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Summary

Difference equations appear as natural descriptions of observed evolution, phe-
nomena because most measurements of time evolving variables are discrete and
as such those equations are in their own right important mathematical models.
More importantly, difference equations also appear in the study of discretization
methods for differential equations. Several results in the theory of difference
equations have been obtained as more or less natural discrete analogues of cor-
responding results of differential equations. This is especially true in the case
of Lyapunov theory of stability. Nonetheless, the theory of difference equations
is a lot richer than the corresponding theory of differential equations. For ex-
ample; a simple difference equation resulting from a first order differential may
have a phenomena often called appearance of "ghost" solutions or existence of
chaotic orbits that can only happen for higher order differential equations and
the theory of difference equations is interesting in itself. The aim of this the-
sis is to study the qualitative behavior of solution of some nonlinear difference
equations of different order. We discussed, in detail the following:

• Finding the equilibrium points for some (systems) difference equations;

• Investigating the local stability character of the solutions of some (sys-
tems) difference equations;

• Finding conditions which insure that the solutions of the equations are
bounded;

• Investigating the global asymptotic stability of the solutions of some dif-
ference equations;

• Finding conditions which gurartee that the solutions of the equations are
periodic with prime period two or more;

• Finding conditions for oscillation of the solutions.

This thesis contains illustrative examples as applications of our results. The
thesis consists of Introduction and there four chapters:
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vi INTRODUCTION

Introduction. This chapter is an introductory chapter and contains some
basic definitions, elementary results that will be used throughout the next chap-
ters.

Chapter 1. In this chapter we investigate the local stability, the bounded-
ness, the global attractor, the periodicity character, and for the solutions of the
nonautonomous difference equations:

xn+1 = an +
xpn
xpn−1

, for n ≥ 0.

Chapter 2. This chapter discusses local stability, the boundedness, global
stability, and semicycle for the solutions of higher order difference equations:

xn+1 = axn +
bxn

1 + xpn−1

, n = 0, 1, ...,

and
xn+1 = axn−1 +

b

1 + xpn
, n = 0, 1, ... .

Chapter 3. Here we investigate the local stability, boundedness, and the
global stability for the solutions of the difference equation

xn+1 = α +
βxpn−k + γxqn−m
Axpn−k +Bxqn−m

, n ≥ 0.

Chapter 4. In this chapter we study the local stability, global stability, os-
cillatory, and the periodicity character for the solutions of the following system
of difference equations:

un+1 =
aun−1

b+ cvpn−3w
p1
n−1

, vn+1 =
dvn−1

e+ fwqn−3u
q1
n−1

, wn+1 =
gwn−1

h+ Iurn−3v
r1
n−1

, for n ≥ 0.

Our results generalize and complement some of the previous results in the
literature ( as described in the introduction of chapter). Moreover, some exam-
ples are given to illustrate the main results.



Introduction

In the world, important progress has been made during recent years in the
theory of nonlinear difference equations. There is a set of nonlinear difference
equation, known as the rational difference equations. Lately, there has been
huge attention in discussion rational difference equations and of the purpose for
this exigency for some methods whose can be used examining equations arising
in mathematical modules desecrating real life statuses. Moreover, difference
equations have given much attention from scientists from multiple disciplines.
Possibility, this is to a great extent because of happening of PCs where differ-
ential equations are explained by utilizing their estimated distinction condition
details. Also, computer has assisted to study behavior solutions of difference
equations by the easy way. Although, all observations and prediction got using
the computer has to been proven from the analytical point of view. Accordingly,
to take consideration a rich topic of research and want to be investigated in the
details.

The main role of this thesis is to study the behavior of some difference
equations where difference equations have gotten much consideration from re-
searchers from various disciplines. Perhaps this is to a great extent because
of the appearance of computers where differential equations are solved by us-
ing their approximate difference equation formulations. With the utilize of PC
one can without much of a stretch explore different avenues regarding differ-
ence equations and one can one can undoubtedly find that such conditions have
intriguing properties with a great deal of structure and typicality. Obviously,
all PC perceptions and expectations should likewise be demonstrated logically.
In this way this a prolific territory of research, still in its earliest stages, with
thorough and essential outcomes.

In spite of the fact that difference equations show themselves as scientific
models portraying genuine circumstances in likelihood hypothesis, statistical
problems, electrical networks, number hypothesis, geometry, electrical systems
etc see [9], [29], [28], [31], [35], [13], [18], and [41].

The investigation of dynamics is the study of how things change after some
time. Discrete dynamics is the examination of amounts that change at discrete
focuses in time, for example the size of a population from one year to the next,
or the change in the genetic make-up of a population from one generation to the
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viii INTRODUCTION

next see book [12]. In general, we concurrently develop a model some situation
and the mathematical theory necessary to analyze that module. As we develop
our mathematical theory, we will be able add more components to our model.

The mean for studying change is to discover a connection between, what is
happening now and what will be happened in the near future that is, cause
and effect. By analyzing this relationship, we can often predict what will be
happened in the distant future. The distant future is sometimes a given point
in time but more often is a limit as time goes to infinity. In doing our analysis,
we will use many algebraic and calculus topics such as, factoring, exponential
and logarithms, solving systems of equations, and derivatives. We should also
be able to apply discrete dynamics to any field in which things change, which is
the most fields. The goal is to not only learn mathematics, but to get develop a
differently way of thinking about the world.

The oscillation and global asymptotic behavior of the solutions are two such
qualitative properties which are very important for applications in many areas
such as control theory, mathematical biology, neural networks, etc see [6], [17],
[23], [24], [25], and [37]. It is impossible to use computer based "numerical"
techniques to study the oscillation or asymptotic behavior of all solutions of
a given equation due to the global nature of these properties. Therefore, these
properties have received the attention of several mathematicians, engineers and
other scientists around the world.

Existence of the solutions of difference equations of deferent orders and the
study of their qualitative properties such as locally, boundedness, global stabil-
ity, the periodicity have been discussed by many authors, See, for examples [10],
[11], [14], [15], [16], [19], [20], [22], [26], [27], [30], [36], [38], [39], [40], [42], [43],
and [44].

Basic definitions and theorems
Here we recall some basic definitions and elementary results that will be

used throughout the next chapters.

Let J be an interval real numbers and let g : Jk+1 × J → J, where g is a
continuously differentiable function. Consider the difference equation

yn+1 = g(yn, yn−1, ..., yn−k), n ≥ 0, (1)

where y−k, y−k+1, ..., y0 ∈ J. Let y be the equilibrium point of Eq.(1). Any
equilibrium point y of this equation is a point that satisfies the condition y =
g(y, y, ..., y).

Definition : The sequence {yn} is called to be periodic with period p if

yn+p = yn, for n = 0, 1, ....
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Definition : Eq.(1) is called to be permanent and bounded if there exists
numberm andM,with 0 < m < M <∞ so for any initial condition y−k, y−k+1, ..., y0 ∈
(0,∞) there exists a positive integer N which consist these initial conditions
such that m < yn < M, n ≥ N.

The linearized equation of Eq.(1) about the equilibrium point y is

yn+1 = a1zn + a2zn−1 + ...+ ak+1zn−k, (2)

where ai = ∂f
∂yn−i

(y, y, ..., y), i = 0, 1, ..., k. The characteristic equation of Eq.(2)

is

λk+1 −
k+1∑
i=1

aiλ
k−i+1 = 0.

(i) The equilibrium point y of Eq.(1) is locally stable if for every ε > 0, there
exists δ > 0 so for all y−k, y−k+1, ..., y0 ∈ I. Where |y−k − y|+ |y−k+1 − y|+ ...+
|y0 − y| < δ, we have |yn − y| < ε, n ≥ −k.

(ii) The equilibrium point y of Eq.(1) is globally asymptotically stable if y is
locally stable and there exists λ > 0,such that for all y−k, y−k+1, ..., y0 ∈ I.
With
|y−k − y|+ |y−k+1 − y|+ ...+ |y0 − y| < λ, we have lim

n→∞
yn = y.

(iii) The equilibrium point y ofEq.(1) is global attractor if for all y−k, y−k+1, ..., y0 ∈
I,

then lim
n→∞

yn = y.

(iv) The equilibrium point y of Eq.(1) is globally asymptotically stable if y is
locally stable, and y is a global attractor of Eq.(1).

(iiv) The equilibrium point y of Eq.(1) is unstable if y is not locally stable.

Definition : A positive semicycle of a solution {yn} of Eq.(1) consists of
a "string"of terms {yj, yj+1, ..., yn}, all greater than or equal to the equilibrium
y,with j ≥ −1 and n ≤ ∞ and such that

either j = −1, or j > −1 and yj−1 < y,

and
either n =∞, or n <∞ and yn+1 < y.

Definition : A negative semicycle of a solution {yn} of Eq.(1) consists of a
"string"of terms {yk, yk+1, ..., yn}, all less than to the equilibrium y,with k ≥ −1
and n ≤ ∞ and such that

either k = −1, or k > −1 and yk−1 ≥ y,
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and
either n =∞, or n <∞ and yn+1 ≥ y.

Definition [Oscillatory] :

(a) A sequence {yn} is called to oscillate about zero if the terms yn are neither
eventually all positive nor eventually all negative. Moreover, the sequence
is called nonoscillatory. A sequence {yn} is called strictly oscillatory if for
every n0 ≥ 0,there exists n1, n2 ≥ n0 such that yn1yn2 < 0.

(b) A sequence {yn} is called to oscillate about y if the sequence yn−y oscillates.

(c) A sequence {yn} is said strictly oscillatory about y if the sequence yn − y is
strictly oscillatory.

Let J be an interval real numbers and g : J×J → J,where g is a continuously
differentiable function. Consider the difference equation

yn+1 = g(yn, yn−1), n = 0, 1, 2, ... . (3)

The linearized equation of Eq.(3) is

zn+1 = a1zn + a2zn−1.

Theorem A [[33]] A (linearized stability).

(a) If both roots of the quadratic equation

λ2 − a1λ− a2 = 0, (4)

lie in the open unit disk, |λ| < 1, then the equilibrium point y of Eq.(3) is
locally asymptotically stable.

(b) If at least of the roots of Eq.(4) has absolute value greater that one , then
the equilibrium y of Eq.(3) is unstable.

(c) A necessary and sufficient condition for both roots of Eq.(4) to lie in the
open unit disk |λ| < 1, is

|a1| < 1− a2 < 2.

Here the locally asymptotically stable equilibrium y is also called a sink.
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(d) A necessary and sufficient condition for one root of Eq.(4) to have absolute
value great than one and for the other to have absolute values less than
one is

|a1| > |1− a2| and a2
1 + 4a2 > 1.

In this case y is called a saddle point.

Theorem B [[33]] Let [c, d] be an interval of real numbers and assume that

f : [c, d]× [c, d]→ [c, d]

is a continuous function satisfying the following properties:

(a) g(x, y) is non-decreasing in x ∈ [c, d] for each y ∈ [c, d] , and g(x, y) is non-
increasing in y ∈ [c, d] for each x ∈ [c, d].

(b) If (m,M) ∈ [c, d]× [c, d] is a solution of the system

f(m,M) = m, and f(M,m) = M ,

then m = M. Then Eq.(3) has a unique equilibrium y ∈ [c, d] and every solu-
tion of Eq.(3) converges to y.

Theorem C [[34]] Assume that a1, a2, ..., ak+1 ∈ R. Then

k+1∑
i=1

| ai |< 1

is a sufficient condition for the locally stability of Eq.(1).

Consider the difference equation

Yn+1 = O(Yn), n = 0, 1, ... . (5)

where Yn ∈ Rn and O ∈ C1[Rk+1, Rk+1]. Then the linearized equation associ-
ated with Eq.(5) is given by Yn+1 = AYN , where A is the Jacobian matrix DH(Y )
of the function H evaluated at the equilibrium Y .

Theorem D [[34]] Let Y be an equilibrium point of Eq.(5) and assume that
O is a C1 function in Rk+1. Then the following statements are true:

(a) If all the eigenvalues of the Jacobian matrix DH(Y ) lie in the open unit
disk |λ| < 1, then the equilibrium Y of Eq.(5) is asymptotically stable.

(b) If at least one eigenvalues of the Jacobian matrix DH(Y ) has absolute
value greater that one, then the equilibrium Y of Eq.(5) is unstable.
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Theorem E [[34]] Consider the difference equation

xn+1 = f(xn, ..., xn−k), n = 0, 1, ..., (6)

where f ∈ C[(0,∞)k+1, (0,∞)] is increasing in each of its arguments, where
the initial conditions x−k, ..., x0 are positive. Assume that Eq.(6) has a unique
positive equilibrium x, and suppose that the function h defined by

h(x) = f(x, x, ..., x), y ∈ (0,∞),

satisfies
(h(x)− x)(x− x) < 0, for x 6= x.

Then x is a global attractor of all positive solutions of Eq.(6).

Theorem F [19] Let J be some interval of real numbers, f ∈ C[Jv+1, J ], and
let {xn}∞n=−v be a bounded solution of the difference equation

xn+1 = f(xn, xn−1, ..., xn−v), n = 0, 1, ..., (7)

with
I = lim

n→∞
inf xn, S = lim

n→∞
supxn, with I, S ∈ J.

Let Z denote the set of all integers {...,−1, 0, 1, ...}. Then there exist two so-
lutions {In}∞n=−∞ and {Sn}∞n=−∞ of the difference equation

xn+1 = f(xn, xn−1, ..., xn−v), (8)

which satisfy the equation for all n ∈ Z, with

I0 = I, S0 = S, and In, Sn ∈ [I, S], for all n ∈ Z,

and such that for every N ∈ Z, IN and SN are limit points of {xn}∞n=−v .
Therefore, for every m ≤ −v there exist two subsequences {xrn} and {x

ln
} of the

solution {xn}∞n=−v so the following are true:

lim
n→∞

xrn+N = IN , and lim
n→∞

xln+N = SN , N ≥ m.

The solutions {In}∞n=−∞ and {Sn}∞n=−∞ of Eq.(8) are called Full limiting so-
lutions of Eq.(8) associated with the solution {xn}∞n=−v of Eq.(7).



Chapter 1

Dynamical of a Non-Autonomous
Difference Equation

1.1 Introduction

Our point in this chapter is to discuss the behavior of the positive solutions of
the difference equations:

xn+1 = an +
xpn
xpn−1

, n ≥ 0 . (1.1)

where {an} is a sequence of positive real numbers and the initial conditions
x−1, x0, and p are arbitrary positive real numbers. In this survey we consider
three cases of the sequence an.

This chapter is divided to two parts. Part I deals with the Eq.(1.1) when
p = 1. Part II concerned with Eq.(1.1) when p is a positive real number.

