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Abstract

This thesis is aiming to demonstrate and compare the different methods of constructing
a two-sided confidence intervals for the coefficient of variation (CV), or that, for signal-to-
noise ratio (SNR) of a Poisson distribution based on bootstrapping simulating techniques.

As an introductory chapter of this thesis, chapter one is designed to include a
comprehensive introduction. Chapter two is devoted to review aspects and definitions of
all seven adopted methods of confidence intervals for the Poisson coefficient of variation
(CV) as well as the confidence intervals for the signal-to-noise ratio (SNR) as a reciprocal of
the CV.

Chapter three is devoted to the application part where simulation study is to be conducted
to compare the performance of the four considered methods namely: the Wald with Continuity
Correction (WCC), Wald Bootstrap method (WaldB), WaldZ (WaldzZ) and Wald with
Continuity Correction Bootstrap method (WCCZ)) of constructing a 95% two-sided
confidence intervals for the Poisson coefficient of variation with different sample sizes and
varying parameter values.

As last chapter of this thesis, chapter four is devoted to the final part of this study that
illustrates the most important discussions and conclusions and then an outline of possible
future work by which this study could be extended. Finally, the Matlab functions for the
four confidence interval methods is to be given in subsequent chapters.

This thesis considered several confidence intervals for estimating the Poisson population
coefficient of variation. A simulation study will be conducted to compare the performance of
the four proposed confidence interval methods.

Data will be generated from Poisson distribution for CV = 0.05, 0.1, 0.15, ..., 0.45, and 0.50
using Matlab software. The coverage probability and interval length for each confidence

interval method will be calculated and reported.

Keywords: coefficient of variation (CV), confidence interval, coverage probability,
expected length, Poisson distribution, bootstrap samples mean, and Signal-to-Noise Ratio
(SNR).
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Chapter 1
1.0 Introduction

The coefficient of variation (CV) for numerical measurements, also known as
relative standard deviation (RSD), is defined as the ratio of the standard deviation (SD)
to the mean (u) of these measurements. The CV gives the standard deviation as
proportion of the mean, and it is sometimes an informative quantity. For example, a
value SD = 10 has little meaning unless we can compare it to something else. If SD is
observed to be 10 and u is observed to be 1000, then the amount of variation is small
relative to the mean. However, if SD is observed to be 10 and u is 5, then the variation
is quite large relative to the mean. If we were studying the precision (variation in spread
measurements) of a measuring instrument, the first case (CV = 0.01) might give quite
acceptable precision but the second case (CV = 2) would be quite unacceptable
(Wackerly, et al. 2008).

The CV is a unit-free measure of relative spread found to be very useful in
descriptive studies (Panichchkikosolkul, 2009), also it is useful in finance and actuarial
science by using it to measure the relative risks (Miller and Karson, 1977). The CV can
be used to make comparisons across several populations that have different units of
measurement, such as, for example, the variability of the weights of newborns,
measured in grams, with the height of adults, measured in centimeters. The CV is not
defined for a mean equal to zero, and it is unreliable for small means relative to the
standard deviation. Even if the mean of the measurements is not zero, but the
measurements contain both positive and negative values and the mean is close to zero,
then the CV can be misleading.

It is very well known that the standard deviation represents noise and other

interference and in some cases the standard deviation is not important in itself, but only
in comparison to the mean. This gives rise to the term: Signal-to-Noise Ratio (SNR),
which is equal to the converse of the coefficient of variation (i.e., SNR=1/CV).
It is commonly used in image processing (for examples, Tania, 2008; Jitendra, 2009;
John, 2007), where the SNR of an image is usually calculated as the ratio of the
mean pixel value to the standard deviation of the pixel values over a given
neighborhood (F. George and B.M. G. Kibria, 2012). SNR measures how much signal
has been corrupted by noise (McGibney and Smith, 1993).



In real life examples like image processing, Signal-to-Noise Ratio (SNR) describes
the quality of a measurement. It is the ratio of the measured signal to the overall
measured noise at that pixel. High SNR is particularly important in applications
requiring precise light measurement. The detected photons in a CCD ( Charged
Coupled Device ) camera or a photomultiplier tube follow a Poisson distribution,
which is responsible forthe Photon Noise and determines the Signal to Noise Ratio
of the acquired image (Lee, 2009; Willkinson and Schut, 1998). Since the SNR of
Poisson distribution has special interest in imaging, we will be discussing different
methods of confidence interval for SNR of Poisson distribution.

To test the significance of the SNR, a hypothesis test can be conducted and a

confidence interval can be generated to reject or not reject the null hypothesis.
Confidence intervals associated with point estimates provide more specific
knowledge about the population characteristics than the p-values in the test of
hypothesis (Visintainer and Tejani, 1998). The precision of a confidence interval can
be determined through the width and coverage probability of the interval. Given
constant coverage, as the width of the (1 — a) 100% confidence interval decreases, the
accuracy of the estimate increase (Kelley, 2007). The coverage level is the probability
that the estimated interval will capturethe true CV or SNR value (Banik and Kibria,
2010).
There are various methods available for estimatingthe confidence interval for a
population CV or SNR, such as, parametric, nonparametric, modified and
bootstrapping (Banik and Kibria, 2010). The bootstrap approach is anon-parametric
and computer-intensive tool used for estimating and making inferences about the
parameters thatwas introduced by Efron (1979). It will be especially useful because,
unlike other methods, this technique does not require any assumptions to be made about
the underlying population of interest (Banik and Kibria, 2010). Therefore,bootstrapping
technique can be applied for estimating or hypothesis testing to all situations. This
method is implemented by simulating an original data set then randomly selecting
data several times with replacement to estimate the parameter of a distribution. For
more information on the confidence interval for the CV, we refer Miller (1991); Sharma
and Krishna (1994); Vangel (1996) Banik and Kibria (2011) and recently F. George and
B.M. G. Kibria (2012) among others.

The literature on the confidence intervals for the CV or SNR of a Poisson

distribution is very limited. The objective of this thesis is to propose some confidence
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interval estimators for SNR and find some good estimators for the practitioners. Six
confidence intervals that already exist in literature for CV and they are considered for
SNR by using the inverse relationship between CV and SNR. Since a theoretical
comparison is not possible, a simulation study has been conducted to compare the
performance of the interval estimators. Finally, based on the simulation results,
the intervals with high coverage probability and smaller width were recommended for

practitioners.

1.1 Basic Notation

Let X;,X,,--+, X, be an independently and identically distributed (iid) random
sample of size n from a distribution with finite mean u and standard deviation ¢ so that
CV = a/u is the population coefficient of variation. When the parameters u and o or
the underlying distribution are unknowns, the parameters p and o are estimated from
the observed data. The estimated y is then defined as CV = &/ where i and & are the

estimated values of u and o respectively.

