The Great Socialist People's Libyan Arab Jamahirya

Alfatah University
Faculty of Science
Department of Computer Science

Tripoli —Libya

" Mixed Languages Programming Technique Based on Data

Variables Emigration”

A Thesis Submitted to the Department of Computer Science in Partial Fulfilment of

the Requirements for the Degree of Master of Science in Computer Science

By: Rehab Abdallah Rajab Ben Abdallah

Supervisor: Dr. Musbah Mohammed Elahresh

Spring 2009

M.Sc Thesis Abstract (Arabic)

a—-lAdual)

A8 03ga 5 Anae p dall S FORTRAN 5 C Sl gads gal) o hail 40385 dlac) o3
Lein duadll sy o e ialll (aaly 538 adaia JS 5 ¢ pdalie JSG e mali) AU Sy
6 AY) adaliall ¢l yuiia aladind 5 J e sl (Say adaia JS Jaby el jll ohat gy Jalo

O B 5 Canaal) adaially Lgaladiind oy <l el 038 5 Ll adaiall 2y 52l 5) saally
abliall 8 Lealadind (Ko C Al o si€all alaiall 6 48 jall il jaiall s Lg L) Jiias
Lo Al duala Al JSLeS @l jsciall iy jad (e Al o2 (S [FORTRAN Al 4, siSal)

Ml Sl e s_ad M Al L el s AT dsa el 4y 5iSa (5 5aT adalia b Lgaladin)

axklie Juady o iy s Jaglall (5 jaemall zali jll 6l s o 53 (Preprocessor) (save e sk o
Sl (sual) llaall sy o5 Lol salgall dall) ae) 58 e Ly yai 5 palead) il uaiall apai g
SV el ol o3 Jls) &5 (g5 (Object Files) dsas gl e Jsanll cilea jiall L adalial

a5 (5285 zali il (Common Linker) & jisie Ly

M.Sc Thesis Abstract (English)

Abstract

A technique for mixed — languages program is introduced to mix C and FORTRAN
programming languages. This technique enables the programmer to develop programs
composed of different code sections each written in either C or FORTRAN. Each
section can access and use the variables decleared in other sections. The variables

decleared in C sections can be used in FORTRAN sections.

This process in which a data variable is declared in a program section of a certain
language and used in another section of another language is given the name "Data
Variable Emigration”.

A preprocessor is designed to read the mixed source program, separate the code
sections in different files and determine the emigrated variables and define them by
the syntax of the language they emigrated to. Then the preprocessor send the sections
filesto the compilersto get the object files and send these files to a common linker to

produce one execution file.

TABLE OF CONTENTS

List of Figures

... [l
Listof Tables. e Vv
ListOf Programs. e VI
List Of TEIMS. ..o VIII
Acknowledgement IX
Chapter One: Introduction. e e 1

L PreViewW . .o 1
1.2 Previouswork inmixingCand FORTRAN 77t .2
1.3 Objectivesof theresearch i 3
1A TheSisSorganizationot e 4

Chapter Two: C and FORTRAN Programs.ot e 6
21 1INrodUCLION oot e 6
22 C Programs . ..o e e 7

221 DaaTypeSinNC ... T
221 1Basicdatatypes.t e T
221.2Compound datatypes.o e e 11

222 CProgram Organizalioniuuit i A5

2221FuUnctionmodules. 15
2.2.22- ParametersSpassingvvviii e e 18
2223-Multi fileprogram o 21

2.3 FORTRAN-77 Programsit i o y . .22
231 DaaTypesiNFORTRAN-77 . ..ot e s 22

2.3.2Basicvs.compound datatypes i 25

2.3.3 Program Structure and parameters passing in FORTRAN-77. 26

2331 ProgramunitS.ot 26
2332 Information Transfer. i 27
2.4 Differences and Similarities between C and FORTRAN- 77 29
24 1SMIlaritieS e e e 29
242 DIffEreNCES . ..o e e 30
25 SUMMANY .. e 31
Chapter Three: Data Variables Emigration Method 33
3.1 Method assumptionsot e 33
3.2 The pre-processor structure and functionality 34
3.3 Mapping between Cand FORTRAN variables 37
3AModulescalling ProCeSS . ..o v it e 40
3.6 Theoperational flowchart i e 42
3.7 Hlustration Examples i e 55
BB SUMMAY . o e 65
.Chapter Four: Evaluationand Results ciiiiiiiian.. 67
4.1 Evaluation Environmentt e e 67
42 Examplesand results.o 69
4.3 Method performance.t e 78
4.4 Applicationsof themethod i 78
Chapter five: Concluson and FutureWork81
5.1 CONCIUSION . . . oot e e e e e 81
S.2Future Work ..o 82
References. 83
Appendix A: The Preprocessor Program List.t 85

