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Summary

Difference equations appear as natural descriptions of observed evolution, phe-
nomena because most measurements of time evolving variables are discrete and
as such those equations are in their own right important mathematical models.
More importantly, difference equations also appear in the study of discretization
methods for differential equations. Several results in the theory of difference
equations have been obtained as more or less natural discrete analogues of cor-
responding results of differential equations. This is especially true in the case
of Lyapunov theory of stability. Nonetheless, the theory of difference equations
is a lot richer than the corresponding theory of differential equations. For ex-
ample; a simple difference equation resulting from a first order differential may
have a phenomena often called appearance of "ghost" solutions or existence of
chaotic orbits that can only happen for higher order differential equations and
the theory of difference equations is interesting in itself. The aim of this the-
sis is to study the qualitative behavior of solution of some nonlinear difference
equations of different order. We discussed, in detail the following:

¢ Finding the equilibrium points for some (systems) difference equations;

e Investigating the local stability character of the solutions of some (sys-
tems) difference equations;

e Finding conditions which insure that the solutions of the equations are
bounded,;

e Investigating the global asymptotic stability of the solutions of some dif-
ference equations;

e Finding conditions which gurartee that the solutions of the equations are
periodic with prime period two or more;

¢ Finding conditions for oscillation of the solutions.

This thesis contains illustrative examples as applications of our results. The
thesis consists of Introduction and there four chapters:

A\



vl INTRODUCTION

Introduction. This chapter is an introductory chapter and contains some
basic definitions, elementary results that will be used throughout the next chap-
ters.

Chapter 1. In this chapter we investigate the local stability, the bounded-
ness, the global attractor, the periodicity character, and for the solutions of the
nonautonomous difference equations:

P
n

x
Tpi1 = QG + ——, forn >0.

n—1

Chapter 2. This chapter discusses local stability, the boundedness, global
stability, and semicycle for the solutions of higher order difference equations:

bz,
Tpy1 = aTp + ——, n=0,1,...,
i 14ab
and
+ b 0,1
Tpy1 = ATy 1 +——, n=0,1,....
i ! 1+ ah

Chapter 3. Here we investigate the local stability, boundedness, and the
global stability for the solutions of the difference equation

6$Z_k + 'ngp—m
Axlr)L—k + Bl’%_m ’

Tpt1 = @+ n > 0.

Chapter 4. In this chapter we study the local stability, global stability, os-
cillatory, and the periodicity character for the solutions of the following system
of difference equations:

a1 dvy,—q JWp—1

_— = w =
P p1 o Un+l q q ) Untl r r1
b+ cu, _sw,' e+ fw) _qult h+Iul _qv'

Upy1 = , forn > 0.

Our results generalize and complement some of the previous results in the
literature ( as described in the introduction of chapter). Moreover, some exam-
ples are given to illustrate the main results.



Introduction

In the world, important progress has been made during recent years in the
theory of nonlinear difference equations. There is a set of nonlinear difference
equation, known as the rational difference equations. Lately, there has been
huge attention in discussion rational difference equations and of the purpose for
this exigency for some methods whose can be used examining equations arising
in mathematical modules desecrating real life statuses. Moreover, difference
equations have given much attention from scientists from multiple disciplines.
Possibility, this is to a great extent because of happening of PCs where differ-
ential equations are explained by utilizing their estimated distinction condition
details. Also, computer has assisted to study behavior solutions of difference
equations by the easy way. Although, all observations and prediction got using
the computer has to been proven from the analytical point of view. Accordingly,
to take consideration a rich topic of research and want to be investigated in the
details.

The main role of this thesis is to study the behavior of some difference
equations where difference equations have gotten much consideration from re-
searchers from various disciplines. Perhaps this is to a great extent because
of the appearance of computers where differential equations are solved by us-
ing their approximate difference equation formulations. With the utilize of PC
one can without much of a stretch explore different avenues regarding differ-
ence equations and one can one can undoubtedly find that such conditions have
intriguing properties with a great deal of structure and typicality. Obviously,
all PC perceptions and expectations should likewise be demonstrated logically.
In this way this a prolific territory of research, still in its earliest stages, with
thorough and essential outcomes.

In spite of the fact that difference equations show themselves as scientific
models portraying genuine circumstances in likelihood hypothesis, statistical
problems, electrical networks, number hypothesis, geometry, electrical systems
etc see [9], [29], [28], [31], [35], [13], [18], and [41].

The investigation of dynamics is the study of how things change after some
time. Discrete dynamics is the examination of amounts that change at discrete
focuses in time, for example the size of a population from one year to the next,
or the change in the genetic make-up of a population from one generation to the

vii



vitl INTRODUCTION

next see book [12]. In general, we concurrently develop a model some situation
and the mathematical theory necessary to analyze that module. As we develop
our mathematical theory, we will be able add more components to our model.

The mean for studying change is to discover a connection between, what is
happening now and what will be happened in the near future that is, cause
and effect. By analyzing this relationship, we can often predict what will be
happened in the distant future. The distant future is sometimes a given point
in time but more often is a limit as time goes to infinity. In doing our analysis,
we will use many algebraic and calculus topics such as, factoring, exponential
and logarithms, solving systems of equations, and derivatives. We should also
be able to apply discrete dynamics to any field in which things change, which is
the most fields. The goal is to not only learn mathematics, but to get develop a
differently way of thinking about the world.

The oscillation and global asymptotic behavior of the solutions are two such
qualitative properties which are very important for applications in many areas
such as control theory, mathematical biology, neural networks, etc see [6], [17],
[23], [24], [25], and [37]. It is impossible to use computer based "numerical"
techniques to study the oscillation or asymptotic behavior of all solutions of
a given equation due to the global nature of these properties. Therefore, these
properties have received the attention of several mathematicians, engineers and
other scientists around the world.

Existence of the solutions of difference equations of deferent orders and the
study of their qualitative properties such as locally, boundedness, global stabil-
ity, the periodicity have been discussed by many authors, See, for examples [10],
[11], [14], [15], [16], [19], [20], [22], [26], [27], [30], [36], [38], [39], [401], [42], [43],
and [44].

Basic definitions and theorems

Here we recall some basic definitions and elementary results that will be
used throughout the next chapters.

Let J be an interval real numbers and let g : J**! x J — J, where ¢ is a
continuously differentiable function. Consider the difference equation

Yn+1 = g(ynayn—h "'7yn—k)> n Z Oa (1)

where y_;,y_1i1,...,y0 € J. Let 7 be the equilibrium point of Eq.(1). Any
equilibrium point 7 of this equation is a point that satisfies the condition 7 =

91,7, - Y)-
Definition : The sequence {y,} is called to be periodic with period p if

Yntp = Yn, Jor n=0,1,...
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Definition : Eq.(1) is called to be permanent and bounded if there exists
number m and M, with 0 < m < M < oo so for any initial condition y ¢,y _x.1,..., % €
(0,00) there exists a positive integer N which consist these initial conditions
such that m <y, < M, n > N.

The linearized equation of Eq.(1) about the equilibrium point 7 is

Ynt1 = Q12n + Q22p—1 + .. + Q1 20—k, (2)

. where a; = %(y,y, .7),1=0,1,..., k. The characteristic equation of Fq.(2)
18 k+1

)\k+1 o Zai)\k*i+1 —0.

i=1

(i) The equilibrium point 7 of Fq.(1) is locally stable if for every ¢ > 0, there
exists > 0soforall y 4,y xi1,...,y0 € I. Where |y_, — 9|+ |y_rs1 — Y|+ ...+
lyo — 7| < 6, we have |y, — 7| < ¢, n > —k.

(i) The equilibrium point 7 of Eq.(1) is globally asymptotically stable if 7 is
locally stable and there exists A > 0,such that for all y_,,y_r.1,...,50 € I.
With

Yk =7+ ly_kr1 — Y| + ... + |yo — Y| < A\, we have Jl_{goy” =7.

(iii)) The equilibrium point 7 of Fq.(1) is global attractoriffor all y_x,y k11, ..., 40 €
I,
then limy, =7.

n—o0

(iv) The equilibrium point 7 of Fq.(1) is globally asymptotically stable if 7 is
locally stable, and 7 is a global attractor of Fq.(1).

(iiv) The equilibrium point 7 of Eq.(1) is unstable if 7 is not locally stable.
Definition : A positive semicycle of a solution {y,} of Eq.(1) consists of

a "string"of terms {y;,y;11,...,yn}, all greater than or equal to the equilibrium
y,with 7 > —1 and n < oo and such that

either j = -1, or j> -1 and y;_; <7,

and
eithern =00, or n<oo and vy, <7.

Definition : A negative semicycle of a solution {y,} of Fq.(1) consists of a
"string"of terms {yx, Yx+1, .-, Yn}, all less than to the equilibrium y,with &£ > —1
and n < oo and such that

either k = —1, or k> —1 and y; 1 >7,
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and
eithern =00, or n<oo and vy, >7.

Definition [Oscillatory] :

(a) A sequence {y,} is called to oscillate about zero if the terms y,, are neither
eventually all positive nor eventually all negative. Moreover, the sequence
is called nonoscillatory. A sequence {y,} is called strictly oscillatory if for
every ng > 0,there exists ny, ny > ng such that y,,;y,2 < 0.

(b) A sequence {y,} is called to oscillate about 7 if the sequence y,,—7 oscillates.

(c) A sequence {y,} is said strictly oscillatory about 7 if the sequence y,, — 7 is
strictly oscillatory.

Let J be an interval real numbers and g : Jx.J — J, where g is a continuously
differentiable function. Consider the difference equation

Yn+1 :g(ynayn—l)) TL:071,2,... . (3)

The linearized equation of Eq.(3) is

Zpal = G12p + G225 1.

Theorem A [[33]] A (linearized stability).

(a) If both roots of the quadratic equation
N — a1\ —ay =0, (4)

lie in the open unit disk, |\| < 1, then the equilibrium point 7 of Eq.(3) is
locally asymptotically stable.

(b) If at least of the roots of Eq.(4) has absolute value greater that one , then
the equilibrium 7 of Eq.(3) is unstable.

(c) A necessary and sufficient condition for both roots of Eq.(4) to lie in the
open unit disk |\| < 1, is
’CLl’ <l—ay <2

Here the locally asymptotically stable equilibrium 7 is also called a sink.
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(d) A necessary and sufficient condition for one root of Eq.(4) to have absolute
value great than one and for the other to have absolute values less than
one is

|CL1| > |]_ — CL2| and CL? + 4aq > 1.

In this case 7 is called a saddle point.

Theorem B [[33]] Let [, d| be an interval of real numbers and assume that

f e d] x [e,d] — e, d]
is a continuous function satisfying the following properties:

(a) g(z,y) is non-decreasing in z € [c,d| for each y € [¢,d] , and ¢(z,y) is non-
increasing in y € [c, d] for each z € [¢, d].

(b) If (m, M) € [c,d] x [c,d] is a solution of the system

f(m,M)=m, and f(M,m)=M,

then m = M. Then Fq.(3) has a unique equilibrium 7 € [, d] and every solu-
tion of Eq.(3) converges to 7.

Theorem C [[34]] Assume that a4, as,...,a;,1 € R. Then

k+1

> lail<1
=1

is a sufficient condition for the locally stability of Eq.(1).

Consider the difference equation

Yn+1 :O(Yn), n:O,l,... . (5)

where V,, € R" and O € C'[R*!, R**']. Then the linearized equation associ-

ated with Eq.(5) is given by Y,,;; = AYy, where A is the Jacobian matrix DH (Y')
of the function H evaluated at the equilibrium Y.

Theorem D [[34]] Let Y be an equilibrium point of Eq.(5) and assume that
O is a C' function in R**'. Then the following statements are true:

(a) If all the eigenvalues of the Jacobian matrix DH(Y') lie in the open unit
disk |A| < 1, then the equilibrium Y of Eq.(5) is asymptotically stable.

(b) If at least one eigenvalues of the Jacobian matrix DH(Y') has absolute
value greater that one, then the equilibrium Y of Eq.(5) is unstable.
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Theorem E [[34]] Consider the difference equation

Tnt1 :f<$n>'“axnfk)> n=0,1,.., (6)

where f € C[(0,00)*" (0,00)] is increasing in each of its arguments, where
the initial conditions x_y, ..., o are positive. Assume that Eq.(6) has a unique
positive equilibrium 7, and suppose that the function / defined by

hz)= f(z,z,...,z), y € (0,00),

satisfies
(h(z) —z)(x —T) <0, for = #T.
Then 7 is a global attractor of all positive solutions of Eq.(6).

Theorem F [19] Let J be some interval of real numbers, f € C[J**! J], and
let {z,}>> _, be a bounded solution of the difference equation

Tt = [(Tn, Tpo1, ooy Tny), n=0,1,..., 7

with
I = lim infz,, S = lim supz,, with 1,5 € J.

n—oo n—0oo

Let Z denote the set of all integers {..., —1,0,1,...}. Then there exist two so-
lutions {7,}>> __ and {5, }5>__ of the difference equation

—00

Tp+1 = f(xnvxn—b sy xn—’l))a (8)

which satisfy the equation for all n € Z, with

Iy=1,5 =S, and I,,S, €[I,S], foralln e Z,

and such that for every N € Z, Iy and Sy are limit points of {z,}>° .
Therefore, for every m < —v there exist two subsequences {z, } and {z, } of the
solution {z,}° . so the following are true:

n=-—v

limz, .ny =1y, and limz;, ny = Sy, N >m.
n—oo n—oo

The solutions {7,}>° _ and {S,}> __ of Eq.(8) are called Full limiting so-
lutions of Eq.(8) associated with the solution {z,}3° , of Eq.(7).