Part I : Studying of Eq.(1.1) with P=1
Here our goal is to consider local stability, boundedness character, and the

global asymptotic behavior of the positive solutions of the difference equation:

xn+1 = an +
xn
xn−1

, n ≥ 0, (1.2)

where {an} is a sequence of nonnegative real numbers and the initial condition
x−1, andx0 are positive real numbers.

In the following we consider three cases of the sequence {an}.

1



2 Ch 1. Dynamical of a Non-autonomous Diff. Eq

1.2 Case 1. When lim
n→∞

an = a

1.2.1 Permanence of Eq.(1.2)

In this subsection we investigate the boundedness of Eq.(1.2).

Theorem 1.2.1 Suppose that lim
n→∞

an = a ≥ 1, at that point every positive solu-
tion of Eq.(1.2) is bounded and persists.

Proof. Suppose that {xn}∞n=−1 be a positive solution of Eq.(1.2). Then

xn ≥ a > 1, for all n ≥ 1.

Let ε ∈ (0, a− 1), we see from Eq.(1.2) that

xn ≥ a− ε, for all n ≥ −1.

Then we can find L ∈ (a+ ε, a+ ε+ 1) such that

L− ε ≤ x−1, x0 ≤
L− ε

L− a− ε.

Since a > 1, then we get

a ≤ L− ε− 1

L− ε− a.

Set
f(u, v) = a+

u

v
.

Then
f(L− ε, L− ε

L− a− ε) = a+
L− ε
L−ε

L−a−ε
= L− ε,

and

f(
L− ε

L− a− ε, L− ε) = a+
L−a−ε
L−ε
L− ε ≤ a+

1

L− a− ε ≤
L− ε

L− a− ε.

Now it follows from Eq.(1.2) that

x1 = f(x0, x−1) ≤ f(
L− ε

L− a− ε, L− ε) ≤
L− ε

L− a− ε.
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Again we see from Eq.(1.2) that

x1 = f(x0, x−1) ≥ f(L− ε, L− ε
L− a− ε) = L− ε.

By induction we obtain that

L− ε ≤ xn ≤
L− ε

L− a− ε, for all n = −1, 0, 1, ....

Second assume that a = 1 and let ε ∈ (0, δ) and δ ∈ (0, 1), it follows from Eq.(1.2)
that

xn ≥ 1− ε+ δ , for n ≥ 1.

Then one can find L ∈ (1 + ε+ δ, 2 + ε+ δ) such that

L− ε+ δ ≤ x−1, x0 ≤
L− ε+ δ

L− ε− 1 + δ
.

In this way whatever is left of the proof is like the above and it is overlooked.

1.2.2 Global Attractity of Eq.(1.2)

Here, we show that if a > 1, Therefore every positive solution of Eq.(1.2) con-
verges to (a+ 1).

Theorem 1.2.2 Assume that a ≥ 1. At that point each positive solution of Eq.(1.2)
converges to the unique positive equilibrium point x = (a+ 1) of Eq.(1.2).

Proof. Note, when a ≥ 1, it was shown in Theorem 1.2.1 that each positive
solution of Eq.(1.2) is bounded. Then we have the following

s = lim
n→∞

inf xn, and S = lim
n→∞

supxn.

It is clear that s ≤ S. We want to proof that s ≥ S. Now it is easy to see from
Eq.(1.2) that

s ≥ a+
s

S
, and S ≤ a+

S

s
.

Thus we have
sS ≥ aS + s, and sS ≤ as+ S.

This implies that
aS + s ≤ as+ S.

Then we get
a(S − s) ≤ (S − s),
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or
(a− 1)(S − s) ≤ 0⇔ s ≥ S.

Thus the proof is complete.

Example 1.2.3 Figure (1) shows the global attractivity of the equilibrium point
x = 2 of Eq.(1.2) whenever x−1 = 1.21, x0 = 1.32, and a = 1.

0 5 10 15 20 25
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1.4

1.6

1.8

2
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2.4

2.6

2.8

3

Figure (1)

Example 1.2.4 Figure (2) shows the global attractivity of the equilibrium point
x = 6 of Eq.(1.2) whenever x−1 = 4, x0 = 9, and a = 5.

Figure (2)

1.3 Case 2. When an is periodic

In this subsection we research the periodicity character of the positive solu-
tions of Eq.(1.2) whenever {an} is a periodic sequence of period two of the form
{α, β, α, β, ...}, α 6= β. Assume that a2n = α, and a2n+1 = β. Then we have

x2n+1 = α +
x2n

x2n−1

, (1.3)
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and
x2n+2 = β +

x2n+1

x2n

, n ≥ 0. (1.4)

1.3.1 Periodicity of the solutions

Here we investigate the periodic solutions of Eq.(1.2).

Theorem 1.3.1 Assume that {an} = {α, β, α, β, ...}, with α 6= β. Then Eq.(1.2)
has periodic solution of prime period two.

Proof. Let {xn} be a solution of Eq.(1.2), with the initial values x−1, and x0

such that

x−1 =
αx−1 + x0

x−1

, and x0 =
βx0 + x−1

x0

. (1.5)

Let x−1 = x, and x0 = y, then we obtain from (1.5)

x = α +
y

x
, and y = β +

x

y
. (1.6)

Now we want to prove that (1.6) has a solution (x, y), x > 0, y > 0. From the first
relation of (1.6) we get

y = (x− α)x. (1.7)

From (1.7) and the second relation of (1.6) we obtain

x(x− α) = β +
x

x(x− α)
,

or
x(x− α)2 − β(x− α)− 1 = 0.

Now define the function

f(x) = x(x− α)2 − β(x− α)− 1, x > α. (1.8)

Then
lim
x→α+

f(x) = −1, and lim
x→∞

f(x) =∞.

Hence Eq.(1.8) has at least one solution x > α. Then if y = (x− α)x, we have
that the solution {xn}∞n=−1 is periodic of prime period two.
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Example 1.3.2 Figure (3) shows that the solution of Eq.(1.2) is periodic solution
of period two when x−1 = 1.34, x0 = 3.210, α = 1, and β = 0.1.

Figure (3)

1.3.2 Local Stability of the periodic solutions

Here we investigate the local stability character of Eq.(1.2).

Theorem 1.3.3 Assume that {xn}∞n=−1 be a periodic solution of period two of
Eq.(1.2) and consider Eq.(1.2) when the case {an} = {α, β, α, β, ...} with α 6= β.
Suppose that

α

β2 +
1

αβ
+

1

α3
<
α

x
.

Then {xn}∞n=−1is locally asymptotically stable.

Proof. It was shown in Theorem 1.3.1 that there exist x, y such that

x = α +
y

x
, and y = β +

x

y
. (1.9)

Now Eq.(1.2) can be rewritten in the following form by splitting the even-
indexed and odd-indexed terms:

un+1 = α + vn
un
,

vn+1 = β + αun+vn
unvn

.
(1.10)

Now, we consider the map T on [0,∞)× [0,∞) such that

T (u, v) =

[
T1(u, v)

T2(u, v)

]
=

[
α + v

u

β + αu+v
uv

]
.
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Then we have
∂T1

∂u
=
−v
u2
, and

∂T1

∂v
=

1

u
,

∂T2

∂u
=
−v2

v2u2
, and

∂T2

∂v
=
−αu2

u2v2
,

Therefore the Jacobian matrix of T at (x, y) is

JT (x, y) =

[ −y
x2

1
x2

−1
x2

−α
y2

]
,

and its characteristic equation associated with (x, y) is

λ2 + λ(
α

y2
+

y

x2
) +

α

x2y
+

1

x3
= 0. (1.11)

It follows from (1.9) that y

x2
= 1− α

x
and since x > α, and y > β we have

α

y2
+

y

x2
+

α

x2y
+

1

x3
<

α

β2 +
1

αβ
+

1

α3
+ 1− α

x
< 1.

Thus
α

β2 +
1

αβ
+

1

α3
<
α

x
< 1.

Then all roots of Eq.(1.11) have modulus less than 1. Therefore by Theorem
D that System (1.10) is asymptotically stable. The proof is complete.

Theorem 1.3.4 Assume that {an} = {α, β, α, β, ...}, with α 6= β.Then every solu-
tion of Eq.(1.2) converges to a period two solution of Eq.(1.2).

Proof. We know by Theorem 1.2.1 that every positive solution of Eq.(1.2)
is bounded, it follows that there are some positive constants l, L, s, and S such
that

l = lim
n→∞

inf x2n+1, and L = lim sup
n→∞

x2n+1,

s = lim
n→∞

inf x2n, and S = lim sup
n→∞

x2n.

Then it is easy to see from Eq.(1.3) and Eq.(1.4) that

l ≥ α +
s

L
, and L ≤ α +

S

l
,

and
s ≥ β +

l

S
, and S ≤ β +

L

s
.
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Then we obtain
Ll ≥ αL+ s, and Ll ≤ αl + S,

and
Ss ≥ βS + l, and Ss ≤ βs+ L.

Thus we get

αL+ s ≤ Ll ≤ αl + S, and βS + l ≤ Ss ≤ βs+ L.

Thus we have

α(L− l) ≤ S − s, and β(S − s) ≤ L− l. (1.12)

Thus it is clear from (1.12) that s = S and l = L. Now suppose lim
n→∞

x2n+1 = S,

and lim
n→∞

x2n = L. We want to proof that S 6= L. From Eq.(1.3) and Eq.(1.4) we get

S = α +
L

S
, and L = β +

S

L
.

As that sake of contradiction assume that L = S, then

L = α + 1, and S = β + 1

thus α = β which is a contradiction. So lim
n→∞

x2n+1 6= lim
n→∞

x2n. The proof is so
complete.

Example 1.3.5 Figure (3) shows that the solution of Eq.(1.2) is periodic solution
of period two when x−1 = 2.3, x0 = 1.3, α = 0.73827543, and β = 0.6763772.

Figure (3)
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Example 1.3.6 Figure (4) shows that the solution of Eq.(1.2) is periodic solution
of period two when x−1 = 15.30, x0 = 10.30, α = 6, and β = 1.
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14

16
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Figure (4)

1.4 Case 3. The autonomous case of Eq.(1.2)

Consider Eq.(1.2) with an = a, where a ∈ (0,∞) then Eq.(1.2) has the form

xn+1 = a+
xn
xn−1

, n = 0, 1, ..., (1.13)

where the initial conditions x−1, x0 are arbitrary positive numbers. Clearly,
the only equilibrium point of Eq.(1.13) is x = a+ 1.

The linearized equation of Eq.(1.13) about the equilibrium point x = a+ 1 is

yn+1 −
1

a+ 1
yn +

1

a+ 1
yn−1 = 0.

1.4.1 Local Stability

In this subsection we deal the local stability of Eq.(1.13).

Lemma 1.4.1 The following statements are true.

1. The equilibrium point x = a+ 1 of Eq.(1.13) is locally asymptotically stable
if a > 1.

2. The equilibrium point x = a+ 1 of Eq.(1.13) is unstable if 0 ≤ a ≤ 1.

Proof. The proof is followed directly by Theorem A and so will be omitted.
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1.4.2 Boundedness

Here, we investigate the bounded character of Eq.(1.13).

Theorem 1.4.2 Suppose that a > 1, then every positive solution of Eq.(1.13) is
bounded.

Proof. It follows from Eq.(1.13) that

x2n+1 = a+ x2n
x2n−1

,

x2n = a+ x2n−1
x2n−2

.

Therefore
x2n−1 > a, and x2n−2 > a, for every n ≥ 1.

Then

x2n+1 = a+
x2n

x2n−1

< a+
x2n

a
, and x2n = a+

x2n−1

x2n−2

< a+
x2n−1

a

Then it follows by induction that

x2n+1 < a+ (1 +
1

a
+

1

a2
+ ...) +

x−1

an
= a+

a

a− 1
+
x−1

an
,

and
x2n < a+ (1 +

1

a
+

1

a2
+ ...) +

x0

an
= a+

a

a− 1
+
x0

an
.

The result now follows.

Theorem 1.4.3 Assume that a > 1 then every solution of Eq.(1.13) is bounded
and persists.

Proof. Let {xn}∞n=−1 be a positive solution of Eq.(1.13), then

xn+1 = a+
xn
xn−1

> a, for all n ≥ 1. (1.14)

Again it follows from Eq.(1.13) that

xn+1 = a+
xn
xn−1

≤ a+
xn
a
.

Then
lim supxn ≤

a

1− 1
a

=
a2

a− 1
. (1.15)

Then the result follows from (1.14) and (1.15).
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1.4.3 Global attractor

In the following Theorem, we establish sufficient conditions for global attractor
of Eq.(1.13).

Theorem 1.4.4 Assume that a > 1.Then the equilibrium point x = a + 1 is a
global attractor of Eq.(1.13).

Proof. Let f : [c, d]2 → [c, d] be a function defined by f(u, v) = a + u
v
. Assume

that (m,M) is a solution of the system

m = f(m,M), and M = f(M,m).

Then we get
(a− 1)(M −m) = 0,

Since a > 1, then we obtain
M = m.

It follows by Theorem B that x is a global attractor of Eq.(1.13) and then the
proof is complete.

Remark 1.4.5 In case 3 this case has been treated by many others such as [Am-
leh]. Here we give an alternative proofs of our results.

Part II : Studying of Eq.(1.1)
In this part we investigate the behavior of the positive solutions of the dif-

ference equation

xn+1 = an +
xpn
xpn−1

, for n ≥ 0,

where p is a positive real number, an is a positive sequence and the initial
conditions x−1, x0 are positive real numbers.

1.5 Case 1. When an = a ∈ R+

In this case Eq.(1.1) takes the form

xn+1 = a+
xpn
xpn−1

, n = 0, 1, 2... . (1.16)
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1.5.1 Local Stability of the Equilibrium Points

At the present we discuss the local stability character of the solutions of Eq.(1.16).

It is easy to see that the only positive equilibrium point of Eq.(1.16) is given
by x = a+ 1. Let f : (0,∞)2 → (0,∞) be a function defined by

f(x, y) = a+
xp

yp
.

Therefore
∂f(x, y)

∂x
=
pxp−1

yp
, and

∂f(x, y)

∂y
= − pxp

yp+1
.

We see that

∂f(x, x)

∂x
=

p

a+ 1
= p1, and

∂f(x, x)

∂y
= − p

a+ 1
= p2 .

Then the linearized equation of Eq.(1.16) about x is

yn+1 −
p

a+ 1
yn +

p

a+ 1
yn−1 = 0.

Theorem 1.5.1 The following statements are valid:

(i) if p < a + 1, furthermore the positive equilibrium point x of Eq.(1.16) is
locally asymptotically stable, and is called a sink.

