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The Kumaraswamy GP Distribution

Saralees Nadarajah∗ and Sumaya Eljabri
University of Manchester

Abstract: The generalized Pareto (GP) distribution is the most popular
model for extreme values. Recently, Papastathopoulos and Tawn [Journal
of Statistical Planning and Inference 143 (2013), 131-143] have proposed
some generalizations of the GP distribution for improved modeling. Here,
we point that Papastathopoulos and Tawn’s generalizations are in fact not
new and then go on to propose a tractable generalization of the GP dis-
tribution. For the latter generalization, we provide a comprehensive treat-
ment of mathematical properties, estimate parameters by the method of
maximum likelihood and provide the observed information matrix. The
proposed model is shown to give a better fit for the real data set used in
Papastathopoulos and Tawn.

Key words: Beta distribution, GP distribution, Kumaraswamy distribution,
maximum likelihood, order statistics.

1. Introduction

The generalized Pareto (GP) distribution is the most widely applied model for
univariate extreme values. Possible applications cover most areas of science, en-
gineering and medicine. Some published applications are: lifetime data analysis,
coupon collector’s problem, analysis of radio audience data, analysis of rainfall
time series, comparing investment risk between Chinese and American stock mar-
kets, regional flood frequency analysis, drought modeling, value at risk, analysis
of turbine steady-state, second-order material property closures, wind extremes,
analysis of a Spanish motor liability insurance database, analysis of finite buffer
queues, river flow modeling, measuring liquidity risk of open-end funds, mod-
eling of extreme earthquake events, estimation of the maximum inclusion size
in clean steels, and modeling of high-concentrations in short-range atmospheric
dispersion.

For details on the GP distribution, its theory and further applications, we
refer the readers to Leadbetter et al. (1987), Embrechts et al. (1997), Castillo et
al. (2005), and Resnick (2008).

∗Corresponding author.
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However, the GP distribution has been misused in too many areas, as can
be seen from the list given. It does not give adequate fits in many areas. For
example, Madsen and Rosbjerg (1998) find that the GP distribution does not give
a good fit to drought deficit volumes due to many small drought events. In an
illustrative example of the SAS/ETS SEVERITY procedure, Joshi (2010) finds
“Both plots indicate that the Exp (exponential), Pareto, and Gpd (generalized
Pareto) distributions are a poor fit”.

In this paper, we propose a simple generalization of the GP distribution.
We provide two different motivations for this simple generalization. The first is
based on the definition of the GP distribution. The GP distribution arises as
the conditional distribution of exceedances of a process over a large threshold
(Pickands, 1975). If F (·) denotes the cumulative distribution function of the
process then we can write

1− F (x) ≈ p
(

1 + ξ
x− t
σ

)−1/ξ
, (1)

for x > t and some large t, where p = 1 − F (t), x > t if ξ ≥ 0, t < x ≤ t − σ/ξ
if ξ < 0, −∞ < ξ < ∞ is a shape parameter and σ > 0 is a scale parameter.
One way to improve on (1) is to take a mixture of GP cumulative distribution
functions. That is, write

1− F (x) ≈
k∑
i=1

wi

(
1 + ξi

x− t
σi

)−1/ξi
, (2)

for x > t and some large t. But mixtures of the form (2) are notoriously difficult
to handle not just because of the complicated mathematical form. Inferences and
fitting of (2) are also difficult. For example, on the subject of estimating a mixture
of Pareto distributions, Bee et al. (2009) say “Application of standard techniques
to a mixture of Pareto is problematic”. Indeed, applications of mixtures of Pareto
distributions have been very limited.

A way around is to rewrite (2) in a simple mathematical form. There are
many choices for the mathematical form. A choice motivated by the works of
Kumaraswamy (1980) and Cordeiro and de Castro (2011) is

1− F (x) = {1−G(x)a}b , (3)

where G(·) denotes a GP cumulative distribution function and a > 0, b > 0 are
two additional parameters whose role is partly to introduce skewness and to vary
tail weights. Note that the right hand side of (3) can be expanded as

{1−G(x)a}b =

∞∑
i=0

ci [1−G(x)]b+i , (4)
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a mixture taking the form of (2). The coefficients ci are functions of a and b.
For instance, c0 = ab. The parameter b mainly dictates the tail behaviors of the
mixture components. The parameter a mainly dictates the mixture coefficients.

Following the terminology used in Cordeiro and de Castro (2011), we shall
refer to the distribution given by (3) as the KumGP distribution. The probability
density function corresponding to (3) is

f(x) = ab g(x) G(x)a−1 {1−G(x)a}b−1 , (5)

where g(x) = dG(x)/dx is a GP probability density function. Because g(·) and
G(·) are tractable, the KumGP distribution can be used quite effectively even if
the data are censored. Moreover, existing software for the GP distribution (say, to
compute probability density function, cumulative distribution function, quantile
function, moments, maximum likelihood estimates, random numbers, etc) can be
easily adapted for the KumGP distribution. Clearly, the GP distribution is a
special case of the KumGP distribution for a = b = 1 with a continuous crossover
towards cases with different shapes (for example, a particular combination of
skewness and kurtosis).

The role of the two additional parameters, a > 0 and b > 0, is to govern
skewness and generate distributions with heavier/ligther tails. If a < 1 then the
tails of f(·) will be heavier than those of g(·). Similarly, if b < 1 then the tails
of f(·) will be heavier than those of g(·). On the other hand, if a > 1 then the
tails of f(·) will be lighter than those of g(·). Similarly, if b > 1 then the tails of
f(·) will be lighter than those of g(·). Further description of the role of a and b
is given in Sections 2 and 3.