Chapter 1

Dynamical of a Non-Autonomous
Difference Equation

1.1 Introduction

Our point in this chapter is to discuss the behavior of the positive solutions of
the difference equations:

p

Tyl = Gy + f”, n>0. (1.1)

Tp_1

where {a,} is a sequence of positive real numbers and the initial conditions
x_1,x9, and p are arbitrary positive real numbers. In this survey we consider
three cases of the sequence a,,.

This chapter is divided to two parts. Part I deals with the Eq.(1.1) when
p = 1. Part II concerned with Eq.(1.1) when p is a positive real number.

Part I : Studying of Eq.(1.1) with P=1

Here our goal is to consider local stability, boundedness character, and the
global asymptotic behavior of the positive solutions of the difference equation:

T >0, (1.2)

Tpy1 = Ap + 7
n—1

where {a,} is a sequence of nonnegative real numbers and the initial condition
x_1, andzx, are positive real numbers.

In the following we consider three cases of the sequence {a,}.

1



2 Ch 1. Dynamical of a Non-autonomous Diff. Eq

1.2 Case 1. When lima, = a

n—oo

1.2.1 Permanence of Eq.(1.2)

In this subsection we investigate the boundedness of Eq.(1.2).

Theorem 1.2.1 Suppose that lim a, = a > 1, at that point every positive solu-

n—od

tion of Eq.(1.2) is bounded and persists.

Proof. Suppose that {z,}°2 ; be a positive solution of Eq.(1.2). Then

n=-—1

Tp>a>1, forall n>1.

Let e € (0,a — 1), we see from Eq.(1.2) that

x,>a—e¢, foralln>—1.

Then we can find L € (a +¢€,a + € + 1) such that

L—e¢
L—e<uz_ <
e A
Since a > 1, then we get
<L—e—1
a :
“ L—€e—a
Set
fluv)=a+ -
) ’U.
Then I I
—€ —€
L = —J —
f( €7L_a_€) a—i_LE;ie 67
and
L —e¢ Lg“ 1 L—e¢
L—¢)= — < .
f(L—a—e’ ) a+L—e_a+L—a—e L—a—c¢
Now it follows from Eq.(1.2) that
L—e¢ L—e¢
= )< f(——L-6a< ———.
T f(fL'(),.’L‘ 1)—f<L_a_€’ 6)_[4—&—6
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Again we see from Eq.(1.2) that

vy = f(wo,2-1) > f(L — ¢,

By induction we obtain that

L—e<z,< , forall n=-1,0,1,....

—a—€

Second assume that a = 1 and let e € (0,d) and ¢ € (0, 1), it follows from Eq.(1.2)
that
Tp>1—€4+0, for n>1.

Then one can find L € (1+ €+ 6,2+ €+ ) such that

L—€e+6

Loetd<ayzp<——T9%
Ll

In this way whatever is left of the proof is like the above and it is overlooked. m

1.2.2 Global Attractity of Eq.(1.2)

Here, we show that if « > 1, Therefore every positive solution of Eq.(1.2) con-
verges to (a + 1).

Theorem 1.2.2 Assume that a > 1. At that point each positive solution of Eq.(1.2)
converges to the unique positive equilibrium point © = (a + 1) of Eq.(1.2).

Proof. Note, when a > 1, it was shown in Theorem 1.2.1 that each positive
solution of Eq.(1.2) is bounded. Then we have the following

s = lim infz,, and S = lim supxz,.

n—oo n—oo

It is clear that s < S. We want to proof that s > S. Now it is easy to see from
Eq.(1.2) that
S

>
S_a+S

, and S§a+§.
S

Thus we have
sS>aS+s, and sS<as+S.

This implies that
aS +s<as+S.

Then we get
a(S—s) < (S—s),
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or
(a—1)(S—s) <0< s>05.
Thus the proof is complete. m

Example 1.2.3 Figure (1) shows the global attractivity of the equilibrium point
T = 20f Eq.(1.2) whenever x_, = 1.21,2y = 1.32, and a = 1.

2.8
2.6
2.4

22

18
|
16 |
|

|
14t |

|
12—

Figure (1)

Example 1.2.4 Figure (2) shows the global attractivity of the equilibrium point
T = 60f Eq.(1.2) whenever x_1 = 4, xo = 9, and a = 5.

- m
wmm ot W

Figure (2)

1.3 Case 2. When ¢, is periodic

In this subsection we research the periodicity character of the positive solu-
tions of Eq.(1.2) whenever {a,} is a periodic sequence of period two of the form
{a, 8,0, 8, ...}, # 5. Assume that a,, = o, and as,1; = 5. Then we have

Tan

Ton4+1 = & +

(1.3)

)
Ton—1
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and

Tan
Topqo = [+ %, n = 0. (1.4)
2n

1.3.1 Periodicity of the solutions

Here we investigate the periodic solutions of Eq.(1.2).

Theorem 1.3.1 Assume that {a,} = {a,5,,5,...}, with o # 5. Then Eq.(1.2)
has periodic solution of prime period two.

Proof. Let {z,} be a solution of Eq.(1.2), with the initial values z_;, and z,
such that

L ek e ek} (1L5)
T_q Zo
Let x_; = z, and z¢ = y, then we obtain from (1.5)
x:oﬁ—g, and y:ﬁ+£ (1.6)
T Y

Now we want to prove that (1.6) has a solution (z,y), z > 0, y > 0. From the first
relation of (1.6) we get

y=(zr— o). 1.7)
From (1.7) and the second relation of (1.6) we obtain

r(r—a)=L0+ -

r(r —a)’

or
r(z—a)’ — Bz —a)—1=0.

Now define the function
f@)=z(z—-a)-Br—0a)—-1, z>a. (1.8)
Then

lim f(z) = —1, and lim f(x) = cc.

z—at T—00

Hence Eq.(1.8) has at least one solution = > «. Then if y = (z — o)z, we have
that the solution {z,}°° , is periodic of prime period two. =
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Example 1.3.2 Figure (3) shows that the solution of Eq.(1.2) is periodic solution
of period two when v_, = 1.34, xg = 3.210, « = 1, and § = 0.1.

a+ixnkix{n-1})b+x{n+1}./x{n}

35 T T
| Ll x
=
I
asE VLT
\II\H""‘\IH"‘\IH“‘\Il‘l‘”H‘lI“"‘\‘ll‘{" "\HJ" |
| "-Ill‘l"lllull“\“'lll\"”n““Iln““uh““n I
2 |‘ ‘III"I‘I‘\I\I‘.\ul‘l“l‘l\ml‘l‘l‘lmu‘l‘ ‘I‘IMH‘I\-‘I‘H IHII'WIIH“”
T T :wll‘l I‘uln‘I P
st -“\'. LALRAL "ﬁ‘; L ‘I".‘ R ‘.I'I‘ \
A ' ;:' IRIRIR
“‘IL“:‘I“\I"\”‘
b TR
|
I I
GG ki 15 20 2% e 25

Figure (3)

1.3.2 Local Stability of the periodic solutions

Here we investigate the local stability character of Eq.(1.2).

Theorem 1.3.3 Assume that {z,}5° |, be a periodic solution of period two of

Eq.(1.2) and consider Eq.(1.2) when the case {a,} = {a,5,a,[,...} with a # .

Suppose that
« 1 1 «

Flate
Then {x,}> _,is locally asymptotically stable.

Proof. It was shown in Theorem 1.3.1 that there exist z, y such that

x:a—l—y, and yzﬁ—i—z. (1.9)
r Yy

Now Eq.(1.2) can be rewritten in the following form by splitting the even-
indexed and odd-indexed terms:

un—l—l:a"f'%

Uny1 = B+ —O‘“:iv”. (1.10)

UnpUn

Now, we consider the map T on [0, 00) X [0, c0) such that

7t = o] = 5]
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Then we have

o, —wv and on 1

ou  u?’ v u’
o7, —? oy, —oau?
— = , and — =——,
ou v2u? ov u2v?

Therefore the Jacobian matrix of 7" at (z,vy) is

-y

1
JT<x>y) = |i £2l E_iv :| )
42

and its characteristic equation associated with (x,y) is

2 L Yy e 1
A +A(y2 +$2)+x2y +$3 = 0. (1.11)

It follows from (1.9) that x% =1— 2 and since = > o, and y >  we have

o Y « 1 o 1 1 «
_+_+_+_<—2+——|——3—|—1——<1.
x o x

Thus

Then all roots of Eq.(1.11) have modulus less than 1. Therefore by Theorem
D that System (1.10) is asymptotically stable. The proof is complete. m

Theorem 1.3.4 Assume that {a,} = {a,,,[,...}, with o # [.Then every solu-
tion of Eq.(1.2) converges to a period two solution of Eq.(1.2).

Proof. We know by Theorem 1.2.1 that every positive solution of Eq.(1.2)
is bounded, it follows that there are some positive constants /, L, s, and S such

that

[ = lim inf x9,,1, and L = limsupza,,1,
n—0oo n—oo

s = lim inf z,,, and S = limsupzs,.

n—~o0 n—oo

Then it is easy to see from Eq.(1.3) and Eq.(1.4) that

S
l2a+%, and L§a+7,

and

L
SEB—FL, and S <[+ —.
S s
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Then we obtain
Ll>alL+s, and Li<al+ S,

and
Ss>pS+1, and Ss < s+ L.

Thus we get

aL+s<Ll<al+S, and pS+1 <Ss<fs+ L.

Thus we have

alL-1)<S—s, and [(S—s)<L-—1 (1.12)

Thus it is clear from (1.12) that s = S and [ = L. Now suppose lim z5,,; = S,
and lim x9, = L. We want to proof that S # L. From Eq.(1.3) and Eq.(1.4) we get

n—oo

S
L= —.
, and 5+L

S=«a+

Ul

As that sake of contradiction assume that L. = S, then

L=a+1, and S=p+1

thus a = § which is a contradiction. So lim z3,,1; # lim x5,. The proof is so
complete. m

Example 1.3.5 Figure (3) shows that the solution of Eq.(1.2) is periodic solution
of period two when x_, = 2.3, vy = 1.3, a = 0.73827543, and 3 = 0.6763772.

x
| ¥
|

Figure (3)
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Example 1.3.6 Figure (4) shows that the solution of Eq.(1.2) is periodic solution
of period two when x_, = 15.30, xqg = 10.30, a« = 6, and § = 1.

16 T T T T T
“
|

14 r| y
|
|

|
12“

w0 |

0 10 20 30 40 50 60

Figure (4)

1.4 Case 3. The autonomous case of Eq.(1.2)

Consider Eq.(1.2) with a,, = a, where a € (0, 00) then Eq.(1.2) has the form

Tpi1 =0+ Tn , n=0,1,..., (1.13)
Tn—1

where the initial conditions z_;, z( are arbitrary positive numbers. Clearly,
the only equilibrium point of Eq.(1.13)is T =a + 1.
The linearized equation of Eq.(1.13) about the equilibrium point 7 = a + 1 is

1 n 1
a+1yn a+1

Yn+1 — Yn—1 = 0.

1.4.1 Local Stability
In this subsection we deal the local stability of Eq.(1.13).

Lemma 1.4.1 The following statements are true.

1. The equilibrium point T = a+ 1 of Eq.(1.13) is locally asymptotically stable
ifa > 1.

2. The equilibrium point T = a + 1 of Eq.(1.13) is unstable if 0 < a < 1.

Proof. The proof is followed directly by Theorem A and so will be omitted.
[
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1.4.2 Boundedness

Here, we investigate the bounded character of Eq.(1.13).

Theorem 1.4.2 Suppose that a > 1, then every positive solution of Eq.(1.13) is

bounded.

Proof. It follows from Eq.(1.13) that

XT2n
Ton—1"’
T2n—1
Ton—2 "

Ton4+1 = A +

Top = a +

Therefore

Ton—1 > a, and w9, o >a, foreveryn > 1.

Then

Ton Lon
<a+—, and w9, =a-+
Ton—1 a

Topt1 = @+

Then it follows by induction that

1 1 T_
$2n+1<(l+(1—|——+—2—|—..,)—|——n:a+
a a

and

1 1 i)
Ty <a+(l+-+—5+.)+—=a+
a a a a

The result now follows. =

Theorem 1.4.3 Assume that a > 1 then every solution of Eq.(1.13) is bounded

and persists.

Proof. Let {z,}>° , be a positive solution of Eq.(1.13), then

T

Tpy1 =0 + T
n—1

Again it follows from Eq.(1.13) that

T T
Tpy1 =a+—— <a+—.
Tn—1 a
Then
li <_¢ @’
imsup x =
Pn = 1-1 a—1

Then the result follows from (1.14) and (1.15). =

>a, foralln>1.

(1.14)

(1.15)
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1.4.3 Global attractor

In the following Theorem, we establish sufficient conditions for global attractor
of Eq.(1.13).

Theorem 1.4.4 Assume that a > 1.Then the equilibrium point T = a + 1is a
global attractor of Eq.(1.13).

