
  

 

Abstract—in this paper we describe a fat-tree based 

Network-on-Chip (NOC) system that composed of processing 

nodes and communication switches. The IP node contains 

message generator and buffering. The switch uses wormhole 

technique which improved by virtual channel mechanism. The 

switch includes the following essential units: the router, 

input/output link controller units and arbitration unit. A 

discrete event simulator has been developed in C++ to analyze 

the proposed architecture. The obtained results clearly 

demonstrate both the efficiency and the applicability of fat tree 

structure to NOC design. In addition, VHDL code for the 

proposed algorithms has been prototyped in FPGA technology. 

 
Index Terms—Network-on-Chip, routing, switching, fat tree.  

I. INTRODUCTION 

One of the important key design issues in the 

multiprocessing system-on-chips (MPSOC) paradigm is the 

interconnect topology. In the last decades point-to-point 

communication links were used because the design model was 

based on almost a single processor with support of small 

number of application specific integrated circuits (ASICs). 

Nowadays, this is not working any more because of the latest 

advances in semiconductor technologies which enable 

integrating many multiprocessing elements (IP cores) in a 

single chip. So instead of connecting the top-level SOC 

modules by routing dedicated wires, they are connected to a 

network that routes packets between them; see figure (1). 
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Fig. 1. Generic SOC structure 

 

This approach has the benefits of being modular, 

well-structured, flexible, and has efficient performance. In 

addition, interconnection networks are already used in many 

super-computers and parallel systems in industry and 

academia for many years. Moreover, point-to-point wiring 

between IP cores have the following disadvantages; power 

dissipation, cross talk delays due to routing inside the chip, 

and slow propagation velocity. Whereas, interconnection 

networks had structured wiring that reduces the mentioned 

above disadvantages. Furthermore, in interconnection 
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networks, when one IP block is idle, other IP blocks continue 

to make use of the network resources. Butterfly fat tree (BFT) 

and MESH architectures are typical examples of those 

interconnection networks [ ], [ ]. Interconnection networks 

can be classified according to different characteristics. Their 

topologies fall into two classes static (or direct) and dynamic 

(or indirect). In the static interconnection networks, point to 

point links interconnect the network nodes in some fixed 

regular topology such as mesh or hypercube. The dynamic 

interconnection networks allow the interconnection pattern 

between the network nodes to be varied dynamically: this is 

accomplished by using some form of switching. Examples of 

dynamic networks include fat trees and multistage networks. 

In such systems, routing algorithms and switching techniques 

are the two main factors that control network latency and 

throughput, and realize the overall network performance [2].  

In this paper, we will describe a simulator for NOC system 

based on fat tree interconnection network architecture. The 

system clearly illustrates the traffic movement on the flit-level 

step-by-step between IP nodes through the communication 

switches. The simulator can be used to evaluate the effect of: 

routing algorithm; virtual channel mechanism; buffer 

management, message latency and system performance. The 

results obtained obviously demonstrate that: the fat tree 

interconnection networks can offer an attractive alternative 

solution for NOC interconnection because of its scalable 

structure and the bandwidth available. 

This paper is organized as follows: definitions and terms 

are given in section 2. Commonly used switching techniques 

are briefly described in section 3. Related work is presented in 

section  . Fat tree construction is given in section  . Section   

explains some details of our proposed switch. Section   

outlines the simulator structure. Finally, results are given in 

section  . 

II. DEFINITIONS AND TERMS 

The following terms and definitions are needed to 

understand the paper context   ], [ ], [   : 

Core (node): defined as any reusable design block, i.e. can be 

used as building blocks within chip designs in hardware or a 

sub-component in software programs. We use the term IP 

(Intellectual Property) to refer to copyrights. In this paper we 

are using the following names interchangeably (IP node, IP 

block, IP core, logic core, component, processing element). 

Switch: it is responsible for forwarding (switching and 

routing) packets from sender to the intended destination using 

suitable techniques to guarantee this function with proper 

flow control and reasonable quality of services.  

Message: is a unit of information from the programmer’s 

perspective. The size is limited only by the user’s memory 

space. See figure (2). 
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Packet: is the smallest unit of communication containing 

routing information (e.g., destination address) and the 

sequencing information in its header. Its size is of order of 

hundreds or thousands of bytes or words. It consists of header 

flit and data flits. 

