

Abstract—in this paper we describe a fat-tree based

Network-on-Chip (NOC) system that composed of processing

nodes and communication switches. The IP node contains

message generator and buffering. The switch uses wormhole

technique which improved by virtual channel mechanism. The

switch includes the following essential units: the router,

input/output link controller units and arbitration unit. A

discrete event simulator has been developed in C++ to analyze

the proposed architecture. The obtained results clearly

demonstrate both the efficiency and the applicability of fat tree

structure to NOC design. In addition, VHDL code for the

proposed algorithms has been prototyped in FPGA technology.

Index Terms—Network-on-Chip, routing, switching, fat tree.

I. INTRODUCTION

One of the important key design issues in the

multiprocessing system-on-chips (MPSOC) paradigm is the

interconnect topology. In the last decades point-to-point

communication links were used because the design model was

based on almost a single processor with support of small

number of application specific integrated circuits (ASICs).

Nowadays, this is not working any more because of the latest

advances in semiconductor technologies which enable

integrating many multiprocessing elements (IP cores) in a

single chip. So instead of connecting the top-level SOC

modules by routing dedicated wires, they are connected to a

network that routes packets between them; see figure (1).

Core 1

SW

Core 2

HW

Core 3
RAM/

ROM

Interconnection network

Controller

(in HDL) or

Microprocessor

I
N

T
E

R
F

A
C

E

I/O

Core 4

DSP

Core 5

(IP)
MPEG

Fig. 1. Generic SOC structure

This approach has the benefits of being modular,

well-structured, flexible, and has efficient performance. In

addition, interconnection networks are already used in many

super-computers and parallel systems in industry and

academia for many years. Moreover, point-to-point wiring

between IP cores have the following disadvantages; power

dissipation, cross talk delays due to routing inside the chip,

and slow propagation velocity. Whereas, interconnection

networks had structured wiring that reduces the mentioned

above disadvantages. Furthermore, in interconnection

Manuscript received October , , revised in November 11, 2012.

Azeddien. M. Sllame is with the Computer Department, Faculty of

Science, Tripoli University, Tripoli, Libya (e-mail: aziz239@yahoo.com).

Asma Alasar was MSc student in Computer Department, Faculty of

Science, Tripoli University, Libya (e-mail: asma4 1@yahoo.com).

networks, when one IP block is idle, other IP blocks continue

to make use of the network resources. Butterfly fat tree (BFT)

and MESH architectures are typical examples of those

interconnection networks [], []. Interconnection networks

can be classified according to different characteristics. Their

topologies fall into two classes static (or direct) and dynamic

(or indirect). In the static interconnection networks, point to

point links interconnect the network nodes in some fixed

regular topology such as mesh or hypercube. The dynamic

interconnection networks allow the interconnection pattern

between the network nodes to be varied dynamically: this is

accomplished by using some form of switching. Examples of

dynamic networks include fat trees and multistage networks.

In such systems, routing algorithms and switching techniques

are the two main factors that control network latency and

throughput, and realize the overall network performance [2].

In this paper, we will describe a simulator for NOC system

based on fat tree interconnection network architecture. The

system clearly illustrates the traffic movement on the flit-level

step-by-step between IP nodes through the communication

switches. The simulator can be used to evaluate the effect of:

routing algorithm; virtual channel mechanism; buffer

management, message latency and system performance. The

results obtained obviously demonstrate that: the fat tree

interconnection networks can offer an attractive alternative

solution for NOC interconnection because of its scalable

structure and the bandwidth available.

This paper is organized as follows: definitions and terms

are given in section 2. Commonly used switching techniques

are briefly described in section 3. Related work is presented in

section . Fat tree construction is given in section . Section

explains some details of our proposed switch. Section

outlines the simulator structure. Finally, results are given in

section .

II. DEFINITIONS AND TERMS

The following terms and definitions are needed to

understand the paper context], [], [:

Core (node): defined as any reusable design block, i.e. can be

used as building blocks within chip designs in hardware or a

sub-component in software programs. We use the term IP

(Intellectual Property) to refer to copyrights. In this paper we

are using the following names interchangeably (IP node, IP

block, IP core, logic core, component, processing element).

Switch: it is responsible for forwarding (switching and

routing) packets from sender to the intended destination using

suitable techniques to guarantee this function with proper

flow control and reasonable quality of services.

Message: is a unit of information from the programmer’s

perspective. The size is limited only by the user’s memory

space. See figure (2).