Proof. Let f : [c,d]* — [c,d] be a function defined by f(u,v) = a + %. Assume
that (m, M) is a solution of the system

m= f(m,M), and M = f(M,m).

Then we get
(a—1)(M —m) =0,

Since a > 1, then we obtain
M = m.

It follows by Theorem B that 7 is a global attractor of Eq.(1.13) and then the
proof is complete. m

Remark 1.4.5 In case 3 this case has been treated by many others such as [Am-
leh]. Here we give an alternative proofs of our results.

Part II : Studying of Eq.(1.1)

In this part we investigate the behavior of the positive solutions of the dif-

ference equation
D

T
Tpy1 = ap + ——, forn >0,

n—1

where p is a positive real number, a, is a positive sequence and the initial
conditions z_;, x(y are positive real numbers.

1.5 Casel. Whena,=ac R"

In this case Eq.(1.1) takes the form

P

Tpy1 = a+ f” , n=20,1,2.... (1.16)
Lp—1
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1.5.1 Local Stability of the Equilibrium Points

At the present we discuss the local stability character of the solutions of Eq.(1.16).

It is easy to see that the only positive equilibrium point of Eq.(1.16) is given
by Z=a+ 1. Let f: (0,00)?> — (0,00) be a function defined by

:L-P
f(l’, y) =a+ y_p
Therefore )
Of(x,y)  paP~ and of(w,y)  pa?
ax - yp ’ ay o yp'i‘l'
We see that
of(z,z)  p of(xz,z)  p
ox _a—i—l_pl’ and oy a—l—l_pQ'

Then the linearized equation of Eq.(1.16) about T is

p p
a+1yn+a—|—1

Yn+1 — Yn—1 = 0.

Theorem 1.5.1 The following statements are valid:

(1) if p < a + 1, furthermore the positive equilibrium point T of Eq.(1.16) is
locally asymptotically stable, and is called a sink.

(it) If p > a+ 1, then the positive equilibrium point T of Eq.(1.16) is unstable,
and is called a repeller.

(iti) If p = a + 1, then the positive equilibrium point T of Eq.(1.16) is unstable,
and is called a nonhyperbolic point.

Proof. (i) We set p; = £, and p, = —£. So by Theorem A (a)

p p

-1 <0 — - —— —-1<0«= —-1<0.
| p1 | + po a1 axi
Also » »
1 —-2<0<&—=—= -1+—<0&s — < 1.
TP +a+1 a-+1
which is valid iff
p<a-+l1.

So T is locally asymptotically stable when p < a + 1.
(i) By Theorem A (d) we have

p
a+1

p
—1l=—=-1>0<<= > 1,
| p2 | a+1
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and » )
| l=—py|=———1- = 1.
| p1 | —| P2 | a+1 a+1
Thus 7 is unstable (repeller point) when p > a + 1.
(iii) By Theorem A (e) we have
p2=—1<:>—1ia =-1l& —p=—(a+l)ep=a+l,

and

p
2<0& —-2<0&p<2 1).
| p1 | < 1 < p<2a+1)

Thus 7 is unstable (repeller point) whenp >a+ 1. =

1.5.2 Boundedness of Solutions of Eq.(1.16)

In this subsection we discuss the suffiction conditions for bounded solution of
Eq.(1.16).

Theorem 1.5.2 If 0 < p < 1, consequently every positive solution of Eq.(1.16) is
bounded and persists.

Proof. We obtain from Eq.(1.16) that
Tpy1 > a, n>0.
Hence {z,} persists. It follows again of Eq.(1.16) that

o)
Ton41 <a-+ (7"1)1), n = O, 1,

Now we suppose the difference equation

Ynil = a + (%)p, n > 0. (1.17)

Let {y,} be a solution of Eq.(1.17) with yy = x¢. Thus, cleary

Toan+1 < Yn+1 (7"6527 Ton42 < yn+1)7 n = 07 17 cee e
We will establish that the sequence {y,} is bounded. Let

f(z) —a—l—z—z.

Then
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Therefore the function f is increasing and concave . Thus we obtain that there
is a unique fixed point y* of the equation f(y) = y. Likewise the function f
satisfies

(fy) —y)y—y") <0, yec(0,00).

By Theorem E y* is a global attractor of all positive solutions of Eq.(1.17) and
so {y,} is bounded. Then from Eq.(1.17) the sequence {z,} is so bounded. This
finishes the proof of the theorem. m

Example 1.5.3 Figure (5) shows the bounded solutions of the equilibrium point
T =240f Eq.(1.16) whenever x_; = 1.0323, vy = 2.441,a = 23, and p = 0.000000002.

E

1 iE Z 25 2 35 4 45 B BES

Figure (5)
Theorem 1.5.4 Assume that p > 4. Then Eq.(1.16) has unbounded solutions.

Proof. Note that for every solution {z,}>° ,of Eq.(1.16) the following in-
equality holds:

l‘p
Tnt1 > p—n, for n € N. (118)
T

n—1

Let y,, = Inx,,. It follows from (1.18) that
Ynt+1 = PYn + DYn—1 > 0. (1.19)
Note that the roots of the polynomial
p(A) = A* —pA+p,

are given by

pE/p*—4p
9

Since p > 4 we have that \; > 1. On the other hand we have

A17A2 -

2p

Ay = —————.
p++/p*—4p
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Hence if p > 4, both roots of p()\) are positive. Note that (1.19) can be rewritten
in the form

Yn+1 — )\lyn - /\2(yn - )\lyn—l) > 0.

Then we see that

Tn+41 T by
> 2, (1.20)
! <x2L1>
It follows that
L Tn—14) T1 \x To |\
s G G

Select x_; and z, so that
o >1, x9=2a"Y.

Then it follows by (1.20) that

L0 \xo A A A7
2 1 — 1 1
oy )Ranty =anty > > xgt,

-1

Ty > (

and consequently z, > xéy, n € N . Letting n — oo, then z,, — co. From which
the outcome takes after. m

1.5.3 Global Stability of Eq.(1.16)

Here we study the characteristic task of global stability of Eq.(1.16).

Theorem 1.5.5 Suppose that a > 1 and 0 < p < 1. Then the unique positive
equilibrium point of Eq.(1.16) is globally asymptotically stable.

Proof. By Theorem 1.5.1 (i) T is locally asymptotically stable. Thus it is
suffices prove that every positive solution of Eq.(1.16) tends to the unique pos-
itive equilibrium z. Let {z,}>° , be a solution of Eq.(1.16). By Theorem 1.5.2
{z,}22 _; is bounded. Thus we have

a <s=Iliminfz,, and S =limsupz, < .

Then we get from (1.16)

Sp
ﬁ.
We claim that S = s, otherwise S > s. We obtain from (1.21)

P
Sga—i—i—p, and s> a-+ (1.21)

sPS < sPa+ SP, and sSP > SPa + sP. (1.22)
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Thus we have

1P < g7,
or equivalently

sSP < SsP. (1.23)
It follows from Eq.(1.22) and Eq.(1.23) that

SPa + s < sPa + SP.

Hence
SPa—1) < sP(a—1).

which is impossible for ¢ > 1 . Hence the result follows. m

Example 1.5.6 Figure (6) shows the global attractivity of the equilibrium point
T = 1.2000 of Eq.(1.16) whenever x_, = 1.03, xqg = 2.441, a = 1.1, and p = 0.9.

Figure (6)

1.5.4 Oscillatory Solutions of Eq.(1.16)

Here we present the characteristic task of oscillatory solution of Eq.(1.16).

Theorem 1.5.7 Assume that 0 < p < 1, then every positive solution of Eq.(1.16)
oscillates about the equilibrium point T = a + 1 with semicycles of length two or
three and the extreme of every semicycle occurs at the first or the second term.

Proof. Let {z,}>° ; be a positive solution of Eq.(1.16). First, we present
every positive semicycle except possibly the first term has two or three terms.
Assume that zy_; <7, and 2z > 7, for some N € N. We obtain

D
NS a+l=T7
TN_1

TN+1 = a+
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If zx.1 >z, so we get

P
TNt

INp2=a+—F- >a+1=T7.
TN
Since p € (0, 1], we include that
D p D
TN +1 TN 41 TN+1
TNy2 =a+ p+ §a+_—;§a+—+§$N+1~
'y T a
So T < xyyo < xny1. Therefore
Tl
TN43 = a+ p+ <a+1l=m=.
TN+1

Then the proof is completed. =
Theorem 1.5.8 Eq.(1.16) has no periodic solutions of prime period two.

Proof. As the sake of contradiction. Assume that ..., z,y, z, v, ... be a periodic
solution of period two of Eq.(1.16). It press that

x:a—l—(%)p, and y:a+(§)p, (1.24)
which suggest that
y=a+ . (1.25)
rT—a

Substituting from (1.24) into (1.25) and after some calculation we get

(x —a)Pa? = (a(x — a) + 1)P. (1.26)
Taking the logarithm on both sides of (1.26), we acquire

fz)=@p@+1)In(zr —a)+plnz — plnfa(z —a) + 1] = 0. (1.27)

It is obvious that x = a + 1 is an obvious solution of (1.27). Presently we
examine that this is the unique solution of the equation (1.27). Now
(z —a)(az +pla(z —a) +1)) + (p+ 1)z
z(z—a)(a(z —a)+1) '

fla) =

Thus f(x) > 0, for € (a,c0), which implies that the f is strictly increasing
on the interval (a,c0). Hence, the equilibrium point 7 = a + 1 is the unique
solution of (1.27). From Eq.(1.26) we obtain y = a + 1 and consequently. This
means (a + 1,a + 1) is the unique solution of System (1.24). Finishing the proof
of the theorem. m
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1.6 Case 2. When a, be a periodic sequence of
period two

In this section we study the behavior of solution of Eq.(1.1) while a,, is a periodic
sequence of period two with «,5 € (0,00) and « # (. Consider ay, = «, and
a2n+1 = . Then we have

_ 5,
Ton1 = @+ 2,
o (1.28)
_ "2n+41
Tonte = P+ =
n

Now Eq.(1.1) can be rewritten in the following form:

P
Upp1 = a+ o8,

o (1.29)
Un+1 = 6 + ﬁ'

1.6.1 Locally stability

Here we discuss the local stability of System (1.29). It is easy to see that (u,7) =
(v + 1,5+ 1) is the unique positive equilibrium point of System (1.29).

Theorem 1.6.1 If p < M, then the positive equilibrium point (u,v) =
(e DP(F41)7

(+ 1,5+ 1) of System (1.29) is locally asymptotically stable.

Proof. We consider the map 7 on [0, c0) x [0, 00) such that

=[] - 15

Then we have

OTh(u,v)  puP~'oP and Ty (u,v)  pvP~?
ou ()2’ o ur

and
8T2(U,U) _ pup—l

ou VP

OTy(u,v) — poP'u?
o ()
Therefore the Jacobian matrix of T at (u,v) = (o« + 1,5+ 1) is

., and

J(EOZHB) = (up)12 pvli’p—lup

pul—
vP (vP)?

puP~1yP pyP—1 ]
)
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and the characteristic equation associated with (u,?) is

B+ (ot 1!

(a+1) (B+1) )

p(A) = X* = Ap(

Then we obtain
(B+1)Pt (a+1)Pt

e+ Gty

It follows by Theorem D that the equilibrium point (7,7) = (o + 1,5 + 1) of
System (1.29) is locally asymptotically stable if p < % Then the proof
is completed. m

A1 =0, )\2:10(

Example 1.6.2 Figure (7) shows the local stability of the equilibrium point

(w,7) = (21.6073,0.0780) of System (1.29) whenever uy = 2.43,vy = 0.4562,
a =0.76, 5 = 0.03, and p = 0.54.

2
x
I —Y
Es / 4
5 b /
i /
ot/
P ———
[ @ 23 32 i B &8 7@ 8

Figure (7)

1.6.2 Periodicity of Eq.(1.1)
In this subsection we investigate the excitons of periodic solutions of Eq.(1.1).

Theorem 1.6.3 Assume that {a,} = {a,5,,5,...}, with o # 5. Then Eq.(1.1)
has periodic solution of prime period two.

Proof. To prove that Eq.(1.1) possess a periodic solution {x,} of prime period
two, we must find positive numbers z_, z¢ such that
p p p D
Ty = —ax_1p+ xo, and xo = Pro ooy 4;95_1‘
) xg

(1.30)

Let x_; = z, and z( = y, then we obtain from (1.30)

r=a+>=, and y=p+ —. (1.31)
P yP
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Now we want to prove that (1.31) has a solution (z,y), + > 0, y > 0. From the
first relation of (1.31) we have

y=(r—a)r. (1.32)
From (1.32) and the second relation of (1.31) we get
1 P
r(r—a)r =+ @ —a)

or
P+l

rz—a)r —prx—a)—1=0.
Now define the function
f(:v):x(:v—a)%—ﬂ(x—a)—l, T > a. (1.33)
Then
lim f(z) = -1, and lim f(x) = cc.

r—at T—00

1

Hence Eq.(1.33) has at least one solution z > a. Then if y = (v — a)rz, we
have that the solution {z,}>° ; is periodic of prime period two. m

1.7 Case 3. When g, is a positive bounded sequence

In this section we assume that «,, is a positive bounded sequence

lim infa, =a >0, and lim supa, =b < oco. (1.34)

n—o0 n—o0

1.7.1 Boundedness

The primary theorem indicate to the boundedness and the persistence of the
positive solutions of Eq.(1.1).