Another physical interpretation for the KumGP distribution when a and b
are positive integers is as follows. Suppose a system is made of b independent
components and that each component is made up of a independent subcompo-
nents. Suppose the system fails if any of the b components fails and that each
component fails if all of the a subcomponents fail. Let Xj1, Xj2, · · · , Xja denote
the lifetimes of the subcomponents within the jth component, j = 1, 2, · · · , b
with a common GP cumulative distribution function. Let Xj denote the lifetime
of the jth component, j = 1, · · · , b, and let X denote the lifetime of the entire
system. So, the cumulative distribution function of X is

Pr(X ≤ x) = 1− Prb (X1 > x) = 1− {1− Pr (X1 ≤ x)}b

= 1− {1− Pr (X11 ≤ x,X12 ≤ x, · · · , X1a ≤ x)}b

= 1− {1− Pra (X11 ≤ x)}b = 1−
{

1−Gaξ,σ(x)
}b
, (6)

where Gξ,σ(·) denotes the cumulative distribution function of the GP distribution.
So, it follows that the KumGP distribution given by (3) and (5) is precisely
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the time to failure distribution of the entire system. The GP distribution has
been widely used to model lifetimes: see, for example, Mahmoudi (2011). For
the particular case, ξ = 0, (6) is the cumulative distribution function of the
Kumexponential distribution. The Kumexponential distribution has been used
to model lifetimes, see Cordeiro et al. (2010).

There are other ways to generalize the GP distribution. The most recent
generalizations of the GP distribution were proposed by Papastathopoulos and
Tawn (2013). They referred to their generalizations as EGP1, EGP2 and EGP3
distributions. The EGP1 distribution is specified by the cumulative distribution
function

F (x) =
1

B (κ, 1/ | ξ |)
B

1−(1+ξ xσ )
−|ξ|/ξ (κ, 1/ | ξ |) , (7)

for x > 0 (if ξ ≥ 0), 0 < x ≤ −σ/ξ (if ξ < 0), σ > 0, κ > 0 and −∞ < ξ < ∞,
where Bx(·, ·) denotes the incomplete beta function defined by

Bx(a, b) =

∫ x

0
ta−1(1− t)b−1dt,

and B(·, ·) denotes the beta function defined by

B(a, b) =

∫ 1

0
ta−1(1− t)b−1dt.

The EGP2 distribution is specified by the cumulative distribution function

F (x) =
1

Γ(κ)
γ

[
κ,

1

ξ
ln
(

1 + ξ
x

σ

)]
, (8)

for x > 0 (if ξ ≥ 0), 0 < x ≤ −σ/ξ (if ξ < 0), σ > 0, κ > 0 and −∞ < ξ < ∞,
where Γ(·) denotes the gamma function defined by

Γ(a) =

∫ ∞
0

ta−1 exp(−t)dt,

and γ(·, ·) denotes the incomplete gamma function defined by

γ(a, x) =

∫ x

0
ta−1 exp(−t)dt.

The EGP3 distribution is specified by the cumulative distribution function

F (x) =

{
1−

(
1 + ξ

x

σ

)−1/ξ}κ
, (9)
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for x > 0 (if ξ ≥ 0), 0 < x ≤ −σ/ξ (if ξ < 0), σ > 0, κ > 0 and −∞ < ξ <∞.
Unfortunately, none of the distributions given by (7)-(9) are new. There have

been many published papers (possibly in hundreds) proposing distributions same
as (7)-(9) or containing (7)-(9) as special cases.

Besides, the distributions given by Papastathopoulos and Tawn (2013) appear
complicated: at least (7) and (8) involve the incomplete beta function and the
incomplete gamma function, special functions requiring numerical routines. We
shall also see later that none of (7)-(9) provide significant improvements over
the GP distribution for the data set considered in Papastathopoulos and Tawn
(2013).

We now explain why the distributions given by (7)-(9) are not new. Firstly,
(7) is a special case of the class of beta-G distributions introduced by Eugene et al.
(2002) and followed by Jones (2004) and many others. The beta-G distribution
is specified by the cumulative distribution function

F (x) =
1

B(a, b)

∫ G(x)

0
ta−1(1− t)b−1dt, (10)

for a > 0 and b > 0. Note that (7) is a special case of (10) for G(·) specified by

G(x) = 1−
(

1 + ξ
x

σ

)−|ξ|/ξ
.

This special case is considered in detail by Akinsete et al. (2008, Section 2.2),
Mahmoudi (2011) and many others.

Secondly, (8) is a special case of the class of gamma-G distributions introduced
by Zografos and Balakrishnan (2009) and followed by Ristic and Balakrishnan
(2012), Nadarajah et al. (2012) and many others. The gamma-G distribution is
specified by the cumulative distribution function

F (x) =
γ (a,− log [1−G(x)])

Γ(a)
, (11)

for a > 0. Note that (8) is a special case of (11) for G(·) a GP cumulative
distribution function. Furthermore, the formula for the cumulative distribution
function of the EGP2 distribution given in Papastathopoulos and Tawn (2013)
is not a valid cumulative distribution function!

Finally, (9) is identical to the exponentiated Pareto distribution studied by
Adeyemi and Adebanji (2004), Shawky and Abu-Zinadah (2008, 2009), Afify
(2010) and many others.

