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Abstract. We study the regularity properties of solutions to the double ob-
stacle problem in a metric space. Our main results are a global reverse Hölder
inequality, and stability of solutions. We assume the space supports a weak
Poincaré inequality and a doubling measure. Furthermore we assume that the
complement of the domain is uniformly thick in a capacitary sense.
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1. Introduction

One of the most important elliptic variational problems is to minimize the
p-energy functional

(1.1)

∫

Ω

|Du|p dx

with 1 < p <∞ in an open subset Ω of Rn among all functions u : Ω → R which
belong to a suitable Sobolev space. This is equivalent to solving the p-harmonic
equation.

In a general metric measure space that only has a doubling measure and
supports a Poincaré inequality, it is not clear how to define the p-harmonic
equation. However, the variational approach to p-harmonic functions is available.
The reason for this is that the Sobolev spaces on general metric measure spaces
can be defined without the notion of partial derivatives, and the absolute value
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of the gradient in (1.1) can be replaced by the notion of an upper gradient; see,
e.g. [11], [23].

Obstacle problems naturally appear in the nonlinear potential theory; see, for
example, [13] and [16]. By a solution to the double obstacle problem, we mean a
function that minimizes the p-Dirichlet integral among all the functions restricted
by a given function from below and above, see Section 3 for the exact definition.
Previously, the obstacle problem in the metric setting has been studied, for
example, in [1] and the double obstacle problem in [6], [8].

In this note, we study integrability and stability for solutions to the double
obstacle problem in complete metric measure spaces that have a doubling mea-
sure and support a Poincaré inequality. The case of a single obstacle problem
is included, since one obstacle function can be chosen to be identically infinity.
We are especially interested in the stability of solutions to the double obstacle
problem, when the exponent p varies. In the euclidean setting, stability problems
have been studied by Li and Martio – first for the single obstacle problem and
then for the double obstacle problem; see [18], [19], [20]. The purpose of this
note is to extend their results to metric spaces.

Proofs of stability results can be often divided in two parts. First, the solutions
are shown to be better integrable than a priori assumed. This usually requires a
higher integrability result such as the Gehring lemma. The techniques that are
needed in the second part of the proof vary more. Many of the techniques needed
in our note are similar to the techniques used in [17] by Maasalo and Zatorska-
Goldstein, where the higher integrability and stability results are proved for
quasiminimizers in metric spaces.

2. Notation and preliminaries

Throughout this paper, we assume that the measure µ is doubling, that is
there exists Cµ > 0 such that

µ(B(x, 2r)) ≤ Cµµ(B(x, r))

for all x ∈ X and r > 0.

A nonnegative Borel function g is said to be an upper gradient of an extended
real-valued function f on X if for all rectifiable curves γ : [0, lγ] → X parame-
terized by arc length ds, we have

(2.1) |f(γ(0))− f(γ(lγ))| ≤

∫

γ

g ds

whenever both f(γ(0)) and f(γ(lγ)) are finite, and
∫

γ
g ds = ∞ otherwise. If g

is a nonnegative measurable function on X and if (2.1) holds for p-almost every
curve, then g is a p-weak upper gradient of f .
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By saying that (2.1) holds for p-almost every curve we mean that it fails only
for a curve family with zero p-modulus; see, for example, Definition 2.1 in [23].
If f has a p-weak upper gradient in Lp(X), then it has a minimal p-weak upper

gradient gf ∈ Lp(X) in the sense that for every p-weak upper gradient g ∈ Lp(X)
of f , gf ≤ g a.e.; see, for example, Corollary 3.7 in [24].

In [23], upper gradients have been used to define Sobolev type spaces on metric
spaces. We will use the following equivalent definition.

Definition 2.2. Let u ∈ Lp(X) with 1 ≤ p <∞. We define

‖u‖N1,p(X) =

(
∫

X

|u|p dµ+

∫

X

gpu dµ

)1/p

,

where gu is the minimal p-weak upper gradient of u. The Newtonian space on
X is the quotient space

N1,p(X) =
{

u : ‖u‖N1,p(X) <∞
}

/ ∼,

where u ∼ v if and only if ‖u− v‖N1,p(X) = 0.