Flit: it is the smallest unit of information at link layer and its 

size of one of several words. Flits can be several types and flit 

exchange protocol typically requires several cycles. See 

figure (2) 

Phit: it is the smallest unit of information at physical layer, 

which is transferred across one physical channel in one cycle. 

 

 

 

 

 

 
Fig. 2. Message structure (packet, flit, phit) 

 

Routing algorithm: it determines the path selected by a packet 

to reach its destination, it must decide within each 

intermediate router which output channel(s) are to be selected 

to forward incoming packets. 

Switching mechanism: it determines how network resources 

are allocated for data transmission, it is the actual mechanism 

that removes data from input channels and places them on the 

output channels. 

Flow control: it defines the synchronization protocol between 

sender and receiver nodes which determines actions to be 

taken in case of full buffers, busy output channels, faults, 

deadlocks, etc. Flow control has two levels: 

- Packet flow control: it performs synchronization between 

sender and receiver at the level of packet, ensuring 

successfully transfer and availability of buffer space at the 

receiver.  

- Physical channel flow control: it implements the multi-cycle 

packet flow control and it breaks packets into flits. Here, even 

the flit may take several cycles to transfer; hence, the most 

elementary unit of information is the phit (physically). 

Latency: is defined as the time elapses between the injection 

of header flit of a certain message into the network at source 

node and the arrival of the tale flit of the same message at the 

destination node. Average message latency can be calculated 

by the relation: 

Average Latency = 
P

Li
Pi

i
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Where P is the total number of messages reaching their 

destinations and Li is the latency of each message [xxx]. 

 

III. SWITCHING TECHNIQUES 

In this paragraph we are going to describe commonly used 

switching mechanisms. In circuit switching as in [2] ,[    the 

process starts with transmitting routing probe into the 

network, which contains destination address and other 

control information to reserve the physical channel between 

source and destination, as it is transmitted through 

intermediate routers the path is setup. And when it reaches 

its destination, the source starts full message transmission at 

the full bandwidth of the reserved path. The disadvantage of 

this technique is the inefficient use of network resources 

because of path reservation between the sender and the 

receiver. In packet switching [ ], [2], the message is divided 

into several fixed length packets, every packet consists of 

several flits, starting with the header flit, every channel has 

input and output buffer for one entire packet and each packet 

is routed individually from source to destination. Routing 

decisions are made by each intermediate router only after the 

whole packet was completely buffered in its input buffer. 

This is mechanism is also called store and forward (SAF). 

The disadvantage of this technique is its high storage 

requirements. In virtual cut through   ], [  , (VCT) 

messages are split into packets and routers have buffers for 

the whole packets as in packet switching. However, instead 

of waiting for the whole packet to be buffered, the packet is 

effectively pipelined through successive routers as a loose 

chain of flits. The wormhole switching   ], [   works as a 

VCT scheme. The main difference is that, every router has a 

small buffer for one or few flits. The sequence of buffers and 

links occupied by flits of a given packet form a wormhole in 

the network. Wormhole routing allows building simple, 

small, cheap, and fast routers. Therefore, it is the most 

common switching technique used nowadays in commercial 

machines [ ], [ ]. The problem of degradation of throughput 

in wormhole switching is solved by the virtual channel 

concept   ], [  . A physical channel may support several 

virtual channels multiplexed (time-multiplex) across the 

physical channel. They will all have their own buffers, but 

they will share one single physical channel medium. Each 

unidirectional virtual channel can hold, for example (see 

figure 3), four flits of the same packet, mixing flits from 

different packets is not allowed. Packets can share the 

physical channel on a flit-by-flit basis; the physical channel 

protocol must be able to distinguish between the virtual 

channels.  

  

 

 

 

 
 

 
Fig.  . Physical channel divided into four (yellow, green, blue and red) 

virtual channels 

 

However, keeping adding virtual channels to further reduce 

the blocking; will result in increased network throughput in 

flits/second, due to increased physical channel utilization. 

However, increasing channel multiplexing reduces the data 

rate of individual message and increasing message latency. 

Nevertheless, general network throughput will be increased, 

if the number of virtual channels is reasonable, as we will 

see in our experiments graphs. 

