $b \in R \backslash\{0,1, a\}$ such that $b^{2}=a$ and $a b=a(b a=a)$ or $a b=b(b a=b)$. We call b the Smarandache co-idempotent (S-co-idempotent) and denote the pair by (a, b).

Example 1.4 : Let $\square_{10}=\{0,1,2, \ldots, 9\}$ be the ring of integers modulo 10 , then $6 \in \square_{10}$ is an S-idempotent of \square_{10} for $6^{2} \equiv 6(\bmod 10)$ and $4 \in \square_{10}$ is an S-co-idempotent such that $4^{2} \equiv 6(\bmod 10)$ and $6.4 \equiv 4(\bmod 10)$.

Definition 1.5 [3] : Let R be a commutative ring with unit and G be a group. The group ring $R G$ of the group G over the ring R consists of all finite formal sums of the form $\sum_{i} \alpha_{i} g_{i}$ (i-runs over a finite number), where $\alpha_{i}, \beta_{i} \in R$ and $g_{i} \in G$ satisfying the following conditions:
i) $\quad \sum_{i} \alpha_{i} g_{i}=\sum_{i} \beta_{i} g_{i} \Leftrightarrow \alpha_{i}=\beta_{i}$.
ii) $\quad\left(\sum_{i} \alpha_{i} g_{i}\right)+\left(\sum_{i} \beta_{i} g_{i}\right)=\sum_{i}\left(\alpha_{i}+\beta_{i}\right) g_{i}$.
iii) $\quad\left(\sum_{i} \alpha_{i} g_{i}\right)\left(\sum_{j} \beta_{j} g_{j}\right)=\sum_{k} \gamma_{k} g_{k}$ where $\gamma_{k}=\sum \alpha_{i} \beta_{j}, g_{k}=g_{i} g_{j}$.
iv) $\quad \alpha_{i} g_{i}=g_{i} \alpha_{i}$.
v) $\quad \alpha \sum_{i} \alpha_{i} g_{i}=\sum_{i}\left(\alpha \alpha_{i}\right) g_{i}$ for $\alpha, \alpha_{i} \in R$ and $\sum \alpha_{i} g_{i} \in R G$.
$R G$ is a ring with $0 \in R$ as its additive identity.
Since $1 \in R$ we have $G=1 . G \subset R G$ and $R=R . e \subseteq R G$ where e is the identity element of G.

Note that definition 1.1.5 can be defined for a semigroup with a unit.

Example 1.6 : Let \square_{3} be the prime field of characteristic 3, $G=\left\{g / g^{2}=1\right\}$ be the cyclic group of order $2 . \square_{3} G=\{0,1,2, g, 2 g, 1+g, 1+2 g, 2+g, 2+2 g\}$, clearly $2+2 g$ is an S-idempotent of $\square_{3} G$ as $(2+2 g)^{2}=2+2 g$ and $(2+2 g)(1+g)=1+g$. Hence the claim.

Example 1.7 : Consider the group ring $Q G$ of the group G over Q, where $G=\left\{g / g^{2}=1\right\}$ be the cyclic group of order 2 and Q be the field of rationals. $Q G$ has S-idempotent.
Take $\quad a=\frac{1}{2}(1+g) \in Q G, \quad b=\frac{-1}{2}(1+g) \in Q G$.
Now we have $a^{2}=a, b^{2}=a, a b=b$. So a is an S-idempotent in $Q G$.

Theorem 1.8 [3] : Let F be a field. F has no S-idempotent.

Note : Let \square_{p} be the ring of integers modulo p, p a prime, then \square_{p} has no idempotents. For example $\square_{2}, \square_{3}, \square_{5}$ has no idempotents, so has no S-idempotents.

Now we have the following theorem.

Theorem 1.9 [3] : In a ring R, every S-idempotent is an idempotent and not vice versa.

Example 1.10 : In $\sqcup_{10}, 5 \in \sqcup_{10}$ is an idempotent since $5^{2} \equiv 5(\bmod 10)$ but it is not an S-idempotent.