Theorem 1.7.1 Assume 0 < p < 1. Therefore every positive solution of Eq.(1.1)
is bounded and persists.

Proof. The proof'is similar to the proof of Theorem 1.5.2 and will be omitted.
n

Lemma 1.7.2 Assume that 0 < p < 1. Let lim infa, = a > 0, and lim supa, =

n—oo n—oo

b < oo and {z,} be a positive solution of Eq.(1.1). Then

ab—1 L . ab—1
< lim infz, < lim supx, < )
b— n—00 n—00 a—1
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Proof. Assume
lim infx, =\, and lim supz, = u. (1.35)
Let ¢ > 0 for n > Ny(¢) we get
A—e<z,<pu+e and a—€e<a,<b+e
Therefore \
— €
xn+12a—e+(n+€)p. (1.36)
Taking the lim inf for Eq.(1.36). We obtain
)\Za—e+()\_€)p.
n—+e
Since € > 0 is arbitrary,
A= a+ (). (1.37)
n
Similarly
n< b+ () (1.38)
We get from equations (1.37) and (1.38) that
AP > an? + NP, and A\ < DA + 1P, (1.39)
Since 0 < p < 1 holds. Then we have
AP < nl—p’
or equivalently
AP < nAP. (1.40)

It follows from equations (1.39) and (1.40) that
an® + AP < bAP + P

So
nla—1) <A(b—1),

and we have - \ )
(W <,—p amd (Cpzi—l

a—1
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We obtain from Eq.(1.37) for all n > Ny(e) that

A a—1 ab-—1
A > ~)y > = )
_a+(77) _a—i—b_l -

Similarly from Eq.(1.38) we get

ab—1

< .
= a—1

Thus the proofis completed. =
Now define the sequence {y,} to be

Yn = @7 n = _1707 17 cey

Tn

where 7,, be a fixed solution of Eq.(1.1). Then Eq.(1.1) will be rewritten as
o+ (E )

an + (2P

Tp—1

(1.41)

Yn+1 =

Lemma 1.7.3 Let {7, } be a fixed positive solution of Eq.(1.41). Then the follow-
ing statements are true.

(1) Eq.(1.41) has a positive equilibrium solution 37 = 1.
(ii) Let {y,} be a solution of Eq.(1.41). Then except possibly for the first semi-

cycle, every solution of Eq.(1.41) has semicycle of length one.

Proof. (i) trivial.

(ii) Assume that for some n, y,,_1 > y,. Then (-¥»~) < 1 and

Yn—1

a, + (Z)P(Hn P g 4 (En)P
EorGE) et GRr (1.42)
ap + ()P an + (5277

Tp—1

Yn+1 =

Let {y,} be an finally oscillatory solution of Eq.(1.41) such as y, ;1 < 1 and
yn > 1. From part (1.42) it follows that y,,,1 < 1. Therefore the positive semicycle
has exactly one term. The proof for negative semicycle is similar. m

Lemma 1.7.4 Let {y,} be a fixed positive solution of Eq.(1.41). Suppose that
there exists an m € {1,2,...} such that

Yom—1 <1, and ya, > 1. (1.43)
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Then
Y1 <1, and yo, > 1, forn=m,m+1,.... (1.44)
Moreover, if
Yom—1 = 1, and Yo < 1. (1.45)
Then
Y1 >1, and y, <1, forn=mm+1,... (1.46)

Proof. Let {y,} be a solution of Eq.(1.41) such that Eq.(1.43) holds for an
m € {1,2,...}. we have

Tn—1 Tn—

Gt (P ant (2

Tn—1 Tn—1

a, + (j_n)p(?%)p N an + ( Tn )P

H
Il
=

Yom—-1 =

Working inductively we can easily prove that Eq.(1.44) is satisfied. Simi-
larly we can prove that if Eq.(1.45) holds for an m € {1,2,...}, then Eq.(1.46) is
satisfied. This completes the proof of the lemma. =

1.7.2 Global attractor of the solutions

Here we investigate the global stability of Eq.(1.1).

Theorem 1.7.5 Let {Z,} be a fixed solution of Eq.(1.1). Suppose that one of the
following holds:

(i)0<p§%.

(it) % <p<1lya>1and a(la—1) > b— 1.Then for every solution {x,} of
Eq.(1.1) the relation lim Z* = 1 is true.

n—oo "

Proof. (i) Let {y,} be a solution of Eq.(1.41). It is sufficient to prove that

limy, =1

n—oo

Suppose that there exists an m € {1,2,...} such that (1.43) or (1.45) . Without
loss of generality we may assume that (1.43) holds for an m € {1,2,...} and
0 < p < 1 is satisfied.

Let
= lim infy,, and (= lim supy,. (1.47)
also
7= lim inf7z,, and w = lim supZ,, (1.48)

n—oo n—o0
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and

5= (1.49)
T
Define rhe function /' by
T+ yP2P
F = 1.50
(2.9,2) = =73 (1.50)
for z,y.2 > 0. Then we have
oF _y(l—-z) 4 OF _pry (" 1)
Or — (v+yr)? dy  (v+yr)?
Let n > m. Using Eq.(1.41) we have
n :Fanaszn7y2n )
y2 +1 ( 2 T2n—1 y2n—1> (1-51)

— Tan41  Y2nt1
Yon+2 = F(a2n+l7 Ton ) Yon )

Since (1.43) holds by Lemma 3 we obtain the following:

Yon—1 < 17 and Yon
Yon Yon—1

>1, forn>m.

using Eq.(1.34), (1.47)-(1.51) and monotonic properties of ' we have

C\psP KB\p SP
< F 2= —F > F =
0 — (G,(S, ,U/) a+5p ) and [ (G,(S, <) a+5p )
or
b < apf + ¢PoP d P aC? + pPoP
R e iy T
Then
anMp_l + #21)—1(51? < C-pup < aﬂpcpfl + CZPfl(;p‘
Hence
acpup—l + M2p—15p < aupcpfl + C2p715p’
and so ¢
™+ (P S a4 ),
or ¢
Hyp—1 Hyp—1
2V (a(EVP _ §5P) < g — (Eyp1gP.
(u) ( (C) ) < (C)
Thus ¢ ¢ ¢
a> — OP(2)P < a — (2)1PgP,
. <u) < <u)

Since 0 < p < 1, we obtain
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Therefore

which implies that
¢ < p

Thus we get that ( = u. The proof is completed. (ii)Now suppose % <p<l,
a>1,and a(a — 1) > b — 1. Note that (})” < = and (7)? > {=1. Then it follows
by that (1.34), (1.47-1.51) and (})” < 2=} and (2)” > $={ hold. Then we obtain
WG et PGy sy
A p at ()P T a+(E)

)

and

Then

WPC < + (1.52)

at (7)) a+t
Since p < ( it follows that u(? < (uP. Therefore from (1.52) we get
P b=1y,p P b=1y),p
agb_l + (a—lzl_’tl S a,ub_l + (a—lZEl .
a—i—(ﬁ) a—i‘(m) a—i—(ﬁ) (l‘i‘(ﬁ)

Then
(— 2 () I C— (= e (1.53)
o+ (ED) ot ()" Tt () o+ (=0 ‘

Since % <p<l,a>1,and a(a — 1) > b — 1, we obtain from (1.53) that ¢ < u
and so ¢ = u. Then the proof is completed. m

Example 1.7.6 Figure (8) shows the global attractivity of the equilibrium point
T = 1 of Eq.(1.41) whenever T_, = 2.091, Top = 23.0192, y_; = 4.341, yo = 2.3134,
a = 0.2145, and p = 0.441.

3

=

Figure (8)
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1.7.3 Periodicity of Eq.(1.1)

In the following theorem we find the sufficient conditions for the existence of
two-periodic solutions for Eq.(1.1).

Theorem 1.7.7 Assume that 0 < p < 1 and {a,} is a periodic sequence of period
twos. Then Eq.(1.1) has a periodic solution of prime period two.

Proof. For Eq.(1.1) posses a periodic solution {z,} of prime period two, we
must find some positive numbers z_;, zg. Assume that {a,} = {ao, a1, a9,a4,...},
such that

Zo T
T_1 =21 =ag+ (—)p, and Tog = To = a1 + (_)p’ (154)
Tr_q Zo

We shall show that System (1.54) is consistent. We get from Eq.(1.54)

(.T,l — CL())(JTO — 0,1) =1. (155)

It follows that

ai1(rx_1 —ag) +1)? aog(ro —ay) + 1)°
($—1—ao)p+1:( 1( 1$p10) ) . and (xo_al)p-‘rl: (ao(wo xlgl) )

. (1.56)

We define a function F' by

F(z) = (z — aop) o , T > ag.
Then . ( 1y
ay +
a = F H)=1—-—<—>0.
(ao) o < O, and (ao + ) (ao n 1)p >

Now let a; < ag, then F' has a zero, say =_;, in the interval (ag,ap + 1), and
in view of equations (1.55) and (1.56) we get that Eq.(1.1) has a two-periodic
solution. Assume now that a; > a¢. We define a function G such that

it (ao(r —ay) +1)P

G)=(r—a o , T >a.
Then . ( 1y
ag +
S F )=1——%>0.
G<a1) ay < 07 (al + ) (al + 1)p >

Thus, G has a zero, say g, in the interval (a;, a; +1), and in view of equations
(1.55) and (1.56) we get that Eq.(1.1) has a two-periodic solution. =
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Theorem 1.7.8 Assume that {a,} =

{a, 8,0, 5, ...}, with o # B.Then every solu-

tion of Eq.(1.1) converges to a period two solution of Eq.(1.1).

Proof. We know by Theorem 1.7.1 that every positive solution of Eq.(1.1) is
bounded, therefore there are some positive constants /, L, s and S such that

[ = lim inf x9,,1,

n—oo

s = lim inf x,,,

and L = limsupxy, 1,

n—oo

and S = limsupza,.

Now we get from Eq.(1.1) that
Top4+1 = A2n + 3;2” ;
o (1.57)
Tont2 = Qont1 T i%:l
Therefore, it is easy to see from System (1.57) that
sP Sp
lzao—i—ﬁ, and L§a0+l_pa
and
P Ip
52a1+§, and S§a1+s—p
Then we obtain
LPl > agl? + s, and LIP < agl? + SP,
and
SPs>a;SP+1P, and Ss? <as? + LP.
So, we get
agl? + s? < LIP < LPl < apl? + SP,
and
a1 S? + 1P < SPs < SsP < ays” + LP.
Thus, we have
ap(LP —1P) <SP — s, and ay(SP —sP) < LP —[P. (1.58)

Thus it is clear from (1.58) that s = S and | = L. Now assume that lim xg,,; =
S and lim xs, = L. We want to proof that S # L. From System(1.57) we get

n—oo

P

L S
S:a+§, and L=+ —

P

Lr
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As thae sake of contradiction assume that L. = S, then

L=a+1, and S=p+1

thus o = § which is a contradiction. So lim x3,,1 # lim x5,. The proof is so

completed. m



Chapter 2

On Some Second Order
Difference Equations

2.1 Introduction

In this chapter we study the local stability, boundedness, global attractivity,
oscillatory, and the periodicity for the solutions of the rational difference equa-
tions

bx,,

14 2P

n—1

Tpy1 = ATy + , n>0,

and
b

Tpyl = ATp_ 1+ ———, N>
+1 1+ 1122

where the parameters a, b,and p € (0, c0) and the initial conditions x_1, 2 are
positive real numbers.

bxy,
14a2P

n—1

2.2 On the Equation z, ., = ar, +

Our aim in this section is to investigate the locally , boundedness, and the global
attractively for the positive solutions of the difference equation

bx,,

14 ab )’

n >0, (2.1)

Tpi1 = AT, +

with a,b € [0,00),p € (0,00), and the initial conditions z_;, zo are arbitrary
positive numbers.

29
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2.2.1 Local Stability of the Equilibrium Points

Here we investigate the equilibrium points of Eq.(2.1).

The equilibrium points of Eq.(2.1) are given by the relation

bz

14+2P

T =aT +

Ifb4+a > 1, and a < 1, then Eq.(2.1) has the equilibrium points 7 = 0 and
7= {/ﬁ — 1. Now let f : (0,00)?> — (0,00) be a function defined by

bu
fu,v) = au+ TFor
Therefore,
Of (u,v) b Of(u,v)  bpuv?”!
ou _a+1+vi” and su  (14op)%
Then we see that
SfE.T) ) sfEm |
su Ty Py and o (Q+aE

Then the linearized equation of Eq.(2.1) about 7 is

bpx?
(1+7P)2

)yn+(

Ynt1 — (CL + )yn_l =0.

14 2P
Theorem 2.2.1 The following statements are true:

(i) The equilibrium point 7 = 0 of Eq.(2.1) is locally asymptotically stable if
a+b<1.
(i1) The equilibrium point 7 = 0 of Eq.(2.1) is unstable if a + b > 1.
(iii) The equilibrium point 7 = 0 of Eq.(2.1) is stable if a + b = 1.

Proof. Since the linearized equation of Eq.(2.1) about the equilibrium point
T = 0 can be written in the following form

Ynt1 = (@ +0)y,, n >0,
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so, the characteristic equation of Eq.(2.1) about 7 = 0, is

A% — (a+b)A = 0.

