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Abstract 

 

This thesis is aiming to demonstrate and compare the different methods of constructing 

a two-sided confidence intervals for the coefficient of variation (CV), or that, for signal–to-

noise ratio (SNR) of a Poisson distribution based on bootstrapping simulating techniques. 

As an introductory chapter of this thesis, chapter one is designed to include a 

comprehensive introduction. Chapter two is devoted to review aspects and definitions of 

all seven adopted methods of confidence intervals for the Poisson coefficient of variation 

(CV) as well as the confidence intervals for the signal–to-noise ratio (SNR) as a reciprocal of 

the CV. 

Chapter three is devoted to the application part where simulation study is to be conducted 

to compare the performance of the four considered methods namely: the Wald with Continuity 

Correction (WCC), Wald Bootstrap method (WaldB), WaldZ (WaldZ) and Wald with 

Continuity Correction Bootstrap method (WCCZ)) of constructing a 95% two-sided 

confidence intervals for the Poisson coefficient of variation with different sample sizes and 

varying parameter values. 

 As last chapter of this thesis, chapter four is devoted to the final part of this study that 

illustrates the most important discussions and conclusions and then an outline of possible 

future work by which this study could be extended. Finally, the Matlab functions for the 

four confidence interval methods is to be given in subsequent chapters. 

This thesis considered several confidence intervals for estimating the Poisson population 

coefficient of variation. A simulation study will be conducted to compare the performance of 

the four proposed confidence interval methods. 

Data will be generated from Poisson distribution for 𝐶𝑉 = 0.05, 0.1, 0.15, …, 0.45, and 0.50 

using Matlab software. The coverage probability and interval length for each confidence 

interval method will be calculated and reported.  

 

Keywords: coefficient of variation (CV), confidence interval, coverage probability, 

expected length, Poisson distribution, bootstrap samples mean, and Signal-to-Noise Ratio 

(SNR).  
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 إهداء خاص 

 

  )الدكتور البهلول عمر شلاب   ( نهدي هذا العمل المتواضع الى روح  

ولكن   منه  هام  جزء  تنفيذ  على  ف  وأشر البحث  هذا  ح  إقتر الذي 

القدر على   يمهله  البحث ولم    خضم هذا 
المرض وهو ف  داهمه 

تكملته. ندعوا له بواسع الرحمة والمغفرة وندعوا من الله أن يجعل  

قض    التر  العالى   التعليم  مجال    
ف  الاعمال  وسائر  العمل  هذا 

 صدقة جارية على روحه الطاهرة المرحوم فيها جل حياته أن تكون  

 

  نانا لله وانا اليه راجعو   
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 الأهداء 
 

ية الأول  ية وعقولهم إلى مرفأ الأمان ، معلم البشر  إلى من قاد البشر
 

 ،، سيدنا محمد  
 

 إلى من وفاتهم المنيًة ، وكانوا ختر مثال لرب الأشة 
 لهم  أب   وزوج   رحمهما الله وغفر 

 
 الجنة تحت قدميها ،   –سبحانه وتعالى  –إلى من وضع المولى  

  كتابه العزيز... 
 ووقرها ف 

 أم  الحبيبة 
 

   
 إلى بذرة الفؤاد وأمل الغد ، بنابر

 ريان ، مرام ، جنان " "
 

  مصدر فخري وأبنائهم وبناتهم ،،
  وأخوابر

 إلى إخوبر
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  بهم الدراسة وميدان العمل ..  

 إلى إخوة و أخوات جمعتت 
  الكرام

  وزميلابر
 ،، زملاب 

 إلى كل يدٍ وقلبٍ سارَ مع  درب الإنجاز لأكون ،،، 
إلى كل هؤلاء أهدي هذه الدراسة ، راجيا من الله أن تكون نافذة علم 

 وبطاقة معرفة .. وأن ينفعنا وينفع بنا ،، 
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 شكر وتقدير 
 

سِهِ )  :  الله تعالىقال 
ْ
ف
َ
رُ لِن

ُ
ك
ْ
مَا يَش

َّ
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َ
رْ ف

ُ
ك
ْ
 12( لقمان  وَمَنْ يَش

 (   من لم يشكر الناس ، لم يشكر الله عز وجل) :   وقال رسوله الكريم 

 

  
 ملى  السموات والأرض على ما أكرمت 

ً
 مباركا

ً
 طيبا

ً
ا  كثتر

ً
 أحمد الله تعالى حمدا

  أرجو أن تنال  مبه من إتما
 رضاه .  هذه الدراسة التر

 ثم أتوجه بجزيل الشكر وعظيم الأمتنان إلى : 

 الدكتور الفاضل : يوسف محمد امحمد الأصيبع  

اف على هذه الدراسة بعد   عمره لتفضله الكريم بالأشر
 حفظه الله وأطال ف 

 وفاة الدكتور البهلول عمر شلاب   رحمه الله وتكرمه بنصح  وتوجيه  حتر 

  إتمام هذه الدراسة. 

  ة أتقدم بالشكر للدكتورة ناديكما 
  العرض القريقت 

 لمساعدتها لى  ف 

 جميع أعضاء هيئة التدريس بقسم الأحصاء لما قدموه من دعم معنويو الأول  

  الله واياكم
 ووفقت 

 

 
 

 الباحثة
 نجلاء نوري الكشيك 
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Chapter 1 

 

1.0 Introduction 

 
The coefficient of variation (CV) for numerical measurements, also known as 

relative standard deviation (RSD), is defined as the ratio of the standard deviation (SD) 

to the mean (𝜇 ) of these measurements. The CV gives the standard deviation as 

proportion of the mean, and it is sometimes an informative quantity. For example, a 

value 𝑆𝐷 = 10 has little meaning unless we can compare it to something else. If 𝑆𝐷 is 

observed to be 10 and 𝜇 is observed to be 1000, then the amount of variation is small 

relative to the mean. However, if 𝑆𝐷 is observed to be 10 and 𝜇 is 5, then the variation 

is quite large relative to the mean. If we were studying the precision (variation in spread 

measurements) of a measuring instrument, the first case (𝐶𝑉 = 0.01) might give quite 

acceptable precision but the second case (𝐶𝑉 = 2 ) would be quite unacceptable 

(Wackerly, et al. 2008). 

The CV is a unit-free measure of relative spread found to be very useful in 

descriptive studies (Panichchkikosolkul, 2009), also it is useful in finance and actuarial 

science by using it to measure the relative risks (Miller and Karson, 1977). The CV can 

be used to make comparisons across several populations that have different units of 

measurement, such as, for example, the variability of the weights of newborns, 

measured in grams, with the height of adults, measured in centimeters. The CV is not 

defined for a mean equal to zero, and it is unreliable for small means relative to the 

standard deviation. Even if the mean of the measurements is not zero, but the 

measurements contain both positive and negative values and the mean is close to zero, 

then the CV can be misleading. 

It is very well known that the standard deviation represents noise and other 

interference and in some cases the standard deviation is not important in itself, but only 

in comparison to the mean. This gives rise to the term: Signal-to-Noise Ratio (SNR), 

which is equal to the converse of the coefficient of variation (i.e., SNR=1/CV).  

It is commonly used in image processing (for examples, Tania, 2008; Jitendra, 2009; 

John, 2007), where the SNR of an image is usually calculated as the ratio of the 

mean pixel value to the standard deviation of the pixel values over a given 

neighborhood (F. George and B.M. G. Kibria, 2012). SNR measures how much signal 

has been corrupted by noise (McGibney and Smith, 1993). 
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In real life examples like image processing, Signal-to-Noise Ratio (SNR) describes 

the quality of a measurement. It is the ratio of the measured signal to the overall 

measured noise at that pixel. High SNR is particularly important in applications 

requiring precise light measurement. The detected photons in a CCD ( Charged 

Coupled Device ) camera or a photomultiplier tube follow a Poisson distribution, 

which is responsible for the Photon Noise and determines the Signal to Noise Ratio 

of the acquired image (Lee, 2009; Willkinson and Schut, 1998). Since the SNR of 

Poisson distribution has special interest in imaging, we will be discussing different 

methods of confidence interval for SNR of Poisson distribution. 