The space N1,p(X) is a Banach space and a lattice, see Theorem 3.7 and
p. 249 in [23]. We also have the following lemma about minimal p-weak upper
gradients; see, for example, [1] or [2].

Lemma 2.3. If u, v ∈ N1,p(X), then

gu = gv a.e. on {x ∈ X : u(x) = v(x)}.

Moreover, if c ∈ R is a constant, then gu = 0 a.e. on {x ∈ X : u(x) = c}.

For Ω ⊂ X open we define the space N1,p(Ω) with respect to the restrictions
of the metric d and the measure µ to Ω. It is well known that the restriction to
Ω of a minimal p-weak upper gradient in X remains minimal with respect to Ω.
By N1,p

0 (Ω) we denote the space of functions u ∈ N1,p(Ω) whose zero extension
is in N1,p(X).

The space of Lipschitz-functions is denoted by Lip(X). A function u belongs
to Lip0(Ω) if u ∈ Lip(Ω) and its zero extension belongs to Lip(X).

Definition 2.4. The capacity of a set E ⊂ X is defined by

Cp(E) = inf
u
‖u‖pN1,p(X),

where the infimum is taken over all u ∈ N1,p(X) such that u ≥ 1 on E.

We say that a property holds p-quasieverywhere (p-q.e.) in X , if it holds
everywhere except on a set of capacity zero. Newtonian functions are well defined
up to sets of capacity zero, i.e. if u, v ∈ N1,p(X) then u ∼ v if and only if u = v
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q.e. Moreover, Corollary 3.3 in [23] shows that if u, v ∈ N1,p(X) and u = v a.e.,
then u = v q.e.

Let Ω ⊂ X be open and bounded and let E ⋐ Ω, that is E ⊂ Ω. The relative

p-capacity of E with respect to Ω is defined by

capp(E,Ω) = inf
u

∫

Ω

gpu dµ,

where the infimum is taken over all u ∈ N1,p(X) such that u ≥ 1 on E.

Definition 2.5. Let 1 ≤ p < ∞. We say that the space X supports a weak
(1, p)-Poincaré inequality, if there exist constants C > 0 and λ > 1 such that
for all balls B(x, r) in X , all locally integrable functions u on X and all upper
gradients g of u we have

(
∫

B(x,r)

|u− uB(x,r)| dµ

)

≤ Cr

(
∫

B(x,λr)

gp dµ

)1/p

,

where

uB(x,r) =

∫

B(x,r)

u dµ =
1

µ(B(x, r))

∫

B(x,r)

u dµ.

Note that by the Hölder inequality, a weak (1, p)-Poincaré inequality implies
a weak (1, q)-Poincaré inequality for every q ≥ p.

Lemma 2.6. Let X be a doubling metric measure space supporting a weak (1, p)-
Poincaré inequality. Then X supports a weak (t, p)-Poincaré inequality, i.e.,

there exist constants C ′ and λ′ such that
(
∫

B(x,r)

|u− uB(x,r)|
t dµ

)1/t

≤ C ′r

(
∫

B(x,λ′r)

gp dµ

)1/p

,

for all balls B in X and all t such that
{

1 ≤ t ≤ Qp/(Q− p) if q < Q,

1 ≤ t if p ≥ Q,

where Q = log2Cµ.

From now on we assume that X supports a weak (1, p)-Poincaré inequality.
In [15] it was shown that, in a complete doubling metric measure space, a weak
(1, p)-Poincaré inequality implies a weak (1, q)-Poincaré inequality for some 1 <
q < p. Moreover, by increasing q if necessary, we may assume that p ∈ (q, q∗),
where q∗ = qQ/(Q − q) and Q = log2Cµ. This and Lemma 2.6 imply that the
space X supports the (p, q)-Poincaré inequality, for some 1 < q < p.
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Throughout the rest of this paper we assume that the space X satisfies the
local linear connectivity property (LLC-property), that is, there exist constants
C ≥ 1 and r0 > 0 such that for all balls B in X whose radius at most r0, every
two points in the annulus 2B\B can be connected by a curve lying in the annulus
2CB \ C−1B.