In this paper, we study the mathematical properties of the KumGP distri-
bution. From now on, we write the cumulative distribution function and the
probability density function of the GP distribution by

Gξ,σ(x) = 1− u, (12)
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and

gξ,σ(x) = σ−1u1+ξ, (13)

respectively, where u = {1+ξ(x−t)/σ}−1/ξ. The cumulative distribution function
and the probability density function of the KumGP distribution can be written
as

F (x) = 1− {1− (1− u)a}b , (14)

and

f(x) = σ−1abu1+ξ(1− u)a−1 {1− (1− u)a}b−1 , (15)

respectively. The EGP3 distribution given by (9) is a particular case of the
KumGP distribution. Unlike the EGP1 and EGP2 distributions, the KumGP
distribution does not involve special functions. So, one can expect that the
KumGP distribution could attract wider applicability than the EGP1, EGP2
and EGP3 distributions.

The KumGP distribution given by (15) is much more flexible than the GP
distribution and can allow for greater flexibility of tails. Plots of the probability
density function in (15) for some parameter values are given in Figure 1.
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Figure 1: Plots of (15) for u = 0, σ = 1, (a, b) = (0.5, 0.5) (solid curve),
(a, b) = (0.5, 1) (curve of dashes), (a, b) = (0.5, 3) (curve of dots) and (a, b) =
(3, 3) (curve of dots and dashes)
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If X is a random variable with probability density function, (15), we write
X ∼ KumGP(a, b, σ, ξ). The KumGP quantile function is obtained by inverting
(14):

x = Q(z) = F−1(z) = t+
σ

ξ

{[
1−

{
1− (1− z)1/b

}1/a
]−ξ
− 1

}
. (16)

So, one can generate KumGP variates from (16) by setting X = Q(U), where U
is a uniform variate on the unit interval (0, 1).

In the rest of this paper, we provide a comprehensive description of the math-
ematical properties of (15). We examine the shape of (15) and its associated
hazard rate function in Sections 2 and 3, respectively. We derive expressions
for moments in Section 4. Order statistics, their moments and L moments are
calculated in Section 5. Asymptotic distributions of the extreme values are pro-
vided in Section 6. Estimation by the method of maximum likelihood – including
the observed information matrix – is presented in Section 7. A simulation study
is presented in Section 8 to assess the performance of the maximum likelihood
estimators. An application of the KumGP distribution to the real data set in
Papastathopoulos and Tawn (2013) is illustrated in Section 9.

The results in Sections 4 and 5 involve infinite series representations. The
terms of these infinite series are elementary, so the infinite series can be computed
by truncation using any standard package, perhaps even pocket calculators.

2. Shape of Probability Density Function

The first derivative of log{f(x)} for the KumGP distribution is:

d log f(x)

dx
= −u

1+ξ

σ

{
1 + ξ

u
− a− 1

1− u
+
a(b− 1)(1− u)a−1

1− (1− u)a

}
,

where u = {1 + ξ(x − t)/σ}−1/ξ. So, the modes of f(x) are the roots of the
equation

a(b− 1)(1− u)a−1

1− (1− u)a
=
a− 1

1− u
− 1 + ξ

u
. (17)

There may be more than one root to (17).
Furthermore, the asymptotes of f(x) and F (x) as u→ 0, 1 are given by

f(x) ∼ abbσ−1ub+ξ,

as u→ 0,

f(x) ∼ abσ−1(1− u)a−1,
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as u→ 1,

1− F (x) ∼ (au)b,

as u→ 0, and

F (x) ∼ b(1− u)a,

as u→ 1. Note that both the upper and lower tails of f(x) are polynomials with
respect to u. Larger values of a correspond to heavier upper tails of f . Larger
values of b correspond to lighter upper tails of f .

Plots of the shapes of (15) for t = 0, σ = 1 and selected values of (a, b, ξ) are
given in Figure 1. Both unimodal and monotonically decreasing shapes appear
possible. Unimodal shapes appear when both a and b are large. Monotonically
decreasing shapes appear when either a or b is small.

3. Shape of Hazard Rate Function

The hazard rate function defined by h(x) = f(x)/{1−F (x)} is an important
quantity characterizing life phenomena of a system. For the KumGP distribution,
h(x) takes the form

h(x) =
abu1+ξ(1− u)a−1

σ [1− (1− u)a]
, (18)

where u = {1 + ξ(x− t)/σ}−1/ξ. The first derivative of log h(x) is:

d log h(x)

dx
= −u

1+ξ

σ

[
1 + ξ

u
− a− 1

1− u
+
a(1− u)a−1

1− (1− u)a

]
.

So, the modes of h(x) are the roots of the equation

a(1− u)a−1

1− (1− u)a
=
a− 1

1− u
− 1 + ξ

u
. (19)

There may be more than one root to (19).

Furthermore, the asymptotes of h(x) as u→ 0, 1 are given by

h(x) ∼ bσ−1uξ,

as u→ 0 and

h(x) ∼ abσ−1(1− u)a−1,
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as u→ 1. Note that both the upper and lower tails of h(x) are polynomials with
respect to u. Larger values of a correspond to lighter lower tails. Larger values
of b correspond to heavier lower tails and heavier upper tails of h.

Figure 2 illustrates some of the possible shapes of h(x) for t = 0, σ = 1
and selected values of (a, b, ξ). Both monotonically increasing, monotonically de-
creasing and bathtub shapes appear possible. Bathtub shapes appear for negative
values of ξ. Monotonically increasing shapes appear when both a and b are large.
Monotonically decreasing shapes appear when either a or b is small and ξ is not
negative.