Example 1.11: Let $S_{3}=\left\{1, p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right\}, S_{3}$ be the symmetric group of degree 3 where

$$
\begin{array}{ll}
1=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right), & p_{1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right), \quad p_{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right), \\
p_{3}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right), & p_{4}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right) \quad \text { and } p_{5}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right) .
\end{array}
$$

$\square_{2}=\{0,1\}$ be the prime field of characteristic two. Clearly the group ring $\mathbf{Z}_{2} S_{3}$ has idempotents which are S-idempotents.

Now $a=\left(1+p_{4}+p_{5}\right)$ is an S-idempotent in $\mathbf{Z}_{2} S_{3}$ since $\left(1+p_{4}+p_{5}\right)^{2}=1+p_{4}+p_{5}$, and $b_{1}=1+p_{1}+p_{2} \in \mathbf{Z}_{2} S_{3}$ is an S-co idempotent of a, such that $b_{1}^{2}=a, a b_{1}=a$.

One can see that the element $b_{2}=p_{1}+p_{2}+p_{3}$ is also an S-co-idempotent of a, such that $b_{2}{ }^{2}=a, a b_{2}=a$.

This leads us to an interesting results that S-co-idempotent are not unique for a given S-idempotent.

Theorem 1.12 [3] : Let R be a ring. $a \in R$ be an S-idempotent. The S-co-idempotents of a in general is not unique.

Example 1.13 : In \square_{40}, 25 is an S-idempotent has two S-co-idempotent 5 and 15.

Theorem 1.14 : Let $\square_{p^{n}}$ be the set of integers modulo p^{n}, p a prime. Then $\square_{p^{n}}$ has no non trivial idempotent element .

Proof: Let a be an idempotent element in $\square_{p^{n}}$
Then $\quad a^{2} \equiv a\left(\bmod p^{n}\right)$

$$
a(a-1)=k p^{n} \quad, \quad k \in \square .
$$

So we have $a \equiv 1\left(\bmod p^{n}\right)$ or $a \equiv 0\left(\bmod p^{n}\right)$.
Then $\square_{p^{n}}$ has no non trivial idempotent.

Example 1.15 : Let $\square_{9}=\{0,1,2, \ldots, 9\}$ be the ring of integers modulo 9. It can easily be verified that \square, has no idempotents and so has no S-idempotents.

Theorem 1.16 : Let \square_{n} be the ring of integers modulo $n, n=3 p, 6 p$ where p odd prime greater than $3, n=4 p$ where p odd prime and $n=5 p$ where p a prime >5. If a is an S-idempotent and b an S-co-idempotent of a, then $a+b \equiv n(\bmod n)$.

Proof: Since a is an idempotent, then $a^{2} \equiv a(\bmod n) \quad$ and $b \in \square_{n} \backslash\{0,1, a\}$ such that $b^{2} \equiv a(\bmod n) \quad$ and $a b \equiv a(\bmod n)$ or $a b \equiv b(\bmod n)$.
i.e. $\quad a^{2} \equiv b^{2}(\bmod n)$.

So $\quad a^{2}-b^{2}=k n, k \in \Pi$,
i.e. $\quad(a-b)(a+b)=k n$.

Since $\quad a-b=k_{1}, k_{1} \in \square, k_{1}<n$,
then $\quad a+b=k_{2} n, k_{2} \in \square$, with $k_{1} \cdot k_{2}=k$.
So $\quad a+b \equiv n(\bmod n)$.

Example 1.17: In $\square_{15} ; 10$ is an S-idempotent, 5 is an S-co-idempotent and $10+5=15$.