IV. RELATED WORK 

In 1985, Leiserson had proved formally that fat tree is the 

most cost-efficient for VLSI realizations [ ]. Since then fat 

tree has got great attention and has been appeared in some 

super-computer architectures [1], [ ]. In [ ] ,[ ] authors have 

been investigated how butterfly fat tree (BFT) as a structured 

network-based design paradigm can be easily meet specific 

clock cycle requirements when used as the overall MP-SOC 

interconnect architecture. The work illustrated that this type 
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of interconnection networks can offer an attractive alternative 

solution for SOC interconnection that does not suffer from the 

non-scalability aspect of the buses in regards to the clock 

cycle problems [ ]. However, their work in that paper is 

concentrated on wiring and clock constraints of the system. 

Whereas in [ ] they described how the use of virtual channels 

can improve the system throughput with an extra increase of 

switches silicon area. Our work differs with the one described 

in [ ] in the arbitration method, and routing algorithm and in 

the modular design of our switch. Our design also, includes 

separate set of algorithms for internal switch functionality 

such as input/output link controller and virtual channel 

management procedures. Moreover, our design differs also in 

the way of instantiating fat tree overall structure     . 

V. FAT TREE INTERCONNECTION ARCHITECTURE 

The Fat tree is a type of interconnection network, where the 

processors (processing cores or IP cores) are interconnected 

by a tree structure, in which the IP cores are at the leaves of 

the tree, and the interior nodes are switches. An advantage of 

a tree structure is that communication distances are short for 

local communication patterns. Moreover, the fat tree is a tree 

structure with redundant interconnections on its branches; 

the number of interconnections increases as the root is 

reached. The purpose is to increase the bandwidth at higher 

levels, where it is most needed. Because it is not feasible to 

provide a channel between every pair of nodes, the network 

channels are shared among the IP nodes. Messages are used 

to communicate between sending and receiving nodes, 

which means construction of paths that consisting some 

intermediate switches (for routing purposes) along the 

specified paths from the sources to the destinations. Figure 

( ) shows a butterfly fat tree with 64 IP blocks (cores) 

interconnected by suitable number of switches in 

intermediate levels. The IP nodes are placed at leaves in 

zero level and switches are placed in higher levels. We can 

calculate number of levels by the relation: 

NL 4log ,                   Where N is the number of IP nodes.  

 
Fig. . Butterfly fat tree structure with 64 IP cores 

 

In our network we have 3 levels, and the switches are 

placed in levels ranging from l > 0 and l >= L. Each IP node is 

denoted by pair (i,0) where i is ranging from (0-63) which 

denotes the index of the IP node in the level zero, each IP 

node has two ports to connect with its parent switches, each 

port has two unidirectional physical links. Each level of the 

network has the number 
42
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 of the switches and the 

total number of switches in the network is the summation of 

the number of switches in each level. Each switch is 

represented by a pair of coordinates (i, l), where i represents 

the index of the switch in the level and l represents the level of 

the switch, the pair (5,2) represents switch no. 5 in the level 

no. 2. Each IP node at the coordinate (i, 0) has the parent at 

coordinate (p,1) and p=i/4. For example if we have the IP 

Node (62, 0), it has the parent switch (15, 1). Each switch has 

two parent (p) coordinates (p1,l+1) and (p2,l+1) 
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For example, if we have the switch (15,1) , then from the 

above relations it has the parents: 

P1=6 and p2=7. And each switch has four children 

(switches or nodes).  

VI. SWITCH DESIGN 

The switch is the basic component of the fat tree NOC and it 

performs the functions of routing and switching. The switch 

also ensures the storing of packets (the packet consists group 

of flits) to be transferred to other intermediate IP cores in the 

fat tree network. Each switch has two parent switches except 

for the top level switches and four children switches except 

for the lowest level switches. Lowest level switches have four 

children IP nodes. Each switch is bidirectional; each port is 

associated with a pair of opposite unidirectional channels, one 

for inputs and one for outputs. Figure ( ) illustrates the main 

components of the proposed switch. 
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Fig.5. The top-level of the switch structure 

 

Each switch is constructed from the following entities: 

 