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4
5

6

ξ = − 0.5

x

H
R

F

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4
5

6

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4
5

6

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4
5

6

0 1 2 3 4

0
1

2
3

4
5

6

ξ = 0

x

H
R

F

0 1 2 3 4

0
1

2
3

4
5

6

0 1 2 3 4

0
1

2
3

4
5

6

0 1 2 3 4

0
1

2
3

4
5

6

0 1 2 3 4

0
1

2
3

4
5

6

ξ = 0.5

x

H
R

F

0 1 2 3 4

0
1

2
3

4
5

6

0 1 2 3 4

0
1

2
3

4
5

6

0 1 2 3 4

0
1

2
3

4
5

6

0 1 2 3 4

0
1

2
3

4
5

6

ξ = 1

x

H
R

F

0 1 2 3 4

0
1

2
3

4
5

6

0 1 2 3 4

0
1

2
3

4
5

6

0 1 2 3 4

0
1

2
3

4
5

6

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4
5

6

ξ = − 0.5

x

H
R

F

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4
5

6

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4
5

6

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4
5

6

0 1 2 3 4

0
1

2
3

4
5

6

ξ = 0

x

H
R

F

0 1 2 3 4

0
1

2
3

4
5

6

0 1 2 3 4

0
1

2
3

4
5

6

0 1 2 3 4

0
1

2
3

4
5

6

0 1 2 3 4

0
1

2
3

4
5

6

ξ = 0.5

x

H
R

F

0 1 2 3 4

0
1

2
3

4
5

6

0 1 2 3 4

0
1

2
3

4
5

6

0 1 2 3 4

0
1

2
3

4
5

6

0 1 2 3 4

0
1

2
3

4
5

6

ξ = 1

x

H
R

F

0 1 2 3 4

0
1

2
3

4
5

6

0 1 2 3 4

0
1

2
3

4
5

6

0 1 2 3 4

0
1

2
3

4
5

6

Figure 2: Plots of (18) for u = 0, σ = 1, (a, b) = (0.5, 0.5) (solid curve),
(a, b) = (0.5, 1) (curve of dashes), (a, b) = (0.5, 3) (curve of dots) and (a, b) =
(3, 3) (curve of dots and dashes)

Bathtub shaped hazard rates are the most realistic ones in practice. It is
interesting to note that the KumGP distribution can exhibit this shape. The GP
distribution cannot exhibit bathtub shaped hazard rates.

4. Moments

LetX ∼KumGP(a, b, σ, ξ). Using the transformation u = {1+ξ(x−t)/σ}−1/ξ,
we can write
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E (Xn) = ab

∫ 1

0

[
σ

ξ

(
u−ξ − 1

)
+ t

]n
(1− u)a−1 [1− (1− u)a]b−1 du

= ab
n∑
i=0

(
n

i

)(
σ

ξ

)i(
t− σ

ξ

)n−i ∫ 1

0
u−iξ(1− u)a−1 [1− (1− u)a]b−1 du

= ab
n∑
i=0

(
n

i

)(
σ

ξ

)i(
t− σ

ξ

)n−i ∞∑
j=0

(
b− 1

j

)
(−1)j

∫ 1

0
u−iξ(1− u)a+aj−1du

= ab
n∑
i=0

(
n

i

)(
σ

ξ

)i(
t− σ

ξ

)n−i ∞∑
j=0

(
b− 1

j

)
(−1)jB (1− iξ, a+ aj) (20)

for n ≥ 1 provided that 1 − iξ is not an integer for all i = 0, 1, · · · , n. The first
four moments are:

E (X) = ab

[(
t− σ

ξ

) ∞∑
j=0

(
b− 1

j

)
(−1)j

a+ aj

+
σ

ξ

∞∑
j=0

(
b− 1

j

)
(−1)jB (1− ξ, a+ aj)

]
, (21)

E
(
X2
)

= ab

[(
t− σ

ξ

)2 ∞∑
j=0

(
b− 1

j

)
(−1)j

a+ aj

+2

(
t− σ

ξ

)
σ

ξ

∞∑
j=0

(
b− 1

j

)
(−1)jB (1− ξ, a+ aj)

+

(
σ

ξ

)2 ∞∑
j=0

(
b− 1

j

)
(−1)jB (1− 2ξ, a+ aj)

]
, (22)

E
(
X3
)

= ab

[(
t− σ

ξ

)3 ∞∑
j=0

(
b− 1

j

)
(−1)j

a+ aj

+3

(
t− σ

ξ

)2 σ

ξ

∞∑
j=0

(
b− 1

j

)
(−1)jB (1− ξ, a+ aj)

+3

(
t− σ

ξ

)(
σ

ξ

)2 ∞∑
j=0

(
b− 1

j

)
(−1)jB (1− 2ξ, a+ aj)

+

(
σ

ξ

)3 ∞∑
j=0

(
b− 1

j

)
(−1)jB (1− 3ξ, a+ aj)

]
, (23)

and



The Kumaraswamy GP Distribution 749

E
(
X4
)

= ab

[(
t− σ

ξ

)4 ∞∑
j=0

(
b− 1

j

)
(−1)j

a+ aj

+4

(
t− σ

ξ

)3 σ

ξ

∞∑
j=0

(
b− 1

j

)
(−1)jB (1− ξ, a+ aj)

+6

(
t− σ

ξ

)2(σ
ξ

)2 ∞∑
j=0

(
b− 1

j

)
(−1)jB (1− 2ξ, a+ aj)

+4

(
t− σ

ξ

)(
σ

ξ

)3 ∞∑
j=0

(
b− 1

j

)
(−1)jB (1− 3ξ, a+ aj)

+

(
σ

ξ

)4 ∞∑
j=0

(
b− 1

j

)
(−1)jB (1− 4ξ, a+ aj)

]
, (24)

provided that 1− ξ, 1− 2ξ, 1− 3ξ and 1− 4ξ are not integers. The infinite series
in (20)-(24) all converge.