Remark 1.18 : The last theorem is not true for all n. The case if $n=2 m^{2}, m^{2} \neq 2^{i}, i \in \square$, we have m^{2} is an S-idempotent and m is an S-co idempotent, but $m^{2}+m \not \equiv n(\bmod n)$. For example in $\square_{18},\left(18=2.3^{2}\right), \quad a=9$ is an S-idempotent since $9^{2} \equiv 9(\bmod 18)$ and $b=3$ is an S-co-idempotent with $3^{2}=9,3.9 \equiv 9(\bmod 18)$, but $9+3=12 \neq 18(\bmod 18)$.

Note: $\operatorname{In} \square_{n}$, if a is an S-idempotent which has two S-co-idempotent, then one of them must satisfies the condition $a+b \equiv n(\bmod n)$.

Theorem 1.19 : Let \sqcup_{n} be the ring of integers modulo n, and let a be an idempotent element, then $(n+1)-a$ is also an idempotent .

Proof: If a is an idempotent, then

$$
\begin{aligned}
& a^{2}-a=k n, k \in \square \\
& {[(n+1)-a]^{2}-[(n+1)-a] }=(n+1)^{2}-2 a(n+1)+a^{2}-(n+1)+a \\
&=(n+1)^{2}-2 n a-(n+1)+a^{2}-a \\
&=n^{2}+n-2 n a+n k \\
&=(n+1-2 a+k) n \\
&=h n, h=n+1-2 a+k .
\end{aligned}
$$

Then $(n+1)-a$ is an idempotent in \square_{n}.

2. The existence of \mathbf{S}-idempotent in \square_{n}.

In this section we have proved the existence of an S-idempotent in the ring \square_{n}, when $n=5 p(p>5), n=8 p(p$ odd prime $)$, and some more cases have been proved.

Theorem 2.20 : Let $\square_{2 p}$ be a ring of integers modulo $2 p$, where p is an odd prime, then
i) $\quad p$ and $p+1$ are two idempotents.
ii) $\quad p+1$ is an S-idempotent.

Proof: i) Since $2 \backslash(p-1)$, then $2 p \backslash p(p-1)$.
So $\quad p^{2}-p=2 p k, k \in \square$, i.e. $p^{2} \equiv p(\bmod 2 p)$.
Also $\quad 2 \backslash(p+1)$, then $p^{2}+p=2 p k, k \in \|$.
So $\quad(p+1)^{2} \equiv p+1(\bmod 2 p)$.
Hence $\quad p$ and $p+1$ are idempotents in $\square_{2 p}$.
ii) Take $\quad a=p+1 \in \square_{2 p}$ and $b=p-1 \in \square_{2 p}$

$$
a^{2}=(p+1)^{2} \equiv p+1 \quad(\bmod 2 p)
$$

Therefore, $\quad a^{2} \equiv a(\bmod 2 p)$.
Also

$$
b^{2}=(p-1)^{2} \equiv(p+1)(\bmod 2 p)
$$

Therefore

$$
b^{2} \equiv a(\bmod 2 p)
$$

And

$$
a b=(p-1)(p+1)
$$

$$
\begin{aligned}
& =p^{2}-1 \\
& \equiv p-1(\bmod 2 p) .
\end{aligned}
$$

Therefore

$$
a b \equiv b(\bmod 2 p) .
$$

So $\quad a=p+1$ is an S-idempotent in $\square_{2 p}$.
Then $\square_{2 p}$ has idempotents which are not S-idempotent.

Example 2.21: In $\square_{14} ; 7$ and 8 are two idempotents. On the other hand, only 8 is an S-idempotents since $6 \in \square_{14}, 6^{2} \equiv 8(\bmod 14)$ and $6.8 \equiv 6(\bmod 14)$.