List of Figures

Figure 2.1: Memory allocationforarecord 12
Figure 2.2: Memory allocationforaunion............... 13
Figure 2.3: Pointersand datavaluesinmemory 15
Figure 2.4: Modular Program structureinC.ot oo 16
Figure 2.5: Function module organization. 16
Figure 2.6: Modules data exchange by passingvalues. 19
Figure 2.7: Modules data exchange by global variables. 20
Figure 2.8: Modules data exchange by pointers. 21
Figure 2.9: Multi fileprogramlinking 22
Figure 2.10: Function structurein Fortran. 26
Figure 2.11: Subroutine structureinFortran. 27
Figure2.12: Usingcommonblocks.oon.. 29
Figure 3.1: Parameters passing between C and Fortranmodules 38
Figure 3.2: Sequenceof operations. e 43
Figure 3.3: Operational flowchart: Phasel. 45
Figure 3.4: Original FileSplitting i oon.. 46
Figure 3.5: Modules encapsulationprocess. 49

Figure 3.6:

Figure 3.7:

Figure 3.8:

Figure 4.1:

Figure 4.1:

Figure 4.2:

Figure 4.3:

Figure 4.5:

Figure 4.6:

Figure 4.7

Figure 4.8:

Modulescall process.t 51
Encapsulating F-Modules and renaming of emigrated variables.52
Compile each module separately and linkage. 54
Evaluation Environment e 67
Spliting Phase Information. 70
Phasell OUtputS.o 71
Compilation and Linking., 72
Extern struct and Common area statements. 74
Runoutput of Example2. o i 75
Preprocessor outputsfor Phasel. 77
Example3results. 77

List of Tables

Table 2.1 Basic datatypesin C with their modifiers. 8

Table2.2: Memory classesinC e 9

Table 2.3: Declaration KeywordsinFortran-77 24
Table 3.1: The Emigration Symbol Table(EST) oot 36
Table 3.2: DatatypesinCand Fortran 37
Table 3.3: Naming conventions of C and Fortran datatypes. 37
Table3.4: TheModulestable. i 44
Table 3.5: Examplel: Modulestable1. 56
Table 3.6: Examplel: Modulestable2. 57
Table 3.7: Examplel: Modulestable3. 57
Table 3.8: Examplel: TheEST table1. 59

Table 3.9: Examplel: TheEST table2. 60
Table 3.10: Example 1: Modulestable4. 61
Table 3.11: Example2: Modulestablel. 63

List of Programs

List 3.1: Common areaimplementation. 39
List 3.2: Variablesalignment i i 40
List 3.3: Cfunction calls Fortran subroutine 41

List 3.4: Fortran program calls a C function and a Fortran Subroutine . . .41

List 3.5: Mixed programexamplecC, a7
List 3.6: Examplel, passing parametersasarguments. 55
List3.7: Examplel.Co 56
List 3.8: addinteger.for i 57
List 3.0 OULPUL.C ..ot e 58
List 3.10: Examplel.Cc58
List 311 EXamplel.C . ..ot .59
List 3.12: addinteger.for 60
List 3.13: FinaleExamplel.Ct 61
List 3.14: Final addinteger.for i 61
List 315 EXample2.Cot .62
List 3.16: Addinteger.forinExample2, 62
List 3.17:output.cinExample2 i 63
List 3.18: EXample3.Co 64
List 3.19: Addintegerinexample3 64
List 4.1: Examplel Mixed-Languageprogram.c.couvv.... 70
List 4.2: Example2 Mixed-Languageprogram. 73
List 4.3: Encapsulated C and Fortran Modules. 74
List4.4: Example3Module. 76

VI

ADT

AEEE

CM

CS

EET

EST

FM

FS

oC

ubDT

List of Terms

Abstract Data Type

Augment Entry External Table

C Module

C Section

Entry External Table

Emigration Symbol Table

FORTRAN 77

FORTRAN 77 Module

FORTRAN 77 Section

Module

Origin C (main function)

Section

User Defined Type

VI

M.Sc. Thesis Acknowledgement

Acknowledgment

| would like to express my deep thanks to my research supervisor Dr. Musbah
Elahresh, who was behind the idea of thisresearch and gave generously of histime

and experience to complete this work.

My full and great thanks to the staff members in the Computer Science Department
especially Dr. Nasser El-Den Alzoghbi , the head of the department and Dr. Naji

Bazina , the M.Sc. Program coordinator for their support.