Modeling and Simulating Network-on-Chip Designs: A

Case Study of Fat Tree Interconnection Architecture

Azeddien M. Sllame, Asma Alasar, Computer Department, Faculty of Science, Tripoli University

Packet: is the smallest unit of communication containing

routing information (e.g., destination address) and the

sequencing information in its header. Its size is of order of

hundreds or thousands of bytes or words. It consists of header

flit and data flits.

Flit: it is the smallest unit of information at link layer and its

size of one of several words. Flits can be several types and flit

exchange protocol typically requires several cycles. See

figure (2)

Phit: it is the smallest unit of information at physical layer,

which is transferred across one physical channel in one cycle.

Fig. 2. Message structure (packet, flit, phit)

Routing algorithm: it determines the path selected by a packet

to reach its destination, it must decide within each

intermediate router which output channel(s) are to be selected

to forward incoming packets.

Switching mechanism: it determines how network resources

are allocated for data transmission, it is the actual mechanism

that removes data from input channels and places them on the

output channels.

Flow control: it defines the synchronization protocol between

sender and receiver nodes which determines actions to be

taken in case of full buffers, busy output channels, faults,

deadlocks, etc. Flow control has two levels:

- Packet flow control: it performs synchronization between

sender and receiver at the level of packet, ensuring

successfully transfer and availability of buffer space at the

receiver.

- Physical channel flow control: it implements the multi-cycle

packet flow control and it breaks packets into flits. Here, even

the flit may take several cycles to transfer; hence, the most

elementary unit of information is the phit (physically).

Latency: is defined as the time elapses between the injection

of header flit of a certain message into the network at source

node and the arrival of the tale flit of the same message at the

destination node. Average message latency can be calculated

by the relation:

Average Latency =
P

Li
Pi

i

1

Where P is the total number of messages reaching their

destinations and Li is the latency of each message [xxx].

III. SWITCHING TECHNIQUES

In this paragraph we are going to describe commonly used

switching mechanisms. In circuit switching as in [2] ,[the

process starts with transmitting routing probe into the

network, which contains destination address and other

control information to reserve the physical channel between

source and destination, as it is transmitted through

intermediate routers the path is setup. And when it reaches

its destination, the source starts full message transmission at

the full bandwidth of the reserved path. The disadvantage of

this technique is the inefficient use of network resources

because of path reservation between the sender and the

receiver. In packet switching [], [2], the message is divided

into several fixed length packets, every packet consists of

several flits, starting with the header flit, every channel has

input and output buffer for one entire packet and each packet

is routed individually from source to destination. Routing

decisions are made by each intermediate router only after the

whole packet was completely buffered in its input buffer.

This is mechanism is also called store and forward (SAF).

The disadvantage of this technique is its high storage

requirements. In virtual cut through], [, (VCT)

messages are split into packets and routers have buffers for

the whole packets as in packet switching. However, instead

of waiting for the whole packet to be buffered, the packet is

effectively pipelined through successive routers as a loose

chain of flits. The wormhole switching], [works as a

VCT scheme. The main difference is that, every router has a

small buffer for one or few flits. The sequence of buffers and

links occupied by flits of a given packet form a wormhole in

the network. Wormhole routing allows building simple,

small, cheap, and fast routers. Therefore, it is the most

common switching technique used nowadays in commercial

machines [], []. The problem of degradation of throughput

in wormhole switching is solved by the virtual channel

concept], [. A physical channel may support several

virtual channels multiplexed (time-multiplex) across the

physical channel. They will all have their own buffers, but

they will share one single physical channel medium. Each

unidirectional virtual channel can hold, for example (see

figure 3), four flits of the same packet, mixing flits from

different packets is not allowed. Packets can share the

physical channel on a flit-by-flit basis; the physical channel

protocol must be able to distinguish between the virtual

channels.

Fig. . Physical channel divided into four (yellow, green, blue and red)

virtual channels

However, keeping adding virtual channels to further reduce

the blocking; will result in increased network throughput in

flits/second, due to increased physical channel utilization.

However, increasing channel multiplexing reduces the data

rate of individual message and increasing message latency.

Nevertheless, general network throughput will be increased,

if the number of virtual channels is reasonable, as we will

see in our experiments graphs.