A. Arbitration Unit 

The switch includes an arbitration unit that is used to let one 

of the competing input messages grant access to the output 

port. The proposed arbitration unit used round-robin strategy 

with the help of mapping table. The mapping table is a data 

structure that is used to aid the arbitration process, and it is 

composed of an array of integers having the size of 

noOfPhysicalLink × noOfVirtualLink. This array is used for 

switching in crossbar switch i.e. it determines the path from an 

input buffer to the output buffer. At index i of this array a 

value x (>=0) is stored for the path selection. Here x is the 



  

output physical link identifier and i is the input virtual channel 

identifier. That means the data from input port i is switched 

(transferred) to the output port x. the input and output physical 

and virtual channels are identified as below: 

Input physical channel number = i DIV number of virtual link 

Input virtual channel number = i MOD number of virtual link 

Output physical channel number = x 

After the output port has been granted by the message, the 

message will be switched to that output port by an established 

link of the switch between the input link and the output link. 

When multiple messages simultaneously request the same 

link, the arbitration component must provide arbitration 

between them. If the requested link is busy, the incoming 

message remains in the current link. The arbitration unit is 

invoked whenever the arbitration is needed on a certain link.  

 The arbitration algorithm 
Input: PriorityArray, Physical link number which 

needs arbitration 

PriorityArray Dimension: NoOfPhysicalLinks × 

NoOfVirtualLinks 

Output: Selected Virtual Channel (vc) 

Procedure: 

Start =Pysical link number×NoOfVirtualLinks 

Min=PriorityArray[Start] 

vc=0 

for i= start+1 To i = start +  

       NoOfVirtualLinks; 

  I = i+1; 

  if PriorityArray[i]<min then 

     min=PriorityArray[i]; 

     vc=i MOD NoOfVirtualLinks; 

  endif 

endfor 

return vc 

End procedure 

 

B. Input Link Controller Unit 

Link controllers interconnect switches and define the fat 

tree topology, link controllers can be divided into input link 

controllers and output link controllers. Input link controller 

unit is responsible for receiving incoming flits from different 

IP’s and forwarding them to the associated units  with the help 

of using virtual channel technique. Moreover, it controls the 

input buffer, which composed of a FIFO memory for storing 

one or more flits; that are required for storing transferred data 

until the next channel is available. As we are using wormhole 

switching, virtual channel technique is implemented to avoid 

deadlock, in wormhole switching input buffer unit holds as 

many buffer objects as many virtual channels are required. 

Figure (6) illustrates the flowchart of the procedure that is 

used in the designed switch to move flits inside the switch 

from the input buffers to the output buffers, making them 

ready to be sent out of the switch. However, the input link 

controller is responsible for:- 

- checking the availability of free input virtual channel, if 

exists then it returns free virtual channel number; 

- managing the sending out of flit that is available in input 

virtual channel buffer; 

- helping do routing function by setting the outgoing 

physical link number that the flit occupying in the virtual 

channel must follow to reach the destination; 

- keeping track of the outgoing physical link number that is 

used by flit occupying the virtual channel now; 

- setting the path up using the outgoing virtual channel 

number for the flit occupying the virtual channel ; 

- sending the flit by passing the front flit in the specified 

input virtual channel on the corresponding input physical 

link, and. 

- doing Buffer management. 
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Fig.6. Procedure of moving flit from switch input buffer to switch output 

buffer 

 

C. Output Link Controller Unit 

This unit is responsible for receiving the incoming flits 

from the input controlling unit (after determining the 

appropriate output link controller number). Then, it forwards 

them to destination or to other switches, with the help of using 

virtual channel technique. Buffers at a specified virtual 

channel are used to help output link in performing its 

functions. 

 

D. Routing Unit 

It is the basic component of the switch that is responsible for 

applying the designed routing algorithm described below on 

the incoming flits to decide which output port to be used in the 

next step for forwarding (moving) the flit to the next switch or 

to the destination IP block. Least common ancestor algorithm 

is used in our design as a routing algorithm, as seen below   ], 

[   . In addition, a set of functions and procedures have been 

developed to assign virtual channels to the flits in the 

generated message (packets), and to do flits movement 

internally/externally, in the switch to support the efficiency of 

the routing algorithm. However, figure (7) describes the steps 

of the procedure that is used to assign virtual channels to the 

transmitted message's flits list. 