The expressions given by (21)-(24) can be used to compute the mean, variance,
skewness and kurtosis of X. The values of these four quantities versus ξ are
plotted in Figure 3 for t = 0, σ = 1 and selected values of (a, b). It is evident
each of the quantities is an increasing function of ξ for all choices of (a, b).
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Figure 3: Mean, variance, skewness and kurtosis versus ξ for t = 0, σ = 1,
(a, b) = (0.5, 0.5) (solid curve), (a, b) = (0.5, 1) (curve of dashes), (a, b) =
(0.5, 3) (curve of dots) and (a, b) = (3, 3) (curve of dots and dashes)
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5. Order Statistics

Order statistics make their appearance in many areas of statistical theory and
practice. Let X1:n < X2:n < · · · < Xn:n denote the order statistics for a random
sample X1, X2, · · · , Xn from (15). Then the probability density function of the
kth order statistic, say Y = Xk:n, can be expressed as

fY (y) =
abn!

σ(k − 1)!(n− k)!
u1+ξ(1− u)a−1 [1− (1− u)a]b(n−k+1)−1

×
{

1− [1− (1− u)a]b
}b−1

=
abn!

σ(k − 1)!(n− k)!

×
∞∑
i=0

(
k − 1

i

)
(−1)iu1+ξ(1− u)a−1 [1− (1− u)a]b(i+n−k+1)−1

=
n!

(k − 1)!(n− k)!

∞∑
i=0

(
k − 1

i

)
(−1)ifa,b(i+n−k+1),σ,ξ(y),

where u = {1 + ξ(y − t)/σ}−1/ξ and fa,b,σ,ξ(·) denotes the probability density
function of Xa,b,σ,ξ ∼ KumGP(a, b, σ, ξ). So, the probability density function of
Y is a linear combination of probability density functions of KumGP(a, b, σ, ξ).
Hence, other properties of Y can be easily derived. For instance, the cumulative
distribution function of Y can be expressed as

FY (y) =
n!

(k − 1)!(n− k)!

∞∑
i=0

(
k − 1

i

)
(−1)iFa,b(i+n−k+1),σ,ξ(y),

where Fa,b,σ,ξ(·) denotes the cumulative distribution function corresponding to
fa,b,σ,ξ(·). The qth moment of Y can be expressed as

E [Y q] =
n!

(k − 1)!(n− k)!

∞∑
i=0

(
k − 1

i

)
(−1)iE

[
Xq
a,b(i+n−k+1),σ,ξ

]
, (25)

where Xa,b,σ,ξ ∼ KumGP(a, b, σ, ξ).
L-moments are summary statistics for probability distributions and data sam-

ples (Hoskings, 1990). They are analogous to ordinary moments but are computed
from linear functions of the ordered data values. The rth L moment is defined
by

λr =
r−1∑
j=0

(−1)r−1−j
(
r − 1

j

)(
r − 1 + j

j

)
βj ,
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where βj = E{XF (X)j}. In particular, λ1 = β0, λ2 = 2β1−β0, λ3 = 6β2−6β1 +
β0 and λ4 = 20β3 − 30β2 + 12β1 − β0. In general, βr = (r + 1)−1E(Xr+1:r+1),
so it can be computed using (25). The L moments have several advantages over
ordinary moments: for example, they apply for any distribution having finite
mean; no higher-order moments need be finite.

6. Extreme Values

Suppose X1, · · · , Xn is a random sample from (15). If X = (X1 + · · ·+Xn)/n
denotes the sample mean, then by the usual central limit theorem,

√
n(X −

E(X))/
√

Var(X) approaches the standard normal distribution as n → ∞ pro-
vided that ξ < 1/2. Sometimes one would be interested in the asymptotes of the
extreme order statistics Mn = max(X1, · · · , Xn) and mn = min(X1, · · · , Xn).

Firstly, suppose that G in (12) belongs to the max domain of attraction of the
Gumbel extreme value distribution. Then by Leadbetter et al. (1987, Chapter
1), there must exist a strictly positive function, say h(t), such that

lim
t↑x(G)

1−G (t+ xh(t))

1−G(t)
= exp(−x),

for every x ∈ (−∞,∞), where x(G) = sup{x : G(x) < 1}. But, using L’Hopital’s
rule and since x(F ) = x(G), we note that

lim
t↑x(F )

1− F (t+ xh(t))

1− F (t)
= lim

t↑x(G)

{
1−Ga (t+ xh(t))

1−Ga(t)

}b
= lim

t↑x(G)

{
1−G (t+ xh(t))

1−G(t)

}b
= exp(−bx),

for every x ∈ (−∞,∞). So, it follows that F also belongs to the max domain of
attraction of the Gumbel extreme value distribution with

lim
n→∞

Pr {an (Mn − bn) ≤ x} = exp {− exp(−bx)} ,

for some suitable norming constants an > 0 and bn.
Secondly, suppose that G in (12) belongs to the max domain of attraction of

the Fréchet extreme value distribution. Then by Leadbetter et al. (1987, Chapter
1), x(G) =∞ and there must exist a β < 0 such that

lim
t↑∞

1−G(tx)

1−G(t)
= xβ,

for every x > 0. But, using L’Hopital’s rule, we note that

lim
t↑∞

1− F (tx)

1− F (t)
= lim

t↑∞

{
1−Ga(tx)

1−Ga(t)

}b
= lim

t↑∞

{
1−G(tx)

1−G(t)

}b
= xbβ,
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for every x > 0. Also x(F ) = x(G) = ∞. So, it follows that F also belongs to
the max domain of attraction of the Fréchet extreme value distribution with

lim
n↑∞

Pr {an (Mn − bn) ≤ x} = exp
(
−xbβ

)
,

for some suitable norming constants an > 0 and bn.
Thirdly, suppose that G in (12) belongs to the max domain of attraction of the

Weibull extreme value distribution. Then by Leadbetter et al. (1987, Chapter
1), x(G) <∞ and there must exist a α > 0 such that

lim
t↓0

1−G (x(G)− tx)

1−G (x(G)− t)
= xα,

for every x > 0. But, using L’Hopital’s rule and since x(F ) = x(G) < ∞, we
note that

lim
t↓0

1− F (x(F )− tx)

1− F (x(F )− t)
= lim

t↓0

[
1−Ga (x(G)− tx)

1−Ga (x(G)− t)

]b
= lim

t↓0

[
1−G (x(G)− tx)

1−G (x(G)− t)

]b
= xαb.