Theorem 2.22: In the ring of integers modulo $5 p$, with $p>5$. If the first digit of p is
i) 1 , then p is an idempotent.
ii) 9 , then p^{2} is an idempotent.
iii) 3,7, then p^{4} is an idempotent.
proof: i) If p starts with 1 , then $5 \backslash(p-1)$. So p is an idempotent.
ii) If p starts with 9 , then $5 \times p$ and $5 \times(p-1)$. Hence p is not an idempotent. But $5 \backslash(p+1)$. So p^{2} is an idempotent.
iii) If p start with 3,7 then $5 \times p, 5 \times(p-1)$, and $5 \times(p+1)$, i.e. p and p^{2} are not idempotents. On the other hand, $5 \backslash\left(p^{2}+1\right)$, i.e. p^{4} is an idempotent. A similar result can be obtain for the ring $\Pi_{10_{p}}$.

Example 2.23: In $\square_{55},(55=5.11), 11$ is an idempotent. In $\square_{95},(95=5.19),(19)^{2} \equiv 76$ $(\bmod 95)$ is an idempotent. Also in $\square_{65}, \quad(65=5.13),(13)^{4} \equiv 26(\bmod 65)$ is an idempotent.

Theorem 2.24: Let $\square_{8 p}$ be the ring of integers modulo $8 p, p$ be an odd prime, then p^{2} is an idempotent .

Proof: Let $p=2 r+1, r \in \mathbf{Z}$. Then $p(p-1)(p+1)=4 r(2 r+1)(r+1)$
If r is odd $\Rightarrow r+1$ is even $\Rightarrow r+1=2 l, l \in \mathbf{Z}$.
So we have $\quad p(p-1)(p+1)=8(2 r+1)(r)(l)$.
Then $\quad 8 \backslash p(p-1)(p+1)$.
If r is even $\Rightarrow r=2 m, m \in \mathbf{Z}$.
So $\quad 8 \backslash p(p-1)(p+1)$.
Then p^{2} is an idempotent.

Example 2.25: $\operatorname{In} \square_{24},(24=8.3),(3)^{2}=9$ is an idempotent which is an S-idempotent.

Similar result one can establish from the last theorem are given in the next two corollaries.

Corollary 2.26 : In $\square_{n}, n=3 p, 4 p, 12 p, 24 p$ where p is an odd prime, p^{2} is an idempotent.
Clearly $(2 p)^{4}$ and $(3 p)^{2}$ is also an idempotent in $\square_{24 p}$.

Corollary 2.27 : In $\square_{n}, n=5 p, 10 p, 16 p, 48 p$, where p is an odd prime, $p>5, p^{4}$ is an idempotent.

Example 2.28: Consider $\square_{120},(120=24.5)$, it can be calculated that $p^{2} \equiv 25(\bmod 120)$, $(2 p)^{4} \equiv 40(\bmod 120)$ and $(3 p)^{2} \equiv 105(\bmod 120)$ as non-trivial idempotents, and 96,81 and 16 are the other idempotents in \square_{120}. One can easily verified that all these idempotents are S-idempotents. Now the S-co-idempotent for 25 is 95 , for 40 is 80,150 it is 15 , for 96 the S -co-idempotent is 24 , for 81 is 39 , and for 16 the S -co-idempotent is 104.

Theorem 2.29: In the ring of integers modulo $2 p q, p, q$ are odd primes, $p q$ is an idempotent.

Proof: Since $2 \backslash(p q-1)$, then $p q(p q-1)=2 p q k, k \in \square$. Hence $p q$ is an idempotent.

Example 2.30 : Consider $\square_{30},(30=2.3 .5), 15$ is an idempotent which is not an S-idempotent.

Theorem 2.31: In the ring of integers modulo $2 p^{i} q^{j}, p, q$ are odd primes, $p^{i} q^{j}$ is an idempotent.

Proof: Since $2 \backslash\left(p^{i} q^{j}-1\right)$, then $p^{i} q^{j}\left(p^{i} q^{j}-1\right)=2 p^{i} q^{j} k, k \in \square$.
Hence $p^{i} q^{j}$ is an idempotent.

Example 2.32 : Consider $\square_{90},\left(90=2.3^{2} .5\right), 45$ is an idempotent which is not an S-idempotent.