In general, the (1, p)-Poincaré inequality does not imply LLC. However, this
holds when X is a complete and the measure satisfies in addition to the doubling
condition that

µ(B(x, r))

µ(B(y, R))
≤ C

( r

R

)s

for all 0 < r < R and x ∈ B(y, R) with some s > p. For a proof, see [12].

We say that the set E ⊂ X is uniformly p-fat if there exist constants C > 0
and r0 > 0 such that for all x ∈ E and 0 < r < r0, we have

capp(E ∩ B(x, r);B(x, 2r)) ≥ C capp(B(x, r);B(x, 2r)).

Under our assumption, if Ω ⊂ X is open and bounded such that Cp(X\Ω) > 0
and X \ Ω is uniformly p-fat, then X \ Ω is also p0-fat for some p0 < p; see [4].
Note also that p-fatness always implies p+ ε-fatness for every ε ≥ 0.

The following lemma will be needed later. For a proof, see for example [16].

Lemma 2.7. Let u, v ∈ N1,p(X) and η ∈ Lip(X) be such that 0 ≤ η ≤ 1. Set

w = u+ η(v − u) = (1− η)u+ ηv. Then

gw ≤ (1− η)gu + ηgv + |v − u|gη

almost everywhere in X, where gw, gu, gv and gη are the p-weak upper gradients

of w, u, v and η respectively.

We shall use the following two results. For a proof, see [5] and [22].

Lemma 2.8. Let X be doubling metric measure space supporting a weak (1, q)-
Poincaré inequality and let E ⊂ B = B(x0, r) with 0 < r < diamX/8. Then

there exists a C > 0 such that

µ(E)

Crq
≤ capq(E, 2B) ≤

Cµ(B)

rq

and
Cq(E)

C(1 + rq)
≤ capq(E, 2B) ≤ 2q−1

(

1 +
1

rq

)

Cq(E).

Proposition 2.9. Let X be a doubling metric measure space supporting a weak

(1, p)-Poincaré inequality and let u ∈ N1,p(X). Then there exists a constant
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C > 0 such that for all balls B in X and S = {x ∈ 1
2
B : u(x) = 0} the following

inequality holds
(
∫

B

|u|t dµ

)1/t

≤

(

C

capp(S,B)

∫

λ′B

gpu

)1/p

,

where t and λ′ are as in Lemma 2.6.

We will use the following Poincaré type inequality. For a proof, see for exam-
ple [17], Lemma 2.1.

Lemma 2.10. Let X be a doubling metric measure space supporting a weak

(1, p)- Poincaré inequality. Let Ω be a bounded open subset of X such that C(X \
Ω) > 0. There exists a constant C > 0 such that for all u ∈ N1,p

0 (Ω), we have
∫

Ω

|u|p dµ ≤ C

∫

Ω

gpu dµ.

The constant C depends on the diameter of Ω.

The proofs of the next two lemmas can be found, for example, in [14] and [22].

Lemma 2.11. Let X be a proper, doubling, LCC metric space supporting a

weak (1, q)-Poincaré inequality for some 1 < q < p. Let also Ω ⊂ X is open

and bounded such that X \Ω is uniformly p-fat. Assume that {ui}
∞
i=1 is bounded

sequence in N1,p
0 (Ω) such that ui → u q.e. in Ω. Then u ∈ N1,p

0 (Ω).

Lemma 2.12. Let X be as in Lemma 2.11. Then

N1,p
0 (Ω) = N1,p(Ω) ∩

⋂

s<p

N1,s
0 (Ω).

We achieve the growth of integrability for upper gradients of solutions of the
obstacle problem using the Gehring Lemma 2.13 below. For a proof see for
example [21] or [25].