1.2 Literature Review

The researchers often calculate CV using sample values but they rarely do construct

two-sided confidence intervals for CV (Mahmoud and Hassani, 2009).
Confidence interval estimation allows the researcher to have an idea about the precision
of the point estimate rather than only a p-value for rejection or no rejection of a specified
null hypothesis (Albatineh, et al., 2017). To do interval estimation on CV, one needs to
make assumption about the shape of the population distribution. One also needs to
know the distribution of CV. The exact distribution of the sample coefficient of
variation from a normally distributed population is not easy and obtaining a two-sided
confidence interval for CV in this case would require using the non-central t distribution
and sequential techniques (Koopmans, et al., 1964). However, many researchers have
already done good job for the inference of CV.

When the underlying population is normally distributed, several two-sided
confidence intervals for CV are constructed and modified by many authors since 1932.
For more information on the two-sided confidence intervals for CV, we refer to McKay
(1932), Fieller (1932), Pearson (1932), Hendricks and Robey (1936), Koopmans, et al.



(1964), Umphrey (1983), Gregoire (1984), Bhoj and Ahsanullah (1993), Reid (1996),
Vangel (1996), Tian, (2006), Rahim, et al. (2007), Panichchkikosolkul (2009), Banik
and Kibria (2011), and recently Panichchkikosolkul (2017).

Sharma and Krishna (1994) developed two-sided confidence interval for the
reciprocal of CV without making an assumption about the population distribution. The
reciprocal of CV is called the population Signal-to-Noise Ratio (SNR), i.e., SNR =
u/o = CV~1. In digital communications the SNR is a measure of the signal strength
relative to background noise, while in quality control, the SNR represents the magnitude
of the mean of a process compared to its variation. The SNR measures how much signal
has been corrupted by noise, see McGibney and Smith (1993) for a discussion. Several
two-sided confidence intervals that already exist in literature for SNR and they can be
considered for CV by using the inverse relationship between SNR andy, for example,
see Sharma and Krishna (1994), Banik and Kibria (2010), George and Kibria (2012)
and Albatineh, et al. (2014).

Panichkitkosolkul (2010) proposed four new two-sided confidence intervals for the
coefficient of variation of the Poisson distribution based on obtaining two-sided

confidence intervals for the Poisson mean.

1.3 Contribution of the Thesis

1. The thesis provides a comprehensive review of methods for setting confidence
intervals for the Poisson coefficient of variation.

2. This thesis proposes three new confidence intervals for the coefficient of variation
of a Poisson distribution based on obtaining confidence interval methods for the
SNR of a Poisson distribution that reviewed by George and Kibria (2011).
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Chapter 2

2.0 Statistical Methodology

2.1 Introduction

Let X;,X,, -+, X,, be an independently and identically distributed random sample of

size n from a Poisson distribution with meanA. Then the population coefficient

variation for Poisson distribution isCV = 1/+A. In this chapter, a (1 — @)100%
confidence intervals methods for CV will be reviewed, four existing methods and three

proposed new methods. Following 7 methods will be considered.

2.2 Existing Methods

Wararit Panichkitkosolkul proposed four new confidence intervals for the
coefficient of variation of Poisson distribution based on obtaining confidence intervals
for the Poisson mean (Panichchkikosolkul, 2010). The four confidence intervals for the
coefficient of variation of a Poisson distribution based on Wald (W), Wald with
continuity correction (Wcc), Scores (S) and Variance stabilizing (VS) confidence

interval are as follows:

-1 -1
Cly =|| [X-z1_ay =] | [R+zicay, 2] |
-1 -1
Clyoe = X -2 a, X+no.5 | [z + 21 ay X+0.5 |
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The simulation results showed that the (WCC) based trust period is more

=

appropriate than the other three confidence intervals in terms of coverage probability
and hence this method will be adopted along with other three proposed methods to form

the four methods considered in the application part of this thesis.
2.3 Proposed Methods

The proposed new confidence intervals methods which are based on three
confidence interval methods for the SNR of a Poisson distribution that reviewed by
George and Kibria (2011) are as follows:

1 -1
Clyaas = || (X —Zay 2] | [X+2Za), |2 |
] L Iy
. %
Clyaiaz = ) X+ Tl_a/z ” .
-1 -1

= * ’X +0.5 = * Xg+0.5
CIWCCZ - X - T(Z/Z BT ) X + T1—a/2 Bn )

where X = % X, T(SE/2 and Tl*_a/z are the (a/2)" and (1 — a/2)t" sample

X

o . -X o . A
quintiles of T;" = la\ 5 whereX; is the i bootstrap sample mean, 65 =
B

1

— B X —Xp)% X = %Zf;l)?g* and B is the number of bootstrap samples. The

number of bootstrap samples is typically between 1000 and 2000.
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Chapter3

3.0 Demonstration of Simulated Data

3.1 Introduction

Our attention is now turned to the application part of the thesis by applying the
above mentioned confidence intervals for estimating the Poisson population coefficient of
variation to different simulated data sets each with different sample sizes and different
Poisson population parameter. This study considered several confidence intervals for
estimating the Poisson population coefficient of variation. A simulation study will be
conducted to compare the performance of the four adopted confidence interval methods.

The generated data are from a Poisson distribution with a varying valus of the parameter A

i.e., with a varying valus of the Poisson population coefficient of variation CV = 1/+/1=
0.05, 0.1, 0.15, ...,0.45, and 0.50 using Matlab software. The coverage probability and
interval length for each confidence interval method will be calculated and reported.

Often, it is necessary to investigate the properties of a statistical procedure using
simulation techniques. However, since a theoretical comparisons between confidence
interval methods for the Poisson coefficient of variation is not possible, bootstrapping
technique can be applied by simulating an original data set then randomly selecting data
several times with replacement to estimate the unknown parameters. The simulation study
will be conducted to compare the performance of only four considered confidence interval
methods which are obtained under the same simulation conditions. The four two-sided
confidence interval methods are: (1) Wald with Continuity Correction (WCC), (2) Wald
Bootstrap method (WaldB), (3) (Waldz), and (4) Wald with Continuity Correction Bootstrap
method (Wcc2).

3.2 Simulation Steps and Criteria

A “good” confidence interval should have coverage close to the nominal confidence level
and short length. The performance of the estimated coverage probabilities of the confidence
intervals (1) to (4) and their estimated expected lengths will be examined by Bootstrap
simulation.