(ii) If p > a+ 1, then the positive equilibrium point x of Eq.(1.16) is unstable,
and is called a repeller.

(iii) If p = a+ 1, then the positive equilibrium point x of Eq.(1.16) is unstable,
and is called a nonhyperbolic point.

Proof. (i) We set p1 = p
x
, and p2 = − p

x
. So by Theorem A (a)

| p1 | −1 + p2 < 0⇔ p

a+ 1
− p

a+ 1
− 1 < 0⇐⇒ −1 < 0.

Also
1 + p2 − 2 < 0⇐⇒ −1 +

p

a+ 1
< 0⇔ p

a+ 1
< 1.

which is valid iff
p < a+ 1.

So x is locally asymptotically stable when p < a+ 1.

(ii) By Theorem A (d) we have

| p2 | −1 =
p

a+ 1
− 1 > 0⇐⇒ p

a+ 1
> 1,
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and
| p1 | − | 1− p2 |=

p

a+ 1
− 1− p

a+ 1
= −1.

Thus x is unstable (repeller point) when p > a+ 1.

(iii) By Theorem A (e) we have

p2 = −1⇔ − p

1 + a
= −1⇔ −p = −(a+ 1)⇔ p = a+ 1,

and
| p1 | −2 ≤ 0⇔ p

a+ 1
− 2 ≤ 0⇔ p ≤ 2(a+ 1).

Thus x is unstable (repeller point) when p > a+ 1.

1.5.2 Boundedness of Solutions of Eq.(1.16)

In this subsection we discuss the suffiction conditions for bounded solution of
Eq.(1.16).

Theorem 1.5.2 If 0 < p < 1, consequently every positive solution of Eq.(1.16) is
bounded and persists.

Proof. We obtain from Eq.(1.16) that

xn+1 > a, n ≥ 0.

Hence {xn} persists. It follows again of Eq.(1.16) that

x2n+1 ≤ a+ (
x2n

a
)p, n = 0, 1, ... .

Now we suppose the difference equation

yn+1 = a+ (
yn
a

)p, n ≥ 0. (1.17)

Let {yn} be a solution of Eq.(1.17) with y0 = x0. Thus, cleary

x2n+1 ≤ yn+1 (resp x2n+2 ≤ yn+1), n = 0, 1, ... .

We will establish that the sequence {yn} is bounded. Let

f(x) = a+
xp

ap
.

Then
f
′
(x) =

1

ap
pxp−1 > 0, and f

′′
(x) =

1

ap
p(p− 1)xp−2 < 0.
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Therefore the function f is increasing and concave . Thus we obtain that there
is a unique fixed point y∗ of the equation f(y) = y. Likewise the function f
satisfies

(f(y)− y)(y − y∗) < 0, y ∈ (0,∞).

By Theorem E y∗ is a global attractor of all positive solutions of Eq.(1.17) and
so {yn} is bounded. Then from Eq.(1.17) the sequence {xn} is so bounded. This
finishes the proof of the theorem.

Example 1.5.3 Figure (5) shows the bounded solutions of the equilibrium point
x = 24 of Eq.(1.16) whenever x−1 = 1.0323, x0 = 2.441, a = 23, and p = 0.000000002.

Figure (5)

Theorem 1.5.4 Assume that p ≥ 4. Then Eq.(1.16) has unbounded solutions.

Proof. Note that for every solution {xn}∞n=−1of Eq.(1.16) the following in-
equality holds:

xn+1 >
xpn
xpn−1

, for n ∈ N. (1.18)

Let yn = lnxn. It follows from (1.18) that

yn+1 − pyn + pyn−1 > 0. (1.19)

Note that the roots of the polynomial

p(λ) = λ2 − pλ+ p,

are given by

λ1, λ2 =
p±

√
p2 − 4p

2
,

Since p ≥ 4 we have that λ1 > 1. On the other hand we have

λ2 =
2p

p+
√
p2 − 4p

.
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Hence if p ≥ 4, both roots of p(λ) are positive. Note that (1.19) can be rewritten
in the form

yn+1 − λ1yn − λ2(yn − λ1yn−1) > 0.

Then we see that
xn+1

xλ1n
> (

xn

xλ1n−1

)λ2 . (1.20)

It follows that
xn

xλ1n−1

> (
xn−1

xλ1n−2

)λ2 > ... > (
x1

xλ10

)λ2 > (
x0

xλ1−1

)λ2 .

Select x−1 and x0 so that

x0 > 1, x0 = xλ1−1.

Then it follows by (1.20) that

xn > (
x0

xλ1−1

)λ2xλ1n−1 = xλ1n−1 > ... > x
λn1
0 ,

and consequently xn > x
λn1
0 , n ∈ N . Letting n → ∞, then xn → ∞. From which

the outcome takes after.

1.5.3 Global Stability of Eq.(1.16)

Here we study the characteristic task of global stability of Eq.(1.16).

Theorem 1.5.5 Suppose that a ≥ 1 and 0 < p < 1. Then the unique positive
equilibrium point of Eq.(1.16) is globally asymptotically stable.

Proof. By Theorem 1.5.1 (i) x is locally asymptotically stable. Thus it is
suffices prove that every positive solution of Eq.(1.16) tends to the unique pos-
itive equilibrium x. Let {xn}∞n=−1 be a solution of Eq.(1.16). By Theorem 1.5.2
{xn}∞n=−1 is bounded. Thus we have

a ≤ s = lim inf xn, and S = lim supxn <∞ .

Then we get from (1.16)

S ≤ a+
Sp

sp
, and s ≥ a+

sp

Sp
. (1.21)

We claim that S = s, otherwise S > s. We obtain from (1.21)

spS ≤ spa+ Sp, and sSp ≥ Spa+ sp. (1.22)
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Thus we have
s1−p < S1−p,

or equivalently
sSp < Ssp. (1.23)

It follows from Eq.(1.22) and Eq.(1.23) that

Spa+ sp ≤ spa+ Sp.

Hence
Sp(a− 1) ≤ sp(a− 1).

which is impossible for a ≥ 1 . Hence the result follows.

Example 1.5.6 Figure (6) shows the global attractivity of the equilibrium point
x = 1.2000 of Eq.(1.16) whenever x−1 = 1.03, x0 = 2.441, a = 1.1, and p = 0.9.

Figure (6)

1.5.4 Oscillatory Solutions of Eq.(1.16)

Here we present the characteristic task of oscillatory solution of Eq.(1.16).

Theorem 1.5.7 Assume that 0 < p ≤ 1, then every positive solution of Eq.(1.16)
oscillates about the equilibrium point x = a + 1 with semicycles of length two or
three and the extreme of every semicycle occurs at the first or the second term.

Proof. Let {xn}∞n=−1 be a positive solution of Eq.(1.16). First, we present
every positive semicycle except possibly the first term has two or three terms.
Assume that xN−1 < x, and xN ≥ x, for some N ∈ N. We obtain

xN+1 = a+
xpN
xpN−1

> a+ 1 = x.
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If xN+1 > xN , so we get

xN+2 = a+
xpN+1

xpN
> a+ 1 = x.

Since p ∈ (0, 1], we include that

xN+2 = a+
xpN+1

xpN
≤ a+

xpN+1

xp
≤ a+

xpN+1

a+ 1
≤ xN+1.

So x < xN+2 < xN+1. Therefore

xN+3 = a+
xpN+2

xpN+1

< a+ 1 = x.

Then the proof is completed.

Theorem 1.5.8 Eq.(1.16) has no periodic solutions of prime period two.

Proof. As the sake of contradiction. Assume that ..., x, y, x, y, ... be a periodic
solution of period two of Eq.(1.16). It press that

x = a+ (
y

x
)p, and y = a+ (

x

y
)p, (1.24)

which suggest that

y = a+
1

x− a. (1.25)

Substituting from (1.24) into (1.25) and after some calculation we get

(x− a)p+1xp = (a(x− a) + 1)p. (1.26)

Taking the logarithm on both sides of (1.26), we acquire

f(x) = (p+ 1) ln(x− a) + p lnx− p ln[a(x− a) + 1] = 0. (1.27)

It is obvious that x = a + 1 is an obvious solution of (1.27). Presently we
examine that this is the unique solution of the equation (1.27). Now

f´(x) =
(x− a)(ax+ p(a(x− a) + 1)) + (p+ 1)x

x(x− a)(a(x− a) + 1)
.

Thus f´(x) > 0, for x ∈ (a,∞), which implies that the f is strictly increasing
on the interval (a,∞). Hence, the equilibrium point x = a + 1 is the unique
solution of (1.27). From Eq.(1.26) we obtain y = a + 1 and consequently. This
means (a + 1, a + 1) is the unique solution of System (1.24). Finishing the proof
of the theorem.
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1.6 Case 2. When an be a periodic sequence of
period two

In this section we study the behavior of solution of Eq.(1.1) while an is a periodic
sequence of period two with α, β ∈ (0,∞) and α 6= β. Consider a2n = α, and
a2n+1 = β. Then we have

x2n+1 = α +
xp2n
xp2n−1

,

x2n+2 = β +
xp2n+1
xp2n

.
(1.28)

Now Eq.(1.1) can be rewritten in the following form:

un+1 = α + upn
vpn
,

vn+1 = β + vpn
upn
.

(1.29)

1.6.1 Locally stability

Here we discuss the local stability of System (1.29). It is easy to see that (u, v) =
(α + 1, β + 1) is the unique positive equilibrium point of System (1.29).

Theorem 1.6.1 If p < (β+1)(α+1)
(α+1)p(β+1)p

, then the positive equilibrium point (u, v) =

(α + 1, β + 1) of System (1.29) is locally asymptotically stable.

Proof. We consider the map T on [0,∞)× [0,∞) such that

T (u, v) =

[
T1(u, v)

T2(u, v)

]
=

[
α + up

vp

β + vp

up

]
.

Then we have

∂T1(u, v)

∂u
= −pu

p−1vp

(up)2
, and

∂T1(u, v)

∂v
=
pvp−1

up
,

and
∂T2(u, v)

∂u
=
pup−1

vp
, and

∂T2(u, v)

∂v
= −pv

p−1up

(vp)2
.

Therefore the Jacobian matrix of T at (u, v) = (α + 1, β + 1) is

J(Eα,β) =

[
−pup−1vp

(up)2
pvp−1

up

pup−1

vp
−pvp−1up

(vp)2

]
,
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and the characteristic equation associated with (u, v) is

p(λ) = λ2 − λp((β + 1)p−1

(α + 1)
+

(α + 1)p−1

(β + 1)
).

Then we obtain
λ1 = 0, λ2 = p(

(β + 1)p−1

(α + 1)
+

(α + 1)p−1

(β + 1)
).

It follows by Theorem D that the equilibrium point (u, v) = (α + 1, β + 1) of
System (1.29) is locally asymptotically stable if p < (β+1)(α+1)

(α+1)p+(β+1)p
. Then the proof

is completed.

Example 1.6.2 Figure (7) shows the local stability of the equilibrium point

(u, v) = (21.6073, 0.0780) of System (1.29) whenever u0 = 2.43, v0 = 0.4562,
α = 0.76, β = 0.03, and p = 0.54.

Figure (7)

1.6.2 Periodicity of Eq.(1.1)

In this subsection we investigate the excitons of periodic solutions of Eq.(1.1).

Theorem 1.6.3 Assume that {an} = {α, β, α, β, ...}, with α 6= β. Then Eq.(1.1)
has periodic solution of prime period two.

Proof. To prove that Eq.(1.1) possess a periodic solution {xn} of prime period
two, we must find positive numbers x−1, x0 such that

x−1 =
αxp−1 + xp0

xp−1

, and x0 =
βxp0 + xp−1

xp0
. (1.30)

Let x−1 = x, and x0 = y, then we obtain from (1.30)

x = α +
yp

xp
, and y = β +

xp

yp
. (1.31)
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Now we want to prove that (1.31) has a solution (x, y), x > 0, y > 0. From the
first relation of (1.31) we have

y = (x− α)
1
P x. (1.32)

From (1.32) and the second relation of (1.31) we get

x(x− α)
1
p = β +

xp

xp(x− α)
,

or
x(x− α)

p+1
p − β(x− α)− 1 = 0.

Now define the function

f(x) = x(x− α)
p+1
p − β(x− α)− 1, x > α. (1.33)

Then
lim
x→α+

f(x) = −1, and lim
x→∞

f(x) =∞.

Hence Eq.(1.33) has at least one solution x > α. Then if y = (x − α)
1
px, we

have that the solution {xn}∞n=−1 is periodic of prime period two.

1.7 Case 3. When an is a positive bounded sequence

In this section we assume that an is a positive bounded sequence

lim
n→∞

inf an = a ≥ 0, and lim
n→∞

sup an = b <∞. (1.34)

1.7.1 Boundedness

The primary theorem indicate to the boundedness and the persistence of the
positive solutions of Eq.(1.1).

Theorem 1.7.1 Assume 0 < p < 1. Therefore every positive solution of Eq.(1.1)
is bounded and persists.

Proof. The proof is similar to the proof of Theorem 1.5.2 and will be omitted.

Lemma 1.7.2 Assume that 0 < p ≤ 1. Let lim
n→∞

inf an = a ≥ 0, and lim
n→∞

sup an =

b <∞ and {xn} be a positive solution of Eq.(1.1). Then

ab− 1

b− 1
≤ lim

n→∞
inf xn ≤ lim

n→∞
supxn ≤

ab− 1

a− 1
.



Ch 1 Dynamical of a Non-autonomous Diff. Eq 21

Proof. Assume

lim
n→∞

inf xn = λ, and lim
n→∞

supxn = µ. (1.35)

Let ε > 0 for n ≥ N0(ε) we get

λ− ε ≤ xn ≤ µ+ ε, and a− ε ≤ an ≤ b+ ε.

Therefore
xn+1 ≥ a− ε+ (

λ− ε
η + ε

)p. (1.36)

Taking the lim
n→∞

inf for Eq.(1.36). We obtain

λ ≥ a− ε+ (
λ− ε
η + ε

)p.

Since ε > 0 is arbitrary,

λ ≥ a+ (
λ

η
)p. (1.37)

Similarly
η ≤ b+ (

η

λ
)p. (1.38)

We get from equations (1.37) and (1.38) that

ληp ≥ aηp + λp, and ηλp ≤ bλp + ηp. (1.39)

Since 0 < p < 1 holds. Then we have

λ1−p ≤ η1−p,

or equivalently
ληp ≤ ηλp. (1.40)

It follows from equations (1.39) and (1.40) that

aηp + λp ≤ bλp + ηp.