To test the significance of the SNR, a hypothesis test can be conducted and a 

confidence interval can be generated to reject or not reject the null hypothesis. 

Confidence intervals associated with point estimates provide more specific 

knowledge about the population characteristics than the p-values in the test of 

hypothesis (Visintainer and Tejani, 1998). The precision of a confidence interval can 

be determined through the width and coverage probability of the interval. Given 

constant coverage, as the width of the (1 − 𝛼) 100% confidence interval decreases, the 

accuracy of the   estimate increase (Kelley, 2007). The coverage level is the probability 

that the estimated interval will capture the true CV or SNR value (Banik and Kibria, 

2010). 

There are various methods available for estimating the confidence interval for a 

population CV or SNR, such as, parametric, nonparametric, modified and 

bootstrapping (Banik and Kibria, 2010). The bootstrap approach is a non-parametric 

and computer-intensive tool used for estimating and making inferences about the 

parameters that was introduced by Efron (1979). It will be especially useful because, 

unlike other methods, this technique does not require any assumptions to be made about 

the underlying   population of interest (Banik and Kibria, 2010). Therefore, bootstrapping 

technique can be applied for estimating or hypothesis testing to all situations. This 

method is   implemented by simulating an original data set then randomly selecting 

data several times with replacement to   estimate the parameter of a distribution. For 

more information on the confidence interval for the CV, we refer Miller (1991); Sharma 

and Krishna (1994); Vangel (1996) Banik and Kibria (2011) and recently F. George and 

B.M. G. Kibria (2012) among others. 

The literature on the confidence intervals for the CV or SNR of a Poisson 

distribution is very limited. The objective of this thesis is to propose some confidence 
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interval estimators for SNR and find some good estimators for   the practitioners. Six 

confidence intervals that already exist in literature for CV and they are considered for 

SNR by using the inverse relationship between CV and SNR. Since a theoretical 

comparison is not possible, a simulation study   has been conducted to compare the 

performance of the interval estimators. Finally, based on the simulation results, 

the intervals with high coverage probability and smaller width were recommended for 

practitioners. 

 

1.1 Basic Notation 

Let 𝑋1, 𝑋2, ⋯ , 𝑋𝑛  be an independently and identically distributed (iid) random 

sample of size 𝑛 from a distribution with finite mean 𝜇 and standard deviation 𝜎 so that 

𝐶𝑉 = 𝜎 𝜇⁄  is the population coefficient of variation. When the parameters 𝜇 and 𝜎 or 

the underlying distribution are unknowns, the parameters 𝜇 and 𝜎 are estimated from 

the observed data. The estimated 𝛾 is then defined as 𝐶𝑉̂ = 𝜎̂ 𝜇̂⁄  where 𝜇̂ and 𝜎̂ are the 

estimated values of 𝜇 and 𝜎 respectively. 

 

1.2 Literature Review 

The researchers often calculate 𝐶𝑉̂ using sample values but they rarely do construct 

two-sided confidence intervals for 𝐶𝑉 (Mahmoud and Hassani, 2009). 

Confidence interval estimation allows the researcher to have an idea about the precision 

of the point estimate rather than only a p-value for rejection or no rejection of a specified 

null hypothesis (Albatineh, et al., 2017). To do interval estimation on 𝐶𝑉, one needs to 

make assumption about the shape of the population distribution. One also needs to 

know the distribution of  𝐶𝑉̂ . The exact distribution of the sample coefficient of 

variation from a normally distributed population is not easy and obtaining a two-sided 

confidence interval for 𝐶𝑉 in this case would require using the non-central t distribution 

and sequential techniques (Koopmans, et al., 1964). However, many researchers have 

already done good job for the inference of 𝐶𝑉. 

When the underlying population is normally distributed, several two-sided 

confidence intervals for 𝐶𝑉 are constructed and modified by many authors since 1932. 

For more information on the two-sided confidence intervals for 𝐶𝑉, we refer to McKay 

(1932), Fieller (1932), Pearson (1932), Hendricks and Robey (1936), Koopmans, et al. 
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(1964), Umphrey (1983), Gregoire (1984), Bhoj and Ahsanullah (1993), Reid (1996), 

Vangel (1996), Tian, (2006), Rahim, et al. (2007), Panichchkikosolkul (2009), Banik 

and Kibria (2011), and recently Panichchkikosolkul (2017). 

Sharma and Krishna (1994) developed two-sided confidence interval for the 

reciprocal of 𝐶𝑉 without making an assumption about the population distribution. The 

reciprocal of 𝐶𝑉  is called the population Signal-to-Noise Ratio (SNR), i.e., 𝑆𝑁𝑅 =

𝜇 𝜎⁄ = 𝐶𝑉−1. In digital communications the SNR is a measure of the signal strength 

relative to background noise, while in quality control, the SNR represents the magnitude 

of the mean of a process compared to its variation. The SNR measures how much signal 

has been corrupted by noise, see McGibney and Smith (1993) for a discussion. Several 

two-sided confidence intervals that already exist in literature for SNR and they can be 

considered for 𝐶𝑉 by using the inverse relationship between SNR and𝛾, for example, 

see Sharma and Krishna (1994), Banik and Kibria (2010), George and Kibria (2012) 

and Albatineh, et al. (2014). 

Panichkitkosolkul (2010) proposed four new two-sided confidence intervals for the 

coefficient of variation of the Poisson distribution based on obtaining two-sided 

confidence intervals for the Poisson mean. 

 

1.3 Contribution of the Thesis 

 
1. The thesis provides a comprehensive review of methods for setting confidence 

intervals for the Poisson coefficient of variation. 

2. This thesis proposes three new confidence intervals for the coefficient of variation 

of a Poisson distribution based on obtaining confidence interval methods for the 

SNR of a Poisson distribution that reviewed by George and Kibria (2011).  
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Chapter 2 

 

 

2.0 Statistical Methodology 

 

 

2.1 Introduction 

 
Let 𝑋1, 𝑋2, ⋯ , 𝑋𝑛 

be an independently and identically distributed random sample of 

size 𝑛  from a Poisson distribution with mean 𝜆 . Then the population coefficient 

variation for Poisson distribution is 𝐶𝑉 = 1 √𝜆⁄ . In this chapter, a (1 − 𝛼)100% 

confidence intervals methods for 𝐶𝑉 will be reviewed, four existing methods and three 

proposed new methods. Following 7 methods will be considered. 

 

2.2 Existing Methods 

 
Wararit Panichkitkosolkul proposed four new confidence intervals for the 

coefficient of variation of Poisson distribution based on obtaining confidence intervals 

for the Poisson mean (Panichchkikosolkul, 2010). The four confidence intervals for the 

coefficient of variation of a Poisson distribution based on Wald (W), Wald with 

continuity correction (Wcc), Scores (S) and Variance stabilizing (VS) confidence 

interval are as follows: 

 

𝐶𝐼𝑊 = [(√𝑋̄ − 𝑧1−𝛼
2⁄
√

𝑋̄

𝑛
)

−1

, (√𝑋̄ + 𝑧1−𝛼
2⁄
√

𝑋̄

𝑛
)

−1

], 

 

𝐶𝐼𝑊𝑐𝑐 = [(√𝑋̄ − 𝑧1−𝛼
2⁄
√

𝑋̄+0.5

𝑛
)

−1

, (√𝑋̄ + 𝑧1−𝛼
2⁄
√

𝑋̄+0.5

𝑛
)

−1

], 

 

𝐶𝐼𝑆 =

[
 
 
 
 
 

(

  
 √

𝑋̄ +
(𝑧1−𝛼

2⁄
)
2

2𝑛
+ 𝑧1−𝛼

2⁄

√4𝑋̄+
(𝑧1−𝛼

2⁄
)
2

𝑛

4𝑛

)

  
 

−1

,

(

  
 √

𝑋̄ +
(𝑧1−𝛼

2⁄
)
2

2𝑛
− 𝑧1−𝛼

2⁄

√4𝑋̄+
(𝑧1−𝛼

2⁄
)
2

𝑛

4𝑛

)

  
 

−1

]
 
 
 
 
 

, 
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𝐶𝐼𝑉𝑆 = [(√𝑋̄ +
(𝑧1−𝛼

2⁄
)
2

4𝑛
+ 𝑧1−𝛼

2⁄
√

𝑋̄

𝑛
)

−1

, (√𝑋̄ +
(𝑧1−𝛼

2⁄
)
2

4𝑛
− 𝑧1−𝛼

2⁄
√

𝑋̄

𝑛
)

−1

]. 