Then, the proof of (i),(ii) follows immediately from Theorem A.

(iii) Let € > 0, and consider {x,}2° ; be a solution of Eq.(2.1) such that

|I_1|+|ZL’0|<5.

It suffices to show that
‘ T ‘< €.

Now,
bx 0

0 < |aa] = _bzo
1+ﬂf111

axo + < |(a + b)xo| = |zo| < 6.

Chose § = ¢ then |z;| < ¢ whenever a + b < 1 holds. Then, the result follows
by induction. m

2.2.2 Boundedness of the Solutions

Here we discuss the boundedness nature of the solutions of Eq.(2.1)

Lemma 2.2.2 Assume that a + b < 1, then every positive solution of Eq.(2.1) is
bounded.
Proof. Let {z,}°° ;| be a solution of Eq.(2.1). It follows from Eq.(2.1) that

bx,,

——— < (a+b)x,.
1+

Tpi1 = ATy +
Then in view of the proof of Theorem 4.2.1 , we have
1 < Zp.

Similary it is easy to see that

<z

e > n

< .Sy <1 < 7.
So every solution of Eq.(2.1) is bounded from above. =

Lemma 2.2.3 If a > 1, then the Eq.(2.1) has unbounded solutions.
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Proof. Consider {z,}° , be a solution of Eq.(2.1), then it follows that

Tn+1 > ATn,

SO
Ty > ATp_1 > ... > 4" Ty,

Then

lim x,, = oo.

n—oo

Thus, the proofis completed. m

2.2.3 Global Attractor of the Equilibrium Points of Eq.(2.1)

This subsection is devoted to investigate the global attractivity character of so-
lution of Eq.(2.1).

Theorem 2.2.4 Assume that a+b < 1, then the zero equilibrium point of Eq.(2.1)
is globally asymptotically stable.

Proof. We know by Theorem 2.2.1 that 7 = 0 is locally asymptotically stable
equilibrium point of Eq.(2.1) if a + b < 1, and so it suffices to show that 7 = 0 is
global attractor of Eq.(2.1) as follows

bx,, <
— 7% L
1+, —

n—1

0<xp41=0ax,+

Then the sequence {x,} is decreasing ,and bounded from below by zero and
since there is a unique equilibrium point Z = 0 in this case, then lim z, = 0.

n—oo

Then the proof is completed. =

Theorem 2.2.5 If a < 1 and a + b > 1,Then the positive equilibrium point T is a
global attractor of Eq.(2.1).

Proof. We can easily see that the function

bu
14 vP

g(u,v) = au+

is increasing in v and decreasing in v.Suppose that (m, M) is a solution of
the system
M =g(M,m), and m = g(m,M).
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We can see from Eq.(2.1), that

M_aM+13—]\i®P’ and m—am+%,
or ; ,
1_a:1+mp’ and 1—a=w.
We obtain from this
m = M.

By Theorem B, we can see that 7 is a global attractor of Eq.(2.1). Then the
proof is complete. m

Theorem 2.2.6 Let {x,}5° ;| be a nontrivial solution of Eq.(2.1). Then the fol-
lowing statements are true:

(i) Every semicycle, except perhaps for the first one, has at least two terms.

(i1)) The extreme in each semicycle occur at either the first term or the second.
Furthermore after the first, the remaining terms in a positive semicycle
are strictly decreasing and in a negative semicycle are strictly increasing.

Proof. We present the proofs for positive semicycles only. The proofs for
negative semicycles are similar and will be omitted.

(i) Assume that for some N > 0,

TN_1 < T and Iy > T.

Then
i b[L’N > T + bx
x =ax — > aT
N+ N ey 1477

=7.

(i1) Assume that for some N > 0, the first two terms in a positive semicycle
are ry and zy.;. Then
IN 2T, TNy >T

and

T 1 bx
N2 lazyi1 + ] =

- =1
IN41 TNl 1+ xy

1+z% +1+xp

The proof is completed. =
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Example 2.2.7 Figure (9) shows the global attractivity of the equilibrium point
T =00f Eq.(2.1) whenever x_, = 0.87, xtg = 0.9539, a = 0.2, b = 0.5, and p = 0.442.

H

sof "

2.8

48
a5 F
9.4
a3 \
22

o

© . . . P S

H z 3 4 B 8 7 2 El £ bl

Figure (9)

Example 2.2.8 Figure (10) shows that Eq.(2.1) has unbounded solutions with
the values x_1 = 1.537, xo = 3.019, a =5, b= 0.9, and p = 2.

L owte?
7 ;

¢ ‘ . h A et

H z 3 4 B 8 7 2 El £ bl

Figure (10)

Example 2.2.9 Figure (11) shows the global attractivity of the equilibrium point
T =4.1231 of Eq.(2.1) whenever x_; = 6.012, 2o = 2.34,a = 0.5, b =9, and p = 2.

iz

W

al

@

Figure (11)
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2.3 On the Equation z, .1 = ax,_1 + #’

In this section we deal the locally, global attractivity, and the boundedness for
the solutions of the rational difference equation

b

14 ab’

n >0, (2.2)

Tyl = ATp—1 +

where the parameters a,b, and p are nonnegative real numbers and initial
conditions z_;, and z, are nonnegative real numbers.

2.3.1 Local Stability of the Equilibrium Points

This subsection deals with study the local stability character of the positive
equilibrium point of Eq.(2.2).

The equilibrium points of Eq.(2.2) are given by the relation

b
14zP

T =ax +

If a < 1, then the unigne positive equilibrium point of Eq.(2.2) is given by

Fati= L
1—a

Let f : (0,00)* — (0,00) be a function defined by

fu,v) = av+ ] —fup
Therefore, -
Set
P = —%E”H(l —a)?, and py=a

Then the linearized equation of Eq.(2.2) about 7 is

Yn+1 + %fpﬂ(l — a)2yn —ay,_1 = 0.

Theorem 2.3.1 Assume that a < 1 and p > 1. Then the following statments are
true
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1 Ifb

P 1—a
b > - , (2.3)
(p—l)p(p_l)

then the equilibrium point of Eq.(2.2) is locally asymptotically stable.

(i) Ifb
P 1—a

’< (p—l)ll’(p_l

), (2.4)

then the equilibrium point of Eq.(2.2) is unstable, in fact is a saddle point.

(ii1) Ifo

1 —

b= —L (=9, (2.5)
(p—1)r P—1

then the equilibrium point of Eq.(2.2) is a nonhyperbolic point.

Proof. (i) By Theorem A we get

bpzP~1 D_ _
m<1@a+6x’j+l(l—a)<1@x<(

Ip1] + |p2| = a +
p(1—a)

Let g(x) = z(1—a)+2P"(1—a) —b.A simple calculation, using condition (2.3),
shows that

b 1 b 1 b
g((p(l—a))w ):<p(1_a)>p+ (1_a)+p<1_a)(1_a)_b<0
b% o é P 1—a
@(5)p (1—a) +p<b<:>b2(p_1);(p_1).

Then, since lim g(z) = oo, 7! < -2

00 p(l—a)"

(i1) The condition p? + 4p, > 0 of Theorem A is always satisfied and so 7 is
unstable if Z7t! < ———. By condition (2.4), we have

p(l—a)’
b 1 b 1 b
g pHl) = (1l —a)+ 1—a)—>b>0.
()™ = e -0+ s -
Then since ¢(0) < 0,7 < 2.
(iii) The condition| p; |=| 1 — p, | is equivalent to 77! = -t Similarly by

p(l—a)’
condition (2.5), we have g((;5%;)7*) = 0. Then 7! = _>—~. Then the proof is
completed. m
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2.3.2 Boundedness Charactor of Eq.(2.2)

In this subsection, we study the characteristic task of boundedness of solutions
Eq.(2.2).

Theorem 2.3.2 If a < 1, then Eq.(2.2) is bounded and persists.

Proof. Let {z,}>° , be a solution of Eq.(2.2) it follows from Eq.(2.2) that

Tpa1l = ATp_1 + T 7 < axn—1 + 0.
n
Therefore
lim supz, < = M.
n—oo — Q

Thus {z,};° _, is bounded from above. Again it follows from Eq.(2.2) that

b - b S b
Lty = T4an — 14 (&)

Tptl1 = ATp—1 + =m.

Then {xz,} is bounded from blow too. Then the result is followed. =
Theorem 2.3.3 If a > 1, then Eq.(2.2) has unbounded solutions.

Proof. Let {z,}°° ;| be a solution of Eq.(2.2). We obtain from Eq.(2.2) that

Tp41 = ATp—1 + > ATp—1,

1+,

that is
Tp > ATy > Q2Tp_1 > ... > a"Ty.

It follows that lim x,, = co. Then the proofis completed. m

n—oo

2.3.3 Global attractor

This subsection is devoted to investigate the global attractivity character of so-
lutions of Eq.(2.2).

Theorem 2.3.4 Let 0 < p < 1 and a < 1.Then every positive solution of Eq.(2.2)
converges to T.
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Proof. It was shown by Theorem 2.3.2 that every solution {z,,}>° , of Eq.(2.2)
is bounded. Thus it follows

lim infx, =1, and limsupzx, =L

n—oo

As the sake of contraduction assume that /| < L. We see from Eq.(2.2) that

<l<L<aL+

I
Ry 7 1417

which implies that

b — I <IP <L’ <

—a 1—a

i.e.,
(L-1)<0

which gives a contradiction. Hence the result follows. m

Example 2.3.5 Figure (12) shows the global attractivity of the equilibrium point
T =38.1118 of Eq.(2.2) whenever x_; =3.3124 , 1o = 1.63,a =0.1,b =9, and p =
0.7.

15

35

2.3.4 Oscillatory Solutions of Eq.(2.2)

In this subsection, we study the characteristic task of oscillatory solutions of
Eq.(2.2).

Theorem 2.3.6 Let {x,}>° , be a positive solution of Eq.(2.2) which consists of

at least two semicycles. Then {z,}°° _, is oscillatory. Moreover, with the possible
exception of the first semi-cycle has length 1.
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Proof. It suffices to consider the following two cases.

Case 1. Suppose zy_; < T < zy. Then

e _ < :_’
TN+l = ATN-1 + 1“‘37% axr + 1427 T
and
+ b > ax + b z
x =ar — > aT =T.
S R 1+
Case 2. Suppose zy < T < xy_1. Then
+ > ar + b
T = axryn_ aT =
N+1 N-1 11 T
b
and = arNy+ ——— < ax + =
N2 MU, 1+

The proof is complete. =

g

&l



Chapter 3

On Some Higher Order
Difference Equations

3.1 Introduction

In this chapter we investigate the global attractivity, and the boundedness for
the solutions of the rational difference equation

T =« — n>0
e Azl + Bal -

n—m

(3.1)

where the parameters «, 5,7, A, B, p, and ¢ € (0, c0) and the initial conditions
Ty, T_141, .., T_1,To Where | = max{k, m} are positive real numbers.

The work of this section divided into two parts; Part I concerned with the
special cases of Eq.(3.1) and Part I deals with the general Eq.(3.1).

Part 1

Here, we study the following cases of Eq.(3.1).

1. Whenever A = v = 0 then Eq.(3.1) has the form

D
an—k

Bzd_ 7

n—m

Tpi1 =+ n > 0. (3.2)

2. Whenever A = 0 then Eq.(3.1) has the form

61‘27]{ + Wl‘ngm
Ba? ’

n—m

Tpy1 = @

40
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or )
B,
Tpi1 =C + Bmg_fn, n >0, (3.3)
where C' = a + 3.
3. Whenever § = B = 0 then Eq.(3.1) has the form
VT
Tpy1 =+ AP n > 0. (3.4)
4. Whenever B = 0 then Eq.(3.1) has the form
Bxi—k + ryx%—m
Tnt1 = & Al’i_k ’
or .
’yxn—m
=D > .
Tpil + Y n >0, (3.5)
where D = o + %.
5. Whenever 5 = 0 then Eq.(3.1) has the form
Yy
— n—m > . .
Tpp1 =+ A7+ Bal n>0 (3.6)
6. Whenever v = 0 then Eq.(3.1) has the form
B,
Tpy1 =+ A+ Bal n > 0. 3.7)

In this part we study the special cases of Eq.(3.1).

3.2 Case 1. Study of Eq.(3.2)

In this section, we study the local stability, the boundedness, global attractivity,

oscillatery, and periodicity for the solutions of the equation

p
anfk

Bzt

n—m

Tpt1 =+ n > 0.
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3.2.1 Local Stability of the Equilibrium Point of Eq.(3.2)

It is easy to see that Eq.(3.2) has a unique positive equilibrium point and is
given by

_ paP

=+ Byl

Let f : (0,00)* — (0,00) be a function defined by

_ B
f(u,v)—oz—l—ﬁ.
Therefore,
of (uyv)  pur! of(wv) gl
ou =E vl and ov =k (v1)2 7

where F = %. Set

p1 = EpzP 7' and p, = —EqzP .

Then the linearized equation of Eq.(3.2) about 7 is

Ynt+1 + P2Yn—m + D1Yn—k = 0,

where p; = — f,(7,7), and p; = —f,(T,T). whose characteristic equation is

AL Lo XN = 0.

Theorem 3.2.1 If7T < #\/m, then the positive equilibrium point T of Eq.(3.2)

is locally asymptotically stable, and is called a sink.