So
ηp(a− 1) ≤ λp(b− 1),

and we have
(
η

λ
)p ≤ b− 1

a− 1
, and (

λ

η
)p ≥ a− 1

b− 1
.
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We obtain from Eq.(1.37) for all n > N0(ε) that

λ ≥ a+ (
λ

η
)p ≥ a+

a− 1

b− 1
=
ab− 1

b− 1
.

Similarly from Eq.(1.38) we get

η ≤ ab− 1

a− 1
.

Thus the proof is completed.

Now define the sequence {yn} to be

yn =
xn
xn
, n = −1, 0, 1, ...,

where xn be a fixed solution of Eq.(1.1). Then Eq.(1.1) will be rewritten as

yn+1 =
an + ( xn

xn−1
)p( yn

yn−1
)p

an + ( xn
xn−1

)p
. (1.41)

Lemma 1.7.3 Let {xn} be a fixed positive solution of Eq.(1.41). Then the follow-
ing statements are true.

(i) Eq.(1.41) has a positive equilibrium solution y = 1.

(ii) Let {yn} be a solution of Eq.(1.41). Then except possibly for the first semi-
cycle, every solution of Eq.(1.41) has semicycle of length one.

Proof. (i) trivial.

(ii) Assume that for some n, yn−1 ≥ yn. Then ( yn
yn−1

) < 1 and

yn+1 =
an + ( xn

xn−1
)p( yn

yn−1
)p

an + ( xn
xn−1

)p
<
an + ( xn

xn−1
)p

an + ( xn
xn−1

)p
= 1. (1.42)

Let {yn} be an finally oscillatory solution of Eq.(1.41) such as yn−1 < 1 and
yn ≥ 1. From part (1.42) it follows that yn+1 < 1. Therefore the positive semicycle
has exactly one term. The proof for negative semicycle is similar.

Lemma 1.7.4 Let {yn} be a fixed positive solution of Eq.(1.41). Suppose that
there exists an m ∈ {1, 2, ...} such that

y2m−1 < 1, and y2m ≥ 1. (1.43)
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Then
y2n−1 < 1, and y2n ≥ 1, for n = m,m+ 1, ... . (1.44)

Moreover, if
y2m−1 ≥ 1, and y2m < 1. (1.45)

Then
y2n−1 ≥ 1, and yn < 1, for n = m,m+ 1, ... . (1.46)

Proof. Let {yn} be a solution of Eq.(1.41) such that Eq.(1.43) holds for an
m ∈ {1, 2, ...}. we have

y2m−1 =
an + ( xn

xn−1
)p( yn

yn−1
)p

an + ( xn
xn−1

)p
≥
an + ( xn

xn−1
)p

an + ( xn
xn−1

)p
= 1.

Working inductively we can easily prove that Eq.(1.44) is satisfied. Simi-
larly we can prove that if Eq.(1.45) holds for an m ∈ {1, 2, ...}, then Eq.(1.46) is
satisfied. This completes the proof of the lemma.

1.7.2 Global attractor of the solutions

Here we investigate the global stability of Eq.(1.1).

Theorem 1.7.5 Let {xn} be a fixed solution of Eq.(1.1). Suppose that one of the
following holds:

(i) 0 < p ≤ 1
2
.

(ii) 1
2
< p < 1, a > 1, and a(a − 1) > b − 1.Then for every solution {xn} of

Eq.(1.1) the relation lim
n→∞

xn
xn

= 1 is true.

Proof. (i) Let {yn} be a solution of Eq.(1.41). It is sufficient to prove that

lim
n→∞

yn = 1

Suppose that there exists an m ∈ {1, 2, ...} such that (1.43) or (1.45) . Without
loss of generality we may assume that (1.43) holds for an m ∈ {1, 2, ...} and
0 < p ≤ 1

2
is satisfied.

Let
µ = lim

n→∞
inf yn, and ζ = lim

n→∞
sup yn. (1.47)

also
τ = lim

n→∞
inf xn, and ω = lim

n→∞
supxn, (1.48)
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and
δ =

ω

τ
. (1.49)

Define rhe function F by

F (x, y, z) =
x+ ypzp

x+ yp
(1.50)

for x, y.z > 0. Then we have

∂F

∂x
=
yp(1− zp)
(x+ yp)2

, and
∂F

∂y
=
pxyp−1(zp − 1)

(x+ yp)2

Let n ≥ m. Using Eq.(1.41) we have

y2n+1 = F (a2n,
x2n
x2n−1

, y2n
y2n−1

),

y2n+2 = F (a2n+1,
x2n+1
x2n

, y2n+1
y2n

).
(1.51)

Since (1.43) holds by Lemma 3 we obtain the following:

y2n−1

y2n

< 1, and
y2n

y2n−1

≥ 1, for n ≥ m.

using Eq.(1.34), (1.47)-(1.51) and monotonic properties of F we have

θ ≤ F (a, δ,
ζ

µ
) =

a+ ( ζ
µ
)pδp

a+ δp
, and µ ≥ F (a, δ,

µ

ζ
) =

a+ (µ
ζ
)pδp

a+ δp
,

or
ζµp ≤ aµp + ζpδp

a+ δp
, and µζp ≥ aζp + µpδp

a+ δp
.

Then
aζpµp−1 + µ2p−1δp ≤ ζpµp ≤ aµpζp−1 + ζ2p−1δp.

Hence
aζpµp−1 + µ2p−1δp ≤ aµpζp−1 + ζ2p−1δp,

and so
ζp(aµp−1 + µp−1(

µ

ζ
)pδp) ≤ µp(aζp−1 + ζp−1(

ζ

µ
)pδp),

or
(
ζ

µ
)p(a(

µ

ζ
)p−1 − δp) ≤ a− (

µ

ζ
)p−1δp.

Thus
a
ζ

µ
− δp( ζ

µ
)p ≤ a− (

ζ

µ
)1−pδp.

Since 0 < p ≤ 1
2
, we obtain

a(
ζ

µ
− 1) ≤ δp((

ζ

µ
)p − (

ζ

µ
)1−p).
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Therefore
a(
ζ

µ
− 1) ≤ 0,

which implies that
ζ ≤ µ.

Thus we get that ζ = µ. The proof is completed. (ii)Now suppose 1
2
< p < 1,

a > 1, and a(a − 1) > b − 1. Note that ( η
λ
)p ≤ b−1

a−1
and (λ

η
)p ≥ a−1

b−1
. Then it follows

by that (1.34), (1.47-1.51) and ( η
λ
)p ≤ b−1

a−1
and (λ

η
)p ≥ a−1

b−1
hold. Then we obtain

θ ≤ F (a,
η

λ
,
ζ

µ
) =

a+ ( η
λ
)p( ζ

µ
)p

a+ ( η
λ
)p

≤
a+ ( b−1

a−1
)( ζ
µ
)p

a+ ( b−1
a−1

)
,

and

µ ≥ F (a,
η

λ
,
µ

ζ
) =

a+ ( η
λ
)p(µ

ζ
)p

a+ ( η
λ
)p

≥
a+ ( b−1

a−1
)(µ
ζ
)p

a+ ( b−1
a−1

)
.

Then

µpζ ≤ aµp

a+ ( b−1
a−1

)
+

( b−1
a−1

)ζp

a+ ( b−1
a−1

)
, and µζp ≥ aζp

a+ ( b−1
a−1

)
+

( b−1
a−1

)µp

a+ ( b−1
a−1

)
. (1.52)

Since µ ≤ ζ it follows that µζp ≤ ζµp. Therefore from (1.52) we get

aζp

a+ ( b−1
a−1

)
+

( b−1
a−1

)µp

a+ ( b−1
a−1

)
≤ aµp

a+ ( b−1
a−1

)
+

( b−1
a−1

)ζp

a+ ( b−1
a−1

)
.

Then

(
a

a+ ( b−1
a−1

)
-

( b−1
a−1

)

a+ ( b−1
a−1

)
)ζp ≤(

a

a+ ( b−1
a−1

)
-

( b−1
a−1

)

a+ ( b−1
a−1

)
)µp. (1.53)

Since 1
2
< p < 1, a > 1, and a(a− 1) > b− 1, we obtain from (1.53) that ζ ≤ µ

and so ζ = µ. Then the proof is completed.

Example 1.7.6 Figure (8) shows the global attractivity of the equilibrium point
x = 1 of Eq.(1.41) whenever x−1 = 2.091, x0 = 23.0192, y−1 = 4.341, y0 = 2.3134,
a = 0.2145, and p = 0.441.

Figure (8)
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1.7.3 Periodicity of Eq.(1.1)

In the following theorem we find the sufficient conditions for the existence of
two-periodic solutions for Eq.(1.1).

Theorem 1.7.7 Assume that 0 < p < 1 and {an} is a periodic sequence of period
twos. Then Eq.(1.1) has a periodic solution of prime period two.

Proof. For Eq.(1.1) posses a periodic solution {xn} of prime period two, we
must find some positive numbers x−1, x0. Assume that {an} = {a0, a1, a0, a1, ...},
such that

x−1 = x1 = a0 + (
x0

x−1

)p, and x0 = x2 = a1 + (
x1

x0

)p, (1.54)

We shall show that System (1.54) is consistent. We get from Eq.(1.54)

(x−1 − a0)(x0 − a1) = 1. (1.55)

It follows that

(x−1−a0)p+1 =
(a1(x−1 − a0) + 1)p

xp−1

, and (x0−a1)p+1 =
(a0(x0 − a1) + 1)p

xp0
. (1.56)

We define a function F by

F (x) = (x− a0)p+1 − (a1(x− a0) + 1)p

xp
, x > a0.

Then
F (a0) = − 1

a0

< 0, and F (a0 + 1) = 1− (a1 + 1)p

(a0 + 1)p
> 0.

Now let a1 < a0, then F has a zero, say x−1, in the interval (a0, a0 + 1), and
in view of equations (1.55) and (1.56) we get that Eq.(1.1) has a two-periodic
solution. Assume now that a1 > a0. We define a function G such that

G(x) = (x− a1)p+1 − (a0(x− a1) + 1)p

xp
, x > a1.

Then
G(a1) = − 1

a1

< 0, F (a1 + 1) = 1− (a0 + 1)p

(a1 + 1)p
> 0.

Thus, G has a zero, say x0, in the interval (a1, a1 +1), and in view of equations
(1.55) and (1.56) we get that Eq.(1.1) has a two-periodic solution.
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Theorem 1.7.8 Assume that {an} = {α, β, α, β, ...}, with α 6= β.Then every solu-
tion of Eq.(1.1) converges to a period two solution of Eq.(1.1).

Proof. We know by Theorem 1.7.1 that every positive solution of Eq.(1.1) is
bounded, therefore there are some positive constants l, L, s and S such that

l = lim
n→∞

inf x2n+1, and L = lim sup
n→∞

x2n+1,

s = lim
n→∞

inf x2n, and S = lim sup
n→∞

x2n.

Now we get from Eq.(1.1) that

x2n+1 = a2n +
xp2n
xp2n−1

,

x2n+2 = a2n+1 +
xp2n+1
xp2n

.
(1.57)

Therefore, it is easy to see from System (1.57) that

l ≥ a0 +
sp

Lp
, and L ≤ a0 +

Sp

lp
,

and
s ≥ a1 +

lp

Sp
, and S ≤ a1 +

Lp

sp
.

Then we obtain

Lpl ≥ a0L
p + sp, and Llp ≤ a0l

p + Sp,

and
Sps ≥ a1S

p + lp , and Ssp ≤ a1s
p + Lp.

So, we get
a0L

p + sp ≤ Llp ≤ Lpl ≤ a0l
p + Sp,

and
a1S

p + lp ≤ Sps ≤ Ssp ≤ a1s
p + Lp.

Thus, we have

a0(Lp − lp) ≤ Sp − sp, and a1(Sp − sp) ≤ Lp − lp. (1.58)

Thus it is clear from (1.58) that s = S and l = L.Now assume that lim
n→∞

x2n+1 =

S and lim
n→∞

x2n = L. We want to proof that S 6= L. From System(1.57) we get

S = α +
LP

SP
, and L = β +

SP

LP
.
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As thae sake of contradiction assume that L = S, then

L = α + 1, and S = β + 1

thus α = β which is a contradiction. So lim
n→∞

x2n+1 6= lim
n→∞

x2n. The proof is so
completed.



Chapter 2

On Some Second Order
Difference Equations

2.1 Introduction

In this chapter we study the local stability, boundedness, global attractivity,
oscillatory, and the periodicity for the solutions of the rational difference equa-
tions

xn+1 = axn +
bxn

1 + xpn−1

, n ≥ 0,

and

xn+1 = axn−1 +
b

1 + xpn
, n ≥ 0,

where the parameters a, b,and p ∈ (0,∞) and the initial conditions x−1, x0 are
positive real numbers.

2.2 On the Equation xn+1 = axn +
bxn

1+x
p
n−1
,

Our aim in this section is to investigate the locally , boundedness, and the global
attractively for the positive solutions of the difference equation

xn+1 = axn +
bxn

1 + xpn−1

, n ≥ 0, (2.1)

with a, b ∈ [0,∞), p ∈ (0,∞), and the initial conditions x−1, x0 are arbitrary
positive numbers.

29
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2.2.1 Local Stability of the Equilibrium Points

Here we investigate the equilibrium points of Eq.(2.1).

The equilibrium points of Eq.(2.1) are given by the relation

x = ax+
bx

1 + xp

If b + a > 1, and a < 1, then Eq.(2.1) has the equilibrium points x = 0 and
x = p

√
b

1−a − 1. Now let f : (0,∞)2 → (0,∞) be a function defined by

f(u, v) = au+
bu

1 + vp
.

Therefore,

δf(u, v)

δu
= a+

b

1 + vp
and

δf(u, v)

δu
= − bpuvp−1

(1 + vp)2
.

Then we see that

δf(x, x)

δu
= a+

b

1 + xp
= p1, and

δf(x, x)

δv
= − bpxp

(1 + xp)2
= p2.

Then the linearized equation of Eq.(2.1) about x is

yn+1 − (a+
b

1 + xp
)yn + (

bpxp

(1 + xp)2
)yn−1 = 0.

Theorem 2.2.1 The following statements are true:

(i) The equilibrium point x = 0 of Eq.(2.1) is locally asymptotically stable if
a+ b < 1.

(ii) The equilibrium point x = 0 of Eq.(2.1) is unstable if a+ b > 1.

(iii) The equilibrium point x = 0 of Eq.(2.1) is stable if a+ b = 1.

Proof. Since the linearized equation of Eq.(2.1) about the equilibrium point
x = 0 can be written in the following form

yn+1 = (a+ b)yn, n ≥ 0,
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so, the characteristic equation of Eq.(2.1) about x = 0, is

λ2 − (a+ b)λ = 0.