The simulation results showed that the (WCC) based trust period is more 

appropriate than the other three confidence intervals in terms of coverage probability 

and hence this method will be adopted along with other three proposed methods to form 

the four methods considered in the application part of this thesis. 

 

2.3 Proposed Methods 

 

The proposed new confidence intervals methods which are  based on three 

confidence interval methods for the SNR of a Poisson distribution that reviewed by 

George and Kibria (2011) are as follows: 

𝐶𝐼𝑊𝑎𝑙𝑑𝐵 = [(√𝑋̄ − 𝑍𝛼
2⁄
√

𝑋̄𝐵

𝑛
)

−1

, (√𝑋̄ + 𝑍𝛼
2⁄
√

𝑋̄𝐵

𝑛
)

−1

], 

𝐶𝐼𝑊𝑎𝑙𝑑𝑧 = [(√𝑋̄ − 𝑇𝛼
2⁄

∗ √
𝑋̄

𝑛
)

−1

, (√𝑋̄ + 𝑇1−𝛼
2⁄

∗ √
𝑋̄

𝑛
)

−1

], 

𝐶𝐼𝑊𝑐𝑐𝑧 = [(√𝑋̄ − 𝑇𝛼 2⁄
∗ √

𝑋̄𝐵+0.5

𝑛
)

−1

, (√𝑋̄ + 𝑇1−𝛼 2⁄
∗ √

𝑋̄𝐵+0.5

𝑛
)

−1

], 

where 𝑋̄ =
1

𝑛
∑ 𝑋𝑖

𝑛
𝑖=1 , 𝑇𝛼

2⁄
∗  and 𝑇1−𝛼

2⁄
∗  are the (𝛼 2⁄ )𝑡ℎ and (1 − 𝛼 2⁄ )𝑡ℎ sample 

quintiles of 𝑇𝑖
∗ =

𝑋̄𝑖−𝑋̄𝐵

𝜎̂𝐵
, where𝑋̄𝑖

∗ is the ith bootstrap sample mean, 𝜎̂𝐵 =

√
1

𝐵−1
∑ (𝑋̄𝑖

∗ − 𝑋̅𝐵)2𝐵
𝑖=1 , 𝑋̄𝐵 =

1

𝐵
∑ 𝑋̄𝑖

∗𝐵
𝑖=1  and 𝐵 is the number of bootstrap samples. The 

number of bootstrap samples is typically between 1000 and 2000. 
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Chapter3 
 

 

3.0 Demonstration of Simulated Data 

 

3.1 Introduction 

Our attention is now turned to the application part of the thesis by applying the 

above  mentioned confidence intervals for estimating the Poisson population coefficient of 

variation to different simulated data sets each with different sample sizes and different 

Poisson population parameter. This study considered several confidence intervals for 

estimating the Poisson population coefficient of variation. A simulation study will be 

conducted to compare the performance of the four adopted confidence interval methods. 

The generated data are from a Poisson distribution with a varying valus of the parameter 𝜆 

i.e., with a varying valus of the Poisson population coefficient of variation 𝐶𝑉 = 1 √𝜆⁄ = 

0.05, 0.1, 0.15, …,0.45, and 0.50 using Matlab software. The coverage probability and 

interval length for each confidence interval method will be calculated and reported. 

Often, it is necessary to investigate the properties of a statistical    procedure using 

simulation techniques. However, since a theoretical comparisons between confidence 

interval methods for the Poisson coefficient of variation is not possible, bootstrapping 

technique can be applied by simulating an original data set then randomly selecting data 

several times with replacement to   estimate the unknown parameters. The simulation study 

will be conducted to compare the performance of only four considered confidence interval 

methods which are obtained under the same simulation conditions. The four two-sided 

confidence interval methods are: (1) Wald with Continuity Correction (WCC), (2) Wald 

Bootstrap method (WaldB), (3) (WaldZ), and (4) Wald with Continuity Correction Bootstrap 

method (WccZ). 

 

3.2 Simulation Steps and Criteria 

 
A “good” confidence interval should have coverage close to the nominal confidence level 

and short length. The performance of the estimated coverage probabilities of the confidence 

intervals (1) to (4) and their estimated expected lengths will be examined by Bootstrap 

simulation.  

To study the performance of the adopted four confidence interval methods, the coverage 

probability (CP) and the length (L) are to be considered. For each one of the considered four 

methods, a (1 − 𝛼)100%confidence interval denoted by (L,U) which based on M replicates, 
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the estimated coverage probability (ECP) and the expected length (EL) are to be obtained, 

where, 

𝐸𝐶𝑃 = (1 − 𝛼)̂ = #(𝐿 ≤ 𝛾 ≤ 𝑈) 𝑀⁄  

 

𝐸𝐿 = ∑(𝑈𝑖 − 𝐿𝑖)

𝑀

𝑖=1

𝑀⁄ . 

 

3.2.1 The Estimated Lengths (EL) of The Confidence Intervals 

 
To enable comparisons, data will be generated from Poisson distribution with 𝜆 = 400, 

100, 44.44, 25, 16, 11.11, 8.16, 6.25, 4.93, 4 and sample sizes; n = 10, 15, 25, 50, 75, 100. The 

corresponding coefficient of variations are CV= 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 

0.45, 0.50.  The estimated 95 % two-sided confidence intervals of each coefficient of variation 

are then calculated along with their corresponding lengths. The estimated lengths (EL) are 

given in Tables 3.1 to 3.3 whereas their corresponding plots are given in Figs 3.1 to 3.3. All 

simulations are performed using programs written in the Matlab software, repeated 100,000 

times in each case at confidence level 0.95. All calculations for this simulation study are based 

on Monte-Carlo Simulation and then double precision computations are adopted (i.e., 16 digit 

accuracy). 

Table 3.1 below gives the estimated lengths (EL) of the confidence intervals for 𝜆 = 400 

and confidence coefficient 0.95 of the four considered methods for sample sizes varying from 

10 to 100. 

 

Table 3.1 The Estimated Lengths (EL) for CV= 0.05 and Confidence Coefficient 0.95. 

 
𝐶𝑉 = 0.05 

n WaldB WCC WaldZ WccZ 

10 0.00130000 0.00130000 0.00130000 0.00130000 

15 0.00126650 0.00126580 0.00126260 0.00126330 

25 0.00098095 0.00098034 0.00097919 0.00097996 

50 0.00069351 0.00069308 0.00069284 0.00069320 

75 0.00056623 0.00056588 0.00056569 0.00056606 

100 0.00049034 0.00049003 0.00048994 0.00049023 

 

As can be seen from Table 3.1, the estimated lengths of all confidence intervals of the four 

considered methods are very close to each other for each sample size and it is really difficult 

to distinguish between them, with a very slight preferable of the confidence interval that 

based on WaldZ, especially for large sample sizes (25 or more). This interpretation can also 

be seen clearly from Fig 3.1.Furthermore, it is very nature to notice that the expected lengths 

are decreased dramatically with the increase of sample sizes. 
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Fig 3.1 The Estimated Lengths (EL);  (𝜆 = 400).  
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This behavior of the estimated lengths (EL) of the confidence intervals, when plotted against 

the sample sizes, will remain almost the same for 𝜆 = 100, 44.44, 25, 16 with confidence 

coefficient 0.95 of the four considered methods for sample sizes varying from 10 to 100. 

These simulated results are summarized in Table 3.2 below. 

The estimated lengths are very tide to each other and really hard to distinguish between them, 

with a slight preferable of the confidence interval that  based on WaldZ, especially for large 

sample sizes. 

 
Table 3.2 The Estimated Lengths (EL) for CV = 0.10, 0.15, 0.20, 0.25 and 1 − 𝛼 = 0.95. 