Lemma 2.13 (Gehring lemma). Let 1 < s0 < s1 be fixed and let s ∈ [s0, s1].
Let g ∈ Lsloc(X) and f ∈ Ls1loc(X) be non-negative functions. Assume that there

exists a constant D > 1 such that for every ball B ⊂ σB ⊂ X the inequality
∫

B

gs dµ ≤ D

[(
∫

σB

g dµ

)s

+

∫

σB

f s dµ

]

holds for some σ > 1. Then there exists an ε0 > 0 such that g ∈ Ls̃loc(X) for

s̃ ∈ [s, s+ ε0) and moreover
(
∫

B

gs̃ dµ

)1/s̃

≤ C

[(
∫

σB

gs dµ

)1/s

+

(
∫

σB

f s̃ dµ

)1/s̃]

,
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where C = C(s0, s1, σ, Cµ, D).

3. Higher integrability of upper gradients for solutions of

the double obstacle problem

Recall that we assume that X is a complete metric measure space supporting
a (1, p)-Poincaré inequality and that X satisfies the LLC property. Moreover,
the measure µ is doubling.

Throughout the rest of this paper we make the additional assumptions that
Ω ⊂ X is a nonempty bounded open set such that Cp(X \ Ω) > 0. Also the
letter C represents various constants and can change even within the same line
of a calculation. Recall also that f+ = max{f, 0} and f− = max{−f, 0}.

We define the double obstacle problem as follows. We first fix the obstacle
functions ψ1, ψ2 ∈ N1,p(Ω) and the boundary values f ∈ N1,p(Ω). Then let

Kp
ψ1,ψ2,f

= {v ∈ N1,p(Ω) : v − f ∈ N1,p
0 (Ω) and ψ1 ≤ v ≤ ψ2 q.e. in Ω}

be the space of admissible functions. We say that u is a solution of theKp
ψ1,ψ2,f

(Ω)-
problem if

∫

Ω

gpu dµ ≤

∫

Ω

gpv dµ

for all v ∈ Kp
ψ1,ψ2,f

(Ω). A unique solution (up to sets of capacity zero) of the

Kp
ψ1,ψ2,f

(Ω)-problem exists if Kp
ψ1,ψ2,f

(Ω) 6= ∅. See [6], [7], [8], [9] for more details
about the double obstacle problem in metric spaces.

Theorem 3.1. Let Ω be open and bounded subset of X such that Cp(X \Ω) > 0
and X \ Ω is p-fat. Let f, ψ1, ψ2 ∈ N1,s(Ω) for some s > p and such that

ψ1 ≤ f ≤ ψ2 q.e. in Ω.

If u ∈ N1,p(Ω) is a solution of the Kp
ψ1,ψ2,f

(Ω)-problem, then there exists δ0 =

δ0(p) ≤ s− p such that gu ∈ Lp+δ(Ω) for all 0 < δ ≤ δ0 and

(
∫

Ω

gp+δu dµ

)1/(p+δ)

≤ C

[

(
∫

Ω

gpu dµ

)1/p

+

(
∫

Ω

(gψ1
+ gψ2

+ gf)
p+δ dµ

)1/(p+δ)
]

.

Proof. First, remember that by Lemma 2.6 and the discussion after it, (1, p)-
Poincaré implies a (p, p0)-Poincaré with some p0 < p. By the self-improving
property of p-fatness, we may also choose p0 so that X \ Ω is p0-fat.

Choose a ball B0 ⊂ X such that Ω ⋐ B0 ⋐ 2B0. Fix r > 0 and let B =
B(x0, r) be a ball such that 4λB ⊂ 2B0. We have two cases: either 2λB ⊂ Ω or
2λB \ Ω 6= ∅.
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Let us start with the first case. Let η ∈ Lip0(2B), 0 ≤ η ≤ 1, η ≡ 1 on B and
gη ≤ C/r. Write

u2B =

∫

2B

u dµ =
1

µ(2B)

∫

2B

u dµ,

and let v = (1− η)(u− u2B) + ηw, where

w = (ψ1 − u2B)
+ − (ψ2 − u2B)

− =

{

(ψ1 − u2B)
+ if ψ2 ≥ u2B,

ψ2 − u2B if ψ2 < u2B.