IV. RELATED WORK

In 1985, Leiserson had proved formally that fat tree is the

most cost-efficient for VLSI realizations []. Since then fat

tree has got great attention and has been appeared in some

super-computer architectures [1], []. In [] ,[] authors have

been investigated how butterfly fat tree (BFT) as a structured

network-based design paradigm can be easily meet specific

clock cycle requirements when used as the overall MP-SOC

interconnect architecture. The work illustrated that this type

Figu Fig. (1)

Generic SOC

structure

re (2.21)

Communication

Units

of interconnection networks can offer an attractive alternative

solution for SOC interconnection that does not suffer from the

non-scalability aspect of the buses in regards to the clock

cycle problems []. However, their work in that paper is

concentrated on wiring and clock constraints of the system.

Whereas in [] they described how the use of virtual channels

can improve the system throughput with an extra increase of

switches silicon area. Our work differs with the one described

in [] in the arbitration method, and routing algorithm and in

the modular design of our switch. Our design also, includes

separate set of algorithms for internal switch functionality

such as input/output link controller and virtual channel

management procedures. Moreover, our design differs also in

the way of instantiating fat tree overall structure .

V. FAT TREE INTERCONNECTION ARCHITECTURE

The Fat tree is a type of interconnection network, where the

processors (processing cores or IP cores) are interconnected

by a tree structure, in which the IP cores are at the leaves of

the tree, and the interior nodes are switches. An advantage of

a tree structure is that communication distances are short for

local communication patterns. Moreover, the fat tree is a tree

structure with redundant interconnections on its branches;

the number of interconnections increases as the root is

reached. The purpose is to increase the bandwidth at higher

levels, where it is most needed. Because it is not feasible to

provide a channel between every pair of nodes, the network

channels are shared among the IP nodes. Messages are used

to communicate between sending and receiving nodes,

which means construction of paths that consisting some

intermediate switches (for routing purposes) along the

specified paths from the sources to the destinations. Figure

() shows a butterfly fat tree with 64 IP blocks (cores)

interconnected by suitable number of switches in

intermediate levels. The IP nodes are placed at leaves in

zero level and switches are placed in higher levels. We can

calculate number of levels by the relation:

NL 4log , Where N is the number of IP nodes.

Fig. . Butterfly fat tree structure with 64 IP cores

In our network we have 3 levels, and the switches are

placed in levels ranging from l > 0 and l >= L. Each IP node is

denoted by pair (i,0) where i is ranging from (0-63) which

denotes the index of the IP node in the level zero, each IP

node has two ports to connect with its parent switches, each

port has two unidirectional physical links. Each level of the

network has the number
42

1
)1(

N
l

 of the switches and the

total number of switches in the network is the summation of

the number of switches in each level. Each switch is

represented by a pair of coordinates (i, l), where i represents

the index of the switch in the level and l represents the level of

the switch, the pair (5,2) represents switch no. 5 in the level

no. 2. Each IP node at the coordinate (i, 0) has the parent at

coordinate (p,1) and p=i/4. For example if we have the IP

Node (62, 0), it has the parent switch (15, 1). Each switch has

two parent (p) coordinates (p1,l+1) and (p2,l+1)

)1(

)2(

)1(

212

2mod2
2

1

l

Il

l

pp

i
i

p

For example, if we have the switch (15,1) , then from the

above relations it has the parents:

P1=6 and p2=7. And each switch has four children

(switches or nodes).

VI. SWITCH DESIGN

The switch is the basic component of the fat tree NOC and it

performs the functions of routing and switching. The switch

also ensures the storing of packets (the packet consists group

of flits) to be transferred to other intermediate IP cores in the

fat tree network. Each switch has two parent switches except

for the top level switches and four children switches except

for the lowest level switches. Lowest level switches have four

children IP nodes. Each switch is bidirectional; each port is

associated with a pair of opposite unidirectional channels, one

for inputs and one for outputs. Figure () illustrates the main

components of the proposed switch.

Input/Output Link

Controller

Input/Output Link

Controller

Switch

Routing &

Arbitration Unit

VC#1

VC#4

VC#3

VC#2

VC#1

VC#4

VC#3

VC#2

VC#1

VC#4

VC#3

VC#2

VC#1

VC#4

VC#3

VC#2

In
/o

u
t
p

h
y
s
ic

a
l
lin

k

In
/o

u
t
p

h
y
s
ic

a
l
lin

k

In
/o

u
t
p

h
y
s
ic

a
l
lin

k

In
/o

u
t
p

h
y
s
ic

a
l
lin

k

Fig.5. The top-level of the switch structure

Each switch is constructed from the following entities:

A. Arbitration Unit

The switch includes an arbitration unit that is used to let one

of the competing input messages grant access to the output

port. The proposed arbitration unit used round-robin strategy

with the help of mapping table. The mapping table is a data

structure that is used to aid the arbitration process, and it is

composed of an array of integers having the size of

noOfPhysicalLink × noOfVirtualLink. This array is used for

switching in crossbar switch i.e. it determines the path from an

input buffer to the output buffer. At index i of this array a

value x (>=0) is stored for the path selection. Here x is the

output physical link identifier and i is the input virtual channel

identifier. That means the data from input port i is switched

(transferred) to the output port x. the input and output physical

and virtual channels are identified as below:

Input physical channel number = i DIV number of virtual link

Input virtual channel number = i MOD number of virtual link

Output physical channel number = x

After the output port has been granted by the message, the

message will be switched to that output port by an established

link of the switch between the input link and the output link.

When multiple messages simultaneously request the same

link, the arbitration component must provide arbitration

between them. If the requested link is busy, the incoming

message remains in the current link. The arbitration unit is

invoked whenever the arbitration is needed on a certain link.

 The arbitration algorithm
Input: PriorityArray, Physical link number which

needs arbitration

PriorityArray Dimension: NoOfPhysicalLinks ×

NoOfVirtualLinks

Output: Selected Virtual Channel (vc)

Procedure:

Start =Pysical link number×NoOfVirtualLinks

Min=PriorityArray[Start]

vc=0

for i= start+1 To i = start +

 NoOfVirtualLinks;

 I = i+1;

 if PriorityArray[i]<min then

 min=PriorityArray[i];

 vc=i MOD NoOfVirtualLinks;

 endif

endfor

return vc

End procedure

B. Input Link Controller Unit

Link controllers interconnect switches and define the fat

tree topology, link controllers can be divided into input link

controllers and output link controllers. Input link controller

unit is responsible for receiving incoming flits from different

IP’s and forwarding them to the associated units with the help

of using virtual channel technique. Moreover, it controls the

input buffer, which composed of a FIFO memory for storing

one or more flits; that are required for storing transferred data

until the next channel is available. As we are using wormhole

switching, virtual channel technique is implemented to avoid

deadlock, in wormhole switching input buffer unit holds as

many buffer objects as many virtual channels are required.

Figure (6) illustrates the flowchart of the procedure that is

used in the designed switch to move flits inside the switch

from the input buffers to the output buffers, making them

ready to be sent out of the switch. However, the input link

controller is responsible for:-

- checking the availability of free input virtual channel, if

exists then it returns free virtual channel number;

- managing the sending out of flit that is available in input

virtual channel buffer;

- helping do routing function by setting the outgoing

physical link number that the flit occupying in the virtual

channel must follow to reach the destination;

- keeping track of the outgoing physical link number that is

used by flit occupying the virtual channel now;

- setting the path up using the outgoing virtual channel

number for the flit occupying the virtual channel ;

- sending the flit by passing the front flit in the specified

input virtual channel on the corresponding input physical

link, and.

- doing Buffer management.

start

Select VC by arbiter

Get free output VC of the

output port from the mapping

Has flit to

send (VC)?

Header or

Data flit

END

Mapping exist

Got free

output VC

Update path info array

Add flit to output buffer

Delete flit from input buffer

END

Getting mapping INFO from

mapping table related to VC

Get VC no. from path INFO

If VC has free

slot

Block flit in input VC

END

No

No

No

YES

Get

route
No

No

Fig.6. Procedure of moving flit from switch input buffer to switch output

buffer

C. Output Link Controller Unit

This unit is responsible for receiving the incoming flits

from the input controlling unit (after determining the

appropriate output link controller number). Then, it forwards

them to destination or to other switches, with the help of using

virtual channel technique. Buffers at a specified virtual

channel are used to help output link in performing its

functions.

D. Routing Unit

It is the basic component of the switch that is responsible for

applying the designed routing algorithm described below on

the incoming flits to decide which output port to be used in the

next step for forwarding (moving) the flit to the next switch or

to the destination IP block. Least common ancestor algorithm

is used in our design as a routing algorithm, as seen below],

[. In addition, a set of functions and procedures have been

developed to assign virtual channels to the flits in the

generated message (packets), and to do flits movement

internally/externally, in the switch to support the efficiency of

the routing algorithm. However, figure (7) describes the steps

of the procedure that is used to assign virtual channels to the

transmitted message's flits list.