Proof. We set p; = EpzP~%!, and p, = —Eqz? 9 '. Then

Ip1] + |p2| <1< EpzP~ 9t + EqzP~ 7! < 1.

which is valid iff
1
el < ——
E(p+q)
So by Theorem A 7 is locally asymptotically stable when 7 < 1

P=17{/E(pt+q) -
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3.2.2 Boundedness of Eq.(3.2)

Here, we investigate the bounded character of Eq.(3.2).
Theorem 3.2.2 If 0 < p < 1, then the Eq.(3.2) is bounded and persists.

Proof. Assume that {z,} be a solution of Eq.(3.2). We obtain from Eq.(3.2)
that
Tpy1 > «, forn > 0.

Hence {z,} persists. It follows again from Eq.(3.2) that

Tnt1 S o+ foz—k’

8
Bat-®

where L = Now we consider the difference equation

Yn+1 =+ Ly?, forn > 0. (3.8)

Let {y,} be a solution of Eq.(3.8) with yy = 2. Then obviously
Tpi1 < Ynp1, forn=0,1,....
We shall prove that the sequence {y, } is bounded. Let
f(z) = a+ LaP.

Then
f(z)=Lpz*~t >0, and f'(z)= Lp(p —1)2"2 <0.

Therefore the function f is increasing and concave . Thus we obtain that there
is a unique fixed point y* of the equation f(y) = y. Also the function [ satisfies

(f(y)—y)y—y") <0, ye(0,00).

It follows by Theorem C that y* is a global attractor of all positive solutions
of Eq.(3.8) and so {y,} is bounded. Therefore from Eq.(3.2) the sequence {z,} is
also bounded. This completes the proof of the theorem. m

3.2.3 Global attractor

Here we study the global asymptotic stability of the positive solutions of Eq.(3.2).

Theorem 3.2.3 Assume that 0 < p <1< q,a > E(p+q— 1)qu1»+*1. Then every
positive solution of Eq.(3.2) converges to the unique positive equilibrium point T
of Eq.(3.2).
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Proof. Note that when 0 < p < 1 < ¢, it was shown in Theorem 3.2.2 that
every positive solution of Eq.(3.2) is bounded. Then we have the following

s = lim infz,, and S = lim supuz,.

n—oo n—oo

It is clear that s < S. We want to proof that s > S. Now it is easy to see from
Eq.(3.2) that

sP P

s>a+ F—, and S§a+ES—.
Sq sd

Thus we have

$S1> aS!+ Es?, and s%S < as? + ESP.

Thus

as? 189 4 FsPsi™! < 98971 + ESPSIT,
Then we get

SIS — 5) < B(SPet — gttty
So

Gpta—1 _ gp+a—1
aST il < | 5 ) (3.9)
— 5

If we consider the function 27771 then there exists a c € (s, S) such that

Spta—1 _ cptg—1

S —s

=(p+q—1)FT"T2 < (p+q—1)8PT72 (3.10)

Theen from (3.9) and (3.10) we get

Oqu_lsq_l S E(p + q— 1)5’?"*“1_2'

or
aS' s < B(p+q—1).

Since S > « and s < a. Then we obtain

aaPatt = PP < B(p+q—1).

which contradicts to 0 < p < 1 < ¢. Which implies that s = S. Thus the proof
is complete. =
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Example 3.2.4 Figure (13) shows the global attractivity of the equilibrium point
T = 1.1837 of Eq.(3.2) whenever x_, = 5.6487, vy = 1.0231, p =0.5,¢ = 0.9, « = 0.7,
£ =0.19, and B = 0.52.

Figure (13)

3.2.4 Oscillatery of the solutions for Eq.(3.2)

In the next theorem, we study the oscillatery character of Eq.(3.2).

Theorem 3.2.5 Assume that k is odd and m is even and m < k, then Eq.(3.2)
has oscillatory solutions.

Proof. Case (1) let {x,} be a solution of Eq.(3.2)with

T gy T fyly @1 > T,  and T_pi1, Topmit, ..., To < T

We get from Eq.(3.2) that

Ba? TP
T, =a+ qk Za—l—ﬁ_ =17,
xl,, Bzi
and )
xP
Ty = a+ _qm+1<a+ﬁ_ =7
Bz, Bz

Then, the result follows by induction.

Case (2) let

Ty Tty Lo > T, and T_jpy 1, T pi1,...,0_1 < T.

is similary the case (1). Then it will be omitted. m
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Example 3.2.6 Figure (14) shows the oscillatory solutions of Eq.(3.2) whenever
v 1 = 1.6487, 19 = 2.0231, @ = 0.23, p = 0.2, g = 2, 3 = 0.9, and B = 0.5.
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Figure (14)

3.2.5 Periodicity of the solutions

The next theorem deals with the existence of periodic solutions to Eq.(3.2).

Theorem 3.2.7 Let k is odd and m is even. If 0 < p < 1 < q, then Eq.(3.2) has
periodic solutions of period two.

Proof. Let {z,} be a solution of Eq.(3.2) with the initial values z_;, and z,
such that

aBx{ + pa’, aBx? | + [}

r_1= Bxg , and Ty = B.’Eq_l (311)
Let x_ = z, and 2y = y, then we obtain from (3.11)
_ Ba? -~ By?
x—a+B—yq, and y—oH—qu. (3.12)

Now we want to prove that (3.12) has a solution (z,y), x > 0, y > 0. From the
first relation of (3.12) we have

ﬂ%x%

(3.13)
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Now define the function

1 1 p pta  p2—d> 1-p
f(x) = —l((é)axi - (E)Tx ¢ (r—a)7)—a, > (3.14)
(r —a)a B B
Then
lim+f(x) =00, lim f(z)=—a.
Hence Eq.(3.14) has at least one solution z > «. Then if § = —£27 _ we

Ba4(z—a)4
have that the solution {z,}° , is periodic of prime period two. Thus the proof
is complete. =

Example 3.2.8 Figure (15) shows the periodicity solutions of Eq.(3.2) whenever
w1 = 1737, 19 = 2423, 0 = 0.7, p=0.2, ¢ = 4, B = 0.5, and B = 0.32.

I
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Figure (15)

3.3 Case 2. Study of Eq.(3.3)

This equation is similar of Eq.(3.2) and its investigation is similar to Eq.(3.2)
and so will be omitted.

3.4 Case 3. Study of Eq.(3.4)

The proofs of the theorems in this section are similar to the proofs of the theo-
rems in section 2 and will be left to the reader.

Theorem 3.4.1 If7T < #\/m, then the positive equilibrium point T of Eq.(3.4)

is locally asymptotically stable, and is called a sink.
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Theorem 3.4.2 If 0 < q < 1, then the Eq.(3.4) is bounded and persists.

Theorem 3.4.3 Assume that 0 < ¢ < 1 <p,a > F(q+p— 1),),2“, Then every

positive solution of Eq.(3.4) converges to the unique positive equilibrium point T
of Eq.(3.4).

Theorem 3.4.4 Assume that m is odd and k is even and k < m, then Eq.(3.4)
has oscillatory solutions.

Theorem 3.4.5 Let m is odd and k is even. If 0 < g <1 < p, then Eq.(3.4) has
periodic solutions of period two.

3.5 Case 4. Study of Eq.(3.5)

This equation is similar of Eq.(3.4) and its investigation is similar to Eq.(3.4)
and so will be omitted.

3.6 Case 5. Study of Eq.(3.6)

Eq.(3.6) has a unique positive equilibrium point and is given by
paP

=t A B

Let f : (0,00)* — (0,0) be a function defined by

pu?

f(u,?}) :a+—Aup+anq-

Therefore,

Of (u,v)  ABpviuP~! Of (u,v) BBqui—tup

= and = —

du (Aup + Bu1)?’ v (Aur + Bv1)?’
Set
Aﬁpfqﬂ)fl q Bﬁqqurp*l
U=y Bz 20 2T T (am f B

Then the linearized equation of Eq.(3.6) about 7 is

Yn+1 + P2Yn—m + P1Yn—k = 07

where p; = — f,(7,7), and p; = —f,(T,T). whose characteristic equation is

AL po AT L = 0.
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3.6.1 Local Stability of the Equilibrium Points of Eq.(3.6)

Here we establish the local stability of the equilibrium points of Eq.(3.6).

Theorem 3.6.1 If ; Agﬁig;q)z < 53(2 )+ then the positive equilibrium point T of

Eq.(3.6) is locally asymptotically stable, and is called a sink.

Proof. We set p; = %, and p; = —%. Therefore
ApBpzatrt Bpgzatr1
<l& <1
pil + Il (Az% + Bz%)? ' (A7 + Bz)?
which is valid iff
zpta-1 1
< .
(Az” + Bz?)* ~ BB(p+4q)

So by Theorem A 7 is locally asymptotically stable when | Agﬁ:g;q)z < 35 (; vt

3.6.2 Boundedness of Eq.(3.6)

Here, we investigate the bounded character of Eq.(3.6).
Theorem 3.6.2 If 0 < p < 1, then the Eq.(3.6) is bounded and persists.

Proof. Assume that {z,} be a solution of Eq.(3.6). We obtain from Eq.(3.6)
that

Tpy1 >, forn > 0.
Hence {z,} persists. It follows again from Eq.(3.6) that
p p

x T
T <o+ —"F <o 0k for > 0.
= AaP + Bat — Bat’ -

The rest of the proof is similar to the proof of the Theorem 3.2.2 and will be
omitted. m

3.6.3 Global Stability of Eq.(3.6)

In this section we investigate the global asymptotic stability of Eq.(3.6).
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Theorem 3.6.3 The positive equilibrium point T is a global attractor of Eq.(3.6).
If

(AM” + Bm®)(Am? + BM?) # BB() o' 'MPH~ 4y "ot A ) (3.15)

=1 =1

where M is given by M = o + %.

Proof. We can see that the function

pu?

flwo) =0t G B

is increasing in u and decreasing in v. Since Eq.(3.6) is bounded by Theorem
3.5.2. Suppose that (m, M) is a solution of the system

M= f(M,m), and m = f(m,M).

We obtain from Eq.(3.6) that

MP P
b and m=a-+ pm

Meay P00 e
T AMP - B AmP + BM1

Thus

(M —m)(AM” + Bm?)(Am? + BMY) — BB(MPT? — mP*?) = (.

Then we obtain

(M —m)[(AM” + Bm®)(Am? + BM?) — BB(> o' "M 43 "aPr = M1)] = 0.
=1 =1

Seine the condition (3.15) holds, then we get
M=m
It follows by Theorem B that 7 is a global attractor of Eq.(3.6), and then the

proof is complete. m

Example 3.6.4 Figure (16) shows the global attractivity of the equilibrium point
of Eq.(3.6) whenever x_, = 5.4235, xg = 8.987, p = 0.2, ¢ = 0.3, a = 0.6, 8 = 0.4,
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A =0.4521, and B = 1.563.

@wom @ s m om w @ ©

Figure (16)

3.7 Case 6: Study of Eq.(3.7)

This equation is the same of Eq.(3.6) and its investigation is similar to Eq.(3.6)
and so will be omitted.

Part 11

Now we will investigate the behavior of the solutions of Eq.(3.1).

3.7.0.1 Local Stability of Equilibrium Points

In this section we study the local stability character of the positive equilibrium
points of Eq.(3.1). Eq.(3.1) has a unique positive equilibrium point and is given
by

_ L BzP + vz

r =« —_—.
AP + BT1

Let f : (0,00)* — (0,00) be a function defined by

B puP + yv?
flu,v) =a+ A 1 Bui

Therefore,

Of(uv) _pow(BS—Ay) o Of(wv)  quv(BS — Ay)

ou  (Auwr + Bve)?2 o (Aup + Bvi)?
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Set
xPTa-1(BR — A TPTa-1(BR — A
p = PETBA - Ay) g, = T (BA - Ay)
(Az? + B1?)? (Az? + B79)?

Then the linearized equation of Eq.(3.1) about 7 is

Yn+1 + P2Yn—m + D1Yn—k = 07

where p; = — f,(7,7), and p; = — f,(T,T). whose characteristic equation is

AL AT 4 py =0,

zpta—1

A [3 o, . oy
T.heorepl 371 If £ < 5 and AT e < .(p+q)(1§BfAv)’ then t‘he positive ?quzlzb-
rium point T of Eq.(3.1) is locally asymptotically stable, and is called a sink.

Proof. We set p; = %, and p, = —%. So by Theorem A
paPt (BB — Ay) | qzPt N (BB — Ay)
<l& < 1.
which is valid iff
a1 1

(A7 + BxY)? ~ (p+ q) (BB — Ay)’

Fpta—1

So 7 is locally asymptotically stable when A BE < i é 7y ™

3.7.0.2 Boundedness of Eq.(3.1)

Here, we study the bounded character of Eq.(3.1).
Theorem 3.7.2 Every solution of Eq.(3.1) is bounded and persists.

Proof. Let {z,} be a positive solution of Eq.(3.1). We obtain from Eq.(3.1)

that
Tpy1 >, for n>0.

Hence {z,} persists. It follows again from Eq.(3.1) that

sz—k+_7x%—m

Tl = A Ax? 4+ Bz},
IIlaD({/37,y}'(lhv—k + a%1—7n> . IIlaJ({%37’y}’ - M
min{ A, B}(Tyn—k + Tn-m) min{ A, B} '
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Thus we get

max{/3, v}

0<a<z, < -
@S Ins o min{ A, B}

=M < oo, foralln>1.