So, it follows that F also belongs to the max domain of attraction of the Weibull
extreme value distribution with

lim
n→∞

Pr {an (Mn − bn) ≤ x} = exp
{
−(−x)αb

}
,

for some suitable norming constants an > 0 and bn.
The same argument applies to min domains of attraction. That is, F belongs

to the same min domain of attraction as that of G.

7. Maximum Likelihood Estimation

Suppose x1, x2, · · · , xn is a random sample of size n from (15). Let ui =
{1 + ξ(xi− t)/σ}−1/ξ for i = 1, 2, · · · , n. Then the log-likelihood function for the
vector of parameters (a, b, σ, ξ) can be written as

logL(a, b, σ, ξ) = n log(ab)− n log σ + (1 + ξ)
n∑
i=1

log ui + (a− 1)

n∑
i=1

log (1− ui)

+(b− 1)
n∑
i=1

log [1− (1− ui)a] . (26)

The first-order partial derivatives of (26) with respect to the four parameters are:
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∂ logL

∂a
=
n

a
+

n∑
i=1

log (1− ui)− (b− 1)

n∑
i=1

(1− ui)a log (1− ui)
1− (1− ui)a

, (27)

∂ logL

∂b
=
n

b
+

n∑
i=1

log [1− (1− ui)a] , (28)

∂ logL

∂σ
= −n

σ
+

1 + ξ

σ2

n∑
i=1

uξi (xi − t)−
a− 1

σ2

n∑
i=1

u1+ξi (xi − t)
1− ui

+
a(b− 1)

σ2

×
n∑
i=1

u1+ξi (1− ui)a−1 (xi − t)
1− (1− ui)a

, (29)

and

∂ logL

∂ξ
=

n∑
i=1

log ui +
1 + ξ

ξ2

n∑
i=1

{
log

[
1 + ξ

xi − t
σ

]
− ξ (xi − t)

σ

[
1 + ξ

xi − t
σ

]−1}

−a− 1

ξ2

n∑
i=1

ui
1− ui

{
log

[
1 + ξ

xi − t
σ

]
− ξ (xi − t)

σ

[
1 + ξ

xi − t
σ

]−1}

+
a(b− 1)

ξ2

n∑
i=1

ui (1− ui)a−1

1− (1− ui)a

{
log

[
1 + ξ

xi − t
σ

]
− ξ (xi − t)

σ

[
1 + ξ

xi − t
σ

]−1}
.(30)

The maximum likelihood estimates of (a, b, σ, ξ), say (â, b̂, σ̂, ξ̂), are the simulta-
neous solutions of the equations ∂ logL/∂a = 0, ∂ logL/∂b = 0, ∂ logL/∂σ = 0
and ∂ logL/∂ξ = 0. As n→∞,

√
n(â− a, b̂− b, σ̂− σ, ξ̂− ξ) approaches a multi-

variate normal vector with zero means and variance-covariance matrix, −(EJ)−1,
where

J =



∂2 logL

∂a2
∂2 logL
∂a∂b

∂2 logL
∂a∂σ

∂2 logL
∂a∂ξ

∂2 logL

∂b∂a
∂2 logL
∂b2

∂2 logL
∂b∂σ

∂2 logL
∂b∂ξ

∂2 logL

∂σ∂a
∂2 logL
∂σ∂b

∂2 logL
∂σ2

∂2 logL
∂σ∂ξ

∂2 logL

∂ξ∂a
∂2 logL
∂ξ∂b

∂2 logL
∂ξ∂σ

∂2 logL
∂ξ2


.

The matrix, −EJ , is known as the expected information matrix. The matrix,
−J , is known as the observed information matrix.

In simulations and real data applications described later on, we maximized
the log-likelihood function using the nlm function in the R statistical package
(R Development Core Team, 2012). For each maximization, the nlm function
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was executed for a wide range of initial values. This sometimes resulted in more
than one maximum, but at least one maximum was identified each time. In
cases of more than one maximum, we took the maximum likelihood estimates to
correspond to the largest of the maxima.

In practice, n is finite. The literature (see, for example, Efron and Hinkley
(1978)) suggests that it is best to approximate the distribution of

√
n(â− a, b̂−

b, σ̂−σ, ξ̂−ξ) by a multivariate normal distribution with zero means and variance-
covariance matrix given by −J−1, inverse of the observed information matrix,
with (a, b, σ, ξ) replaced (â, b̂, σ̂, ξ̂). So, it is useful to have explicit expressions for
the elements of J . They are given in Appendix A.

The multivariate normal approximation can be used to construct approximate
confidence intervals and confidence regions for the individual parameters and for
the hazard and survival functions.

8. Simulation Study

Here, we assess the performance of the maximum likelihood estimates given by
(27)-(30) with respect to sample size n. The assessment is based on a simulation
study:

1. generate ten thousand samples of size n from (15). The inversion method
is used to generate samples, i.e variates of the KumGP distribution are
generated using (16).