Then, the proof of (i),(ii) follows immediately from Theorem A.

(iii) Let ε > 0, and consider {xn}∞n=−1 be a solution of Eq.(2.1) such that

| x−1 | + | x0 |< δ.

It suffices to show that
| x1 |< ε.

Now,

0 < |x1| =
∣∣∣∣ax0 +

bx0

1 + xp−1

∣∣∣∣ < |(a+ b)x0| = |x0| < δ.

Chose δ = ε then |x1| < ε whenever a + b < 1 holds. Then, the result follows
by induction.

2.2.2 Boundedness of the Solutions

Here we discuss the boundedness nature of the solutions of Eq.(2.1)

Lemma 2.2.2 Assume that a + b ≤ 1, then every positive solution of Eq.(2.1) is
bounded.

Proof. Let {xn}∞n=−1 be a solution of Eq.(2.1). It follows from Eq.(2.1) that

xn+1 = axn +
bxn

1 + xpn−1

≤ (a+ b)xn.

Then in view of the proof of Theorem 4.2.1 , we have

x1 ≤ x0.

Similary it is easy to see that

... ≤ xn ≤ ... ≤ x2 ≤ x1 ≤ x0.

So every solution of Eq.(2.1) is bounded from above.

Lemma 2.2.3 If a > 1, then the Eq.(2.1) has unbounded solutions.
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Proof. Consider {xn}∞n=−1 be a solution of Eq.(2.1), then it follows that

xn+1 > axn,

so
xn > axn−1 > ... > anx0.

Then
lim
n→∞

xn =∞.

Thus, the proof is completed.

2.2.3 Global Attractor of the Equilibrium Points of Eq.(2.1)

This subsection is devoted to investigate the global attractivity character of so-
lution of Eq.(2.1).

Theorem 2.2.4 Assume that a+b ≤ 1, then the zero equilibrium point of Eq.(2.1)
is globally asymptotically stable.

Proof. We know by Theorem 2.2.1 that x = 0 is locally asymptotically stable
equilibrium point of Eq.(2.1) if a + b ≤ 1, and so it suffices to show that x = 0 is
global attractor of Eq.(2.1) as follows

0 ≤ xn+1 = axn +
bxn

1 + xpn−1

≤ xn,

Then the sequence {xn} is decreasing ,and bounded from below by zero and
since there is a unique equilibrium point x = 0 in this case, then lim

n→∞
xn = 0.

Then the proof is completed.

Theorem 2.2.5 If a < 1 and a+ b > 1,Then the positive equilibrium point x is a
global attractor of Eq.(2.1).

Proof. We can easily see that the function

g(u, v) = au+
bu

1 + vp

is increasing in u and decreasing in v.Suppose that (m,M) is a solution of
the system

M = g(M,m), and m = g(m,M).



Ch 2 On some Second order Diff.Eq 33

We can see from Eq.(2.1), that

M = aM +
bM

1 +mp
, and m = am+

bm

1 +Mp
,

or
1− a =

b

1 +mp
, and 1− a =

b

1 +MP
.

We obtain from this
m = M.

By Theorem B, we can see that x is a global attractor of Eq.(2.1). Then the
proof is complete.

Theorem 2.2.6 Let {xn}∞n=−1 be a nontrivial solution of Eq.(2.1). Then the fol-
lowing statements are true:

(i) Every semicycle, except perhaps for the first one, has at least two terms.

(ii) The extreme in each semicycle occur at either the first term or the second.
Furthermore after the first, the remaining terms in a positive semicycle
are strictly decreasing and in a negative semicycle are strictly increasing.

Proof. We present the proofs for positive semicycles only. The proofs for
negative semicycles are similar and will be omitted.

(i) Assume that for some N ≥ 0,

xN−1 < x and xN ≥ x.

Then
xN+1 = axN +

bxN
1 + xN−1

> ax+
bx

1 + xp
= x.

(ii) Assume that for some N ≥ 0, the first two terms in a positive semicycle
are xN and xN+1. Then

xN ≥ x, xN+1 > x

and

xN+2

xN+1

=
1

xN+1

[axN+1 +
bxN+1

1 + xPN
] = a+

b

1 + xPN
< a+

b

1 + xp
= 1.

The proof is completed.
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Example 2.2.7 Figure (9) shows the global attractivity of the equilibrium point
x = 0 of Eq.(2.1) whenever x−1 = 0.87, x0 = 0.9539, a = 0.2, b = 0.5, and p = 0.442.

Figure (9)

Example 2.2.8 Figure (10) shows that Eq.(2.1) has unbounded solutions with
the values x−1 = 1.537, x0 = 3.019, a = 5, b = 0.9, and p = 2.

Figure (10)

Example 2.2.9 Figure (11) shows the global attractivity of the equilibrium point
x = 4.1231 of Eq.(2.1) whenever x−1 = 6.012, x0 = 2.34, a = 0.5, b = 9, and p = 2.

Figure (11)
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2.3 On the Equation xn+1 = axn−1 +
b

1+x
p
n
,

In this section we deal the locally, global attractivity, and the boundedness for
the solutions of the rational difference equation

xn+1 = axn−1 +
b

1 + xpn
, n ≥ 0, (2.2)

where the parameters a, b, and p are nonnegative real numbers and initial
conditions x−1, and x0 are nonnegative real numbers.

2.3.1 Local Stability of the Equilibrium Points

This subsection deals with study the local stability character of the positive
equilibrium point of Eq.(2.2).

The equilibrium points of Eq.(2.2) are given by the relation

x = ax+
b

1 + xp
.

If a < 1, then the uniqne positive equilibrium point of Eq.(2.2) is given by

x+ xp+1 =
b

1− a.

Let f : (0,∞)2 → (0,∞) be a function defined by

f(u, v) = av +
b

1 + up

Therefore,
∂f(u, v)

∂u
= − bpvp−1

(1 + vp)2
, and

∂f(u, v)

∂v
= a.

Set
p1 = −p

b
xp+1(1− a)2, and p2 = a

Then the linearized equation of Eq.(2.2) about x is

yn+1 +
p

b
xp+1(1− a)2yn − ayn−1 = 0.

Theorem 2.3.1 Assume that a < 1 and p > 1. Then the following statments are
true
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(i) If b
b >

p

(p− 1)
1
p

(
1− a
p− 1

), (2.3)

then the equilibrium point of Eq.(2.2) is locally asymptotically stable.

(ii) If b
b <

p

(p− 1)
1
p

(
1− a
p− 1

), (2.4)

then the equilibrium point of Eq.(2.2) is unstable, in fact is a saddle point.

(iii) If b
b =

p

(p− 1)
1
p

(
1− a
p− 1

), (2.5)

then the equilibrium point of Eq.(2.2) is a nonhyperbolic point.

Proof. (i) By Theorem A we get

|p1|+ |p2| = a+
bpxp−1

(1 + xp)2
< 1⇔ a+

p

b
xp+1(1− a) < 1⇔ x < (

b

p(1− a)
)

1
p+1 .

Let g(x) = x(1−a)+xp+1(1−a)−b.A simple calculation, using condition (2.3),
shows that

g((
b

p(1− a)
)

1
p+1 ) = (

b

p(1− a)
)

1
p+1 (1− a) +

b

p(1− a)
(1− a)− b < 0

⇔ (
b

p
)

1
p+1 (1− a)

p
p+1 +

b

p
< b⇔ b ≥ p

(p− 1)
1
p

(
1− a
p− 1

).

Then, since lim
x→∞

g(x) =∞, xp+1 < b
p(1−a)

.

(ii) The condition p2
1 + 4p2 > 0 of Theorem A is always satisfied and so x is

unstable if xp+1 < b
p(1−a)

. By condition (2.4), we have

g((
b

p(1− a)
)

1
p+1 ) = (

b

p(1− a)
)

1
p+1 (1− a) +

b

p(1− a)
(1− a)− b > 0.

Then since g(0) < 0, xp+1 < b
p(1−a)

.

(iii) The condition| p1 |=| 1 − p2 | is equivalent to xp+1 = b
p(1−a)

. Similarly by

condition (2.5), we have g(( b
p(1−a)

)
1

p+1 ) = 0. Then xp+1 = b
p(1−a)

. Then the proof is
completed.
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2.3.2 Boundedness Charactor of Eq.(2.2)

In this subsection, we study the characteristic task of boundedness of solutions
Eq.(2.2).

Theorem 2.3.2 If a < 1, then Eq.(2.2) is bounded and persists.

Proof. Let {xn}∞n=−1 be a solution of Eq.(2.2) it follows from Eq.(2.2) that

xn+1 = axn−1 +
b

1 + xpn
< axn−1 + b.

Therefore
lim
n→∞

supxn ≤
b

1− a = M.

Thus {xn}∞n=−1 is bounded from above. Again it follows from Eq.(2.2) that

xn+1 = axn−1 +
b

1 + xpn
>

b

1 + xpn
≥ b

1 + ( b
1−a)p

= m.

Then {xn} is bounded from blow too. Then the result is followed.

Theorem 2.3.3 If a > 1, then Eq.(2.2) has unbounded solutions.

Proof. Let {xn}∞n=−1 be a solution of Eq.(2.2). We obtain from Eq.(2.2) that

xn+1 = axn−1 +
b

1 + xpn−1

> axn−1,

that is
xn > axn−1 > a2xn−1 > ... > anx0.

It follows that limxn
n→∞

=∞. Then the proof is completed.

2.3.3 Global attractor

This subsection is devoted to investigate the global attractivity character of so-
lutions of Eq.(2.2).

Theorem 2.3.4 Let 0 < p < 1 and a < 1.Then every positive solution of Eq.(2.2)
converges to x.
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Proof. It was shown by Theorem 2.3.2 that every solution {xn}∞n=−1 of Eq.(2.2)
is bounded. Thus it follows

lim
n→∞

inf xn = l, and lim supxn = L

As the sake of contraduction assume that l < L. We see from Eq.(2.2) that

al +
b

1 + Lp
≤ l < L ≤ aL+

b

1 + lp

which implies that

b

1− a − l ≤ lLp < Llp ≤ b

1− a − L

i.e.,
(L− l) < 0

which gives a contradiction. Hence the result follows.

Example 2.3.5 Figure (12) shows the global attractivity of the equilibrium point
x = 3.1118 of Eq.(2.2) whenever x−1 =3.3124 , x0 = 1.63, a = 0.1, b = 9, and p =
0.7.

2.3.4 Oscillatory Solutions of Eq.(2.2)

In this subsection, we study the characteristic task of oscillatory solutions of
Eq.(2.2).

Theorem 2.3.6 Let {xn}∞n=−1 be a positive solution of Eq.(2.2) which consists of
at least two semicycles. Then {xn}∞n=−1 is oscillatory. Moreover, with the possible
exception of the first semi-cycle has length 1.
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Proof. It suffices to consider the following two cases.

Case 1. Suppose xN−1 < x < xN . Then

xN+1 = axN−1 +
b

1 + xpN
< ax+

b

1 + xp
= x ,

and
xN+2 = axN +

b

1 + xpN+1

> ax+
b

1 + xp
= x.

Case 2. Suppose xN < x < xN−1. Then

xN+1 = axN−1 +
b

1 + xpN
> ax+

b

1 + xp
= x

and xN+2 = axN +
b

1 + xpN+1

< ax+
b

1 + xp
= x.

The proof is complete.



Chapter 3

On Some Higher Order
Difference Equations

3.1 Introduction

In this chapter we investigate the global attractivity, and the boundedness for
the solutions of the rational difference equation

xn+1 = α +
βxpn−k + γxqn−m
Axpn−k +Bxqn−m

, n ≥ 0, (3.1)

where the parameters α, β, γ, A,B, p, and q ∈ (0,∞) and the initial conditions
x−l, x−l+1, ..., x−1, x0 where l = max{k,m} are positive real numbers.

The work of this section divided into two parts; Part I concerned with the
special cases of Eq.(3.1) and Part Π deals with the general Eq.(3.1).

Part I
Here, we study the following cases of Eq.(3.1).

1. Whenever A = γ = 0 then Eq.(3.1) has the form

xn+1 = α +
βxpn−k
Bxqn−m

, n ≥ 0. (3.2)

2. Whenever A = 0 then Eq.(3.1) has the form

xn+1 = α +
βxpn−k + γxqn−m

Bxqn−m
,

40
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or

xn+1 = C +
βxpn−k
Bxqn−m

, n ≥ 0, (3.3)

where C = α + γ
B
.

3. Whenever β = B = 0 then Eq.(3.1) has the form

xn+1 = α +
γxqn−m
Axpn−k

, n ≥ 0. (3.4)

4. Whenever B = 0 then Eq.(3.1) has the form

xn+1 = α +
βxpn−k + γxqn−m

Axpn−k
,

or
xn+1 = D +

γxqn−m
Axpn−k

, n ≥ 0, (3.5)

where D = α + β
A
.

5. Whenever β = 0 then Eq.(3.1) has the form

xn+1 = α +
γxqn−m

Axpn−k +Bxqn−m
, n ≥ 0. (3.6)

6. Whenever γ = 0 then Eq.(3.1) has the form

xn+1 = α +
βxpn−k

Axpn−k +Bxqn−m
, n ≥ 0. (3.7)

In this part we study the special cases of Eq.(3.1).

3.2 Case 1. Study of Eq.(3.2)

In this section, we study the local stability, the boundedness, global attractivity,
oscillatery, and periodicity for the solutions of the equation

xn+1 = α +
βxpn−k
Bxqn−m

, n ≥ 0.
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3.2.1 Local Stability of the Equilibrium Point of Eq.(3.2)

It is easy to see that Eq.(3.2) has a unique positive equilibrium point and is
given by

x = α +
βxp

Bxq
.

Let f : (0,∞)2 → (0,∞) be a function defined by

f(u, v) = α +
βup

Bvq
.

Therefore,

∂f(u, v)

∂u
= E

pup−1

vq
, and

∂f(u, v)

∂v
= −Eqv

q−1up

(vq)2
,

where E = β
B
. Set

p1 = Epxp−q−1, and p2 = −Eqxp−q−1.

Then the linearized equation of Eq.(3.2) about x is

yn+1 + p2yn−m + p1yn−k = 0,

where p2 = −fu(x, x), and p1 = −fv(x, x). whose characteristic equation is

λk+1 + p2λ
k−m + p1 = 0.

Theorem 3.2.1 If x < 1
p−q−1
√
E(p+q)

, then the positive equilibrium point x of Eq.(3.2)

is locally asymptotically stable, and is called a sink.