To study the performance of the adopted four confidence interval methods, the coverage
probability (CP) and the length (L) are to be considered. For each one of the considered four

methods, a (1 — @)100%confidence interval denoted by (L,U) which based on M replicates,
10



the estimated coverage probability (ECP) and the expected length (EL) are to be obtained,

where,

ECP=(1-a)=#(L<y<U)/M

EL = i(ui - LL-)/M.
i=1

3.2.1 The Estimated Lengths (EL) of The Confidence Intervals

To enable comparisons, data will be generated from Poisson distribution with A = 400,
100, 44.44, 25, 16, 11.11, 8.16, 6.25, 4.93, 4 and sample sizes; n = 10, 15, 25, 50, 75, 100. The
corresponding coefficient of variations are CvV=0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40,
0.45, 0.50. The estimated 95 % two-sided confidence intervals of each coefficient of variation
are then calculated along with their corresponding lengths. The estimated lengths (EL) are
given in Tables 3.1 to 3.3 whereas their corresponding plots are given in Figs 3.1 to 3.3. All
simulations are performed using programs written in the Matlab software, repeated 100,000
times in each case at confidence level 0.95. All calculations for this simulation study are based
on Monte-Carlo Simulation and then double precision computations are adopted (i.e., 16 digit
accuracy).

Table 3.1 below gives the estimated lengths (EL) of the confidence intervals for A = 400
and confidence coefficient 0.95 of the four considered methods for sample sizes varying from
10 to 100.

Table 3.1 The Estimated Lengths (EL) for CvV= 0.05 and Confidence Coefficient 0.95.

CV =0.05
n WaldB WCC Waldz WcceZ
10 | 0.00130000 | 0.00130000 | 0.00130000 | 0.00130000
15 | 0.00126650 | 0.00126580 | 0.00126260 | 0.00126330
25 | 0.00098095 | 0.00098034 | 0.00097919 | 0.00097996
50 | 0.00069351 | 0.00069308 | 0.00069284 | 0.00069320
75 | 0.00056623 | 0.00056588 | 0.00056569 | 0.00056606
100 | 0.00049034 | 0.00049003 | 0.00048994 | 0.00049023

As can be seen from Table 3.1, the estimated lengths of all confidence intervals of the four
considered methods are very close to each other for each sample size and it is really difficult
to distinguish between them, with a very slight preferable of the confidence interval that
based on WaldZ, especially for large sample sizes (25 or more). This interpretation can also
be seen clearly from Fig 3.1.Furthermore, it is very nature to notice that the expected lengths

are decreased dramatically with the increase of sample sizes.
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Fig 3.1 The Estimated Lengths (EL); (1 = 400).

12



This behavior of the estimated lengths (EL) of the confidence intervals, when plotted against
the sample sizes, will remain almost the same for A = 100, 44.44, 25, 16 with confidence
coefficient 0.95 of the four considered methods for sample sizes varying from 10 to 100.

These simulated results are summarized in Table 3.2 below.

The estimated lengths are very tide to each other and really hard to distinguish between them,
with a slight preferable of the confidence interval that based on WaldZz, especially for large

sample sizes.

Table 3.2 The Estimated Lengths (EL) for CV = 0.10, 0.15, 0.20,0.25and 1 — a = 0.95.

CcV =0.10
n WaldB WCC Waldz WecceZ
10 0.0051000 | 0.0051000 0.0051000 0.0051000
15 0.0050851 | 0.0050723 0.0050583 0.0050712
25 0.0039349 | 0.0039251 0.0039198 0.0039302
50 0.0027807 | 0.0027738 0.0027721 0.0027792
75 0.0022700 | 0.0022643 0.0022635 0.0022690
100 | 0.0019655 | 0.0019606 0.0019601 0.0019648
CV =0.15
n WaldB WCC Waldz WcceZ
10 0.0115000 | 0.0114000 0.0114000 0.0115000
15 0.0115100 | 0.0114450 0.0114090 0.0114720
25 0.0088960 | 0.0088461 0.0088318 0.0088820
50 0.0062816 | 0.0062465 0.0062419 0.0062772
75 0.0051262 | 0.0050976 0.0050951 0.0051236
100 | 0.0044383 | 0.0044135 0.0044118 0.0044364
CV =0.20
n WaldB WCC Waldz WcceZ
10 0.0206000 | 0.0204000 0.0204000 0.0206000
15 0.0206380 | 0.0204310 0.0203520 0.0205570
25 0.0159270 | 0.0157680 0.0157360 0.0158960
50 0.0112280 | 0.0111170 0.0111060 0.0112170
75 0.0091613 | 0.0090707 0.0090649 0.0091560
100 | 0.0079291 | 0.0078508 0.0078461 0.0079249
CV =0.25
n WaldB WCC Waldz WcceZ
10 0.032600 0.032100 0.031900 0.032400
15 0.032599 0.032087 0.031935 0.032440
25 0.025104 0.024714 0.024647 0.025038
50 0.017672 0.017400 0.017378 0.017650
75 0.014406 0.014184 0.014171 0.014392
100 0.012468 0.012277 0.012269 0.012458

The corresponding Fig 3.2 will also enhancing this interpretations, i.e., as the Poisson
parameter A varying from 16 to 400 the expected lengths are very tidy to each other for all
the four methods. Furthermore, these expected lengths are seen to be decreased dramatically
with the increase of sample sizes for A = 400, 100, 44.44, 25, 16.

13
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Fig 3.2 The Estimated Lengths (EL); (A = 100, 44.44, 25, 16).

Table 3.3 below gives the simulated results of the estimated lengths (EL) of the confidence
intervals, with varying sample sizes from 10 to 100, for A = 11.11, 8.16, 6.25, 4.93, 4 with
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confidence coefficient 0.95 of all considered methods. Again the estimated lengths are much
closed to each other with a superiority of the confidence intervals based on WaldZ and WaldB

methods, especially for sample sizes as large as 25 or more.

Table 3.3 The Estimated Lengths (EL) for CV = 0.30, 0.35, 0.40, 0.45, 0.50 and1 — a = 0.95.

CV =0.30
n WaldB WCC Waldz WcceZ
10 0.047600 0.046500 | 0.046200 | 0.047300
15 0.047572 0.046492 | 0.046224 | 0.047293
25 0.036527 0.035712 | 0.035593 | 0.036404
50 0.025673 0.025107 | 0.025063 | 0.025629
75 0.020913 0.020454 | 0.020431 | 0.020888
100 0.018090 0.017694 | 0.017678 | 0.018074
CV =0.35
n WaldB WCC Waldz WcceZ
10 0.065900 0.063800 | 0.063400 | 0.065400
15 0.065850 0.063807 | 0.063363 | 0.065379
25 0.050370 0.048844 | 0.048635 | 0.050155
50 0.035292 0.034241 | 0.034169 | 0.035215
75 0.028725 0.027875 | 0.027834 | 0.028684
100 0.024845 0.024111 | 0.024084 | 0.024814
CV =040
n WaldB WCC Waldz WcceZ
10 0.087600 0.084000 | 0.083300 | 0.086800
15 0.087583 0.084020 | 0.083300 | 0.086815
25 0.066737 0.064104 | 0.063776 | 0.066376
50 0.046643 0.044843 | 0.044722 | 0.046515
75 0.037931 0.036478 | 0.036412 | 0.037861
100 0.032780 0.031529 | 0.031484 | 0.032732
CV =045
n WaldB WCC Waldz WccZ
10 0.113500 0.107600 | 0.106500 | 0.112300
15 0.113480 0.107590 | 0.106490 | 0.112270
25 0.085965 0.081680 | 0.081171 | 0.085398
50 0.059802 0.056907 | 0.056721 | 0.059596
75 0.048592 0.046261 | 0.046161 | 0.048479
100 0.041971 0.039968 | 0.039898 | 0.041894
CV =0.50
n WaldB WCC Waldz WcceZ
10 0.143600 0.134300 | 0.132700 | 0.141700
15 0.143580 0.134310 | 0.132650 | 0.141710
25 0.108120 0.101490 | 0.100690 | 0.107240
50 0.074939 0.070503 | 0.070224 | 0.074630
75 0.060777 0.057221 | 0.057060 | 0.060608
100 0.052472 0.049420 | 0.049316 | 0.052359