Then we have
ψ1 − u2B ≤ v ≤ ψ2 − u2B

and
v − (u− u2B) = −η(u− u2B) + ηw ∈ N1,p

0 (2B).

Therefore v ∈ Kp
ψ1−u2B ,ψ2−u2B ,u−u2B

(2B). By Lemma 2.7 we have that

gv ≤ (1− η)gu + ηgw + |w − (u− u2B)|gη

a.e. in 2B. Hence using that u−u2B is a solution of theKp
ψ1−u2B ,ψ2−u2B ,u−u2B

(2B)-
problem we get that

∫

B

gpu dµ ≤

∫

2B

gpu dµ =

∫

2B

gpu−u2B dµ ≤

∫

2B

gpv dµ

≤ C

[
∫

2B

(1− η)pgpu dµ+

∫

2B

ηpgpw dµ+

∫

2B

|w − (u− u2B)|
pgpη dµ

]

≤ C

∫

2B\B

gpu dµ+ C

∫

2B

gpw dµ+
C

rp

∫

2B

(

|w|p + |u− u2B|
p
)

dµ.

Adding C
∫

B
gpu dµ to both sides and dividing by C+1 we get, with θ = C/(C+1),

∫

B

gpu dµ ≤ θ

∫

2B

gpu dµ+
θ

rp

∫

2B

(

|w|p + |u− u2B|
p
)

dµ+ θ

∫

2B

gpw dµ.

Lemma 3.1 in [10] now implies that

(3.2)

∫

B

gpu dµ ≤
C

rp

∫

2B

(

|w|p + |u− u2B|
p
)

dµ+ C

∫

2B

gpw dµ.

Note that we have gw ≤ gψ1
+ gψ2

and that

|w| =

{

(ψ1 − u2B)
+ if ψ2 ≥ u2B,

u2B − ψ2 if ψ2 < u2B,

from which we see that |w| ≤ |u− u2B|. It follows from (3.2) that
∫

B

gpu dµ ≤
C

rp

∫

2B

|u− u2B|
p dµ+ C

∫

2B

(gψ1
+ gψ2

)p dµ.
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The doubling condition implies that
∫

B

gpu dµ ≤
C

rp

∫

2B

|u− u2B|
p dµ+ C

∫

2B

(gψ1
+ gψ2

)p dµ.

Next, we apply the (p, p0)-Poincaré inequality to the first integral on the right-
hand side to get

(

C

rp

∫

2B

|u− u2B|
p dµ

)1/p

≤ C

(
∫

2λB

gp0u dµ

)1/p0

.

Hence

(3.3)

∫

B

gpu dµ ≤ C

(
∫

2λB

gp0u dµ

)p/p0

+ C

∫

2λB

(gψ1
+ gψ2

)p dµ.

Next assume that 2λB \Ω 6= ∅. Let η ∈ Lip0(2B) such that 0 ≤ η ≤ 1, η ≡ 1
on B and gη ≤ C/r. Let also

v = u− η(u− f) = (1− η)u+ ηf.

It follows that ψ1 ≤ v ≤ ψ2 in 2B ∩ Ω and that

v − u = −η(u− f) ∈ N1,p
0 (2B ∩ Ω).

Hence v ∈ Kp
ψ1,ψ2,u

(2B ∩ Ω). As u is a solution of the Kp
ψ1,ψ2,u

(2B ∩ Ω)-problem
we get, using that gv ≤ (1− η)gu + ηgf + |u− f |gη,
∫

2B∩Ω

gpu dµ ≤

∫

2B∩Ω

gpv dµ

≤ C

∫

2B∩Ω

(1− η)pgpu dµ+ C

∫

2B∩Ω

ηpgpf dµ+ C

∫

2B∩Ω

|u− f |pgpη dµ

≤ C

∫

(2B\B)∩Ω

gpu dµ+ C

∫

2B∩Ω

gpf dµ+
C

rp

∫

2B∩Ω

|u− f |p dµ.