Routing algorithm

Input: SwitchLevel, SwitchIndex, Destination

Output: Selected output channel

Procedure:

Get switch ‘s index

 Get Switch’s Level

Calculate low range and high range using the

formula

1)2(

)2(
2

2

2

)1(

lSwitchLeveRangeLowRangeHigh

lSwitchLeve
xSwitchInde

RangeLow
lSwitchLeve

 If destination>=Low Range AND Destination

<=High Range then

1 RangeLowRangeHighNumberofIP

Childport=NumberIP/NumberChildPorts

Count=1

While Destination >=(Low Range + count ×Child

Port)

 Count = Count + 1

While end

 Count = Count + 1

 Return Count

Else

 Get Random Parent Port Number

Endif

End Procedure
start

i=0

If I < sizeof

(GenMsgList)
END

Header or

Data flit

Got free

output VC

J=I+1

Set VC no. to Flit in

GenMsgList (j)

Get flit from GenMsgList(i)

Set VC no. to flit in GenMsgList(i)

If (J <

GenMsgList size

&& not Tale Flit

YES

No

No

J=J+1

It is

Tale flit

Set VC no. to Flit in

GenMsgList (j)

I=I+1

YES

No

Fig.7. Flowchart of procedure of assigning virtual channels to the flits of the

generated message list

VII. BUILDING THE FAT TREE SIMULATOR STRUCTURE

The network is the main entity in which all nodes and

switches are connected to perform the functionality of

generating, transferring, routing, switching and receiving of

messages in the form of flits, see figure (), which illustrates

flit types and their structures. Network object contains list of

IP nodes and a list of communicating switches. The network

module is performing the task of generating the fat-tree

NOC architecture, setting adjacent switches, moving flits

through the network from output buffer to parent switches

input buffer, moving flits from switches output buffers to

nodes input buffers.

A. IP Node Structure

The IP nodes of the fat tree network are placed at the leaves in

the level zero and connected with parent switches with two

unidirectional physical links. In our proposed fat tree each IP

node generates its own messages that are required to be sent to

certain destinations. Those messages pass through the fat tree

to reach the desired destinations. Each message has random

data and it is generated at different random time stamps and

has random message lengths. Each switch has six physical

links, two for parent ports and four for children ports, each

physical link has four virtual channels and each channel can

hold of four flits per virtual channel. Each flit contains a field

denotes the flit type, namely header, data or tail. The second

field contains the virtual channel identifier (VCID). The third

field contains packet length information, i.e., the number of

flits in the corresponding packet. The next two fields give

source and destination addresses. Header flit contents

differentiate from data or tale flits, header flit contains the

control information required to establish the path of the

message from source to destination.

Header Flit

Data Flit

Tale Flit

Fig. . Flit types

B. Packet Generator

For simulation purposes we have created a unit in the C++

code named as a packet generator in the IP node architecture.

The packet generator unit is in charge of generating data

packets in random lengths. The packets are then passed from

nodes to other nodes through using different switches of the

fat tree NOC model.

VIII. RESULTS

A discrete event simulator has been developed in C++ to

analyze the proposed fat tree NOC architecture. In addition, a

complete VHDL code for the proposed algorithms has been

also written to demonstrate the correctness of the proposed

system in FPGA chip (partially). Figure () illustrates an

example of packets (flits) flowing in the simulator when we

send a message from IP node (3) to IP node (6) in the fat tree

NOC example of 16 nodes for simplicity only (the system can

handle even 64 nodes). For every simulation cycle the

simulator performs the following operations:

 move flits from every node to adjacent switches;

 move flits from input buffer to output buffer of the

switches;

 move flits from output buffer of the switch to the input

buffer of the adjacent switches and/or nodes;

 move flits from the input buffer of the resource node to the

received message list of that node;

 at the end of the execution, the simulator calculates the

network throughput on the level of switch;

Of course the simulator displays other parameters during

the simulation such as number of IP nodes that are used in

the simulated fat tree structure, traversed switches, and

virtual channels/physical channels and the status of buffering

inside the switches. At the end, the system calculates

message latency, and network throughput. The simulator

illustrates also traffic movement on the flit level by showing

it step by step, for every IP node and switch. In traffic

movement we can see many details about some flits from a

particular packet (from a message) such as type of flit,

H

VCID src

DEST

No. of flits

D

VCID Data

T

VCID

current position of the flit i.e. all details of switching and

routing (switch no., switch level, virtual channel no.,

physical channel no., received flit status, flit movement

inside the switch from its input to its output ports, etc).