 
𝐶𝑉 = 0.10 

n WaldB WCC WaldZ WccZ 

10 0.0051000 0.0051000 0.0051000 0.0051000 

15 0.0050851 0.0050723 0.0050583 0.0050712 

25 0.0039349 0.0039251 0.0039198 0.0039302 

50 0.0027807 0.0027738 0.0027721 0.0027792 

75 0.0022700 0.0022643 0.0022635 0.0022690 

100 0.0019655 0.0019606 0.0019601 0.0019648 

𝐶𝑉 = 0.15 

n WaldB WCC WaldZ WccZ 

10 0.0115000 0.0114000 0.0114000 0.0115000 

15 0.0115100 0.0114450 0.0114090 0.0114720 

25 0.0088960 0.0088461 0.0088318 0.0088820 

50 0.0062816 0.0062465 0.0062419 0.0062772 

75 0.0051262 0.0050976 0.0050951 0.0051236 

100 0.0044383 0.0044135 0.0044118 0.0044364 

𝐶𝑉 = 0.20 

n WaldB WCC WaldZ WccZ 

10 0.0206000 0.0204000 0.0204000 0.0206000 

15 0.0206380 0.0204310 0.0203520 0.0205570 

25 0.0159270 0.0157680 0.0157360 0.0158960 

50 0.0112280 0.0111170 0.0111060 0.0112170 

75 0.0091613 0.0090707 0.0090649 0.0091560 

100 0.0079291 0.0078508 0.0078461 0.0079249 

𝐶𝑉 = 0.25 

n WaldB WCC WaldZ WccZ 

10 0.032600 0.032100 0.031900 0.032400 

15 0.032599 0.032087 0.031935 0.032440 

25 0.025104 0.024714 0.024647 0.025038 

50 0.017672 0.017400 0.017378 0.017650 

75 0.014406 0.014184 0.014171 0.014392 

100 0.012468 0.012277 0.012269 0.012458 

 

The corresponding Fig 3.2 will also enhancing this interpretations, i.e., as the Poisson 

parameter 𝜆 varying from 16 to 400 the expected lengths are very tidy to each other for all 

the four methods. Furthermore, these expected lengths are seen to be decreased dramatically 

with the increase of sample sizes for 𝜆 = 400, 100, 44.44, 25, 16.  
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Fig 3.2 The Estimated Lengths (EL);  (𝜆 = 100, 44.44, 25, 16). 

 
Table 3.3 below gives the simulated results of the estimated lengths (EL) of the confidence 

intervals, with varying sample sizes from 10 to 100, for 𝜆 = 11.11, 8.16, 6.25, 4.93, 4  with 
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confidence coefficient 0.95 of all considered methods. Again the estimated lengths are much 

closed to each other with a superiority of the confidence intervals based on WaldZ and WaldB 

methods, especially for sample sizes as large as 25 or more. 

 
Table 3.3 The Estimated Lengths (EL) for CV = 0.30, 0.35, 0.40, 0.45, 0.50 and1 − 𝛼 = 0.95. 

𝐶𝑉 = 0.30 

n WaldB WCC WaldZ WccZ 

10 0.047600 0.046500 0.046200 0.047300 

15 0.047572 0.046492 0.046224 0.047293 

25 0.036527 0.035712 0.035593 0.036404 

50 0.025673 0.025107 0.025063 0.025629 

75 0.020913 0.020454 0.020431 0.020888 

100 0.018090 0.017694 0.017678 0.018074 

𝐶𝑉 = 0.35 

n WaldB WCC WaldZ WccZ 

10 0.065900 0.063800 0.063400 0.065400 

15 0.065850 0.063807 0.063363 0.065379 

25 0.050370 0.048844 0.048635 0.050155 

50 0.035292 0.034241 0.034169 0.035215 

75 0.028725 0.027875 0.027834 0.028684 

100 0.024845 0.024111 0.024084 0.024814 

𝐶𝑉 = 0.40 

n WaldB WCC WaldZ WccZ 

10 0.087600 0.084000 0.083300 0.086800 

15 0.087583 0.084020 0.083300 0.086815 

25 0.066737 0.064104 0.063776 0.066376 

50 0.046643 0.044843 0.044722 0.046515 

75 0.037931 0.036478 0.036412 0.037861 

100 0.032780 0.031529 0.031484 0.032732 

𝐶𝑉 = 0.45 

n WaldB WCC WaldZ WccZ 

10 0.113500 0.107600 0.106500 0.112300 

15 0.113480 0.107590 0.106490 0.112270 

25 0.085965 0.081680 0.081171 0.085398 

50 0.059802 0.056907 0.056721 0.059596 

75 0.048592   0.046261 0.046161 0.048479 

100 0.041971 0.039968 0.039898 0.041894 

𝐶𝑉 = 0.50 

n WaldB WCC WaldZ WccZ 

10 0.143600 0.134300 0.132700 0.141700 

15 0.143580 0.134310 0.132650 0.141710 

25 0.108120 0.101490 0.100690 0.107240 

50 0.074939 0.070503 0.070224 0.074630 

75 0.060777 0.057221 0.057060 0.060608 

100 0.052472 0.049420 0.049316 0.052359 

 

The corresponding Fig 3.3 clearly support our interpretations, i.e., as the Poisson parameter 

varying from 4 to 11.11 the expected lengths are very tidy to each other except for the methods 

of WaldZ and WaldB which show a slight superiority over the other two methods, especially 

for sample sizes as large as 25 or more. Again, these expected lengths are seen to be decreased 

dramatically with the increase of the sample size for all the given Poisson parameter values.  
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Fig 3.3 Estimated Lengths (EL) ;  (𝜆 = 11.11, 8.16, 6.25, 4.93, 4).  
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3.2.2 The Estimated Coverage Probability (ECP) For Different Values of n 

 
We now turn our attention to the estimated coverage probability (ECP) for different values 

of the Poisson parameter and varying sample sizes. This simulated study has been conducted 

to know the effect of the parameter value to the estimated coverage probability (ECP), of the 

estimated 95 % two-sided confidence intervals of the Poisson coefficient of variation, for 

varying sample sizes. Table 3.4 below gives the simulated values of the coverage probability 

(ECP) for the Poisson parameter 𝜆 = 400  (or, CV= 0.05) With varying sample sizes from 10 

to 100 of the four considered methods. 

 
Table 3.4 The Estimated Coverage Prob. (ECP) for CV= 0.05 and Confidence Coefficient 0.95. 

 
𝐶𝑉 = 0.05 

n WaldB WCC WaldZ WccZ 

10 0.9506 0.9499 0.9494 0.9491 

15 0.9506 0.94987 0.94944 0.94906 

25 0.94957 0.94906 0.94808 0.94839 

50 0.95044 0.95044 0.9498 0.94994 

75 0.94992 0.94992 0.94939 0.94977 

100 0.94923 0.94901 0.94864 0.94899 

 
The corresponding Fig 3.4 below shows that the method of WaldB provide us with the best 

estimated coverage probability followed by the estimated method of WCC. These two methods 

show their superiority over the other two methods for all sample sizes. 

 

 
 

Fig 3.4 The Estimated Coverage Prob. (ECP);  (𝜆 = 400).  
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Table 3.5 below gives the simulated values of the coverage probability (ECP) for the 

Poisson parameters 𝜆 = 100 , 44.44 (or, CV=0.10, 0.15) With varying sample sizes from 10 

to 100 of the four considered methods. The obtained estimated values for the coverage 

probability are very similar and really difficult to distinguish between them, the corresponding 

figure is then more important to visually judge the performance of these estimation methods. 

 

Table 3.5 The Estimated Coverage Prob. (ECP) for CV= 0.10, 0.15 and Confidence Coeff. 0.95. 