Adding C
∫

B∩Ω
gpu dµ to both sides and dividing by C + 1, we get

∫

B∩Ω

gpu dµ ≤ θ

∫

2B∩Ω

gpu dµ+ θ

∫

2B∩Ω

gpf dµ+
θ

rp

∫

2B∩Ω

|u− f |p dµ,

where θ = C/(C + 1) < 1. As previously, Lemma 3.1 in [10] then implies that

(3.4)

∫

B∩Ω

gpu dµ ≤
C

rp

∫

2B∩Ω

|u− f |p dµ+ C

∫

2B∩Ω

gpf dµ.
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Now, we use Proposition 2.9, with p = p0 and t = p, together with the doubling
condition to conclude that

(

C

rp

∫

4B

|u− f |p dµ

)1/p

≤
C

r

(

1

capp0(S, 4B)

∫

4λB

gp0u−f dµ

)1/p0

≤ C

(

µ(4B)

capp0(S, 4B)rp0

∫

4λB

gp0u−f dµ

)1/p0

≤ C

(

µ(2B)r−p0

capp0(S, 4B)

∫

4λB

gp0u−f dµ

)1/p0

,

where S = {x ∈ 2B : u(x) = f(x)}. As u = f p-q.e. (and thus p0-q.e.) in X \ Ω
we have 2B \ Ω ⊂ S. This with the fact that X \ Ω is uniformly p0-fat imply
that

capp0(S, 4B) ≥ capp0(2B \ Ω, 4B) ≥ C capp0(2B, 4B) ≥ Cµ(2B)r−p0.

Hence, as gu−f = 0 a.e. in X \ Ω, we get
(

C

rp

∫

4B

|u− f |p dµ

)1/p

≤ C

(
∫

4λB

gp0u−f dµ

)1/p0

= C

(

1

µ(4λB)

∫

4λB∩Ω

gp0u−f dµ

)1/p0

≤ C

(

1

µ(4λB)

∫

4λB∩Ω

gp0u dµ

)1/p0

+ C

(

1

µ(4λB)

∫

4λB∩Ω

gp0f dµ

)1/p0

.

(3.5)

It follows from the Hölder inequality that
(

1

µ(4λB)

∫

4λB∩Ω

gp0f dµ

)1/p0

=

(
∫

4λB

gp0f χ4λB∩Ω dµ

)1/p0

≤

(
∫

4λB

gpfχ4λB∩Ω dµ

)1/p

=

(

1

µ(4λB)

∫

4λB∩Ω

gpf dµ

)1/p

.

(3.6)

The inequalities (3.4), (3.5) and (3.6) together with the doubling condition imply
that

(

1

µ(B)

∫

B∩Ω

gpu dµ

)1/p

≤ C

(

1

µ(4λB)

∫

4λB∩Ω

gp0u dµ

)1/p0

+ C

(

1

µ(4λB)

∫

4λB∩Ω

gpf dµ

)1/p

,

(3.7)
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where the constant C depends only on p, Ω and the space X .

Now let

g(x) =

{

gpu(x) if x ∈ Ω,

0 otherwise,
f(x) =

{

(gψ1
+ gψ2

+ gf)
p0(x) if x ∈ Ω,

0 otherwise,

and s = p/p0. Then from (3.3) and (3.7) we get
∫

B

gs dµ ≤ C

(
∫

4λB

g dµ

)s

+ C

∫

4λB

f s dµ,

with s > 1 and for all B such that 4λB ⊂ 2B0. The Gehring Lemma 2.13 now
implies that

(3.8)

(
∫

B

gs̃ dµ

)1/s̃

≤ C

[

(
∫

4λB

gs dµ

)1/s

+

(
∫

4λB

f s̃ dµ

)1/s̃
]

.