 
Routing algorithm 

Input: SwitchLevel, SwitchIndex, Destination 

Output: Selected output channel 

Procedure: 

Get switch ‘s index 

     Get Switch’s Level 

Calculate low range and high range using the 

formula 
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     If destination>=Low Range AND Destination 

<=High Range then          

1 RangeLowRangeHighNumberofIP
              

Childport=NumberIP/NumberChildPorts 

Count=1 

While Destination >=(Low Range + count ×Child 

Port) 

    Count = Count + 1 

While end 

     Count = Count + 1 

  Return Count 

Else 

  Get Random Parent Port Number 

Endif  

End Procedure 
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Fig.7. Flowchart of procedure of assigning virtual channels to the flits of the 

generated message list 

VII. BUILDING THE FAT TREE SIMULATOR STRUCTURE  

The network is the main entity in which all nodes and 

switches are connected to perform the functionality of 

generating, transferring, routing, switching and receiving of 

messages in the form of flits, see figure ( ), which illustrates 

flit types and their structures. Network object contains list of 

IP nodes and a list of communicating switches. The network 

module is performing the task of generating the fat-tree 

NOC architecture, setting adjacent switches, moving flits 

through the network from output buffer to parent switches 

input buffer, moving flits from switches output buffers to 

nodes input buffers.  

 

A. IP Node Structure 

The IP nodes of the fat tree network are placed at the leaves in 

the level zero and connected with parent switches with two 

unidirectional physical links. In our proposed fat tree each IP 

node generates its own messages that are required to be sent to 

certain destinations. Those messages pass through the fat tree 

to reach the desired destinations. Each message has random 

data and it is generated at different random time stamps and 

has random message lengths. Each switch has six physical 

links, two for parent ports and four for children ports, each 

physical link has four virtual channels and each channel can 

hold of four flits per virtual channel. Each flit contains a field 

denotes the flit type, namely header, data or tail. The second 

field contains the virtual channel identifier (VCID). The third 

field contains packet length information, i.e., the number of 

flits in the corresponding packet. The next two fields give 

source and destination addresses. Header flit contents 

differentiate from data or tale flits, header flit contains the 

control information required to establish the path of the 

message from source to destination. 

Header Flit 

 

 

Data Flit 

 

 

Tale Flit 

 

 
Fig. . Flit types 

 

B. Packet Generator 

For simulation purposes we have created a unit in the C++ 

code named as a packet generator in the IP node architecture. 

The packet generator unit is in charge of generating data 

packets in random lengths. The packets are then passed from 

nodes to other nodes through using different switches of the 

fat tree NOC model.  

VIII. RESULTS 

A discrete event simulator has been developed in C++ to 

analyze the proposed fat tree NOC architecture. In addition, a 

complete VHDL code for the proposed algorithms has been 

also written to demonstrate the correctness of the proposed 

system in FPGA chip (partially). Figure ( ) illustrates an 

example of packets (flits) flowing in the simulator when we 

send a message from IP node (3) to IP node (6) in the fat tree 

NOC example of 16 nodes for simplicity only (the system can 

handle even 64 nodes). For every simulation cycle the 

simulator performs the following operations: 

 move flits from every node to adjacent switches; 

 move flits from input buffer to output buffer of the 

switches; 

 move flits from output buffer of the switch to the input 

buffer of the adjacent switches and/or nodes; 

 move flits from the input buffer of the resource node to the 

received message list of that node; 

 at the end of the execution, the simulator calculates the 

network throughput on the level of switch; 

Of course the simulator displays other parameters during 

the simulation such as number of IP nodes that are used in 

the simulated fat tree structure, traversed switches, and 

virtual channels/physical channels and the status of buffering 

inside the switches. At the end, the system calculates 

message latency, and network throughput. The simulator 

illustrates also traffic movement on the flit level by showing 

it step by step, for every IP node and switch. In traffic 

movement we can see many details about some flits from a 

particular packet (from a message) such as type of flit, 
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current position of the flit i.e. all details of switching and 

routing (switch no., switch level, virtual channel no., 

physical channel no., received flit status, flit movement 

inside the switch from its input to its output ports, etc). 