Proof. We set p1 = Epxp−q−1, and p2 = −Eqxp−q−1. Then

|p1|+ |p2| < 1⇔ Epxp−q−1 + Eqxp−q−1 < 1.

which is valid iff
xp+q−1 <

1

E(p+ q)
.

So by Theorem A x is locally asymptotically stable when x < 1
p−q−1
√
E(p+q)

.
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3.2.2 Boundedness of Eq.(3.2)

Here, we investigate the bounded character of Eq.(3.2).

Theorem 3.2.2 If 0 < p < 1, then the Eq.(3.2) is bounded and persists.

Proof. Assume that {xn} be a solution of Eq.(3.2). We obtain from Eq.(3.2)
that

xn+1 > α, for n ≥ 0.

Hence {xn} persists. It follows again from Eq.(3.2) that

xn+1 ≤ α + Lxpn−k,

where L = β
Bαq

. Now we consider the difference equation

yn+1 = α + Lypn, for n ≥ 0. (3.8)

Let {yn} be a solution of Eq.(3.8) with y0 = x0. Then obviously

xn+1 ≤ yn+1, for n = 0, 1, ... .

We shall prove that the sequence {yn} is bounded. Let

f(x) = α + Lxp.

Then
f
′
(x) = Lpxp−1 > 0, and f

′′
(x) = Lp(p− 1)xp−2 < 0.

Therefore the function f is increasing and concave . Thus we obtain that there
is a unique fixed point y∗ of the equation f(y) = y. Also the function f satisfies

(f(y)− y)(y − y∗) < 0, y ∈ (0,∞).

It follows by Theorem C that y∗ is a global attractor of all positive solutions
of Eq.(3.8) and so {yn} is bounded. Therefore from Eq.(3.2) the sequence {xn} is
also bounded. This completes the proof of the theorem.

3.2.3 Global attractor

Here we study the global asymptotic stability of the positive solutions of Eq.(3.2).

Theorem 3.2.3 Assume that 0 < p < 1 < q, α > E(p + q − 1)
1

q−p+1 . Then every
positive solution of Eq.(3.2) converges to the unique positive equilibrium point x
of Eq.(3.2).
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Proof. Note that when 0 < p < 1 < q, it was shown in Theorem 3.2.2 that
every positive solution of Eq.(3.2) is bounded. Then we have the following

s = lim
n→∞

inf xn, and S = lim
n→∞

supxn.

It is clear that s ≤ S. We want to proof that s ≥ S. Now it is easy to see from
Eq.(3.2) that

s ≥ α + E
sp

Sq
, and S ≤ α + E

Sp

sq
.

Thus we have

sSq ≥ αSq + Esp, and sqS ≤ asq + ESp.

Thus
αsq−1Sq + Espsq−1 ≤ αsqSq−1 + ESpSq−1.

Then we get
αSq−1sq−1(S − s) ≤ E(Sp+q−1 − sp+q−1).

So

αSq−1sq−1 ≤ E
Sp+q−1 − sp+q−1

S − s . (3.9)

If we consider the function xp+q−1, then there exists a c ∈ (s, S) such that

Sp+q−1 − sp+q−1

S − s = (p+ q − 1)cp+q−2 ≤ (p+ q − 1)Sp+q−2. (3.10)

Theen from (3.9) and (3.10) we get

αSq−1sq−1 ≤ E(p+ q − 1)Sp+q−2.

or
αS1−psq−1 ≤ E(p+ q − 1).

Since S ≥ α and s ≤ α. Then we obtain

αα1−pαq−1 = αq−p+1 ≤ E(p+ q − 1).

which contradicts to 0 < p < 1 < q. Which implies that s = S. Thus the proof
is complete.
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Example 3.2.4 Figure (13) shows the global attractivity of the equilibrium point
x = 1.1837 of Eq.(3.2) whenever x−1 = 5.6487, x0 = 1.0231, p = 0.5, q = 0.9, α = 0.7,
β = 0.19, and B = 0.52.

Figure (13)

3.2.4 Oscillatery of the solutions for Eq.(3.2)

In the next theorem, we study the oscillatery character of Eq.(3.2).

Theorem 3.2.5 Assume that k is odd and m is even and m < k, then Eq.(3.2)
has oscillatory solutions.

Proof. Case (1) let {xn} be a solution of Eq.(3.2)with

x−k, x−k+1, ..., x−1 ≥ x, and x−m+1, x−m+1, ..., x0 < x.

We get from Eq.(3.2) that

x1 = α +
βxp−k
Bxq−m

≥ α +
βxp

Bxq
= x,

and

x2 = α +
βxp−m+1

Bxq−k+1

< α +
βxp

Bxq
= x

Then, the result follows by induction.

Case (2) let

x−m, x−m+1, ..., x0 ≥ x, and x−k+1, x−k+1, ..., x−1 < x.

is similary the case (1). Then it will be omitted.
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Example 3.2.6 Figure (14) shows the oscillatory solutions of Eq.(3.2) whenever
x−1 = 1.6487, x0 = 2.0231, α = 0.23, p = 0.2, q = 2, β = 0.9, and B = 0.5.

Figure (14)

3.2.5 Periodicity of the solutions

The next theorem deals with the existence of periodic solutions to Eq.(3.2).

Theorem 3.2.7 Let k is odd and m is even. If 0 < p < 1 < q, then Eq.(3.2) has
periodic solutions of period two.

Proof. Let {xn} be a solution of Eq.(3.2) with the initial values x−1, and x0

such that

x−1 =
αBxq0 + βxp−1

Bxq0
, and x0 =

αBxq−1 + βxp0
Bxq−1

. (3.11)

Let x− = x, and x0 = y, then we obtain from (3.11)

x = α +
βxp

Byq
, and y = α +

βyp

Bxq
. (3.12)

Now we want to prove that (3.12) has a solution (x, y), x > 0, y > 0. From the
first relation of (3.12) we have

y =
β
1
qx

p
q

B
1
q (x− α)

1
q

. (3.13)

From (3.13) and the second relation of (3.12) we get

β
1
qx

p
q

B
1
q (x− α)

1
q

− β
p+q
q x

p2−q2
q

B
p+q
q (x− α)

p
q

− α = 0.
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Now define the function

f(x) =
1

(x− α)
1
q

((
β

B
)
1
qx

p
q − (

β

B
)
p+q
q x

p2−q2
q (x− α)

1−p
q )− α, x > α. (3.14)

Then
lim
x→α+

f(x) =∞, lim
x→∞

f(x) = −α.

Hence Eq.(3.14) has at least one solution x > α. Then if y = β
1
q x

p
q

B
1
q (x−α)

1
q
, we

have that the solution {xn}∞n=−1 is periodic of prime period two. Thus the proof
is complete.

Example 3.2.8 Figure (15) shows the periodicity solutions of Eq.(3.2) whenever
x−1 = 1.737, x0 = 2.423, α = 0.7, p = 0.2, q = 4, β = 0.5, and B = 0.32.

Figure (15)

3.3 Case 2. Study of Eq.(3.3)

This equation is similar of Eq.(3.2) and its investigation is similar to Eq.(3.2)
and so will be omitted.

3.4 Case 3. Study of Eq.(3.4)

The proofs of the theorems in this section are similar to the proofs of the theo-
rems in section 2 and will be left to the reader.

Theorem 3.4.1 If x < 1
q−p−1
√
F (p+q)

, then the positive equilibrium point x of Eq.(3.4)

is locally asymptotically stable, and is called a sink.
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Theorem 3.4.2 If 0 < q < 1, then the Eq.(3.4) is bounded and persists.

Theorem 3.4.3 Assume that 0 < q < 1 < p, α > F (q + p − 1)
1

p−q+1 . Then every
positive solution of Eq.(3.4) converges to the unique positive equilibrium point x
of Eq.(3.4).

Theorem 3.4.4 Assume that m is odd and k is even and k < m, then Eq.(3.4)
has oscillatory solutions.

Theorem 3.4.5 Let m is odd and k is even. If 0 < q < 1 < p, then Eq.(3.4) has
periodic solutions of period two.

3.5 Case 4. Study of Eq.(3.5)

This equation is similar of Eq.(3.4) and its investigation is similar to Eq.(3.4)
and so will be omitted.

3.6 Case 5. Study of Eq.(3.6)

Eq.(3.6) has a unique positive equilibrium point and is given by

x = α +
βxp

Axp +Bxq
.

Let f : (0,∞)2 → (0,∞) be a function defined by

f(u, v) = α +
βup

Aup + aBvq
.

Therefore,

∂f(u, v)

∂u
=

Aβpvqup−1

(Aup +Bvq)2
, and

∂f(u, v)

∂v
= − βBqvq−1up

(Aup +Bvq)2
,

Set
p1 =

Aβpxq+p−1

(Axp +Bxq)2
, and p2 = − Bβqxq+p−1

(Axp +Bxq)2
.

Then the linearized equation of Eq.(3.6) about x is

yn+1 + p2yn−m + p1yn−k = 0,

where p2 = −fu(x, x), and p1 = −fv(x, x). whose characteristic equation is

λk+1 + p2λ
k−m + p1 = 0.
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3.6.1 Local Stability of the Equilibrium Points of Eq.(3.6)

Here we establish the local stability of the equilibrium points of Eq.(3.6).

Theorem 3.6.1 If xp+q−1

(Axp+Bxq)2
< 1

βB(p+q)
, then the positive equilibrium point x of

Eq.(3.6) is locally asymptotically stable, and is called a sink.

Proof. We set p1 = Aβpxq+p−1

(Axp+Bxq)2
, and p2 = − Bβqxq+p−1

(Axp+Bxq)2
. Therefore

|p1|+ |p2| < 1⇔ Aβpxq+p−1

(Axp +Bxq)2
+

Bβqxq+p−1

(Axp +Bxq)2
< 1.

which is valid iff
xp+q−1

(Axp +Bxq)2
<

1

βB(p+ q)
.

So by Theorem A x is locally asymptotically stable when xp+q−1

(Axp+Bxq)2
< 1

βB(p+q)
.

3.6.2 Boundedness of Eq.(3.6)

Here, we investigate the bounded character of Eq.(3.6).

Theorem 3.6.2 If 0 < p < 1, then the Eq.(3.6) is bounded and persists.

Proof. Assume that {xn} be a solution of Eq.(3.6). We obtain from Eq.(3.6)
that

xn+1 > α, for n ≥ 0.

Hence {xn} persists. It follows again from Eq.(3.6) that

xn+1 ≤ α +
βxpn−k

Aαp +Bαq
≤ α +

βxpn−k
Bαq

, for n ≥ 0.

The rest of the proof is similar to the proof of the Theorem 3.2.2 and will be
omitted.

3.6.3 Global Stability of Eq.(3.6)

In this section we investigate the global asymptotic stability of Eq.(3.6).
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Theorem 3.6.3 The positive equilibrium point x is a global attractor of Eq.(3.6).
If

(AMP +Bmq)(Amp +BM q) 6= βB(
∞∑
i=1

αi−1Mp+q−i +

∞∑
i=1

αp+q−iM i−1), (3.15)

where M is given by M = α + βMp

Aαp+Bαq
.

Proof. We can see that the function

f(u, v) = α +
βup

Aup +Bvq
,

is increasing in u and decreasing in v. Since Eq.(3.6) is bounded by Theorem
3.5.2. Suppose that (m,M) is a solution of the system

M = f(M,m), and m = f(m,M).

We obtain from Eq.(3.6) that

M = α +
βMp

AMP +Bmq
, and m = α +

βmp

AmP +BM q
.

Thus

(M −m)(AMP +Bmq)(Amp +BM q)−Bβ(Mp+q −mp+q) = 0.

Then we obtain

(M −m)[(AMP +Bmq)(Amp +BM q)−Bβ(
∞∑
i=1

αi−1Mp+q−i +
∞∑
i=1

αp+q−iM i−1)] = 0.

Seine the condition (3.15) holds, then we get

M = m

It follows by Theorem B that x is a global attractor of Eq.(3.6), and then the
proof is complete.

Example 3.6.4 Figure (16) shows the global attractivity of the equilibrium point
of Eq.(3.6) whenever x−1 = 5.4235, x0 = 8.987, p = 0.2, q = 0.3, α = 0.6, β = 0.4,
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A = 0.4521, and B = 1.563.

Figure (16)

3.7 Case 6: Study of Eq.(3.7)

This equation is the same of Eq.(3.6) and its investigation is similar to Eq.(3.6)
and so will be omitted.

Part II

Now we will investigate the behavior of the solutions of Eq.(3.1).

3.7.0.1 Local Stability of Equilibrium Points

In this section we study the local stability character of the positive equilibrium
points of Eq.(3.1). Eq.(3.1) has a unique positive equilibrium point and is given
by

x = α +
βxp + γxq

Axp +Bxq
.

Let f : (0,∞)2 → (0,∞) be a function defined by

f(u, v) = α +
βup + γvq

Aup +Bvq
.

Therefore,

∂f(u, v)

∂u
=
pvqup−1(Bβ − Aγ)

(Aup +Bvq)2
, and

∂f(u, v)

∂v
= −qu

pvq−1(Bβ − Aγ)

(Aup +Bvq)2
.
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Set
p1 =

pxp+q−1(Bβ − Aγ)

(Axp +Bxq)2
, and p2 = −qx

p+q−1(Bβ − Aγ)

(Axp +Bxq)2
.

Then the linearized equation of Eq.(3.1) about x is

yn+1 + p2yn−m + p1yn−k = 0,

where p2 = −fu(x, x), and p1 = −fv(x, x). whose characteristic equation is

λk+1 + p2λ
k−m + p1 = 0.

Theorem 3.7.1 If A
B
< β

γ
and xp+q−1

(Axp+Bxq)2
< 1

(p+q)(Bβ−Aγ)
, then the positive equilib-

rium point x of Eq.(3.1) is locally asymptotically stable, and is called a sink.

Proof. We set p1 = pxp+q−1(Bβ−Aγ)
(Axp+Bxq)2

, and p2 = − qxp+q−1(Bβ−Aγ)
(Axp+Bxq)2

. So by Theorem A

|p1|+ |p2| < 1⇔ pxp+q−1(Bβ − Aγ)

(Axp +Bxq)2
+
qxp+q−1(Bβ − Aγ)

(Axp +Bxq)2
< 1.

which is valid iff

xp+q−1

(Axp +Bxq)2
<

1

(p+ q)(Bβ − Aγ)
.

So x is locally asymptotically stable when xp+q−1

(Axp+Bxq)2
< 1

(p+q)(Bβ−Aγ)
.

3.7.0.2 Boundedness of Eq.(3.1)

Here, we study the bounded character of Eq.(3.1).