Since the diameter of Ω is finite we may choose a finite number of balls B(xj , rj),
j = 1, 2, . . . , N , such that

B(xj , 2λrj) ⊂ B0 and Ω ⊂
N
⋃

j=1

B(xj , rj)

where λ is the dilation constant in the Poincaré inequality. Now we multiply
(3.8), with B replaced by B(xj , rj), by µ(4λB(xj, rj))

1/s̃ and sum over B(xj , rj)
to get the desired inequality.

Theorem 3.9. Let 1 ≤ pi < ∞, i = 1, 2, . . . and p = limi→∞ pi. Let ψ1, ψ2, f ∈
N1,s(Ω) for some s > p and assume that ψ1 ≤ f ≤ ψ2 q.e. in Ω. For i = 1, 2, . . .
let ui be a solution of the Kpi

ψ1,ψ2,f
(Ω)-problem. Then there exists an ε0 > 0 and

u ∈ N1,p+ε0(Ω) and a (p + ε0)-weak upper gradient g of u such that ui, gui ∈
Lp+ε0(Ω) and there is a subsequence such that

uik → u in Lp+ε0(Ω),

guik → g weakly in Lp+ε0(Ω),

Moreover, u is a solution of the Kp
ψ1,ψ2,f

(Ω)-problem.

Proof. We know from Theorem 3.1 that for every pi there exists δi = δi(pi) such
that pi-weak upper gradient gui belongs to the space Lpi+δi(Ω) and
(3.10)
(
∫

Ω

gpi+δiui
dµ

)1/(pi+δi)

≤ C

(
∫

Ω

gpiui dµ

)1/pi

+C

(
∫

Ω

(gψ1
+gψ2

+gf)
pi+δi dµ

)1/(pi+δi)

.
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Using that ui is a solution of the Kpi
ψ1,ψ2,f

(Ω)-problem, and f ∈ Kpi
ψ1,ψ2,f

(Ω),
together with the Hölder inequality, we get

∫

Ω

gpiui dµ ≤

∫

Ω

gpif dµ ≤ (µ(Ω))δi/(pi+δi)
(
∫

Ω

gpi+δif dµ

)pi/(pi+δi)

.

Hence
(
∫

Ω

gpiui dµ

)1/pi

≤ Ci

(
∫

Ω

gpi+δif dµ

)1/(pi+δi)

.

This and (3.10) imply that

(3.11)

(
∫

Ω

gpi+δiui
dµ

)1/(pi+δi)

≤ Ci

(
∫

Ω

(gψ1
+ gψ2

+ gf)
pi+δi dµ

)1/(pi+δi)

.

Next, as pi → p and p ∈ (q, q∗) we may assume that pi ∈ (q, q∗). It then
follows, as in [22], that

δi ≥ δ0 = δ0(p) and Ci ≤ C = C(p).

Let ε0 = δ0/2. For i large enough, we have

p+ ε0 ≤ pi + δ0 ≤ pi + δi.

We can also choose δ0 and δi so that

pi + δi ≤ s.

By applying this and the Hölder inequality to (3.11), we get

(
∫

Ω

gp+ε0ui
dµ

)1/(p+ε0)

≤ C

(
∫

Ω

gpi+δiui
dµ

)1/(pi+δi)

≤ Ci

(
∫

Ω

(gψ1
+ gψ2

+ gf)
pi+δi dµ

)1/(pi+δi)

≤ C

(
∫

Ω

(gψ1
+ gψ2

+ gf)
s dµ

)1/s

.

It follows that
(
∫

Ω

gp+ε0ui−f
dµ

)1/(p+ε0)

≤

(
∫

Ω

gp+ε0ui
dµ

)1/(p+ε0)

+

(
∫

Ω

gp+ε0f dµ

)1/(p+ε0)

≤ C

(
∫

Ω

(gψ1
+ gψ2

+ gf)
s dµ

)1/s

<∞.