Definition 2.33 [5] : A positive integer n is said to be a perfect number if n is equal to the sum of all its positive divisors, excluding n itself. e.g. 6 is a perfect number. As $6=1+2+3$.

Theorem 2.34 : Let \square_{n} be the ring of integers modulo n, where n is an even perfect number of the form $n=2^{t}\left(2^{t+1}-1\right)$, where $2^{t+1}-1$ is a prime, for some $t \geq 1$, then $a=2^{t+1} \in \square_{n}$ is an S-idempotent.

Proof: For $\quad a=2^{t+1} \in \square_{n}$, choose $\quad b=\left(n-2^{t+1}\right) \in \square_{n}$. Clearly

$$
\begin{aligned}
a^{2} & =\left(2^{t+1}\right)^{2} \\
& =2^{2} .2^{2 t}\left(\because 2^{t} .2^{t+1} \equiv 2^{t}(\bmod n)\right) \\
& \equiv 2.2^{t} \quad(\bmod n) \\
= & a .
\end{aligned}
$$

Now

$$
\begin{aligned}
b^{2} & =\left(n-2^{t+1}\right)^{2} \\
& \equiv 2.2^{t}(\bmod n)
\end{aligned}
$$

$$
=a
$$

Also

$$
\begin{aligned}
a b= & 2^{t+1}\left(n-2^{t+1}\right) \\
& \equiv b(\bmod n) .
\end{aligned}
$$

So we get $\quad a^{2} \equiv a(\bmod n), b^{2} \equiv a(\bmod n)$ and $a b \equiv b(\bmod n)$.
Therefore $\quad \alpha=2^{s+1}$ is an S- idempotent .

Example 2.35 : Take the ring \square_{6}. Here 6 is an even perfect number . As $6=2 .\left(2^{2}-1\right)$, so $a=2^{2}$ is an S-idempotent.

Since $\quad a^{2} \equiv a(\bmod 6)$.
For $\quad b=2$.
Then $a^{2} \equiv a(\bmod 6), b^{2} \equiv a(\bmod 6)$ and $a b \equiv b(\bmod 6)$.
So $a=4$ is an S-idempotent.

Theorem 2.36: Let $\square_{2^{i} p}$ be a ring of integers modulo $2^{i} p$, where p is an odd prime with $p \backslash\left(2^{t+1}-1\right)$ for some $t \geq i$, then $a=2^{t+1} \in \square_{2^{i} p}$ is an S-idempotent.

Proof: Note that $p \backslash\left(2^{t+1}-1\right)$ for some $t \geq i$.
Therefore

$$
\begin{gathered}
2^{t+1} \equiv 1(\bmod p) \text { for some } t \geq i \\
\Leftrightarrow 2^{t} .2^{t+1} \equiv 2^{t}\left(\bmod 2^{i} p\right) \text { as } \operatorname{gcd}\left(2^{t}, 2^{i} p\right)=2^{i}, t \geq i
\end{gathered}
$$

Now take $a=2^{t+1} \in \square_{2^{i} p}$ and $b=\left(2^{i} p-2^{t+1}\right) \in \square_{2^{i} p}$.
Then it easy to see that :
$a^{2} \equiv a\left(\bmod 2^{i} p\right), b^{2} \equiv a\left(\bmod 2^{i} p\right)$ and $a b \equiv b\left(\bmod 2^{i} p\right)$.
Hence $a=2^{t+1}$ is an idempotent.

Example 2.37: Take the ring $\square_{2^{3} .7}$. Here $7 \backslash\left(2^{5+1}-1\right)$, so $t=5$.
Take $a=8, b=48$.
Then it easy to see that $a^{2} \equiv a\left(\bmod 2^{3} .7\right), b^{2} \equiv a\left(\bmod 2^{3} .7\right)$ and $a b \equiv b\left(\bmod 2^{3} .7\right)$.