Theorem 3.7.2 Every solution of Eq.(3.1) is bounded and persists.

Proof. Let {xn} be a positive solution of Eq.(3.1). We obtain from Eq.(3.1)
that

xn+1 > α, for n ≥ 0.

Hence {xn} persists. It follows again from Eq.(3.1) that

xn+1 = α +
βxpn−k + γxqn−m
Axpn−k +Bxqn−m

≤ α +
max{β, γ}(xn−k + xn−m)

min{A,B}(xn−k + xn−m)
= α +

max{β, γ}
min{A,B} = M.
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Thus we get

0 < α ≤ xn < α +
max{β, γ}
min{A,B} = M <∞, for all n ≥ 1.

Therefore every solution of Eq.(3.1) is bounded and persists. Hence the result
holds.

3.7.0.3 Global Stability of Eq.(3.1)

In this section we investigate the global asymptotic stability of Eq.(3.1).

Theorem 3.7.3 If (Bβ−Aγ)(
∞∑
i=1

αi−1Mp+q−i+
∞∑
i=1

αp+q−iM i−1) 6= (AMP+Bmq)(Amp+

BM q), and A
B
< β

γ
, then the positive equilibrium point x is a global attractor of

Eq.(3.1).

Proof. We can see that the function

f(u, v) = α +
βup + γvq

Aup +Bvq
,

is increasing in u and decreasing in v. Suppose that (m,M) is a solution of
the system

M = f(M,m), and m = f(m,M).

We obtain from Eq.(3.1) that

M = α +
βMp + γmq

AMP +Bmq
, and m = α +

βmp + γM q

AmP +BM q
.

Thus

(M−m)[(Bβ−Aγ)(
∞∑
i=1

αi−1Mp+q−i+
∞∑
i=1

αp+q−iM i−1)−(AMP+Bmq)(Amp+BM q)] = 0.

Since Bβ > Aγ,

(Bβ −Aγ)(
∞∑
i=1

αi−1Mp+q−i +
∞∑
i=1

αp+q−iM i−1) 6= (AMP +Bmq)(Amp +BM q) hold.

Then we obtain
m = M.

It follows by Theorem B that x is a global attractor of Eq.(3.1), and then the
proof is complete.
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Example 3.7.4 Figure (17) shows the global attractivity of the equilibrium point
of Eq.(3.1) whenever x−1 = 2.4235, x0 = 1.987, p = 0.7, q = 0.9, α = 0.6, β = 0.4,
γ = 0.2, A = 0.4521, and B = 0.52.

Figure (17)



Chapter 4

On Some Systems of Difference
Equations

4.1 Introduction

In this chapter, we investigate the dynamic behavior of the positive solutions of
the following system of difference equations.

un+1 =
aun−1

b+ cvpn−3w
p1
n−1

, vn+1 =
dvn−1

e+ fwqn−3u
q1
n−1

, wn+1 =
gwn−1

h+ Iurn−3v
r1
n−1

, n ∈ N0 (4.1)

where the initial conditions u−i, v−i, wi (i = 0, 1, 2, 3) are non-negative real
numbers and the parameters a, b, c, d, e, f, g, h, I, p, q, r are positive real numbers.

The hypothesis of discrete dynamic of systems of grew enormously amid the
most recent thirty years of the twentieth century. One of the reasons for this is a
necessity for some techniques which can be used in investigating equations aris-
ing in mathematical models describing real life situations in population biology,
economic, probability theory, genetics, psychology.

[7] investigated the periodicity of the positive solutions of the system

xn+1 =
1

yn
, yn+1 =

yn
xn−1yn−1

.

[32] el al. studied the system of two nonlinear difference equation

xn+1 =
xn−1

ynxn−1 + 1
, yn+1 =

yn−1

xnyn−1 + 1
.

We will study the following cases:

Case 1. If p1 = q1 = r1 = 0.

Case 2. If p1 = q1 = r1 = 1.

55
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4.2 Case 1. System (4.1) when p1 = q1 = r1 = 0.

We will investigate the stability of the two equilibrium points of System (4.1)
when p1 = q1 = r1 = 0. Then from System (4.1) we get

un+1 =
aun−1

b+ cvpn−3

, vn+1 =
dvn−1

e+ fwqn−3

, wn+1 =
gwn−1

h+ Iurn−3

, n ∈ N0. (4.2)

By the change of variables un = (h
I
)
1
rxn, vn = ( b

c
)
1
pyn, wn = ( e

f
)
1
q zn. System (4.2)

can be rewritten as

xn+1 =
αxn−1

1 + ypn−3

, yn+1 =
βyn−1

1 + zrn−3

, zn+1 =
γyn−1

1 + xqn−3

, n ∈ N0 (4.3)

where α = a
b
, β = g

h
, γ = d

e
.

In this section, we investigate the stability of the two equilibrium points of
System (4.3). When α, β, γ ∈ (0, 1), it is easy to see that (x1, y1, z1) = (0, 0, 0) is
the unique equilibrium point of System (4.3). When α, β, γ ∈ (1,∞), the unique
positive equilibrium point of System (4.3) is given by (x2, y2, z2) = ((γ − 1)

1
q , (α−

1)
1
p , (β − 1)

1
r ).

4.2.1 Local stability of the Equilibrium Points

In this subsection we find conditions so that the zero equilibrium (x1, y1, z1) of
System (4.3) is stable and the positive equilibrium (x2, y2, z2) of System (4.3) is
unstable.

Theorem 4.2.1 The following statements hold:

(i) If α, β, γ ∈ (0, 1), then the equilibrium point (x1, y1, z1) = (0, 0, 0) of System
(4.3) is locally asymptotically stable.

(ii) If α ∈ (1,∞) or β ∈ (1,∞) or γ ∈ (1,∞), then the equilibrium point
(x1, y1, z1) = (0, 0, 0) of System (4.3) is unstable.

(iii) If α, β, γ ∈ (1,∞), then the positive equilibrium point (x2, y2, z2) = ((γ −
1)

1
q , (α− 1)

1
p , (β − 1)

1
r ) of System (4.3) is unstable.

Proof. We will rewrite System (4.3) in the form

Xn+1 = F (XN), (4.4)
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where Xn = (xn, ..., xn−3, yn, ..., yn−3, zn, ..., zn−3)T and the map F is given by

F



t0
t1
t2
t3
s0

s1

s2

s3

k0

k1

k2

k3



=



αt1
1+sp3

t0
t1
t2
βs1

1+kr3

s0

s1

s2
γk1
1+tq3

k0

k1

k2



.

The linearized System of (4.4) about the equilibrium point X = (0, ..., 0)T is
given by

Xn+1 = JF (X0)Xn,

where

JF (X0) =



0 α 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 β 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 γ 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0



.

Thus the characteristic equation of JF (X0) is given by

λ6(λ2 − α)(λ2 − β)(λ2 − γ) = 0. (4.5)

Then we have the following:

(i) If α, β, γ ∈ (0, 1), all the roots of the Eq.(4.5) lie inside the open unit disk
|λ| < 1. So, the unique equilibrium point (x1, y1, z1) = (0, 0, 0) of System (4.3) is
locally asymptotically stable.

(ii) It is clearly that if α ∈ (1,∞) or β ∈ (1,∞) or γ ∈ (1,∞), then some
roots of Eq.(4.5) have absolute value greater that one. Thus, the equilibrium
point (x1, y1, z1) = (0, 0, 0) of System (4.3) is unstable.
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(iii) The linearized system of (4.4) about the positive equilibrium point (x2, y2, z2)
is given by Xn+1 = JF (Xα,β,γ)Xn, where

xn =



xn
xn−1

xn−2

xn−3

yn
yn−1

yn−2

yn−3

zn
zn−1

zn−2

zn−3



, JF (x0) =



0 1 0 0 0 0 0 0 0 0 0 A
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 B 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 C 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0



,

where

A = −p(α−)
p−1
p (β − 1)

1
r

α
, B = −r(γ−)

1
q (β − 1)

r−1
r ,

β
, and C = −q(α−)

1
p (γ − 1)

q−1
q

γ
.

The characteristic equation of JF (Xα,β,γ) is given by

p(λ) = λ12 − 3λ10 + 3λ8 − λ6 − rpq (α− 1)(β − 1)(γ − 1)

αβγ
.

Now

p(1) = −rpq (α− 1)(β − 1)(γ − 1)

αβγ
< 0 and lim

λ→∞
p(λ) =∞.

Then p(λ) has at least one root in the interval (1,∞). So, by Theorem D if
α, β, γ ∈ (1,∞), then the positive equilibrium point (x2, y2, z2) = ((γ − 1)

1
q , (α −

1)
1
p , (β − 1)

1
r ) of System (4.3) is unstable. This completes the proof.

4.2.2 Global Stability of System (4.3)

In the following theorem, we study the convergency of the solutions of System
(4.3) to its zero equilibrium point.

Theorem 4.2.2 If α, β, γ ∈ (0, 1), then the equilibrium point (x1, y1, z1) = (0, 0, 0)
of System (4.3) is globally asymptotically stable.
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Proof. We proved in Theorem 4.2.1 that if α, β, γ ∈ (0, 1), then the equilib-
rium point (x1, y1, z1) = (0, 0, 0) of System (4.3) is locally asymptotically stable.
Hence, it suffices to show that

lim
n→∞

(xn, yn, zn) = (0, 0, 0).

We have from System (4.3) that

0 ≤ xn+1 =
αxn−1

1 + ypn−3

≤ αxn−1, 0 ≤ yn+1 =
βyn−1

1 + zrn−3

≤ βyn−1,

0 ≤ zn+1 =
γzn−1

1 + xqn−3

≤ γzn−1, for n ∈ N0.

Then it follows by induction that

0 ≤ x2n−i ≤ αnx−i, 0 ≤ y2n−i ≤ βny−i, 0 ≤ z2n−i ≤ γnz−i, (4.6)

where x−i, y−i, z−i (i = 0, 1) are the initial conditions. Consequently, by taking
limits of inequalities in (4.6) when α, β, γ ∈ (0, 1),we get lim

n→∞
(xn, yn, zn) = (0, 0, 0).

This completes the proof.

Example 4.2.3 Figure (18) shows the global attractivity of the zero equilibrium
point x of System (4.3) for the values α = 0.9, β = 0.2, γ = .5, p = 2, q = 0.3, and
r = 5 whenever x−3 = 1.04, x−2 = 2.6, x−1 = 1.02, x0 = 3.04, y−3 = 1.3, y−2 = 3.9,
y−1 = 0.4, y0 = 1.2, z−3 = 1.5, z−2 = 2.3, z−1 = 0.9, and z0 = 0.006.

Figure (18)

4.2.3 Study of 2-Periodic solutions

Here we show that there is a prime two periodic solution.



60 Ch 4 On some Systems of Diff.Eq

Theorem 4.2.4 If α = β = γ = 1, then every solution of System (4.3) tends a
period two solution.

Proof. We get from System (4.3)

x2n+1 − x2n−1 = −x2n−1z
p
n−3

1 + zpn−3

≤ 0, y2n+1 − y2n−1 = −y2n−1x
q
n−3

1 + xqn−3

≤ 0,

z2n+1 − z2n−1 = −
z2n−1y

r
n−3

1 + yrn−3

≤ 0.

and

x2n+2 − x2n = − x2nz
p
2n−2

1 + zp2n−2

≤ 0, y2n+2 − y2n = − y2nx
q
2n−2

1 + xq2n−2

≤ 0,

z2n+2 − z2n = −
z2ny

r
2n−2

1 + yr2n−2

≤ 0.

Thus, we get

x2n+1 ≤ x2n−1, y2n+1 ≤ y2n−1, z2n+1 ≤ z2n−1, x2n+2 ≤ x2n, y2n+2 ≤ y2n,

and
z2n+2 ≤ z2n.

The sequences {(x2n−1, y2n−1, z2n−1)}∞n=−3 and {(x2n, y2n, z2n)}∞n=−3 are non-
increasing. Hence, while the odd-index terms tend to one periodic point, the
even-index terms tend to another periodic point. This completes the proof.

Theorem 4.2.5 Assume that α = β = γ = 1, then every solution {(xn, yn, zn)}∞n=−3

of System (4.3) converges to a period two solution. Moreover the sequence {xn}
converges to a period solution of the form

..., ϕ, ψ, ϕ, ψ, ...,

also the sequence {yn} converges to a period two solution

..., γ, δ, γ, δ, ...,

and the sequence {zn} converges to a period two solution

..., λ, µ, λ, µ, ...,

and the solution has the form

{(0, 0, 0), (ψ, δ, µ), (0, 0, 0), ...}.
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Proof. We have from System (4.3)

xn+1 − xn−1 = −xn−1y
p
n−3

1 + ypn−3

≤ 0, yn+1 − yn−1 = −yn−1z
q
n−3

1 + zqn−3

≤ 0,

zn+1 − zn−1 = −
zn−1x

r
n−3

1 + xrn−3

≤ 0,

which imply that {xn} converges to a period two solution

..., ϕ, ψ, ϕ, ψ, ...,

also {yn} converges to a period two solution

..., γ, δ, γ, δ, ...,

and {zn} converges to a period two solution

..., λ, µ, λ, µ, ... .

If we assume that

lim
n→∞

x2n = ϕ, lim
n→∞

x2n+1 = ψ, lim
n→∞

y2n = γ, lim
n→∞

y2n+1 = δ, lim
n→∞

z2n = λ,

and
lim
n→∞

z2n+1 = µ,

then we have

ϕ =
ϕ

1 + γp
, ψ =

ψ

1 + γp
, γ =

γ

1 + λr
, δ =

δ

1 + λr
, λ =

λ

1 + ϕq
, µ =

µ

1 + ϕq

which implies that γ = λ = ϕ = 0. Then the proof is completed.

Example 4.2.6 Figure (19) shows that the solutions of System (4.3) tend to a
period two solution of System (4.3) for the values α = β = γ = 1, p = 3, q = 3, and
r = 3 whenever x−3 = 4, x−2 = 6, x−1 = 2, x0 = 4, y−3 = 0.3, y−2 = 0.9, y−1 = 4,
y0 = 2, z−3 = 0.5, z−2 = 2.3, z−1 = 0.9, and z0 = 6.

Figure (19)
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4.2.4 Oscillatory Charactor

Here we dell with the oscillation of the positive solutions of System (4.3) about
the equilibrium point (x2, y2, z2) = ((γ − 1)

1
q , (α− 1)

1
p , (β − 1)

1
r ).