2. compute the maximum likelihood estimates for the ten thousand samples,
say (âi, b̂i, σ̂i, ξ̂i) for i = 1, 2, · · · , 10000.

3. compute the biases and mean squared errors given by

biash(n) =
1

10000

10000∑
i=1

(
ĥi − h

)
,

and

MSEh(n) =
1

10000

10000∑
i=1

(
ĥi − h

)2
,

for h = a, b, σ, ξ.

We repeat these steps for n = 10, 20, · · · , 1000 with a = 3, b = 3, t = 0, σ = 1
and ξ = 0.5, so computing biasa(n), biasb(n), biasσ(n), biasξ(n) and MSEa(n),
MSEb(n), MSEσ(n), MSEξ(n) for n = 10, 20, · · · , 1000.

We know from theory that maximum likelihood estimates have biases of the
order O(1/n) and mean squared errors of the order O(1/n). With this in mind,
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we have shown in Figures 4 and 5 how n times the four biases and n times the
four mean squared errors vary with respect to n. The following observations can
be made:

1. the biases for a and b appear generally positive;

2. n times the biases for a appear to level out for all n greater than 200;

3. n times the biases for b appear to level out for all n greater than 200;

4. n times the biases for σ appear to level out for all n greater than 400;

5. n times the biases for ξ appear to level out for all n greater than 200;

6. n times the mean squared errors for a appear to level out for all n greater
than 200;

7. n times the mean squared errors for b appear to level out for all n greater
than 200;

8. n times the mean squared errors for σ appear to level out for all n greater
than 200;

9. n times the mean squared errors for ξ appear to level out for all n greater
than 400.

We have presented results for only one choice for (a, b, σ, ξ), namely that (a, b, σ, ξ)
= (3, 3, 1, 0.5). But the results were similar for other choices.
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Figure 4: n · biasa(n) (top left), n · biasb(n) (top right), n · biasσ(n) (middle
right) and n · biasξ(n) (bottom left) versus n = 10, 20, · · · , 1000
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Figure 5: n ·MSEa(n) (top left), n ·MSEb(n) (top right), n ·MSEσ(n) (middle
right) and n ·MSEξ(n) (bottom left) versus n = 10, 20, · · · , 1000

In addition to computing the biases and mean squared errors, we also com-
puted p values to check for multivariate normality and validity of likelihood ratio
tests. The p values for multivariate normality were based on the Shapiro-Wilk
test (Royston, 1982). The p values for the validity of likelihood ratio tests were
based on the chi-square goodness of fit test. Plots of the p values versus n showed
that they remained above 0.05 for all values of n greater than 200. The plots are
not shown here for reasons of space.

9. An Application

Here, we illustrate the flexibility of the KumGP distribution using a real data
set analyzed in Papastathopoulos and Tawn (2013). The data set consists of one
hundred and fifty four exceedances of the threshold 65m3s−1 by the River Nidd
at Hunsingore Weir from 1934 to 1969. The data is taken from NERC (1975).

A mean residual life plot is a tool used to select the threshold t for the GP
distribution. The same tool can be used to select t for the KumGP distribution
because of (3) and (4). The mean residual life plot of the data is shown in Figure
6. From this plot we choose t = 65.3m2s−1. This threshold shown in red seems
appropriate.
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Figure 6: Mean residual life plot for exceedances of the levels of River Nidd
over the threshold 65m3s−1

We fitted the distributions (13), (7), (8), (9) and (15) to the data. The middle
three distributions are those considered by Papastathopoulos and Tawn (2013).
The maximum likelihood procedure described in Section 7 was used for fitting
(15). The parameter estimates, log-likelihood values, AIC values and BIC values
are shown in Table 1. The numbers within brackets are standard errors computed
by inverting the observed information matrices.

Table 1: Parameter estimates, log-likelihood, AIC and BIC

Model Parameter estimate (s.e) − logL AIC BIC

(13) σ̂ = 19.034 (2.970), ξ̂ = 0.418 (0.134) 554.2696 1112.539 1120.647

(7) σ̂ = 9.766 (4.722), ξ̂ = 0.625 (0.190), 553.0091 1112.018 1120.599
κ̂ = 1.488 (0.423)

(8) σ̂ = 7.789 (5.537), ξ̂ = 0.587 (0.139), 552.9237 1111.847 1120.38
κ̂ = 1.554 (0.508)

(9) σ̂ = 10.613 (4.879), ξ̂ = 0.629 (0.197), 553.057 1112.114 1120.551
κ̂ = 1.468 (0.409)

(15) σ̂ = 72.876 (20.654), ξ̂ = 0.742 (0.264), 550.611 1109.222 1118.228

â = 3.594 (0.651), b̂ = 1.124 (0.451)

None of the three-parameter distributions (EGP1, EGP2 and EGP3) provide
significant improvements over the GP distribution. Among these three distribu-
tions, the EGP2 distribution has the largest likelihood value, the smallest AIC
value and the smallest BIC value. But the fit of the EGP2 distribution is not
significantly better than that of the GP distribution.

The proposed four-parameter distribution provides a significant improvement
over the GP distribution and the three three-parameter distributions (EGP1,
EGP2 and EGP3). It has the largest likelihood value, the smallest AIC value
and the smallest BIC values among all fitted distributions. Furthermore, chi-
square goodness of fit tests give the p-values of 0.0373, 0.0461, 0.048, 0.041 and
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0.068 for (13), (7), (8), (9) and (15), respectively, suggesting that (15) provides
the only adequate fit.