 
𝐶𝑉 = 0.10 

n WaldB WCC WaldZ WccZ 

10 0.9524 0.9506 0.9493 0.9499 

15 0.95237 0.95056 0.94931 0.94987 

25 0.94939 0.94835 0.94795 0.94852 

50 0.95196 0.95111 0.9507 0.95162 

75 0.95212 0.95078 0.95072 0.95138 

100 0.95067 0.95015 0.95005 0.95062 

𝐶𝑉 = 0.15 

n WaldB WCC WaldZ WccZ 

10 0.9497 0.9496 0.9469 0.9481 

15 0.94966 0.94965 0.94691 0.94814 

25 0.95034 0.95034 0.94907 0.95041 

50 0.95206 0.95085 0.95032 0.95144 

75 0.95164 0.94951 0.95008 0.95073 

100 0.9514 0.95051 0.94977 0.95119 

 
The corresponding Fig 3.5 below shows again that the method of WaldB provide us with the 

best estimated coverage probability followed by the estimated method of WccZ except for 

sample sizes 10 and 15 where WCC is doing better than the method WccZ. The WaldB method 

is again show its superiority over the other three methods for all sample sizes. The WaldZ 

method is the worst method for estimating the coverage probability of the Poisson parameters 

𝜆 = 400, 100 , 44.44 (or, CV = 0.05, 0.10, 0.15) With varying sample sizes from 10 to 100 of 

the four considered methods. 
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Fig 3.5 The Estimated Coverage Prob. (ECP) ;  (𝜆 = 100, 44.4).  
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Table 3.6 below presents the simulated values of the coverage probability (ECP) for the 

Poisson parameters 𝜆 = 25, 16, 11.11, 8.16 (or, CV=0.20, 0.25, 0.30, 0.35) With varying 

sample sizes from 10 to 100 of the four considered methods. At all considered cases, the 

estimated values obtained by the methods of WaldB and WccZ are close to each other and seem 

to be, in general, better than the estimated values obtained by the other two methods of WCC 

and WaldZ. 

 
Table 3.6 The Estimated Coverage Prob. (ECP) for CV= 0.2, 0.25, 0.3, 0.35 and Confidence 

Coefficient 0.95. 

 
𝐶𝑉 = 0.20 

n WaldB WCC WaldZ WccZ 

10 0.95200 0.94940 0.94800 0.95030 

15 0.95200 0.94936 0.94801 0.95032 

25 0.95101 0.94893 0.94836 0.95033 

50 0.95185 0.95011 0.94913 0.95162 

75 0.95046 0.94818 0.9487 0.9511 

100 0.95127 0.94907 0.94875 0.95122 

𝐶𝑉 = 0.25 

n WaldB WCC WaldZ WccZ 

10 0.95020 0.95020 0.94910 0.95250 

15 0.95024 0.95024 0.94914 0.95250 

25 0.95127 0.95127 0.94933 0.95299 

50 0.95317 0.94902 0.94879 0.95219 

75 0.95337 0.94937 0.94959 0.95302 

100 0.95289 0.95012 0.94948 0.95289 

𝐶𝑉 = 0.30 

n WaldB WCC WaldZ WccZ 

10 0.95480 0.94640 0.94860 0.95300 

15 0.95476 0.94639 0.94855 0.95305 

25 0.95443 0.95178 0.94938 0.95412 

50 0.95323 0.94805 0.94934 0.95410 

75 0.95526 0.94991 0.94988 0.95445 

100 0.95273 0.9495 0.94874 0.95362 

𝐶𝑉 = 0.35 

n WaldB WCC WaldZ WccZ 

10 0.95690 0.95030 0.94780 0.95430 

15 0.95686 0.95026 0.94785 0.95426 

25 0.95274 0.95270 0.94913 0.95543 

50 0.95496 0.94972 0.95026 0.95628 

75 0.95672 0.95012 0.94980 0.95683 

100 0.95505 0.94867 0.94862 0.95548 

 

For more precise comparisons, we again relay on the figures of the estimated coverage 

probability when plotted against the sample size for different values of the Poisson parameter 

𝜆. Fig 3.6 below shows again that the performance of the methods of WaldB and WccZ are the 

best in estimating the coverage probability compared to the other two methods of WCC and 

WaldZ which showed again that they are under estimating the coverage probability and that 

for all Poisson parameters 𝜆 = 25, 16, 11.11, 8.16 and all sample sizes n = 10, 15, 25, 50, 75, 

100. 
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Fig 3.6 The Estimated Coverage Prob. (ECP) ;  (𝜆 = 25, 16, 11.11, 8.16).  
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The simulated values of the coverage probability (ECP) for the Poisson parameters 𝜆 =

6.25, 4.93, 4 (or, CV=0.40, 0.45, 0.50) With varying sample sizes from 10 to 100 of the four 

considered methods are presented respectively in Table 3.7 below. At all considered cases, the 

estimated values obtained by the methods of WaldB and WccZ are close to each other and seem 

to be, in general, better than the estimated values obtained by the methods of WCC and WaldZ. 

 

Table 3.7 The Estimated Coverage Prob. (ECP) for CV= 0.40, 0.45, 0.50 and Confidence Coefficient 

0.95. 

 
𝐶𝑉 = 0.40 

n WaldB WCC WaldZ WccZ 

10 0.96130 0.94960 0.94930 0.95830 

15 0.96127 0.94961 0.94926 0.95827 

25 0.95780 0.94891 0.94848 0.95729 

50 0.95743 0.95179 0.94939 0.95812 

75 0.95896 0.95081 0.95091 0.95899 

100 0.95881 0.95050 0.95024 0.95825 

𝐶𝑉 = 0.45 

n WaldB WCC WaldZ WccZ 

10 0.95320 0.94110 0.94500 0.95640 

15 0.95316 0.94112 0.94504 0.95642 

25 0.95867 0.94879 0.94778 0.95831 

50 0.96039 0.95014 0.94905 0.95981 

75 0.95872 0.94981 0.94895 0.95934 

100 0.95752 0.94776 0.94813 0.95849 

𝐶𝑉 = 0.50 

n WaldB WCC WaldZ WccZ 

10 0.96200 0.94780 0.94490 0.95830 

15 0.96202 0.94776 0.94495 0.95825 

25 0.95619 0.94427 0.9469 0.96015 

50 0.96104 0.94634 0.94872 0.96113 

75 0.96163 0.94921 0.9486 0.96134 

100 0.96047 0.95051 0.94881 0.96114 

 

For more precise comparisons, we again relay on the figures of the estimated coverage 

probability when plotted against the sample size for different values of the Poisson parameter 

𝜆. Fig 3.7 below shows again that the performance of the methods of WaldB and WccZ are the 

best in estimating the coverage probability compared to the other two methods of WCC and 

WaldZ which showed again that they are under estimating the coverage probability and that 

for all Poisson parameters 𝜆 = 6.25, 4.93, 4 and all sample sizes n = 10, 15, 25, 50, 75, 100.  
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Fig 3.7 The Estimated Coverage Prob. (ECP) ;  (𝜆 = 6.25, 4.93, 4).  
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3.2.3 The Estimated Coverage Probability for Different Values of 𝜆.  
 

For more understanding to the behavior of the estimated coverage probability (ECP), we 

may need to look at it from different angle. This can be done by Sketching the estimated 

coverage probability, for a fixed sample size, against the Poisson parameter values 𝜆 = 400, 

100, 44.44, 25, 16, 11.11, 8.16, 6.25, 4.93, 4 instead of sketching it against the varying sample 

size values n = 10, 15, 25, 50, 75, 100 (see subsection 3.2.2 above) seem to provide us with 

more insight to its behavior. For this we now turn our attention to the estimated coverage 

probability (ECP) for different values of the Poisson parameter with a specific value of the 

sample size each time. This simulated study has been conducted to see the effect of the 

parameter values to the estimated coverage probability (ECP) for a fixed sample size. 

 
Table 3.8 below presents the simulated values of the coverage probability (ECP) for 

different Poisson parameter values and that for each fixed sample size (n = 10, 15, 25, 50, 75, 

100) of the four considered methods. Although it is difficult to study the effect of the Poisson 

parameter values to the estimating coverage probability for each sample size by just looking 

to the figures of Table 3.8 below. This is due to the closeness of these estimating coverage 

probability values for all the considered methods. But for large Poisson parameter values (𝜆 = 

400, 100, 44.44, 25) one can recognize that the four methods are doing similar job when 

estimating the coverage probability for each sample size. As the Poisson parameter values get 

smaller (𝜆 = 16, 11.11, 8.16, 6.25, 4.93, 4), both WaldB and WccZ methods seem to do much 

better, in estimating the coverage probability values, compared with the other two methods of 

WaldZ and WCC which are under estimating the coverage probability for all sample sizes. 