The corresponding Fig 3.3 clearly support our interpretations, i.e., as the Poisson parameter
varying from 4 to 11.11 the expected lengths are very tidy to each other except for the methods
of WaldZ and WaldB which show a slight superiority over the other two methods, especially
for sample sizes as large as 25 or more. Again, these expected lengths are seen to be decreased

dramatically with the increase of the sample size for all the given Poisson parameter values.
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3.2.2 The Estimated Coverage Probability (ECP) For Different Values of n

We now turn our attention to the estimated coverage probability (ECP) for different values
of the Poisson parameter and varying sample sizes. This simulated study has been conducted
to know the effect of the parameter value to the estimated coverage probability (ECP), of the
estimated 95 % two-sided confidence intervals of the Poisson coefficient of variation, for
varying sample sizes. Table 3.4 below gives the simulated values of the coverage probability
(ECP) for the Poisson parameter A = 400 (or, CV=0.05) With varying sample sizes from 10

to 100 of the four considered methods.

Table 3.4 The Estimated Coverage Prob. (ECP) for CV= 0.05 and Confidence Coefficient 0.95.

CV =0.05
n WaldB WCC Waldz WecceZ
10 | 0.9506 | 0.9499 | 0.9494 | 0.9491
15 | 0.9506 | 0.94987 | 0.94944 | 0.94906
25 | 0.94957 | 0.94906 | 0.94808 | 0.94839
50 | 0.95044 | 0.95044 | 0.9498 | 0.94994
75 | 0.94992 | 0.94992 | 0.94939 | 0.94977
100 | 0.94923 | 0.94901 | 0.94864 | 0.94899

The corresponding Fig 3.4 below shows that the method of WaldB provide us with the best
estimated coverage probability followed by the estimated method of WCC. These two methods

show their superiority over the other two methods for all sample sizes.

CV =0.05
Variable
09505 —&— ‘Walde
—B— W
-4 - Waldz
—b - Weez
09500
~ 0.9495
(]
]
094390
09485
09480

a 20 40 a0 B0 100

Fig 3.4 The Estimated Coverage Prob. (ECP); (4 = 400).
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Table 3.5 below gives the simulated values of the coverage probability (ECP) for the
Poisson parameters A = 100, 44.44 (or, CV=0.10, 0.15) With varying sample sizes from 10
to 100 of the four considered methods. The obtained estimated values for the coverage
probability are very similar and really difficult to distinguish between them, the corresponding

figure is then more important to visually judge the performance of these estimation methods.

Table 3.5 The Estimated Coverage Prob. (ECP) for CV=0.10, 0.15 and Confidence Coeff. 0.95.

CV =0.10

n WaldB WCC WaldZ WccZ
10 | 0.9524 | 0.9506 | 0.9493 | 0.9499
15 | 0.95237 | 0.95056 | 0.94931 | 0.94987
25 | 0.94939 | 0.94835 | 0.94795 | 0.94852
50 | 0.95196 | 0.95111 | 0.9507 | 0.95162
75 | 0.95212 | 0.95078 | 0.95072 | 0.95138
100 | 0.95067 | 0.95015 | 0.95005 | 0.95062
CV =0.15
n WaldB WCC Waldz WccZ
10 | 0.9497 | 0.9496 | 0.9469 | 0.9481
15 | 0.94966 | 0.94965 | 0.94691 | 0.94814
25 | 0.95034 | 0.95034 | 0.94907 | 0.95041
50 | 0.95206 | 0.95085 | 0.95032 | 0.95144
75 | 0.95164 | 0.94951 | 0.95008 | 0.95073
100 | 0.9514 | 0.95051 | 0.94977 | 0.95119

The corresponding Fig 3.5 below shows again that the method of WaldB provide us with the
best estimated coverage probability followed by the estimated method of WccZ except for
sample sizes 10 and 15 where WCC is doing better than the method WccZ. The WaldB method
is again show its superiority over the other three methods for all sample sizes. The WaldZ
method is the worst method for estimating the coverage probability of the Poisson parameters
A =400,100,44.44 (or, CV = 0.05, 0.10, 0.15) With varying sample sizes from 10 to 100 of

the four considered methods.
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Table 3.6 below presents the simulated values of the coverage probability (ECP) for the
Poisson parameters A = 25,16,11.11,8.16 (or, CV=0.20, 0.25, 0.30, 0.35) With varying
sample sizes from 10 to 100 of the four considered methods. At all considered cases, the
estimated values obtained by the methods of WaldB and WccZ are close to each other and seem
to be, in general, better than the estimated values obtained by the other two methods of WCC
and Waldz.

Table 3.6 The Estimated Coverage Prob. (ECP) for CvV= 0.2, 0.25, 0.3, 0.35 and Confidence
Coefficient 0.95.

CV =0.20
n WaldB WCC Waldz WecceZ
10 0.95200 0.94940 0.94800 0.95030
15 0.95200 0.94936 0.94801 0.95032
25 0.95101 0.94893 0.94836 0.95033
50 0.95185 0.95011 0.94913 0.95162

75 0.95046 0.94818 0.9487 0.9511
100 0.95127 0.94907 0.94875 0.95122
CV =0.25
n WaldB WCC Waldz WecceZ

10 0.95020 0.95020 0.94910 0.95250
15 0.95024 0.95024 0.94914 0.95250
25 0.95127 0.95127 0.94933 0.95299
50 0.95317 0.94902 0.94879 0.95219
75 0.95337 0.94937 0.94959 0.95302
100 0.95289 0.95012 0.94948 0.95289
CV =0.30
n WaldB WCC Waldz WccZ
10 0.95480 0.94640 0.94860 0.95300
15 0.95476 0.94639 0.94855 0.95305
25 0.95443 0.95178 0.94938 0.95412
50 0.95323 0.94805 0.94934 0.95410
75 0.95526 0.94991 0.94988 0.95445
100 0.95273 0.9495 0.94874 0.95362
CV =0.35
n WaldB WCC Waldz WcceZ
10 0.95690 0.95030 0.94780 0.95430
15 0.95686 0.95026 0.94785 0.95426
25 0.95274 0.95270 0.94913 0.95543
50 0.95496 0.94972 0.95026 0.95628
75 0.95672 0.95012 0.94980 0.95683
100 0.95505 0.94867 0.94862 0.95548