Figure (  ) shows the relation between the system 

throughput and the number of virtual channels employed in 

the switch. We have tested the performance of the network 

throughput having a single buffer for each physical channel 

and having several buffers per physical channel. The results 

have shown increasing of switch throughput when the switch 

has two and four buffers per physical link and if the number 

of buffers increased, we will see that the switch throughput 

will not change significantly. Figure (  ) plotted the average 

message latency vs. the number of virtual channels. From the 

graph we can conclude that increasing number of virtual 

channels increases the message latency, due to switching 

between virtual channels. 
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Fig.9. Example: flit (3,6) is routed and switched from input link (5,0) to 

output link (2,0) 
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Fig.  . Throughput vs. number of virtual channels 
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Fig.11. Average message latency vs. virtual channels 

IX. CONCLUSION 

Eventually, we have successfully proven the correctness of 

all proposed algorithms and procedures of the modular NOC 

system simulator. The performance analysis of the network 

throughput, the virtual channel effect and message latency 

demonstrates the suitability of such system in modeling and 

simulating NOCs systematically. Moreover, this system 

could be easily used in teaching and industry. Also, a 

complete VHDL code has been written, simulated, and 

partially prototyped in FPGA technology. Our current work 

is to develop an extension to our work to support Mesh 

interconnection networks. 

REFERENCES 

    J. Duato, S. Yalamanchili, L. Ni, Interconnection Networks – 

An Engineering Approach, Morgan Kaufmann, 2002. 

    Dally, W. J., and B. Towles. Principles and Practices of 

Interconnection Networks, Morgan Kaufmann Publishers, San 

Francisco, 2004. 

    Duato, J., O. Lysne, R. Pang  and T. M. Pinkston. “Part I: A 

theory for deadlock-free dynamic reconfiguration of 

interconnection networks ” IEEE Trans. on Parallel and 

Distributed Systems 16:5, May, 412–         . 

     P. P. Pande  C. Grecu  A. Ivanov  R. Saleh  “Design of a 

Switch for Network on Chip Applications”  Proceedings of 

ISCAS, Bangkok, May 2003 Vol. V, pp. 217-   . 

    S. Kumar  et al  “A Network on Chip Architecture and Design 

Methodology”  Proceedings of ISVLSI, pp. 117-         . 

    D. Wingard  “MicroNetwork-Based Integration for SoCs”  

Proc. DAC 2001, pp. 673-677, Las Vegas, Nevada, USA, 

June 18-        . 

    P. Guerrier, A. Greiner,”A generic architecture for on-chip 

packet switched interconnections”  Proceedings of Design, 

Automation and Test in Europe Conference and Exhibition 

    , pp. 250 –   . 

    Cristian Grecu, Partha Pratim Pande, Andre Ivanov, Res 

Saleh, "A Scalable Communication-Centric SoC Interconnect 

Architecture," IEEE International Symposium on Quality 

Electronic Design, ISQED 2004  San Jose, California, USA, 

22-24 March, 2004. 

    C. Leiserson, "Fat-Trees: Universal Networks for Hardware - 

Efficient Supercomputing", IEEE Transactions on Computers, 

vol. C-34, no. 10, pp. 892-901, October 1985. 

     Asma Alasar: "Evaluation of System-on-Chip Interconnect 

Architectures: A case study of Fat-Tree Interconnection 

Networks, MSc thesis, Computer Department, Faculty of 

Science, Tripoli University,  Libya, 2010. 
 

Azeddien M. sllame (BSc, MSc, PhD) earned his B.Sc in 

Computer Engineering in 1990 from Engineering 

Academy, Tajoura, Libya. He got his M.Sc in Computer 

Science and Technology from Brno Technical 

University, Czech Republic in 1997. In 2003 he granted 

his PhD in Information Technology from Brno 

University of Technology. He published more than 20 

scientific papers in many international conferences in the 

area of designing of high-performance digital systems, system-on-chip 

design techniques and evolvable hardware systems. 

 

Asma Alasar (BSc, MSc) she got her MSc in Computer 

Science from Faculty of Science, Tripoli University, Libya in 2010. Her 

research interests include simulation and modeling of SOC designs. 

photo 