 
For more precise comparisons, we cannot only rely on the figures of Table 3.8, but it is 

more important to have a visual inspection to the sketched figures of the estimated coverage 

probability against the Poisson parameter values 𝜆, for a given fixed sample size. 

The corresponding Fig 3.8 (a) and (b) below shows clearly, and as we said earlier, that the 

performance of the four methods, in estimating the coverage probability values, for large 

Poisson parameter values (𝜆 = 400, 100, 44.44, 25) is very similar with a little favored job of 

the WaldB and WccZ methods. As the Poisson parameter values get smaller (𝜆 = 16, 11.11, 

8.16, 6.25, 4.93, 4), both WaldB and WccZ methods are very clearly doing a much better 

estimating job, compared with the other two methods of WaldZ and WCC which are clearly 

under estimating the coverage probability for all given sample sizes.  
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Table 3.8 The Estimated Coverage Prob. (ECP) against the Coefficient of Variation (CV). 

 

Estimated Coverage Probability (ECP) for Confidence Coefficient 0.95. 

Method 

 

(a) Coefficient of Variation (𝐶𝑉) for n=10  
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

WaldB 0.95060 0.95240 0.94970 0.9520 0.95020 0.95480 0.95690 0.96130 0.95320 0.9620 

WCC 00.9499  0.95060 0.94960 0.94940 0.95020 0.94640 0.95030 0.94960 0.94110 0.94780 

WaldZ 00.9494  0.94930 0.94690 00.948  0.94910 0.94860 0.94780 0.94930 0.94500 0.94490 

WccZ 0.94910 0.94990 0.94810 0.95030 0.95250 000.953  0.95430 0.95830 0.95640 0.95830 

Method 

 

(b) Coefficient of Variation 𝐶𝑉) for n=15  

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

WaldB 0.95060 0.95237 0.94966 0.9520 0.95024 0.95476 0.95686 0.96127 0.95316 0.96202 

WCC 0.94987 0.95056 0.94965 0.94936 0.95024 0.94639 0.95026 0.94961 0.94112 0.94776 

WaldZ 0.94944 0.94931 0.94691 0.94801 0.94914 0.94855 0.94785 0.94926 0.94504 0.94495 

WccZ 0.94906 0.94987 0.94814 0.95032 0.9525 0.95305 0.95426 0.95827 0.95642 0.95825 

Method 

 

(c) Coefficient of Variation (𝐶𝑉) for n=25  
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

WaldB 0.94957 0.94939 0.95034 0.95101 0.95127 0.95443 0.95274 0.9578 0.95867 0.95619 

WCC 0.94906 0.94835 0.95034 0.94893 0.95127 0.95178 0.95270 0.94891 0.94879 0.94427 

WaldZ 0.94808 0.94795 0.94907 0.94836 0.94933 0.94938 0.94913 0.94848 0.94778 0.94690 

WccZ 0.94839 0.94852 0.95041 0.95033 0.95299 0.95412 0.95543 0.95729 0.95831 0.96015 

Method 

 

(d) Coefficient of Variation (𝐶𝑉) for n=50  

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

WaldB 0.95044 0.95196 0.95206 0.95185 0.95317 0.95323 0.95496 0.95743 0.96039 0.96104 

WCC 0.95044 0.95111 0.95085 0.95011 0.94902 0.94805 0.94972 0.95179 0.95014 0.94634 

WaldZ 0.9498 0.95070 0.95032 0.94913 0.94879 0.94934 0.95026 0.94939 0.94905 0.94872 

WccZ 0.94994 0.95162 0.95144 0.95162 0.95219 0.95410 0.95628 0.95812 0.95981 0.96113 

Method 

 

(e) Coefficient of Variation (𝐶𝑉) for n=75  
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

WaldB 0.94992 0.95212 0.95164 0.95046 0.95337 0.95526 0.95672 0.95896 0.95872 0.96163 

WCC 0.94992 0.95078 0.94951 0.94818 0.94937 0.94991 0.95012 0.95081 0.94981 0.94921 

WaldZ 0.94939 0.95072 0.95008 0.94870 0.94959 0.94988 0.94980 0.95091 0.94895 0.94860 

WccZ 0.94977 0.95138 0.95073 0.95110 0.95302 0.95445 0.95683 0.95899 0.95934 0.96134 

Method 

 

(f) Coefficient of Variation (𝐶𝑉) for n=100  

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

WaldB 0.94923 0.95067 0.9514 0.95127 0.95289 0.95273 0.95505 0.95881 0.95752 0.96047 

WCC 0.94901 0.95015 0.95051 0.94907 0.95012 0.94950 0.94867 0.95050 0.94776 0.95051 

WaldZ 0.94864 0.95005 0.94977 0.94875 0.94948 0.94874 0.94862 0.95024 0.94813 0.94881 

WccZ 0.94899 0.95062 0.95119 0.95122 0.95289 0.95362 0.95548 0.95825 0.95849 0.96114 
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Fig 3.8 (a) The Estimated Coverage Prob. Vs. The Coefficient of Variation.  
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Fig 3.8 (b) The Estimated Coverage Prob. Vs.The Coefficient of Variation.  
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3.2.4 The Estimated Lengths (EL) For Different Values of  𝜆.  
 

To be able to understand more the behavior of the estimated lengths (EL) of the two sided 

confidence intervals of the coefficient of variation of the Poisson distribution. This can be done 

by Sketching the estimated lengths (EL), for a fixed given sample size, against the Poisson 

parameter values 𝜆 = 400, 100, 44.44,  25, 16, 11.11, 8.16, 6.25, 4.93, 4 (or, equivalently 

against the coefficient of variation values CV = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 

0.45, 0.50)  instead of sketching it against the varying sample size values n = 10, 15, 25, 50, 

75, 100 (see subsection 3.2.1 above) seem to provide us with more insight to its behavior. For 

this we now turn our attention to the estimated lengths (EL) for different values of the Poisson 

parameter with a specific value of the sample size each time. This simulated study has been 

conducted to see the effect of the parameter values (or, equivalently the effect of the coefficient 

of variation values) on the estimated lengths (EL) of the obtained two sided confidence 

intervals of the coefficient of variation of the Poisson distribution, for a fixed sample size. 

Table 3.9 below presents the estimated values of the estimated lengths (EL) for different 

Poisson parameter values (or, equivalently, for different coefficient of variation values) and 

that for each fixed sample size (n = 10, 15, 25, 50, 75, 100) of the four considered methods. 

Although it is difficult to study the effect of the Poisson parameter values on the estimating 

lengths for each sample size by just staring to the figures of Table 3.9 below.  

But for large Poisson parameter values (𝜆 = 400, 100, 44.44, 25, 16, 11.11, 8.16) one can 

recognize that the four methods are doing very similar job when estimating the lengths for 

each sample size. As the Poisson parameter values get smaller (𝜆 = 6.25, 4.93, 4), both WaldZ 

and WCC methods seem to do much better, in estimating the coverage probability values, 

compared with the other two methods of WaldB and WccZ which gives a wider confidence 

intervals  (with larger lengths) for all sample sizes. 

 

To perform a more precise comparisons, a visual inspection to the sketched figures of the 

estimated lengths against the Poisson parameter values 𝜆 (or, equivalently against the 

coefficient of variation values), for a given fixed sample size. The corresponding Fig 3.9 (a) 

and (b) below shows clearly, that the performance of the four methods, in estimating the 

lengths, for large Poisson parameter values (𝜆 = 8 or more) but as the Poisson parameter values 

get smaller (𝜆 = 6 or less), the methods of WaldZ and WCC are very clearly doing a much 

better estimating job, compared with the other two methods of WaldB and WccZ which are 

clearly gives a wider confidence intervals (with larger lengths) for all considered sample sizes. 
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Table 3.9 The Estimated Lengths (EL) against the Coefficient of Variation (CV). 
 

 

Estimated Length (EL) for Confidence Coefficient 0.95.  