For more precise comparisons, we again relay on the figures of the estimated coverage
probability when plotted against the sample size for different values of the Poisson parameter
A. Fig 3.6 below shows again that the performance of the methods of WaldB and WccZ are the
best in estimating the coverage probability compared to the other two methods of WCC and
WaldZ which showed again that they are under estimating the coverage probability and that
for all Poisson parameters 4 = 25,16,11.11,8.16 and all sample sizes n = 10, 15, 25, 50, 75,
100.
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The simulated values of the coverage probability (ECP) for the Poisson parameters A =
6.25,4.93, 4 (or, CV=0.40, 0.45, 0.50) With varying sample sizes from 10 to 100 of the four
considered methods are presented respectively in Table 3.7 below. At all considered cases, the
estimated values obtained by the methods of WaldB and WccZ are close to each other and seem
to be, in general, better than the estimated values obtained by the methods of WCC and WaldZ.

Table 3.7 The Estimated Coverage Prob. (ECP) for CV=0.40, 0.45, 0.50 and Confidence Coefficient
0.95.

CV =0.40

n WaldB WCC WaldZ WccZ
10 0.96130 0.94960 0.94930 0.95830
15 0.96127 0.94961 0.94926 0.95827
25 0.95780 0.94891 0.94848 0.95729
50 0.95743 0.95179 0.94939 0.95812
75 0.95896 0.95081 0.95091 0.95899
100 0.95881 0.95050 0.95024 0.95825
CV =0.45
n WaldB WCC Waldz WecceZ
10 0.95320 0.94110 0.94500 0.95640
15 0.95316 0.94112 0.94504 0.95642
25 0.95867 0.94879 0.94778 0.95831
50 0.96039 0.95014 0.94905 0.95981
75 0.95872 0.94981 0.94895 0.95934
100 0.95752 0.94776 0.94813 0.95849
CV =0.50
n WaldB WCC Waldz WecceZ
10 0.96200 0.94780 0.94490 0.95830
15 0.96202 0.94776 0.94495 0.95825
25 0.95619 0.94427 0.9469 0.96015
50 0.96104 0.94634 0.94872 0.96113
75 0.96163 0.94921 0.9486 0.96134
100 0.96047 0.95051 0.94881 0.96114

For more precise comparisons, we again relay on the figures of the estimated coverage
probability when plotted against the sample size for different values of the Poisson parameter
A. Fig 3.7 below shows again that the performance of the methods of WaldB and WccZ are the
best in estimating the coverage probability compared to the other two methods of WCC and
WaldZ which showed again that they are under estimating the coverage probability and that
for all Poisson parameters A = 6.25,4.93, 4 and all sample sizes n = 10, 15, 25, 50, 75, 100.
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3.2.3 The Estimated Coverage Probability for Different Values of A.

For more understanding to the behavior of the estimated coverage probability (ECP), we
may need to look at it from different angle. This can be done by Sketching the estimated
coverage probability, for a fixed sample size, against the Poisson parameter values A = 400,
100, 44.44, 25, 16, 11.11, 8.16, 6.25, 4.93, 4 instead of sketching it against the varying sample
size values n = 10, 15, 25, 50, 75, 100 (see subsection 3.2.2 above) seem to provide us with
more insight to its behavior. For this we now turn our attention to the estimated coverage
probability (ECP) for different values of the Poisson parameter with a specific value of the
sample size each time. This simulated study has been conducted to see the effect of the

parameter values to the estimated coverage probability (ECP) for a fixed sample size.

Table 3.8 below presents the simulated values of the coverage probability (ECP) for
different Poisson parameter values and that for each fixed sample size (n = 10, 15, 25, 50, 75,
100) of the four considered methods. Although it is difficult to study the effect of the Poisson
parameter values to the estimating coverage probability for each sample size by just looking
to the figures of Table 3.8 below. This is due to the closeness of these estimating coverage
probability values for all the considered methods. But for large Poisson parameter values (1 =
400, 100, 44.44, 25) one can recognize that the four methods are doing similar job when
estimating the coverage probability for each sample size. As the Poisson parameter values get
smaller (4 =16, 11.11, 8.16, 6.25, 4.93, 4), both WaldB and WccZ methods seem to do much
better, in estimating the coverage probability values, compared with the other two methods of
WaldZ and WCC which are under estimating the coverage probability for all sample sizes.

For more precise comparisons, we cannot only rely on the figures of Table 3.8, but it is
more important to have a visual inspection to the sketched figures of the estimated coverage
probability against the Poisson parameter values A, for a given fixed sample size.

The corresponding Fig 3.8 (a) and (b) below shows clearly, and as we said earlier, that the
performance of the four methods, in estimating the coverage probability values, for large
Poisson parameter values (4 = 400, 100, 44.44, 25) is very similar with a little favored job of
the WaldB and WccZ methods. As the Poisson parameter values get smaller (1 = 16, 11.11,
8.16, 6.25, 4.93, 4), both WaldB and WccZ methods are very clearly doing a much better
estimating job, compared with the other two methods of WaldZ and WCC which are clearly

under estimating the coverage probability for all given sample sizes.
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Table 3.8 The Estimated Coverage Prob. (ECP) against the Coefficient of Variation (CV).

Estimated Coverage Probability (ECP) for Confidence Coefficient 0.95.

Method (a) Coefficient of Variation (CV) for n=10

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

WaldB | 0.95060 | 0.95240 | 0.94970 | 0.9520 | 0.95020 | 0.95480 | 0.95690 | 0.96130 | 0.95320 | 0.9620

WCC 0.94990 | 0.95060 | 0.94960 | 0.94940 | 0.95020 | 0.94640 | 0.95030 | 0.94960 | 0.94110 | 0.94780

WaldZ | 0.94940 | 0.94930 | 0.94690 | 0.9480 | 0.94910 | 0.94860 | 0.94780 | 0.94930 | 0.94500 | 0.94490

WececZ | 0.94910 | 0.94990 | 0.94810 | 0.95030 | 0.95250 | 0.95300 | 0.95430 | 0.95830 | 0.95640 | 0.95830

Method (b) Coefficient of Variation CV) for n=15

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

WaldB | 0.95060 | 0.95237 | 0.94966 | 0.9520 | 0.95024 | 0.95476 | 0.95686 | 0.96127 | 0.95316 | 0.96202

WCC 0.94987 | 0.95056 | 0.94965 | 0.94936 | 0.95024 | 0.94639 | 0.95026 | 0.94961 | 0.94112 | 0.94776

WaldZ | 0.94944 | 0.94931 | 0.94691 | 0.94801 | 0.94914 | 0.94855 | 0.94785 | 0.94926 | 0.94504 | 0.94495