Therefore every solution of Eq.(3.1) is bounded and persists. Hence the result
holds. =

3.7.0.3 Global Stability of Eq.(3.1)

In this section we investigate the global asymptotic stability of Eq.(3.1).

Zaerq*iMi*l) 7é (AMP+qu)(Amp—|—
=1
BM?Y), and % < %, then the positive equilibrium point T is a global attractor of

Eq.(3.1).

Theorem 3.7.3 If (Bf—Ay)(> o' MPa-it
=1

Proof. We can see that the function

B BuP + yvi
) =t o B

is increasing in v and decreasing in v. Suppose that (m, M) is a solution of
the system
M= f(M,m), and m= f(m,M).

We obtain from Eq.(3.1) that

BMP + yma BmP + y M1
M=oy P2 Tom d meqs 2 M
CTAMP ¢ e AR SOt P T B

Thus

(M—m)[(BB—AV)(Zai_lMp+q_i+2ap+q_iMi_l)—(AMP+qu)(Amp+BMq)] = 0.
i—1 i=1

Since B > Av,

(BB — Av)(iaiilM”q’i + ia”*q’iMi*l) # (AM? + Bm?)(AmP + BM?) hold.
=1 =1
Then we obtain
m = M.

It follows by Theorem B that 7 is a global attractor of Eq.(3.1), and then the
proof is complete. m
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Example 3.7.4 Figure (17) shows the global attractivity of the equilibrium point
of Eq.(3.1) whenever x_; = 2.4235, o = 1.987, p = 0.7, ¢ = 0.9, « = 0.6, § = 0.4,
~v=0.2, A=0.4521, and B = 0.52.

26

24 f

22\

Figure (17)



Chapter 4

On Some Systems of Difference
Equations

4.1 Introduction

In this chapter, we investigate the dynamic behavior of the positive solutions of
the following system of difference equations.

Up—1 dvn—l JWn_—1
Un+1 = TP Pl ,Un+1 = q a ,wn+1 = o = ,n e NO (41)
b + CUp—3Wp 1 e+ fwn—?)un—l h + Iun—?)vn—l

where the initial conditions u_;,v_;,w; (i = 0,1,2,3) are non-negative real
numbers and the parameters a,b,c,d, e, f,g, h,I,p,q,r are positive real numbers.

The hypothesis of discrete dynamic of systems of grew enormously amid the
most recent thirty years of the twentieth century. One of the reasons for this is a
necessity for some techniques which can be used in investigating equations aris-
ing in mathematical models describing real life situations in population biology,
economic, probability theory, genetics, psychology.

[7] investigated the periodicity of the positive solutions of the system

_ 1 __Yn
Tl = —, Ynp1 = — .
Yn Tn—1Yn—1

[32] el al. studied the system of two nonlinear difference equation
Tn—1 Yn—1

Tn+l = > n+l — — . -
o YnTn-1 + 1 Y+l TpYn—1 + 1

We will study the following cases:
Case 1. prl =q1 =" = 0.

Case 2. prl =(q1 =T = 1.

55
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4.2 Case 1. System (4.1) when p;, = ¢, =r; =0.

We will investigate the stability of the two equilibrium points of System (4.1)
when p; = ¢; = r; = 0. Then from System (4.1) we get

A1 dvn gWn—1

Mt = L = I e N, 4.2
b+ o " T e+ fwl g T b T ‘ 42

Un+1 =

=

By the change of variables u, = (%) z,, v, = (B) Py, w, = (%)%zn System (4.2)

can be rewritten as

h
I

QTp_1 BYn-1 VYn-1
Tptl = ———, el = y Zpy1 = ———F—, NnEN 4.3
+1 1+y£_3 Yn+1 142, +1 11 2_3 0 (4.3)
where a = ¢, =42 y=4

In this section, we investigate the stability of the two equilibrium points of
System (4.3). When «, 3,7 € (0,1), it is easy to see that (71,7,,%z1) = (0,0,0) is
the unique equilibrium point of System (4.3). When «, 5,7~ € (1, 00), the unique
positive equilibrium point of System (4.3) is given by (T2, 75, 2z2) = ((7 — 1)%, (v —

)7, (8 —1)7).

4.2.1 Local stability of the Equilibrium Points

In this subsection we find conditions so that the zero equilibrium (7,,7,,%1) of
System (4.3) is stable and the positive equilibrium (7», 75, Z>) of System (4.3) is
unstable.

Theorem 4.2.1 The following statements hold:

(1) If o, B,y € (0,1), then the equilibrium point (71,7,,z1) = (0,0,0) of System
(4.3) is locally asymptotically stable.

(1) If « € (1,00) or € (1,00) or v € (1,00), then the equilibrium point
(Z1,74,21) = (0,0,0) of System (4.3) is unstable.

(i) If o, 5,y € (1,00), then the positive equilibrium point (T3,7y,Z2) = ((7 —
1)5, (o — 1)%, (B — 1)%) of System (4.3) is unstable.

Proof. We will rewrite System (4.3) in the form

Xo1 = F(Xy), (4.4)
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where X,, = (Zn, -, T3, Yn, -+ Yn—3, Zns s Zn_3) . and the map F is given by

to 1+s%
tl tU
tg tl
ts to
50 ﬁslig
F 81 _ So
52 S1
S3 So
Ko 17-11:1513
kl kO
kQ kl
k3 k2

The linearized System of (4.4) about the equilibrium point X = (0,...,0)7 is
given by

Xn+1 - JF(XO)Xn7

where

DO OO OO R OWoOoO oo o
OO OO OO o oo
OO R OO o oo
_ OO OO oo oo oo oo

DO OO DO DODDODODODO HO
DO OO, O
[ Rl Bl e Wi e Wi e Wi B o Bl o B S o B e il
(= M el e M e i an M an M e S oo M e B an S o i et
[ I e il e Rl e Bl o Tl e B S o Wil e Bl o Wl e Wl
DO O DO DODODODOODODO OO
OR O OO0 Oo oo
(= N e i s M e B oo i o Wi e B o Wi e B e Bl e Wi

Thus the characteristic equation of J(X) is given by
M2 — )X = B)(N\ —~) =0. (4.5)

Then we have the following:

(1) If o, 8,7 € (0,1), all the roots of the Eq.(4.5) lie inside the open unit disk
|A| < 1. So, the unique equilibrium point (71,7,,%z1) = (0,0,0) of System (4.3) is
locally asymptotically stable.

(i1) It is clearly that if & € (1,00) or € (1,00) or v € (1,00), then some
roots of Eq.(4.5) have absolute value greater that one. Thus, the equilibrium
point (Z1,7;,21) = (0,0,0) of System (4.3) is unstable.
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(iii) The linearized system of (4.4) about the positive equilibrium point (72, 75, Z2)

is given by X, .1 = Jp(X, 5,)X,, Where

T
Tp—1
Tp—2
Tp-3

Yn
m= | L Te(@0) =
Yn—2
Yn—3

Zn
Zn—1
Zn—2
Zn—3

DO ODODDODDODDODDODODODO KO
OO0 O RO
DO O—HOOO
oo ocococolgooc oo
OO0 oo OoORrRrROOO0 OO
OO0 oo RO, OOOO
OO OHR OO OO
cooQoocoooocooo
OO OO OO
OR OFR OO0 OO
H O OO OO
DO DD DD ODDODDODODOO

and C = —

The characteristic equation of Jr(X, 5,) is given by

p(N) = A2 — 3X0 4 33% A6 ppgl2T Wigﬁyl)(v -1

Now

(a—1)(B-1(H-1)
afy

p(l) = —rpg <0 and /\limp(/\) = 00.

Then p(\) has at least one root in the interval (1,00). So, by Theorem D if
a, 3,7 € (1,00), then the positive equilibrium point (72,75, 22) = ((7 — 1)5, (v —
1)%, (B — 1)%) of System (4.3) is unstable. This completes the proof. m

4.2.2 Global Stability of System (4.3)

In the following theorem, we study the convergency of the solutions of System
(4.3) to its zero equilibrium point.

Theorem 4.2.2 If o, 3,7 € (0,1), then the equilibrium point (71,7y,,z1) = (0,0,0)
of System (4.3) is globally asymptotically stable.



Ch 4 On some Systems of Diff-Eq 59

Proof. We proved in Theorem 4.2.1 that if o, 5,7 € (0,1), then the equilib-
rium point (71,7,,%1) = (0,0,0) of System (4.3) is locally asymptotically stable.
Hence, it suffices to show that

lim (2, Yn, 2,) = (0,0,0).

n—oo

We have from System (4.3) that

ATy ﬁynfl
O<xn :—<a$n770<n :—S n—1,
= +1 1—|—y2_3 = 1 =S Ynta 1+, BYn—1
YZn—1
0 < zp1=——7— < 17vz,_1, orn € Ny.
= +1 1+x%_3 =7 1 f 0

Then it follows by induction that

0< w9, <a"v_;, 0<ys_; <P "y_i, 0< 29, <24, (4.6)

where z_;,y_;,z_; (i = 0, 1) are the initial conditions. Consequently, by taking
limits of inequalities in (4.6) when «, 5, € (0,1), we get lim (z,,, Yn, 2,) = (0,0, 0).

This completes the proof. m

Example 4.2.3 Figure (18) shows the global attractivity of the zero equilibrium
point T of System (4.3) for the values « = 0.9, 5 =0.2,v= .5 p=2,¢q= 0.3, and
r = 5 whenever x_3 = 1.04, x_5 = 2.6, v = 1.02, g = 3.04, y_ 3 = 1.3, y_o = 3.9,
Y1 = 04, Yo = ].2, Z_3 = 15, Z_9 = 23, 21 = 097 and 20 = 0.006.

15 20 25 30 32

Figure (18)

4.2.3 Study of 2-Periodic solutions

Here we show that there is a prime two periodic solution.
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Theorem 4.24 If « = § = v = 1, then every solution of System (4.3) tends a
period two solution.

Proof. We get from System (4.3)

p q
Ton—1%2p_3 Yon—-1Ty_3
Ton+1 — Lo2n—-1 = _HT <0, Yont1 — Yon-1 = _H—T > U
n—3 n—3
z2n71y:z—3 <
“2n+1 — A2n—1 _W <0.
n—3
and
p q
B TonZon-2 0 _ _YnTon2 0
Tont2 — To2n = _HT SV, Yont2 — Yon = _HT > Y,
2n—2 2n—2
T
- . . “2nYon—2 0
ont2 — R = —T7 . = U
1495
2n—2

Thus, we get

Tont1 < Ton—1, Yont1 < Yon—1s 2ontl < Zop—1, Lont2 < Ton, Yont2 < Yon,

and
Zont2 < Zop.

The sequences {(z2,-1,Yon-1,22n-1)}o2 3 and {(zan, Yon, 22,) }2°_5 are non-
increasing. Hence, while the odd-index terms tend to one periodic point, the
even-index terms tend to another periodic point. This completes the proof. m

Theorem 4.2.5 Assume that o = f = v = 1, then every solution {(z,, Yn, 2n) }2> 4
of System (4.3) converges to a period two solution. Moreover the sequence {x,}
converges to a period solution of the form

) ¢7w7 ¢7w7 )

also the sequence {y, } converges to a period two solution
s Y5 0,Y, 0,4 ey

and the sequence {z,} converges to a period two solution
ooy Ay Ly Ay fy ey

and the solution has the form

{(0,0,0), (¢, 6, 1), (0,0,0),...}.
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Proof. We have from System (4.3)

P q
Tn—1Yn—3 Yn—1%,_3
Tptl — Tp—1 = EEEET N <0, Ynt1 = Yn1 = BTN <0,
n—3 n—3
z z _ ity 0
ntl — -1 = ———— — <0,
14+
n—3

which imply that {z,} converges to a period two solution

"'7%072107(1071/)’ M
also {y,} converges to a period two solution
"'77757,}/75’ M

and {z,} converges to a period two solution

ooy Ay iy A, [y e
If we assume that

lim x9, = ¢, lim x9,,1 = ¥, lim yg, = 7, lim yo,11 = 6§, lim 29, = A,
n—oo n—oo n—oo n—oo n—oo
and
lim 29,41 = 0,
n—oo

then we have

p=—— =

Y T s 0 A p
14+4P’ 1+ P

= = )\: —=
7’7 1+>\T‘7 1—|—Ar, 1+¢q7u 1+g0q

which implies that v = A = ¢ = 0. Then the proof is completed. =

Example 4.2.6 Figure (19) shows that the solutions of System (4.3) tend to a
period two solution of System (4.3) for the values o= =~v=1, p=3,q=3,and
r =3 whenever x_ 3 =4, v 5=6,x_1=2,10=4,y3=03,y2=09,y =4,
Yo = 2, Z_3 = 05, Z_9 = 23, Z_1 = 09, and zZ0 = 6.

Figure (19)
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4.2.4 Oscillatory Charactor

Here we dell with the oscillation of the positive solutions of System (4.3) about
1

the equilibrium point (Zs,7,,%2) = (7 — 1)7, (o — 1)7, (8 — 1)*).