Method 
(a) Coefficient of Variation (𝐶𝑉) for n=10  

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

WaldB 0.00130 0.00510 0.01150 0.02060 0.03260 0.04760 0.06590 0.08760 0.11350 0.14360 

WCC 00.0013  00.0051  0.01140 0.02040 00.0321  0.04650 0.06380 0.0840 0.10760 0.13430 

WaldZ 0.00130 0.00510 0.01140 0.02040 0.03190 0.04620 0.06340 0.08330 0.10650 0.13270 

WccZ 0.00130 0.00510 0.01150 0.02060 0.03240 00.0473  0.06540 0.08680 0.11230 0.14170 

Method 
(b) Coefficient of Variation (𝐶𝑉) for n=15  

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

WaldB 0.00127 0.00509 0.01151 0.02064 0.03260 0.04757 0.06585 0.08758 0.11348 0.14358 

WCC 0.00127 0.00507 0.01144 0.02043 0.03209 0.04649 0.06381 0.08402 0.10759 0.13431 

WaldZ 0.00126 0.00506 0.01141 0.02035 0.03193 0.04622 0.06336 0.08330 0.10649 0.13265 

WccZ 0.00126 0.00507 0.01147 0.02056 0.03244 0.04729 0.06538 0.08682 0.11227 0.14171 

Method 
(c) Coefficient of Variation (𝐶𝑉) for n=25  

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

WaldB 0.00098 0.00393 0.00890 0.01593 0.02510 0.03653 0.05037 0.06674 0.08597 0.10812 

WCC 0.00098 0.00393 0.00885 0.01577 0.02471 0.03571 0.04884 0.06410 0.08168 0.10149 

WaldZ 0.00098 0.00392 0.00883 0.01574 0.02465 0.03559 0.04863 0.06378 0.08117 0.10069 

WccZ 0.00098 0.00393 0.00888 0.0159 0.02504 0.03640 0.05016 0.06638 0.08540 0.10724 

Method 
(d) Coefficient of Variation (𝐶𝑉) for n=50  

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

WaldB 0.00069 0.00278 0.00628 0.01123 0.01767 0.02567 0.03529 0.04664 0.05980 0.07494 

WCC 0.00069 0.00277 0.00625 0.01112 0.01740 0.02511 0.03424 0.04484 0.05691 0.07050 

WaldZ 0.00069 0.00277 0.00624 0.01111 0.01738 0.02506 0.03417 0.04472 0.05672 0.07022 

WccZ 0.00069 0.00278 0.00628 0.01122 0.01765 0.02563 0.03521 0.04652 0.05960 0.07463 

Method 
(e) Coefficient of Variation (𝐶𝑉) for n=75  

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

WaldB 0.00057 0.00227 0.00513 0.00916 0.01441 0.02091 0.02873 0.03793 0.04859 0.06078 

WCC 0.00057 0.00226 0.00510 0.00907 0.01418 0.02045 0.02787 0.03648 0.04626 0.05722 

WaldZ 0.00057 0.00226 0.00510 0.00906 0.01417 0.02043 0.02783 0.03641 0.04616 0.05706 

WccZ 0.00057 0.00227 0.00512 0.00916 0.01439 0.02089 0.02868 0.03786 0.04848 0.06061 

Method 
(f) Coefficient of Variation (𝐶𝑉) for n=100  

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

WaldB 0.00049 0.00197 0.00444 0.00793 0.01247 0.01809 0.02485 0.03278 0.04197 0.05247 

WCC 0.00049 0.00196 0.00441 0.00785 0.01228 0.01769 0.02411 0.03153 0.03997 0.04942 

WaldZ 0.00049 0.00196 0.00441 0.00785 0.01227 0.01768 0.02408 0.03148 0.03990 0.04932 

WccZ 0.00049 0.00196 0.00444 0.00792 0.01246 0.01807 0.02481 0.03273 0.04189 0.05236 
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Fig 3.9 (a) The Estimated Lengths (EL) against the Coefficient of Variation (CV).  
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Fig 3.9 (b) The Estimated Lengths (EL) against the Coefficient of Variation (CV).  
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Chapter 4 
 

 

4.0 Discussion and Conclusions 

 

4.1 Introduction 
The main aim of this final chapter is to summarize all the above results and to judge 

the performance of the above mentioned methods that have been used to estimate the 

confidence interval of the coefficient of variation of a Poisson population of parameter 

λ. This is done, as given in chapter 3 above, by applying the four methods adopted by 

this thesis to different simulated data sets with different sample sizes and different 

Poisson population parameter values. This study considered four different confidence 

interval methods for estimating the Poisson population coefficient of variation (or 

equivalently, the SNR). A simulation study has been conducted to compare the 

performance of four proposed confidence interval methods. The used simulated data 

have been generated from the Poisson distribution with a varying vales of the parameter 

λ, i.e., with a varying valus of the Poisson population coefficient of variation using 

Matlab software. The coverage probability and interval length of each confidence 

interval method will be calculated and reported.  

To investigate the properties of a statistical procedure, a simulation techniques are 

good choice, especially where a theoretical study is not possible. Bootstrapping 

technique has been applied to compare between confidence interval methods for the 

Poisson coefficient of variation. This is done by simulating an original data set then 

randomly selecting data several times with replacement to estimate the unknown 

parameters. The simulation study has been conducted to compare the performance of 

the four considered confidence interval methods under the same simulation conditions. 

The generated data sets are performed using programs written in the Matlab software, 

repeated 100,000 times in each case at confidence level 0.95. All calculations for this 

simulation study are based on Monte-Carlo Simulation and then double precision 

computations are adopted.  
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4.2 The Overall Conclusions 

 

We employ the four two-sided confidence interval methods, the Wald with 

Continuity Correction (WCC) method, the Wald Bootstrap method (WaldB), the (WaldZ) 

method and the Wald with Continuity Correction Bootstrap method (WccZ) to many 

obtained simulated data sets. Throughout this thesis many important points and useful 

results are obtained and the main features that could be drawn are summarized below: 

(1) Estimated Lengths (EL) Against Sample sizes (n) of confidence Intervals of data 

generated from Poisson distribution with parameter values (𝜆 ) varying from 4 to 400 

and sample sizes (n) varying from 10 to 100. The estimated 95 % two-sided confidence 

intervals of each coefficient of variation are then calculated along with their 

corresponding lengths. 

As can be seen from the obtained tables and figures that the estimated lengths of all 

confidence intervals of the four considered methods are very close to each other for each 

sample size and it is really difficult to distinguish between them, with a very slight 

preferable of the confidence interval that based on WaldZ, especially for large sample 

sizes (25 or more) and as the Poisson parameter 𝜆 varying from 16 to 400 the expected 

lengths are very tidy to each other for all the four methods. Furthermore, these expected 

lengths are seen to be decreased dramatically with the increase of sample sizes for 𝜆 =

400, 100, 44.44, 25, 16. But for 𝜆 = 11.11, 8.16, 6.25, 4.93, 4  the estimated lengths 

are again much closed to each other with a superiority to the confidence intervals based 

on WaldZ and WaldB methods, especially for sample sizes as large as 25 or more. 

(2) Estimated Coverage Probability (ECP) Against Sample sizes (n) for different 

values of the Poisson parameter and varying sample sizes. This is to know if there is any 

effect of the parameter value to the estimated coverage probability (ECP), of the estimated 

95 % two-sided confidence intervals of the Poisson coefficient of variation of varying 

sample sizes. 

For the Poisson parameter 𝜆 = 400  (or, CV= 0.05) with varying sample sizes from 10 to 

100 of the four considered methods, it has be shown that the method of WaldB provide us 

with the best estimated coverage probability followed by the estimated method of WCC. 

These two methods show their superiority over the other two methods for all sample sizes. 

For 𝜆 = 100 , 44.44 (or, CV=0.10, 0.15) With varying sample sizes, the obtained estimated 

values for the coverage probability are very similar and really difficult to distinguish 
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between them and again that the method of WaldB provide us with the best estimated 

coverage probability followed by the estimated method of WccZ except for sample sizes 10 

and 15 where WCC is doing better than the method WccZ. The WaldB method is again show 

its superiority over the other three methods for all sample sizes. The WaldZ method is the 

worst method for estimating the coverage probability of the Poisson parameters 𝜆 =

400, 100 , 44.44 (or, CV= 0.05, 0.10, 0.15). For 𝜆 = 25, 16, 11.11, 8.16, 6.25, 4.93, 4  (or, 

CV=0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50) for all sample sizes we can see that the methods 

of WaldB and WccZ are close to each other and seem to be, in general, better than the 

estimated values obtained by the other two methods of WCC and WaldZ. 