WeeZ | 0.94906 | 0.94987 | 0.94814 | 0.95032 | 0.9525 | 0.95305 | 0.95426 | 0.95827 | 0.95642 | 0.95825

Method (c) Coefficient of Variation (CV) for n=25

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

WaldB | 0.94957 | 0.94939 | 0.95034 | 0.95101 | 0.95127 | 0.95443 | 0.95274 | 0.9578 | 0.95867 | 0.95619

WCC 0.94906 | 0.94835 | 0.95034 | 0.94893 | 0.95127 | 0.95178 | 0.95270 | 0.94891 | 0.94879 | 0.94427

WaldZ | 0.94808 | 0.94795 | 0.94907 | 0.94836 | 0.94933 | 0.94938 | 0.94913 | 0.94848 | 0.94778 | 0.94690

WeeZ | 0.94839 | 0.94852 | 0.95041 | 0.95033 | 0.95299 | 0.95412 | 0.95543 | 0.95729 | 0.95831 | 0.96015

Method (d) Coefficient of Variation (CV) for n=50

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

WaldB | 0.95044 | 0.95196 | 0.95206 | 0.95185 | 0.95317 | 0.95323 | 0.95496 | 0.95743 | 0.96039 | 0.96104

WCC 0.95044 | 0.95111 | 0.95085 | 0.95011 | 0.94902 | 0.94805 | 0.94972 | 0.95179 | 0.95014 | 0.94634

WaldZ | 0.9498 | 0.95070 | 0.95032 | 0.94913 | 0.94879 | 0.94934 | 0.95026 | 0.94939 | 0.94905 | 0.94872

WeceZ | 0.94994 | 0.95162 | 0.95144 | 0.95162 | 0.95219 | 0.95410 | 0.95628 | 0.95812 | 0.95981 | 0.96113

Method (e) Coefficient of Variation (CV) for n=75

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

WaldB | 0.94992 | 0.95212 | 0.95164 | 0.95046 | 0.95337 | 0.95526 | 0.95672 | 0.95896 | 0.95872 | 0.96163

WCC 0.94992 | 0.95078 | 0.94951 | 0.94818 | 0.94937 | 0.94991 | 0.95012 | 0.95081 | 0.94981 | 0.94921

WaldZ | 0.94939 | 0.95072 | 0.95008 | 0.94870 | 0.94959 | 0.94988 | 0.94980 | 0.95091 | 0.94895 | 0.94860

WeceZ | 0.94977 | 0.95138 | 0.95073 | 0.95110 | 0.95302 | 0.95445 | 0.95683 | 0.95899 | 0.95934 | 0.96134

Method (f) Coefficient of Variation (CV) for n=100

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

WaldB | 0.94923 | 0.95067 | 0.9514 | 0.95127 | 0.95289 | 0.95273 | 0.95505 | 0.95881 | 0.95752 | 0.96047

WCC 0.94901 | 0.95015 | 0.95051 | 0.94907 | 0.95012 | 0.94950 | 0.94867 | 0.95050 | 0.94776 | 0.95051

WaldZ | 0.94864 | 0.95005 | 0.94977 | 0.94875 | 0.94948 | 0.94874 | 0.94862 | 0.95024 | 0.94813 | 0.94881

WeeZ | 0.94899 | 0.95062 | 0.95119 | 0.95122 | 0.95289 | 0.95362 | 0.95548 | 0.95825 | 0.95849 | 0.96114
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3.2.4 The Estimated Lengths (EL) For Different VValues of A.

To be able to understand more the behavior of the estimated lengths (EL) of the two sided
confidence intervals of the coefficient of variation of the Poisson distribution. This can be done
by Sketching the estimated lengths (EL), for a fixed given sample size, against the Poisson
parameter values A = 400, 100, 44.44, 25, 16, 11.11, 8.16, 6.25, 4.93, 4 (or, equivalently
against the coefficient of variation values CV = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40,
0.45, 0.50) instead of sketching it against the varying sample size values n = 10, 15, 25, 50,
75, 100 (see subsection 3.2.1 above) seem to provide us with more insight to its behavior. For
this we now turn our attention to the estimated lengths (EL) for different values of the Poisson
parameter with a specific value of the sample size each time. This simulated study has been
conducted to see the effect of the parameter values (or, equivalently the effect of the coefficient
of variation values) on the estimated lengths (EL) of the obtained two sided confidence
intervals of the coefficient of variation of the Poisson distribution, for a fixed sample size.

Table 3.9 below presents the estimated values of the estimated lengths (EL) for different
Poisson parameter values (or, equivalently, for different coefficient of variation values) and
that for each fixed sample size (n = 10, 15, 25, 50, 75, 100) of the four considered methods.
Although it is difficult to study the effect of the Poisson parameter values on the estimating
lengths for each sample size by just staring to the figures of Table 3.9 below.

But for large Poisson parameter values (A = 400, 100, 44.44, 25, 16, 11.11, 8.16) one can
recognize that the four methods are doing very similar job when estimating the lengths for
each sample size. As the Poisson parameter values get smaller (1 = 6.25, 4.93, 4), both WaldzZ
and WCC methods seem to do much better, in estimating the coverage probability values,
compared with the other two methods of WaldB and WccZ which gives a wider confidence

intervals (with larger lengths) for all sample sizes.

To perform a more precise comparisons, a visual inspection to the sketched figures of the
estimated lengths against the Poisson parameter values A (or, equivalently against the
coefficient of variation values), for a given fixed sample size. The corresponding Fig 3.9 (a)
and (b) below shows clearly, that the performance of the four methods, in estimating the
lengths, for large Poisson parameter values (1 = 8 or more) but as the Poisson parameter values
get smaller (A = 6 or less), the methods of WaldZ and WCC are very clearly doing a much
better estimating job, compared with the other two methods of WaldB and WccZ which are

clearly gives a wider confidence intervals (with larger lengths) for all considered sample sizes.
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Table 3.9 The Estimated Lengths (EL) against the Coefficient of Variation (CV).