Finally | thank the people at the Higher Institute of Computer Technology for their

permission to use the Library and Computer Facilities during my work.

M.Sc Thesis Chapter One: Introduction

Chapter One: Introduction

Computer programming languages have been evolving since the computer put in
use and its applications were very rapidly and wide spread. Programming went in
different directions to satisfy the programmer’s requirements, the target domain, data
modeling and procedures implementations.

1.1 Preview

In the selection of a programming language that suits an application, programmers
wish if they could use the benefits of different programming languages.
Programmers endlessly debate the relative merits of their favorite programming
languages, sometimes with almost religious zeal. On a more academic level, computer
scientists search for ways to design programming languages that combine expressive
power with simplicity and efficiency. One of these ways is the development of
methodologies for mixing programming languages.

There are many ways for mixing programming languages, either by calling and
using procedures from other languages, or by converting programs from one language
to another, or by data variable emigration method that is introduced in this research.
Programming languages tend to focus on data types related to its domain application.
However, programming languages share in supporting some common used data types
like integers, real numbers, characters and others. But each language may have its
own support of certain datatypes specially the compound ones like records, ranges,

sets and others.

M.Sc Thesis Chapter One: Introduction

The selection of a programming language that is suitable for an application depends
on many factors. One of these factors is the data types supported by the language and
how well it models the application real-world data. This selection will not of course
be an absolute and compl ete. Always programmersthink if a data type from another
language could be exit in the on-hand programming language. They may goto a
solution to construct that datatype as a user define or an abstract type from the
existing data types supported by the language they use.

Another problem is that each programmer prefers to program with a certain language
and wants to get benefits and power from other programming languages. The question
iswhy not to program an application with different programming languages at the
same time to get the benefits of those languages in data modelling and manipulation
and to use previously developed routines written in a different language at the source
level or asobject library modules?

This research presents a new technique to mix C and FORTRAN 77, this technique

focuses on the datatypes supported by the two languages.
1.2 Previouswor k in mixing C and FORTRAN 77

Many methods have been developed to mix C and FORTRAN 77, since many
programmers who had worked with FORTRAN 77 have many useful code and they
gained agood experience with programming using FORTRAN 77 style for scientific
applications. C programming language is more popular in many applications
including the system design and the scientific ones. Those programmers face now a
problem how to use their old code written in FORTRAN 77 asthey want to get the
use of the C power. There exist some solutionsto follow:

1. Rewriting the same code using C language: by keeping the same application

M.Sc Thesis Chapter One: Introduction

analyze and design but change the coding phase. This solution is atedious, time
consuming, affordable and costly task. So this solution reduces programmer
productivity.

2. Converting the FORTRAN 77 code into C code using available conversion
programs. One of these ways is the f2c Converter developed by AT&T Bell
Laboratoriesis aprogram that trandates FORTRAN 77 into C or C++. f2c lets one
portably mix C and FORTRAN 77 and makes a large body of well-tested FORTRAN
77 source code available to C environments. This solution solves the problem
partially since the conversion is not done 100% absolutely and its weakness is the
handling of I/O statements. they are translated to callsto arun-time library which is
then required each time the program is linked. The produced C code version has to be
farther modified and adapted by the programmer. So still the programmer intervention
takes place which reduces its productivity [5].

3. The third available solution for the programmer isto throw away the FORTRAN
77 code and developing the same application from scratch by redeveloping all the
application development phases again using C language.

4. Calling FORTRAN 77 procedures from C program using Burkhard Burrow's
header file cfortran.h (version 2.8) to provide an interface between C and

FORTRAN 77 the problem is the programmer must use the correct libraries

at link time to enable the FORTRAN 77 routines to be used properly.

1.3 Objectives of the research

The main work of thisresearch isto introduce and present a methodology for
mixing two programming languages (C and FORTRAN 77) based on data variable
emigration between these two languages.

This research, as a dissertation of a M.Sc. degree, aims to satisfy the following

3

M.Sc Thesis Chapter One: Introduction

objectives:

1. Investigating various data types, data modelling techniques supported by the two
selected programming languages(C and FORTRAN 77) and their program
organization.

2. Providing the programmer with mixed language programming technigue to enable
him to program with two different languages at the same time and using previously
developed FORTRAN 77 programs with new developed C programs.

3. Freeing the programmer from selection of a programming language between C and
FORTRAN 77, so he can take the benefits from the two languages.

4. Increasing programmer productivity by eliminating the time required to create new
abstract and user defined data types and code reusing in two different programming
languages.

5. Introducing a new technique for data modelling and variable emigration between
program sections written in different programming languages.