Figure () shows the relation between the system

throughput and the number of virtual channels employed in

the switch. We have tested the performance of the network

throughput having a single buffer for each physical channel

and having several buffers per physical channel. The results

have shown increasing of switch throughput when the switch

has two and four buffers per physical link and if the number

of buffers increased, we will see that the switch throughput

will not change significantly. Figure () plotted the average

message latency vs. the number of virtual channels. From the

graph we can conclude that increasing number of virtual

channels increases the message latency, due to switching

between virtual channels.

(1,2)(0,2)

(0,1)

157 8 9 10 12 13 146 115431 20

10101032 2 3 32 2 3

Level 0

Level 2

Level 1

4

5
4

5
4 5

4
5

0 1

0

1

3

21

0

2

3

(1,1) (3,1)(2,1)

Fig.9. Example: flit (3,6) is routed and switched from input link (5,0) to

output link (2,0)

Network throughput vs. no. of virtual channels

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 3 4 5 6 7 8

number of virtual channels

N
e
tw

o
rk

 t
h

ro
u

g
h

p
u

t

Fig. . Throughput vs. number of virtual channels

Average message latency vs. virtual channel no.

0

500

1000

1500

2000

1 2 3 4 5 6 7 8

Number of virtual channels

M
e
s
s
a
g
e
 la

te
n
c
y

Fig.11. Average message latency vs. virtual channels

IX. CONCLUSION

Eventually, we have successfully proven the correctness of

all proposed algorithms and procedures of the modular NOC

system simulator. The performance analysis of the network

throughput, the virtual channel effect and message latency

demonstrates the suitability of such system in modeling and

simulating NOCs systematically. Moreover, this system

could be easily used in teaching and industry. Also, a

complete VHDL code has been written, simulated, and

partially prototyped in FPGA technology. Our current work

is to develop an extension to our work to support Mesh

interconnection networks.

REFERENCES

 J. Duato, S. Yalamanchili, L. Ni, Interconnection Networks –

An Engineering Approach, Morgan Kaufmann, 2002.

 Dally, W. J., and B. Towles. Principles and Practices of

Interconnection Networks, Morgan Kaufmann Publishers, San

Francisco, 2004.

 Duato, J., O. Lysne, R. Pang and T. M. Pinkston. “Part I: A

theory for deadlock-free dynamic reconfiguration of

interconnection networks ” IEEE Trans. on Parallel and

Distributed Systems 16:5, May, 412– .

 P. P. Pande C. Grecu A. Ivanov R. Saleh “Design of a

Switch for Network on Chip Applications” Proceedings of

ISCAS, Bangkok, May 2003 Vol. V, pp. 217- .

 S. Kumar et al “A Network on Chip Architecture and Design

Methodology” Proceedings of ISVLSI, pp. 117- .

 D. Wingard “MicroNetwork-Based Integration for SoCs”

Proc. DAC 2001, pp. 673-677, Las Vegas, Nevada, USA,

June 18- .

 P. Guerrier, A. Greiner,”A generic architecture for on-chip

packet switched interconnections” Proceedings of Design,

Automation and Test in Europe Conference and Exhibition

 , pp. 250 – .

 Cristian Grecu, Partha Pratim Pande, Andre Ivanov, Res

Saleh, "A Scalable Communication-Centric SoC Interconnect

Architecture," IEEE International Symposium on Quality

Electronic Design, ISQED 2004 San Jose, California, USA,

22-24 March, 2004.

 C. Leiserson, "Fat-Trees: Universal Networks for Hardware -

Efficient Supercomputing", IEEE Transactions on Computers,

vol. C-34, no. 10, pp. 892-901, October 1985.

 Asma Alasar: "Evaluation of System-on-Chip Interconnect

Architectures: A case study of Fat-Tree Interconnection

Networks, MSc thesis, Computer Department, Faculty of

Science, Tripoli University, Libya, 2010.

Azeddien M. sllame (BSc, MSc, PhD) earned his B.Sc in

Computer Engineering in 1990 from Engineering

Academy, Tajoura, Libya. He got his M.Sc in Computer

Science and Technology from Brno Technical

University, Czech Republic in 1997. In 2003 he granted

his PhD in Information Technology from Brno

University of Technology. He published more than 20

scientific papers in many international conferences in the

area of designing of high-performance digital systems, system-on-chip

design techniques and evolvable hardware systems.

Asma Alasar (BSc, MSc) she got her MSc in Computer

Science from Faculty of Science, Tripoli University, Libya in 2010. Her

research interests include simulation and modeling of SOC designs.

photo