Estimated Length (EL) for Confidence Coefficient 0.95.
Method (a) Coefficient of Variation (CV) for n=10
0.05 0.10 0.15 020 | 0.25 0.30 0.35 0.40 0.45 0.50
WaldB | 0.00130 | 0.00510 | 0.01150 | 0.02060 | 0.03260 | 0.04760 | 0.06590 | 0.08760 | 0.11350 | 0.14360
WCC 0.00130 | 0.00510 | 0.01140 | 0.02040 | 0.03210 | 0.04650 | 0.06380 | 0.0840 | 0.10760 | 0.13430
WaldZ | 0.00130 | 0.00510 | 0.01140 | 0.02040 | 0.03190 | 0.04620 | 0.06340 | 0.08330 | 0.10650 | 0.13270
WececeZ 0.00130 | 0.00510 | 0.01150 | 0.02060 | 0.03240 | 0.04730 | 0.06540 | 0.08680 | 0.11230 | 0.14170
Method (b) Coefficient of Variation (CV) for n=15
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
WaldB | 0.00127 | 0.00509 | 0.01151 | 0.02064 | 0.03260 | 0.04757 | 0.06585 | 0.08758 | 0.11348 | 0.14358
WCC 0.00127 | 0.00507 | 0.01144 | 0.02043 | 0.03209 | 0.04649 | 0.06381 | 0.08402 | 0.10759 | 0.13431
WaldZ | 0.00126 | 0.00506 | 0.01141 | 0.02035 | 0.03193 | 0.04622 | 0.06336 | 0.08330 | 0.10649 | 0.13265
WececeZ 0.00126 | 0.00507 | 0.01147 | 0.02056 | 0.03244 | 0.04729 | 0.06538 | 0.08682 | 0.11227 | 0.14171
Method (c) Coefficient of Variation (CV) for n=25
0.05 0.10 0.15 020 | 0.25 0.30 0.35 0.40 0.45 0.50
WaldB | 0.00098 | 0.00393 | 0.00890 | 0.01593 | 0.02510 | 0.03653 | 0.05037 | 0.06674 | 0.08597 | 0.10812
WCC 0.00098 | 0.00393 | 0.00885 | 0.01577 | 0.02471 | 0.03571 | 0.04884 | 0.06410 | 0.08168 | 0.10149
WaldZ | 0.00098 | 0.00392 | 0.00883 | 0.01574 | 0.02465 | 0.03559 | 0.04863 | 0.06378 | 0.08117 | 0.10069
WcceZ 0.00098 | 0.00393 | 0.00888 | 0.0159 | 0.02504 | 0.03640 | 0.05016 | 0.06638 | 0.08540 | 0.10724
Method (d) Coefficient of Variation (CV) for n=50
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
WaldB | 0.00069 | 0.00278 | 0.00628 | 0.01123 | 0.01767 | 0.02567 | 0.03529 | 0.04664 | 0.05980 | 0.07494
WCC 0.00069 | 0.00277 | 0.00625 | 0.01112 | 0.01740 | 0.02511 | 0.03424 | 0.04484 | 0.05691 | 0.07050
WaldZ | 0.00069 | 0.00277 | 0.00624 | 0.01111 | 0.01738 | 0.02506 | 0.03417 | 0.04472 | 0.05672 | 0.07022
WceZ 0.00069 | 0.00278 | 0.00628 | 0.01122 | 0.01765 | 0.02563 | 0.03521 | 0.04652 | 0.05960 | 0.07463
Method (e) Coefficient of Variation (CV) for n=75
0.05 0.10 0.15 020 | 0.25 0.30 0.35 0.40 0.45 0.50
waldB | 0.00057 | 0.00227 | 0.00513 | 0.00916 | 0.01441 | 0.02091 | 0.02873 | 0.03793 | 0.04859 | 0.06078
WCC 0.00057 | 0.00226 | 0.00510 | 0.00907 | 0.01418 | 0.02045 | 0.02787 | 0.03648 | 0.04626 | 0.05722
WaldZ | 0.00057 | 0.00226 | 0.00510 | 0.00906 | 0.01417 | 0.02043 | 0.02783 | 0.03641 | 0.04616 | 0.05706
WceZ 0.00057 | 0.00227 | 0.00512 | 0.00916 | 0.01439 | 0.02089 | 0.02868 | 0.03786 | 0.04848 | 0.06061
Method (f) Coefficient of Variation (CV) for n=100
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
WaldB | 0.00049 | 0.00197 | 0.00444 | 0.00793 | 0.01247 | 0.01809 | 0.02485 | 0.03278 | 0.04197 | 0.05247
WCC 0.00049 | 0.00196 | 0.00441 | 0.00785 | 0.01228 | 0.01769 | 0.02411 | 0.03153 | 0.03997 | 0.04942
WaldZ | 0.00049 | 0.00196 | 0.00441 | 0.00785 | 0.01227 | 0.01768 | 0.02408 | 0.03148 | 0.03990 | 0.04932
WececeZ 0.00049 | 0.00196 | 0.00444 | 0.00792 | 0.01246 | 0.01807 | 0.02481 | 0.03273 | 0.04189 | 0.05236
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Fig 3.9 (a) The Estimated Lengths (EL) against the Coefficient of Variation (CV).
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Chapter 4

4.0 Discussion and Conclusions

4.1  Introduction
The main aim of this final chapter is to summarize all the above results and to judge

the performance of the above mentioned methods that have been used to estimate the
confidence interval of the coefficient of variation of a Poisson population of parameter
L. This is done, as given in chapter 3 above, by applying the four methods adopted by
this thesis to different simulated data sets with different sample sizes and different
Poisson population parameter values. This study considered four different confidence
interval methods for estimating the Poisson population coefficient of variation (or
equivalently, the SNR). A simulation study has been conducted to compare the
performance of four proposed confidence interval methods. The used simulated data
have been generated from the Poisson distribution with a varying vales of the parameter
A, i.e., with a varying valus of the Poisson population coefficient of variation using
Matlab software. The coverage probability and interval length of each confidence
interval method will be calculated and reported.

To investigate the properties of a statistical procedure, a simulation techniques are
good choice, especially where a theoretical study is not possible. Bootstrapping
technique has been applied to compare between confidence interval methods for the
Poisson coefficient of variation. This is done by simulating an original data set then
randomly selecting data several times with replacement to estimate the unknown
parameters. The simulation study has been conducted to compare the performance of
the four considered confidence interval methods under the same simulation conditions.
The generated data sets are performed using programs written in the Matlab software,
repeated 100,000 times in each case at confidence level 0.95. All calculations for this
simulation study are based on Monte-Carlo Simulation and then double precision

computations are adopted.
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4.2 The Overall Conclusions

We employ the four two-sided confidence interval methods, the Wald with
Continuity Correction (WCC) method, the Wald Bootstrap method (WaldB), the (WaldZz)
method and the Wald with Continuity Correction Bootstrap method (WccZ) to many
obtained simulated data sets. Throughout this thesis many important points and useful

results are obtained and the main features that could be drawn are summarized below:

(1) Estimated Lengths (EL) Against Sample sizes (n) of confidence Intervals of data
generated from Poisson distribution with parameter values (4 ) varying from 4 to 400
and sample sizes (n) varying from 10 to 100. The estimated 95 % two-sided confidence
intervals of each coefficient of variation are then calculated along with their

corresponding lengths.