The conclusion based on the likelihood values, AIC values, BIC values and the
chi-square goodness of fit tests can be verified by means of probability-probability
plots, quantile-quantile plots and density plots. A probability-probability plot
consists of plots of the observed probabilities against probabilities predicted by
the fitted model. For example, for the model given by (13), 1 − [1 + ξ̂(x(j) −
t)/σ̂]−1/ξ̂ are plotted versus (j − 0.375)/(n + 0.25), j = 1, 2, · · · , n, as recom-
mended by Blom (1958) and Chambers et al. (1983), where x(j) are the sorted
values of the data in ascending order and n is the number of observations. A
quantile-quantile plot consists of plots of the observed quantiles against quan-
tiles predicted by the fitted model. For example, for the model given by (13),

t+(σ̂/ξ̂){(1−(j−0.375)/(n+0.25))−ξ̂−1} are plotted versus x(j), j = 1, 2, · · · , n,
as recommended by Blom (1958) and Chambers et al. (1983).

The probability-probability plots and quantile-quantile plots for the five fitted
models are shown in Figures 7 and 8. We can see that the model given by (15)
has points closest to the diagonal line especially in the upper tail. This is evident
from the sum of the absolute differences in probabilities and quantiles shown in
Table 2.
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Figure 7: Probability plots for the fits of (13), (7), (8), (9) and (15) for ex-
ceedances of the levels of River Nidd over the threshold t = 65.3m3s−1
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Figure 8: Quantile plots for the fits of (13), (7), (8), (9) and (15) for exceedances
of the levels of River Nidd over the threshold t = 65.3m3s−1

Table 2: Sum of the absolute differences in probabilities and quantiles

Model Probabilities Quantiles

(13) 2.28 430.6654

(7) 2.64 639.2003

(8) 2.61 623.6487

(9) 2.59 623.0249

(15) 1.83 361.5818

A density plot compares the fitted probability density functions of the models
with the empirical histogram of the observed data. The density plots are shown
in Figure 9. Again the fitted probability density function for (15) appears to
capture the general pattern of the empirical histogram best.

Quantities of interest for practitioners of extreme value models are the return
levels. A T year return level, say xT , is defined as the level that is exceeded on
average every T years. For the GP model given by (13),

xT = t+
σ

ξ

{
(mT )ξ − 1

}
, (31)

where m is the average number of exceedances per year. For the KumGP model
given by (15),
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Figure 9: Fitted probability density functions of (13), (7), (8), (9) and (15) for
exceedances of the levels of River Nidd over the threshold t = 65.3m3s−1

xT = t+
σ

ξ

{[
1−

{
1− (mT )−1/b

}1/a
]−ξ
− 1

}
, (32)

where m is again the average number of exceedances per year. Plots of (31) and
(32) for T = 2, 3, · · · , 50 along with 95 confidence intervals computed by the delta
method (Rao, 1973, pp. 387-389) are shown in Figure 10.
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Figure 10: Return levels for exceedances of the levels of River Nidd and their
95 percent confidence intervals for the fits of (15) (in red) and (13) (in black)
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Return levels are important quantities. They are used to determine, for exam-
ple, dimensions of sea walls, water dams, flood defences, etc. Figure 10 suggests
that the return levels given by (31) and (32) do not differ so much. The confi-
dence bands for (32) appear only slightly wider than those for (31). One would
expect the former to be wider because the KumGP model has more parameters
than the GP model.

As a final remark, we like to mention that the results reported here must be
treated conservatively because of the sample size. For n = 154, some of the biases
and mean squared errors reported in Figures 4 and 5 appear large. Furthermore,
asymptotic normality does not appear to have been reached. Better estimation
methods (for example, bias-corrected estimation methods or bootstrapping based
methods) will be needed to draw more sensible results.

Appendix A

Here, we give explicit expressions for the elements of J defined in Section 7:

J11 = − n

a2
+ (1− b)

n∑
i=1

(1− ui)a log2 (1− ui)
1− (1− ui)a

+(1− b)
n∑
i=1

(1− ui)2a log2 (1− ui)
[1− (1− ui)a]2

,

J12 = −
n∑
i=1

(1− ui)a log (1− ui)
1− (1− ui)a

,

J13 = − 1

σ2

n∑
i=1

u1+ξi (xi − t)
1− ui

+
b− 1

σ2

n∑
i=1

u1+ξi (xi − t) (1− ui)a−1 [a log (1− ui) + 1]

1− (1− ui)a

+
a(b− 1)

σ2

n∑
i=1

u1+ξi (xi − t) (1− ui)2a−1 log (1− ui)
[1− (1− ui)a]2

,

J14 = − 1

ξ2

n∑
i=1

ui
1− ui

{
log

[
1 + ξ

xi − t
σ

]
− ξ (xi − t)

σ

[
1 + ξ

xi − t
σ

]−1}

+
b− 1

ξ2

n∑
i=1

ui (1− ui)a−1

1− (1− ui)a

{
log

[
1 + ξ

xi − t
σ

]
− ξ (xi − t)

σ

[
1 + ξ

xi − t
σ
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+
a(b− 1)

ξ2

n∑
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ui (1− ui)a−1 log (1− ui)
1− (1− ui)a

{
log

[
1 + ξ

xi − t
σ

]

−ξ (xi − t)
σ

[
1 + ξ

xi − t
σ
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+
a(b− 1)

ξ2

n∑
i=1

ui (1− ui)2a−1 log (1− ui)
[1− (1− ui)a]2

{
log

[
1 + ξ

xi − t
σ

]
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−ξ (xi − t)
σ

[
1 + ξ

xi − t
σ
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,

J22 = − n
b2
,

J23 =
a

σ2

n∑
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Explicit expressions for the remaining elements of J follow by symmetry.
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