(3)  The Estimated Coverage Probability (ECP) for Different Values of 𝝀 with a specific 

value of the sample size (n) at each time. This simulated study has been conducted to see the 

effect of the parameter values to the estimated coverage probability (ECP) for a fixed sample 

size. For large Poisson parameter values (𝜆 = 400, 100, 44.44, 25) one can recognize that 

the four methods are doing similar job when estimating the coverage probability for each 

sample size, but as the Poisson parameter values get smaller (𝜆 = 16, 11.11, 8.16, 6.25, 4.93, 

4), both WaldB and WccZ methods seem to do much better, in estimating the coverage 

probability values, compared with the other two methods of WaldZ and WCC which are 

under estimating the coverage probability for all sample sizes. 

(4)  The Estimated Lengths (EL) against Different Values of λ for a specific fixed sample 

size (n) each time. This simulated study has been conducted to see the effect of the parameter 

values (or, equivalently the effect of the coefficient of variation values) on the estimated 

lengths (EL) of the obtained two sided confidence intervals of the coefficient of variation of 

the Poisson distribution, for a fixed sample size. It has been shown that for large Poisson 

parameter values (λ = 400, 100, 44.44, 25, 16, 11.11, 8.16) one can recognize that the four 

methods are doing very similar job when estimating the lengths for each sample size. As the 

Poisson parameter values get smaller (λ = 6.25, 4.93, 4), both WaldZ and WCC methods 

seem to do much better, in estimating the coverage probability values, compared with the 

other two methods of WaldB and WccZ which gives a wider confidence intervals  (with 

larger lengths) for all sample sizes.  
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 Directions for Future Work 

There are a number of possible extensions to the work presented in this thesis. Here 

we shall give some ideas of possible future work. 

1. Throughout this thesis our attention has been restricted only to four cases of finding 

the estimated confidence interval. This could be extended     to consider more estimated 

cases. 

2. All calculations for this simulation study are based on Monte-Carlo Simulation so 

one can try another simulation method. 
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function [CP1,EL1,CP2,EL2,CP3,EL3,CP4,EL4]=simcpel(cv,n,alpha,M); 

cp1=0;cp2=0;cp3=0;cp4=0; 

el1=0;el2=0;el3=0;el4=0; 

for i=1:M 

X=poissrnd((1/cv)^2,n,1); 

ci1=ciwcc(X,alpha); 

ci2=ciwb(X,alpha); 

ci3=ciwz(X,alpha); 

ci4=ciwccz(X,alpha); 

if (cv>=ci1(:,1)&cv<=ci1(:,2)); 

    cp1=cp1+1;  

end, 

el1=el1+(ci1(:,2)-ci1(:,1)); 

 if (cv>=ci2(:,1)&cv<=ci2(:,2)); 

    cp2=cp2+1; 

end, 

el2=el2+(ci2(:,2)-ci2(:,1)); 

 if (cv>=ci3(:,1)&cv<=ci3(:,2)); 

    cp3=cp3+1; 

end, 

el3=el3+(ci3(:,2)-ci3(:,1)); 

 if (cv>=ci4(:,1)&cv<=ci4(:,2)); 

    cp4=cp4+1; 

end, 

el4=el4+(ci4(:,2)-ci4(:,1)); 

end 

CP1=cp1/M;EL1=el1/M; 

CP2=cp2/M;EL2=el2/M; 

CP3=cp3/M;EL3=el3/M; 

CP4=cp4/M;EL4=el4/M; 

 

function CIwcc=ciwcc(X,alpha); 

n=length(X); 

c=1-alpha/2; 

Zc=norminv(c,0,1); 

Xb=mean(X); 

L=(Xb+Zc*sqrt((Xb+0.5)/n))^(-1/2); 

U=(Xb-Zc*sqrt((Xb+0.5)/n))^(-1/2); 

CIwcc=[L,U]; 

 

function CIwB=ciwb(X,alpha); 

n=length(X); 

c=1-alpha/2; 

Zc=norminv(c,0,1); 

Xb=mean(X); 

B=2000; 

SB=bootstrp(B,@mean,X); 

XB=mean(SB); 

L=(Xb+Zc*sqrt(XB/n))^(-1/2); 

U=(Xb-Zc*sqrt(XB/n))^(-1/2); 
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CIwB=[L,U]; 

 

function CIwz=ciwz(X,alpha); 

n=length(X); 

c=alpha/2; 

Xb=mean(X); 

B=2000; 

SB=bootstrp(B,@mean,X); 

XB=mean(SB); 

sigB=std(SB); 

T=(SB-XB)/sigB; 

t1_c=quantile(T,1-c); 

tc=quantile(T,c); 

L=(Xb+t1_c*sqrt(Xb/n))^(-1/2); 

U=(Xb+tc*sqrt(Xb/n))^(-1/2); 

CIwz=[L,U]; 

 

 

function CIwccz=ciwccz(X,alpha); 

n=length(X); 

c=alpha/2; 

Xb=mean(X); 

B=2000; 

SB=bootstrp(B,@mean,X); 

XB=mean(SB); 

sigB=std(SB); 

T=(SB-XB)/sigB; 

t1_c=quantile(T,1-c); 

tc=quantile(T,c); 

L=(Xb+t1_c*sqrt((Xb+0.5)/n))^(-1/2); 

U=(Xb+tc*sqrt((Xb+0.5)/n))^(-1/2); 

CIwccz=[L,U]; 
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 الملخص : 

ثقة  ت فترات  لإنشاء  المختلفة  الطرق  ومقارنة  توضيح  إلى  الأطروحة  هذه  الطرفين  هدف  لمعامل من 

مونتي    محاكاة  ةبناءً على تقني  بواسون لتوزيع  (SNR) الإشارة إلى الضوضاء  أو لنسبة   (CV)فختلاالا

  كارلو.

شاملة. تم تخصيص الفصل الثاني  كفصل تمهيدي لهذه الأطروحة ، تم تصميم الفصل الأول ليشمل مقدمة  

للتغير بواسون  لمعامل  الثقة  لفترات  المعتمدة  السبع  الطرق  لجميع  والتعريفات  الجوانب    لاستعراض 

(CV)  وكذلك فترات الثقة لنسبة الإشارة إلى الضوضاء (SNR)  لمعامل الاختلاف كمقلوب. 

الثالث مخصص لجزء التطبيق حيث سيتم إجراء دراسة   المحاكاة لمقارنة أداء الطرق الأربع  الفصل 

 والوالد زد  و (WaldB) البوتستراب    وطريقة (WCC) المدروسة وهي: والد مع تصحيح الاستمرارية

(WaldZ)  البوتستراب مع الاستمرارية طريقة   والد  و (WCCZ)   الطرفين لإنشاء الثقة من    فترات 

 .بأحجام عينات مختلفة وقيم معلمات مختلفةبواسون الاختلاف لتوزيع ٪ لمعامل 95بنسبة 

الفصل الأخير من هذه الأطروحة ، تم تخصيص الفصل الرابع للجزء الأخير من هذه الدراسة التي و  

توضح أهم المناقشات والاستنتاجات ثم مخططًا للعمل المستقبلي المحتمل الذي يمكن من خلاله توسيع  

 هذه الدراسة.  

 .الثقة الأربعة في الفصول اللاحقة فترات لأساليب  ماتلاب  ائف أخيرًا ، سيتم إعطاء وظ

معامل   لتقدير  ثقة  فترات  عدة  الأطروحة  هذه  دراسة    لتوزيع  الاختلافتناولت  إجراء  بواسون. سيتم 

 .محاكاة لمقارنة أداء الطرق الأربعة لفترات الثقة المقترحة

، و    0.45، ... ،    0.15،    0.1،    0.05  =  بواسون لمعامل الاختلاف سيتم إنشاء البيانات من توزيع

برنامج  0.50 التغطية وطول  ماتلاب   باستخدام  الثقةسيتم حساب احتمال  لكل طريقة من طرق    فترة 

 .الثقة فترات 

 