As can be seen from the obtained tables and figures that the estimated lengths of all
confidence intervals of the four considered methods are very close to each other for each
sample size and it is really difficult to distinguish between them, with a very slight
preferable of the confidence interval that based on WaldZ, especially for large sample
sizes (25 or more) and as the Poisson parameter A varying from 16 to 400 the expected
lengths are very tidy to each other for all the four methods. Furthermore, these expected
lengths are seen to be decreased dramatically with the increase of sample sizes for 1 =
400,100, 44.44, 25, 16. Butfor A = 11.11, 8.16, 6.25, 4.93, 4 the estimated lengths
are again much closed to each other with a superiority to the confidence intervals based

on Waldz and WaldB methods, especially for sample sizes as large as 25 or more.

(2) Estimated Coverage Probability (ECP) Against Sample sizes (n) for different
values of the Poisson parameter and varying sample sizes. This is to know if there is any
effect of the parameter value to the estimated coverage probability (ECP), of the estimated
95 % two-sided confidence intervals of the Poisson coefficient of variation of varying

sample sizes.

For the Poisson parameter A = 400 (or, CV= 0.05) with varying sample sizes from 10 to
100 of the four considered methods, it has be shown that the method of WaldB provide us
with the best estimated coverage probability followed by the estimated method of WCC.
These two methods show their superiority over the other two methods for all sample sizes.
ForA =100, 44.44 (or, Cv=0.10, 0.15) With varying sample sizes, the obtained estimated

values for the coverage probability are very similar and really difficult to distinguish
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between them and again that the method of WaldB provide us with the best estimated
coverage probability followed by the estimated method of WccZ except for sample sizes 10
and 15 where WCC is doing better than the method WccZ. The WaldB method is again show
its superiority over the other three methods for all sample sizes. The WaldZ method is the
worst method for estimating the coverage probability of the Poisson parameters A =
400,100, 44.44 (or, Cv=0.05, 0.10, 0.15). For A = 25,16,11.11,8.16, 6.25,4.93,4 (or,
CVv=0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50) for all sample sizes we can see that the methods
of WaldB and WccZ are close to each other and seem to be, in general, better than the
estimated values obtained by the other two methods of WCC and WaldZ.

(3) The Estimated Coverage Probability (ECP) for Different Values of A with a specific
value of the sample size (n) at each time. This simulated study has been conducted to see the
effect of the parameter values to the estimated coverage probability (ECP) for a fixed sample
size. For large Poisson parameter values (4 = 400, 100, 44.44, 25) one can recognize that
the four methods are doing similar job when estimating the coverage probability for each
sample size, but as the Poisson parameter values get smaller (1 =16, 11.11, 8.16, 6.25, 4.93,
4), both WaldB and WccZ methods seem to do much better, in estimating the coverage
probability values, compared with the other two methods of WaldZ and WCC which are
under estimating the coverage probability for all sample sizes.

(4) The Estimated Lengths (EL) against Different VValues of A for a specific fixed sample
size (n) each time. This simulated study has been conducted to see the effect of the parameter
values (or, equivalently the effect of the coefficient of variation values) on the estimated
lengths (EL) of the obtained two sided confidence intervals of the coefficient of variation of
the Poisson distribution, for a fixed sample size. It has been shown that for large Poisson
parameter values (A = 400, 100, 44.44, 25, 16, 11.11, 8.16) one can recognize that the four
methods are doing very similar job when estimating the lengths for each sample size. As the
Poisson parameter values get smaller (A = 6.25, 4.93, 4), both WaldZ and WCC methods
seem to do much better, in estimating the coverage probability values, compared with the
other two methods of WaldB and WccZ which gives a wider confidence intervals (with

larger lengths) for all sample sizes.
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Directions for Future Work

There are a number of possible extensions to the work presented in this thesis. Here

we shall give some ideas of possible future work.

1. Throughout this thesis our attention has been restricted only to four cases of finding
the estimated confidence interval. This could be extended to consider more estimated
cases.

2. All calculations for this simulation study are based on Monte-Carlo Simulation so

one can try another simulation method.
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function [CP1,EL1,CP2,EL2,CP3,EL3,CP4,EL4]=simcpel(cv,n,alpha,M);

cp1=0;cp2=0;cp3=0;cp4=0;

el1=0;el2=0;el3=0;el4=0;

fori=1:M

X=poissrnd((1/cv)*2,n,1);

cil=ciwcc(X,alpha);

ci2=ciwb(X,alpha);

ci3=ciwz(X,alpha);

cid=ciwccz(X,alpha);

if (cv>=cil(:,1)&cv<=cil(:,2));
cpl=cpl+1,;

end,

ell=ell+(cil(:,2)-cil(:,1));

if (cv>=ci2(:,1)&cv<=ci2(:,2));
cp2=cp2+1,;

end,

el2=el2+(ci2(:,2)-ci2(:,1));

if (cv>=ci3(:,1)&cv<=ci3(:,2));
cp3=cp3+1,;

end,

el3=el3+(ci3(:,2)-ci3(:,1));

if (cv>=ci4(:,1)&cv<=ci4(:,2));
cp4=cp4+1,

end,

eld=el4+(ci4(:,2)-ci4(:,1));

end

CP1=cpl/M;EL1=¢el1l/M;

CP2=cp2/M;EL2=¢l2/M;

CP3=cp3/M;EL3=¢l3/M;

CP4=cp4/M;EL4=eld/M;

function Clwcc=ciwcc(X,alpha);
n=length(X);

c=1-alpha/2;

Zc=norminv(c,0,1);

Xb=mean(X);
L=(Xb+Zc*sqrt((Xb+0.5)/n))(-1/2);
U=(Xb-Zc*sqrt((Xb+0.5)/n))(-1/2);
Clwcce=[L,U];

function ClwB=ciwb(X,alpha);
n=length(X);

c=1-alpha/2;
Zc=norminv(c,0,1);
Xb=mean(X);

B=2000;
SB=Dbootstrp(B,@mean,X);
XB=mean(SB);
L=(Xb+Zc*sqrt(XB/n))*(-1/2);
U=(Xb-Zc*sqrt(XB/n))"(-1/2);
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ClwB=[L,U];

function Clwz=ciwz(X,alpha);
n=length(X);

c=alpha/2;

Xb=mean(X);

B=2000;
SB=bootstrp(B,@mean,X);
XB=mean(SB);

sigB=std(SB);
T=(SB-XB)/sigB;
t1_c=quantile(T,1-c);
tc=quantile(T,c);
L=(Xb+t1l_c*sqrt(Xb/n))*(-1/2);
U=(Xb+tc*sqrt(Xb/n))*(-1/2);
Clwz=[L,U];

function Clwccz=ciwccz(X,alpha);
n=length(X);

c=alpha/2;

Xb=mean(X);

B=2000;

SB=bootstrp(B,@mean,X);
XB=mean(SB);

sigB=std(SB);

T=(SB-XB)/sigB;
t1_c=quantile(T,1-c);
tc=quantile(T,c);
L=(Xb+t1_c*sqrt((Xb+0.5)/n))*(-1/2);
U=(Xb+tc*sqrt((Xb+0.5)/n))(-1/2);
Clwccez=[L,U];
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