Theorem 4.2.7 Let o, 3,7 € (0,00) and {(z2n, Y2n, 22,) }32_3 be a positive solu-
tion of System (4.3). Then, {(xon, Yon, 20n) }oo 5 0scillates about the equilibrium

point (Ts,7,, Z2). Moreover, with the possible exception of the first semicycle, every
semicycle has length one.

Proof. Assume that

(1) 71,23 > Ty, 0,09 < Ty OF T_1,T_3 < T, T_3,T0 > T2, Y—1,Y-3 > Yo,
Yo, Y—2 < Yo, 20, 2-2 = 22, 2-1,2-3 < 22

holds. Then we get

Qaxr_q1 <z ax > = QT < QT > =
T1 = ——F < To, Ty = > Ty, T3 = Ty, Ty = >
! 1"‘9113 2 1"‘932 2 1+?J€1 Z 1+?J€ 2
By-1 BYo _ By _ By, _
g > y = < y = > , = <
Y1 1427, = 2: Y2 1+ 2, Ya,Ys 1+2{1_y2 Ya [ Ya
YzZ_1 _ YZo _ YZ1 _ V<2 _
21 = ———F < Zg,%9 = > 29,23 = ———— < 29,74 = >z
1 1+$q3 2; 22 1+xq2_ 2, %3 1_“&1 25 24 1+:cg 2

Then, the result follows by induction. (i) x_1,2_3 < To, g, 2_5 > To or
To1,T9 2 Tg, 3,20 < Ta, Y-1,Y-3 < Yz, Y0,Y-2 = Yo, 20,2-2 < Z2, 2-1,2-3 = Z2.
The proof of this case is similarly to case (i) will be omitted. m

4.2.5 Unboundedness of the Solutions of System (4.3)

In the following theorem, we show the existence of unbounded solutions for
System (4.3)

Theorem 4.2.8 If o, 3,7 € (1,00), then System (4.3) possesses an unbounded
solution.

Proof. Assume that {(xa,, Yon, 22,) 152 5 be a solution of System (4.3) with

n=-3
Ton—3 < Ta, Top—2 > T2, Yon-3 > Yoy Yon—2 < Ys, Zan—3 < Z2, and Zo,_o > Zy for
n € Ny.Then, we have

QTon > _ BYan—1 > _ J*2n-1
1+ .= TonyYont+1 = 7,  ZYom—1,%2n41 = 7 ¢
+ Yoo

> 22
r q Z ~2n—1,
1425, 4 1425, 4

Ton+2 =
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n— n n
ATop—1 By YZ2

—— < Top_1,Yont2 = < Yon, Z2n41 = < Zop.
]- + ygn—S " 7 " 1 + zgn—2 " " "

Lop+1 =

from which it follows that lim (xs,, Yo, _1, 22n-1) = (00,00, 00) and lim (22,1, Y2n, 22n) =
(0,0,0).

This completes the proof. m

Example 4.2.9 Figure (20) shows that System (4.3) has unbounded solutions
with the values o = 1.02,5 = 1.09,v = 1.05, and p = ¢ = r = 3 whenever v_3 = 4,
T_9 = 6, r_1 = 2, Ty = 3, Y_3 = 136, Y_o2 = 3, Y1 = ]_, Yo = 04, Z_3 = 2, Z_9 = 125,
z_1 = 0.23, and zy = 3.

7 I
F4

Figure (20)

4.3 Case 2. System (4.1) when p; = ¢, =r = 1.

Now we will investigate the stability of the two equilibrium points of System
(4.1) when p; = ¢; = r; = 1. Then from System (4.1) we get

alp—1 v . dvy,—q w . JWn—1
y Un4+1 — sy Wn+l —
e+ fwl g, h+ ITu!_sv, 1

, n € No (47)

Un4+1 =
b+ CUZf:;U)n_l

1

By the change of variables u, = (%) z,, v, = (2)¥y,, w, = (?)%zn System (4.7)
can be rewritten as

ALp_1 BYn-1 VZn—1

- 9 n = ; Rn = 9
1+ sy? azn 1 Ynt1 77 A ZA T ) oyn1

(4.8)

Tpy1 =

where a = 7,3 =
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4.3.1 Stability of System (4.8)

In this subsection, we investigate the stability of the two equilibrium points of
System (4.8). When «, 3,7 € (0,1), it is easy to see that (71,7,,z1) = (0,0,0) is the
unique equilibrium point of System (4.8). When «, 3,v € (1, ), the unique posi-

1 1

tive equilibrium point of System (4.8) is (T2, 7y, Z2) = ((11) 71, (22)#1, (E24) 1),

Theorem 4.3.1 The following statements hold:

() If o, B,y € (0,1), then the equilibrium point (71,7,,%1) = (0,0,0) of System
(4.8) is locally asymptotically stable.

() If o € (1,00) or € (1,00) or v € (1,00), then the equilibrium point
(ZT1,71,%1) = (0,0,0)of System (4.8) is unstable.

(i) If o, B, v € (1,00), then the positive equilibrium point (T2, 7, Z2) of System
(4.8) is unstable.
Proof. We rewrite System (4.8) in the form
Xn+1 = F(Xn)

where X,, = (Zn, -, T3, Yn, -+ Yn—3; Zns --» Zn_3). and the map F is given by

any

No 1+smgl1
1 No
N9 n
ns D)
Bmy
mo 1+tl§n1
my m,

F = 0
meo my
ms3 Mo

lO vl
1+kn§m1
Il I
l 0
2 ll

The linearized system of (4.4) about the equilibrium point X = (0,...,0)7 is
given by

Xn+1 = JF(YU)Xny
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where

SO DD DO DD OO oo oo
OO OO O RO Lo o oo
SO DO O DODODODODOOoO O oo
S OO OO OO OO oo
OO OO oo oo
—_ O OO OO OO o oo oo
SO DD DO DO OO oo oo

S OO OO O OO o oo
DO DD DODDODOO0OO R ODR
SO DD DD DO DD OO OO o
SO O DD DD DODOoO OO O OO
ORH O OO oo

Thus the characteristic equation of J(X) is given by

A2 — @) (A2 = B)(A2 — ) = 0. (4.9)

We have the following: (i) If a, 5, € (0, 1),all roots of the characteristic equa-
tion (4.9) lie inside the open unit disk | A |< 1. So, the unique equilibrium point
(Z1,71,%1) = (0,0,0) of System (4.8) is locally asymptotically stable.

(i) If o € (1,00) or B € (1,00) or v € (1,00), then some roots of Eq.(4.9)
have absolute values greater than one. Thus, the equilibrium point (71,7,,%z1) =
(0,0,0) is unstable.

(iii) The linearized system of (4.4) about the positive equilibrium point (72, 75, Z>)
is given by

Xny1 = JF(XOéﬁN)Xn-

where

Yn— SV
XTL = ynil > JF(Xa’ﬁ,'y> =

Yn-3
Zn
Zn—1
Zn—2
Zn—3

CODDDODDODDODDODODOO O RO
coocoocoococolgoron
DO DODDODDODOO R OO0
cCoooocoocoocoooo
DO O R OO0 OO
cooToromoocoo
DO ODODOHR DD OO
oo oo ococoocococoocodm
OO OO0 O OO
= Yol oo NoNoNoRo NN
e e N el el el e R e R es B es B en i)
O oo o omoooo
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where
e atait B__pasﬁtq%l(’y—1)7‘i1(ﬁ—1)qfll(a—1)§;}
£ 4 (s(a — 1P (B — 1) kA (47T 4 (s(a— 1)P) 71 (8 — 1)a+1)2
o otTi(s(a = 1)) (y — 1)
B (1757 4 (s(or = 1)9) 757 (5 — 1) 777 )
b BEE(E - 1)9) 75 (o — 1) 757 . Bl
ST (R 4 (48 — D) (7 = 1)) R 4 (8 — 1)) 7 (y = )7
b BT (y )T (S 1) (o - 1)
ST (R 4 (88 — 1)0) 77 (7 — 1))
N U ol Vil e Vi e
FET (s (K(y — 1)) (o — 1))
go— _ s(k(y = )) (5 - 1)E
FE (57 (k(y = 1)7) 7 (- 1))
and

Y5
$7T 4 (k(y = D)7 (0 = )i

The characteristic equation of Jp(X, s.) is given by

I =

p(A) = N2 (A+E+ DN+ (EI + AE + A\
—(CG+ FH+ BD +CHD + AEI\® + (BDI + AFH + CGE)\' — BFG.

Therefor
p(0) = —BFG <0 and lim p(\) = co.

A—00

Then p()\) has at least one root in the interval (1, c0). So by Theorem D we say
that if «, 5,7 € (0,00), then the positive equilibrium point (7, 7,,z2) of System
(4.8) is unstable. This completes the proof. m

4.3.2 Global Stability of System (4.8)

Here we investigate the global attractor of System (4.8) to its zero equilibrium
point.

Theorem 4.3.2 If o, 5,7 € (0,1), then the equilibrium point (T1,7,,z1) = (0,0,0)
of System (4.8) is globally asymptotically stable.
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Proof. We proved in Theorem 4.3.1 that if o, 5,7 € (0,1), then the equilib-
rium point (71,7,,%1) = (0,0,0) of System (4.8) is locally asymptotically stable.
Hence, it suffices to show that

lim (2, Yn, 2,) = (0,0,0).

n—oo

We see from System (4.8) that, for n € N,

ATp—1 ﬁyn—l
Y o Sty 0S Y =
L+ syp_g2n1 b= = tzd sx,
_ YZn-1

1+ kx) _sYn—1

0 < Tnt1 = Sﬁynfla

0 S Zn+1 SVZn—l-

Then it follows by induction that

0 <9y <a"r_;,0 <yopi <[ "y_;,0 < 295 <Y 2. (4.10)

where x_;,y_;,z_;(i = 0, 1) are the initial conditions. Consequently, by taking
limits of inequalities in (4.10), we get lim (z,,, Y, 2,) = (0,0,0). m

Example 4.3.3 Figure (21) shows the global attractivity of the zero equilibrium
point T of System (4.8) for the values o« = 0.011, 5 = 0.827, v = 0.021, p = 0.003,
g = 0.01283, r = 0.343, s = 1, t = 3, and k = 2 whenever x_3 = 1.04, x_y = 2.6,
r_1 = 102, To = 304, Y_3 = 13, Y o = 397 Y1 = 047 Yo = 12, Z_3 = ].5, 29 = 237
z_1 = 0.9, and zy = 0.006.

8 i)
\

Figure (21)

4.3.3 Study of 2-Periodic Solutions of System (4.8

In the following theorem, we investigate the convergence of the period solutions
period two of System (4.8).
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Theorem 4.3.4 If « = = v = 1, then every solution of System (4.8) tends to a
period two solution.

Proof. We get from System (4.8) that

p

STon—1Ym—322n—1 0 B
Ton+1 — L2pn-1 — — D > U Yontl — Yon—1 =
L+ 8Yan_3%2m—1

,,
kyzn—1$2n7322n—1

q
tYon—129,_3T2n—1

<0

— )

- q
1+ t22n73l’2n_1

Zon4+1 — Zan—1 — <0
L+ kx5, 3yn—1
and
D q
5TonYon—2%2n LYanZay,_9Tan
Topya —Ton = —7—5—— <0, Yoo —Yon=—7—5—— <0,
1+ sys5,_o9%on 14125, 9Ton
/{Zyznl'gn,QZQn
Zon+2 T Z2n ——— <0,
1 + kan—2y2n
also
D q
5TonYon—2%2n LYanZay,_9Tan
x2n+2 — Ton - 0 S 07 y2n+2 - y2n - -  , g S 07

14 SYb oZon 1 tza oo

— < 0.
1+ k2, oYon

Z22n+2 — R2n

Thus we get

Tont1 < Ton—1, Yont1 < Yon—1, 2ontl < Zop—1, Lont2 < Ton, Yont2 < Yon,

and

Zont2 < Zop.

non-increasing. Hence, while the odd-index terms tend to one periodic point,

the even-index terms tend to another periodic point. This completes the proof.
|

That is , the sequences { (72,1, Yon—1, 22n-1) }3> 5 and {(zan, Yon, 22n) }22_5 are

Example 4.3.5 Figure (22) shows that the solutions of (4.8) tend to a period two
solution of System (4.8) for the values o« = =~v=1,p=0.3,q¢= 0.8, r = 3 and
s = 0.09, r = 0.54, and k = 0.922 whenever v_3 = 4, 1_9 = 6, v_1 = 2, 19 = 3,
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y,3:1.36,y,2:3,y,1:1,y0 0423 222—12521—023(177,(12’0—3

]
e
—

Figure (22)

Example 4.3.6 Figure (23) shows that System (4.8) has an unbounded solution
with o = 1.02, 8 = 1.09, v = 1.05, p = 3, ¢ = 3, r = 3, s = 0.09, r = 1.54, and
k = 0.922 whenever v_3 =4, x_9=6,2_1=2,20=3,y.3=136,y 2 =3,y_1 =1,
Yo = 04, Z_3 = 2, Z_2 = 125, 21 = 023, and 20 = 3.

| L ﬂ L]
‘ I"\ \ﬁ' I |‘ﬂl Ih‘I ! |F ‘“' I‘l ’I 'Al l\l\l‘“ I |||| |”|||| |
|‘|‘|ll‘l"”|"||"\‘|”” n""n' i ”l il
\I I | H

||\‘|\

Figure (23)
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