(3.12)
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This shows that the sequence {gui−f}
∞
i=1 is bounded in Lp+ε0(Ω). Since ui− f ∈

N1,p
0 (Ω) and the weak (1, p + ε0)-Poincaré is satisfied for sufficiently large i and

all ε0 > 0, Lemma 2.10 then implies that

(
∫

Ω

|ui − f |p+ε0 dµ

)1/(p+ε0)

≤ C

(
∫

Ω

gp+ε0ui−f
dµ

)1/(p+ε0)

<∞.

This and (3.12) imply that the sequence {ui − f}∞i=1 is bounded in N1,p+ε0(Ω).

Fix a ball B0 such that Ω ⊂ B0 and extend ui − f by zero outside of Ω. It
follows that ‖ui − f‖L1(B0) + ‖gui−f‖Lp+ε0 (B0) is bounded. Hence, the Rellich–
Kondrachov theorem (see e.g. Theorem 4.1 in [22]) implies that there exist a
subsequence {uik}

∞
k=1 and u ∈ Lp+ε0(B0) such that

uik − f → u− f in Lp+ε0(B0).

Since {guik}
∞
k=1 is bounded in Lp+ε0(Ω), there exist g and a subsequence again

denoted by {guik}
∞
k=1 such that g is a (p+ ε0)-weak upper gradient of u and that

guik → g weakly in Lp+ε0(B0).

Furthermore, u ∈ N1,p+ε0(Ω). See, for example, Lemma 3.2 in [3]. Notice also,
that g is a q-weak upper gradient of u for all q ≤ p + ε0.

Finally, we show that u is a solution of the Kp
ψ1,ψ2,f

(Ω)-problem. Clearly u is

admissible, and we start by showing that u−f ∈ N1,p
0 (Ω). Let 0 < ε ≤ ε0. Then

for sufficiently large i we have that p− ε < pi and hence ui − f ∈ N1,p−ε
0 (Ω). It

follows from Lemma 2.10 that

‖ui − f‖N1,p−ε
0

(Ω) ≤ C‖gui−f‖Lp−ε(Ω).

When ε > 0 is small enough, we have p−ε < p0 and therefore X \Ω is uniformly
(p − ε)-fat. Lemma 2.11 now implies that u − f ∈ Np−ε

0 (Ω) for all ε > 0 small
enough. Hence Lemma 2.12 shows that u− f ∈ N1,p

0 (Ω)

Assume then that v is a solution of the Kp
ψ1,ψ2,f

(Ω)-problem and fix 0 < ε ≤ ε0.
Then, for sufficiently large i, we have p−ε < pi < p+ε and hence v ∈ Kpi

ψ1,ψ2,f
(Ω).

Using that ui is a solution of the Kpi
ψ1,ψ2,f

(Ω)-problem we get

(3.13)

∫

Ω

gpiui dµ ≤

∫

Ω

gpiv dµ.



158 Michela Eleuteri, Zohra Farnana, Outi Elina Kansanen, and Riikka Korte HQM2010

As {guik}
∞
k=1 converges weakly in Lp−ε(B0) (since p−ε < p+ε0) to a weak upper

gradient g of u we obtain, for sufficiently large k such that pik > p− ε, that
∫

Ω

gp−εu dµ ≤

∫

Ω

gp−ε dµ ≤ lim inf
k→∞

∫

Ω

gp−εuik
dµ

≤ lim inf
k→∞

(
∫

Ω

g
pik
uik
dµ

)(p−ε)/pik

µ(Ω)1−(p−ε)/pik

≤ lim inf
k→∞

(
∫

Ω

g
pik
v dµ

)(p−ε)/pik

µ(Ω)1−(p−ε)/pik .

Here we also used the Hölder inequality and (3.13). By letting k → ∞, the
right-hand side converges by the dominated convergence theorem to

(
∫

Ω

gpv dµ

)(p−ε)/p

µ(Ω)1−(p−ε)/p.

Then by letting ε → 0, we obtain
∫

Ω

gpu dµ ≤

∫

Ω

gpv dµ.

As v is a solution of the Kp
ψ1,ψ2,f

(Ω)-problem, we conclude that u = v q.e. and

therefore u is a solution of the Kp
ψ1,ψ2,f

(Ω)-problem.
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