Theorem 4.2.7 Let α, β, γ ∈ (0,∞) and {(x2n, y2n, z2n)}∞n=−3 be a positive solu-
tion of System (4.3). Then, {(x2n, y2n, z2n)}∞n=−3 oscillates about the equilibrium
point (x2, y2, z2). Moreover, with the possible exception of the first semicycle, every
semicycle has length one.

Proof. Assume that

(i) x−1, x−3 ≥ x2, x0, x−2 < x2 or x−1, x−2 < x2, x−3, x0 ≥ x2, y−1, y−3 ≥ y2,
y0, y−2 < y2, z0, z−2 ≥ z2, z−1, z−3 < z2

holds. Then we get

x1 =
αx−1

1 + yp−3

< x2, x2 =
αx0

1 + yp−2

≥ x2, x3 =
αx1

1 + yp−1

< x2, x4 =
αx2

1 + yp0
≥ x2

y1 =
βy−1

1 + zr−3

≥ y2, y2 =
βy0

1 + zr−2

< y2, y3 =
βy1

1 + zr−1

≥ y2, y4 =
βy2

1 + zr0
< y2

z1 =
γz−1

1 + xq−3

< z2, z2 =
γz0

1 + xq−2

≥ z2, z3 =
γz1

1 + xq−1

< z2, z4 =
γz2

1 + xq0
≥ z2

Then, the result follows by induction. (ii) x−1, x−3 < x2, x0, x−2 ≥ x2 or
x−1, x−2 ≥ x2, x−3, x0 < x2, y−1, y−3 < y2, y0, y−2 ≥ y2, z0, z−2 < z2, z−1, z−3 ≥ z2.
The proof of this case is similarly to case (i) will be omitted.

4.2.5 Unboundedness of the Solutions of System (4.3)

In the following theorem, we show the existence of unbounded solutions for
System (4.3)

Theorem 4.2.8 If α, β, γ ∈ (1,∞), then System (4.3) possesses an unbounded
solution.

Proof. Assume that {(x2n, y2n, z2n)}∞n=−3 be a solution of System (4.3) with
x2n−3 < x2, x2n−2 ≥ x2, y2n−3 ≥ y2, y2n−2 < y2, z2n−3 < z2, and z2n−2 ≥ z2 for
n ∈ N0.Then, we have

x2n+2 =
αx2n

1 + yp2n−2

≥ x2n, y2n+1 =
βy2n−1

1 + zr2n−3

≥ y2n−1, z2n+1 =
γz2n−1

1 + xq2n−3

≥ z2n−1,
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x2n+1 =
αx2n−1

1 + yp2n−3

< x2n−1, y2n+2 =
βy2n

1 + zr2n−2

< y2n, z2n+1 =
γz2n

1 + xq2n−2

< z2n.

from which it follows that lim
n→∞

(x2n, y2n−1, z2n−1) = (∞,∞,∞) and lim
n→∞

(x2n−1, y2n, z2n) =

(0, 0, 0).

This completes the proof.

Example 4.2.9 Figure (20) shows that System (4.3) has unbounded solutions
with the values α = 1.02, β = 1.09, γ = 1.05, and p = q = r = 3 whenever x−3 = 4,
x−2 = 6, x−1 = 2, x0 = 3, y−3 = 1.36, y−2 = 3, y−1 = 1, y0 = 0.4, z−3 = 2, z−2 = 1.25,
z−1 = 0.23, and z0 = 3.

Figure (20)

4.3 Case 2. System (4.1) when p1 = q1 = r1 = 1.

Now we will investigate the stability of the two equilibrium points of System
(4.1) when p1 = q1 = r1 = 1. Then from System (4.1) we get

un+1 =
aun−1

b+ cvpn−3wn−1

, vn+1 =
dvn−1

e+ fwqn−3un−1

, wn+1 =
gwn−1

h+ Iurn−3vn−1

, n ∈ N0 (4.7)

By the change of variables un = (h
I
)
1
rxn, vn = ( b

c
)
1
pyn, wn = ( e

f
)
1
q zn. System (4.7)

can be rewritten as

xn+1 =
αxn−1

1 + sypn−3zn−1

, yn+1 =
βyn−1

1 + tzrn−3xn−1

, zn+1 =
γzn−1

1 + xqn−3yn−1

(4.8)

where α = a
b
, β = d

e
, γ = g

h
, and s = ( e

f
)
1
q , t = (h

I
)
1
r , k = ( b

c
)
1
p .
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4.3.1 Stability of System (4.8)

In this subsection, we investigate the stability of the two equilibrium points of
System (4.8). When α, β, γ ∈ (0, 1), it is easy to see that (x1, y1, z1) = (0, 0, 0) is the
unique equilibrium point of System (4.8). When α, β, γ ∈ (1,∞), the unique posi-
tive equilibrium point of System (4.8) is (x2, y2, z2) = ((γ−1

k
)

1
r+1 , (α−1

s
)

1
p+1 , (β−1

t
)

1
q+1 ).

Theorem 4.3.1 The following statements hold:

(i) If α, β, γ ∈ (0, 1), then the equilibrium point (x1, y1, z1) = (0, 0, 0) of System
(4.8) is locally asymptotically stable.

(ii) If α ∈ (1,∞) or β ∈ (1,∞) or γ ∈ (1,∞), then the equilibrium point
(x1, y1, z1) = (0, 0, 0)of System (4.8) is unstable.

(iii) If α, β, γ ∈ (1,∞), then the positive equilibrium point (x2, y2, z2) of System
(4.8) is unstable.

Proof. We rewrite System (4.8) in the form

Xn+1 = F (Xn)

where Xn = (xn, ..., xn−3, yn, ..., yn−3, zn, ..., zn−3)T and the map F is given by

F



n0

n1

n2

n3

m0

m1

m2

m3

l0
l1
l2
l3



=



αn1
1+smp

3l1

n0

n1

n2
βm1

1+tlq3n1

m0

m1

m2
γl1

1+knr3m1

l0
l1
l2



.

The linearized system of (4.4) about the equilibrium point X = (0, ..., 0)T is
given by

Xn+1 = JF (X0)Xn,
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where

JF (X0) =



0 α 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 β 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 γ 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0



.

Thus the characteristic equation of JF (X0) is given by

λ6(λ2 − α)(λ2 − β)(λ2 − γ) = 0. (4.9)

We have the following: (i) If α, β, γ ∈ (0, 1),all roots of the characteristic equa-
tion (4.9) lie inside the open unit disk | λ |< 1. So, the unique equilibrium point
(x1, y1, z1) = (0, 0, 0) of System (4.8) is locally asymptotically stable.

(ii) If α ∈ (1,∞) or β ∈ (1,∞) or γ ∈ (1,∞), then some roots of Eq.(4.9)
have absolute values greater than one. Thus, the equilibrium point (x1, y1, z1) =
(0, 0, 0) is unstable.

(iii) The linearized system of (4.4) about the positive equilibrium point (x2, y2, z2)
is given by

Xn+1 = JF (Xα,β,γ)Xn.

where

Xn =



xn
xn−1

xn−2

xn−3

yn
yn−1

yn−2

yn−3

zn
zn−1

zn−2

zn−3



, JF (Xα,β,γ) =



0 A 0 0 0 0 0 B 0 C 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 D 0 0 0 E 0 0 0 0 0 F
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 G 0 H 0 0 0 I 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0



,
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where

A =
αt

1
q+1

t
1

q+1 + (s(α− 1)p)
1

p+1 (β − 1)
1

q+1

, B = −pαs
2

p+1 t
1

q+1 (γ − 1)
1

r+1 (β − 1)
1

q+1 (α− 1)
p−1
p+1

k
1

r+1 (t
1

q+1 + (s(α− 1)p)
1

p+1 (β − 1)
1

q+1 )2
,

C = − αt
2

q+1 (s(α− 1)p)
1

p+1 (γ − 1)
1

r+1

k
1

r+1 (t
1

q+1 + (s(α− 1)p)
1

p+1 (β − 1)
1

q+1 )2
,

D = − βk
2

r+1 (t(β − 1)q)
1

q+1 (α− 1)
1

p+1

s
1

p+1 (k
1

r+1 + (t(β − 1)q)
1

q+1 (γ − 1)
1

r+1 )2
, E =

βk
1

r+1

k
1

r+1 + (t(β − 1)q)
1

q+1 (γ − 1)
1

r+1

,

F = −βqt
2

q+1k
1

r+1
1

q+1 (γ − 1)
1

r+1 (β − 1)
q−1
q+1 (α− 1)

1
p+1

s
1

p+1 (k
1

r+1 + (t(β − 1)q)
1

q+1 (γ − 1)
1

r+1 )2
,

G = −γrk
2

r+1 s
1

p+1 (γ − 1)
r−1
r+1 (β − 1)

1
q+1 (α− 1)

1
p+1

t
1

q+1 (s
1

p+1 + (k(γ − 1)r)
1

r+1 (α− 1)
1

p+1 )2
,

H = − γs
2

p+1 (k(γ − 1)r)
1

r+1 (β − 1)
1

q+1

t
1

q+1 (s
1

p+1 + (k(γ − 1)r)
1

r+1 (α− 1)
1

p+1 )2
,

and

I =
γs

1
p+1

s
1

p+1 + (k(γ − 1)r)
1

r+1 (α− 1)
1

p+1

.

The characteristic equation of JF (Xα,β,γ) is given by

p(λ) = λ12 − (A+ E + I)λ10 + (EI + AE + AI)λ8

−(CG+ FH +BD + CHD + AEI)λ6 + (BDI + AFH + CGE)λ4 −BFG.

Therefor
p(0) = −BFG < 0 and lim

λ→∞
p(λ) =∞.

Then p(λ) has at least one root in the interval (1,∞). So by Theorem D we say
that if α, β, γ ∈ (0,∞), then the positive equilibrium point (x2, y2, z2) of System
(4.8) is unstable. This completes the proof.

4.3.2 Global Stability of System (4.8)

Here we investigate the global attractor of System (4.8) to its zero equilibrium
point.

Theorem 4.3.2 If α, β, γ ∈ (0, 1), then the equilibrium point (x1, y1, z1) = (0, 0, 0)
of System (4.8) is globally asymptotically stable.
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Proof. We proved in Theorem 4.3.1 that if α, β, γ ∈ (0, 1), then the equilib-
rium point (x1, y1, z1) = (0, 0, 0) of System (4.8) is locally asymptotically stable.
Hence, it suffices to show that

lim
n→∞

(xn, yn, zn) = (0, 0, 0).

We see from System (4.8) that, for n ∈ N0

0 ≤ xn+1 =
αxn−1

1 + sypn−3zn−1

≤ αxn−1, 0 ≤ yn+1 =
βyn−1

1 + tzqn−3xn−1

≤ βyn−1,

0 ≤ zn+1 =
γzn−1

1 + kxrn−3yn−1

≤ γzn−1.

Then it follows by induction that

0 ≤ x2n−i ≤ αnx−i, 0 ≤ y2n−i ≤ βny−i, 0 ≤ z2n−i ≤ γnz−i. (4.10)

where x−i, y−i, z−i(i = 0, 1) are the initial conditions. Consequently, by taking
limits of inequalities in (4.10), we get lim

n→∞
(xn, yn, zn) = (0, 0, 0).

Example 4.3.3 Figure (21) shows the global attractivity of the zero equilibrium
point x of System (4.8) for the values α = 0.011, β = 0.827, γ = 0.021, p = 0.003,
q = 0.01283, r = 0.343, s = 1, t = 3, and k = 2 whenever x−3 = 1.04, x−2 = 2.6,
x−1 = 1.02, x0 = 3.04, y−3 = 1.3, y−2 = 3.9, y−1 = 0.4, y0 = 1.2, z−3 = 1.5, z−2 = 2.3,
z−1 = 0.9, and z0 = 0.006.

Figure (21)

4.3.3 Study of 2-Periodic Solutions of System (4.8

In the following theorem, we investigate the convergence of the period solutions
period two of System (4.8).
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Theorem 4.3.4 If α = β = γ = 1, then every solution of System (4.8) tends to a
period two solution.

Proof. We get from System (4.8) that

x2n+1 − x2n−1 = −sx2n−1y
p
2n−3z2n−1

1 + syp2n−3z2n−1

≤ 0, y2n+1 − y2n−1 = −ty2n−1z
q
2n−3x2n−1

1 + tzq2n−3x2n−1

≤ 0,

z2n+1 − z2n−1 = −
ky2n−1x

r
2n−3z2n−1

1 + kxr2n−3y2n−1

≤ 0

and

x2n+2 − x2n = − sx2ny
p
2n−2z2n

1 + syp2n−2z2n

≤ 0, y2n+2 − y2n = − ty2nz
q
2n−2x2n

1 + tzq2n−2x2n

≤ 0,

z2n+2 − z2n = −
ky2nx

r
2n−2z2n

1 + kxr2n−2y2n

≤ 0,

also

x2n+2 − x2n = − sx2ny
p
2n−2z2n

1 + syp2n−2z2n

≤ 0, y2n+2 − y2n = − ty2nz
q
2n−2x2n

1 + tzq2n−2x2n

≤ 0,

z2n+2 − z2n = −
ky2nx

r
2n−2z2n

1 + kxr2n−2y2n

≤ 0.

Thus we get

x2n+1 ≤ x2n−1, y2n+1 ≤ y2n−1, z2n+1 ≤ z2n−1, x2n+2 ≤ x2n, y2n+2 ≤ y2n,

and
z2n+2 ≤ z2n.

That is , the sequences {(x2n−1, y2n−1, z2n−1)}∞n=−3 and {(x2n, y2n, z2n)}∞n=−3 are
non-increasing. Hence, while the odd-index terms tend to one periodic point,
the even-index terms tend to another periodic point. This completes the proof.

Example 4.3.5 Figure (22) shows that the solutions of (4.8) tend to a period two
solution of System (4.8) for the values α = β = γ = 1, p = 0.3, q = 0.8, r = 3 and
s = 0.09, r = 0.54, and k = 0.922 whenever x−3 = 4, x−2 = 6, x−1 = 2, x0 = 3,
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y−3 = 1.36, y−2 = 3, y−1 = 1, y0 = 0.4, z−3 = 2, z−2 = 1.25, z−1 = 0.23, and z0 = 3.

F igure (22)

Example 4.3.6 Figure (23) shows that System (4.8) has an unbounded solution
with α = 1.02, β = 1.09, γ = 1.05, p = 3, q = 3, r = 3, s = 0.09, r = 1.54, and
k = 0.922 whenever x−3 = 4, x−2 = 6, x−1 = 2, x0 = 3, y−3 = 1.36, y−2 = 3, y−1 = 1,
y0 = 0.4, z−3 = 2, z−2 = 1.25, z−1 = 0.23, and z0 = 3.

Figure (23)
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