Theorem 2.38: Let $\square_{3^{i} p}$ be the ring of integers modulo $3^{i} p$, where p is an odd prime such that $p \backslash\left(2.3^{t}-1\right)$ for some $t \geq i$, then $a=2.3^{t} \in \square_{3^{i} p}$ is an S-idempotent.

Proof: Suppose $p \backslash\left(2.3^{t}-1\right)$ for some $t \geq i$.
Take $a=2.3^{t} \in \square_{3^{i} p}$ and $\quad b=\left(3^{i} p-2.3^{t}\right) \in \square_{3^{i} p}$.
Then

$$
\begin{aligned}
a^{2}= & \left(2.3^{t}\right)^{2} \\
& =2^{2} \cdot 3^{2 t} \\
& \equiv 2.3^{t}\left(\bmod 3^{i} p\right) \\
& =a .
\end{aligned}
$$

As $2.3^{t} \equiv 1(\bmod p)$ for some $t \geq i$
$\Leftrightarrow 2.3^{t} \cdot 3^{t} \equiv 3^{t}\left(\bmod 3^{i} p\right)$ as $\operatorname{gcd}\left(3^{t}, 3^{i} p\right)=3^{i}, t \geq i$.
Similarly $\quad b^{2} \equiv b\left(\bmod 3^{i} p\right)$ and $a b \equiv b\left(\bmod 3^{i} p\right)$.
So $a=2.3^{t}$ is an S-idempotent.

Example 2.39: Take the ring $\square{ }_{3^{2} .5}$. Here $5 \backslash 2.3^{5}-1$, so $t=5$.
Take $\quad \alpha=2.3^{5} \equiv 36(\bmod 45)$ and $b=\left(3^{2} .5-2.3^{5}\right) \equiv 9(\bmod 45)$.
$a^{2} \equiv a(\bmod 45), b^{2} \equiv a(\bmod 45)$ and $a b \equiv b(\bmod 45)$.

We can generalize Theorem $2.36,2.38$ as follows :

Theorem 2.40 : Let $\square_{p^{i} q}$ be the ring of integers modulo $p^{i} q$, Where p, q are distinct odd primes and $q \backslash 2 . p^{t}-1$ for some $t \geq i$, then $a=2 p^{t} \in \square_{p^{i} q}$ is an S-idempotent.

Proof: Suppose $q \backslash 2 . p^{t}-1$ for some $t \geq i$.
Take $\quad a=2 p^{t} \in \square_{p^{i} q} \quad$ and $\quad b=\left(p^{i} q-2 p^{t}\right) \in \square_{p^{i} q}$.
Easily we can show that
$a^{2} \equiv a\left(\bmod p^{i} q\right), b^{2} \equiv a\left(\bmod p^{i} q\right)$ and $a b \equiv b\left(\bmod p^{i} q\right)$.
So $a=2 p^{t}$ is an S- idempotent.

3. Conclusion .

One can see in the last section, we have establish the existence of at last one nontrivial S-idempotent. On the other hand, the existence of S-idempotent in the ring \square_{n} for every n has not been yet established.

References

[1] Padella, R., Smarandache Algebraic Structures, Smarandache Notions Journal, Vol. 9, No 1-2-3, (1998), 36-38.
[2] Saracino, D.H., Abstract Algebra :A first Course, Addison Wesley publishers, Inc., (1980).
[3] Vasantha Kandasamy,W.B., Smarandache Rings, American Research Press, Rehoboth, (2002).
[4] Vasantha Kandasamy,W.B., Bialgebraic structures and Smarandache Bialgebraic structures, American Research Press, Rehoboth, (2003).
[5] Vasantha Kandasamy,W.B., and M.K. Chetry, Smarandache idempotents in Loop Rings $Z_{t} L_{n}(m)$ of the Loops $L_{n}(m)$,Scientia Magna, Vol. 1, No.2, (2005),179-187.
[6] Vasantha Kandasamy,W.B., and T.Subramaniyam, S-Rings and their properties, National Symposium on Mathematical Methods and Applications, Indian Institute of Technology ,India , (2003).