6. Using old developed FORTRAN 77 programs with C programs at the source level

and as library object modules.
1.3 Thesis organization

The document is organized in five chapters as follow:
Introducing the research domain and the work to be done are given in this
introductory chapter one. The objectives of thiswork, previous work in mixing C and
FORTRAN 77, Problem description and the proposed solution are also briefly
highlighted here. Chapter two analyzes C language and FORTRAN 77 language data
types and program organization. Matching and mapping of those datatypes between
the two selected languages and program organization in both languages are the

expected outputs of this chapter. In chapter three the proposed data variable

M.Sc Thesis Chapter One: Introduction

emigration methodology is introduced and explained highlighting the requirements
needed from each language and the development environment. The fourth chapter
presents the results and evaluation process of the method. Evaluation of practical
work and results with demo prototype examples are presented in this chapter with
analysis and discussions of variables emigration between program sections written in
C and FORTRAN 77 languages. Finally a conclusion of what has been done in this
research and what is left for future work is set in the sixth chapter. A selection of

bibliographical resources supporting this work is attached at the end of this document.

M.Sc Thesis Chapter Two: C and FORTRAN Data and Programs

Chapter Two: C and FORTRAN Data and Programs

It iswell known that C and FORTRAN are both imperative general purpose
programming languages. However programmers using these two languages look for

bringing the past FORTRAN-77 programsto their present C code applications.
2.1. Introduction

Although C is a system programming language and FORTRAN-77 is ascientific
(mathematics) programming language, programmers tend to use both languages for
scientific applications exploiting their generality features. FORTRAN-77 isthe most
widely used programming language in the world for numerical applications a long time
ago. Both languages enables programmers to build sub programs as functions. However
FORTRAN-77 also enables the programmer to build sub programs as subroutines as
well. In all cases data is exchanged between the subprograms and the calling program
using the known parameters passing strategies. In C language data is passed to a function
by its value not by its name i.e call by value. Whereas in FORTRAN-77 the name of the
datais passed to afunction (or subroutine) e.i call by name. Another way to pass
parameters to afunction is call by reference. In this case an address of adataitemin
memory is passed to a function rather than the data value itself. This call by reference is
supported by C and is not supported by FORTRAN-77[3, 5].

This similarity in program organization in functions in both C and FORTRAN-77 opened
the door of interfacing programming modules written in these two languages. However
thistask is not directly established. Some problems have to be adapted to overcome the
differences between these two languages. These differences arise from two sources:. First

6

M.Sc Thesis Chapter Two: C and FORTRAN Data and Programs

is the data types supported by these two languages and second from the way of passing
data values between those modules.

The factors that encourage calling a FORTRAN-77 module from a C module are
summarized as follows:

- Both languages are of imperative programming class.

- Both languages enables building program modules as functions.

- Cdlling by name in FORTRAN-77 can be equivalent to call by referencein C.

- Both languages support equivalent basic data types.

- Memory allocation in global areais similarly organized for both languages.

- Both languages are compiled languages with a linkage stage.

- Both languages are strong typed languages with explicit declaration in both languages

with some distinct implicit declaration in FORTRAN 77[7, 16].
2.2 C Programs

Programs written in C language are usually organized as modules each iscalled a
function. Datais passed between these modules from their variables by values. This gave
C language the feature to be a modular programming language and generally called C
consists of functions and variables [15].
2.2.1DataTypesinC

C hasavery few datatypes. As ageneral purpose programming language, C has the
general fundamental basic and compound data types that can be used to build useful
applications.
2.2.1.1 Basic data types

The basic built-in primitive data types are integers and real single precision floating

point numbers, double-precision floating point numbers and character datatype. The

M.Sc Thesis Chapter Two: C and FORTRAN Data and Programs

compound data types supported by C language include arrays of different types (from the
mentioned basic datatypes or from compound data types as well) and structs and unions
as records data types (aunion is aform of struct where all elements share the same
address of the allocated memory space).
Variables declarations in C language are explicit and mandatory. A valid identifier
(variable name) is a sequence of one or more letters, digits or underscores character. The
identifier cannot match any keyword of the C language nor reserved keywords and
should begin by aletter. C is a case sensitive language where upper case letters are
different from lower case letters. Data binding with variables namesin C is a static
binding at compile time but the memory allocation for that data can be static at compile
time or dynamic at run time. Data binding and memory allocation for variablesis
established by a declaration statement. A general form of the C declaration statement is
given below [12]:

[memory class] [modifier] type variable-name [, variable name ...] [=data value] ;

There are five basic datatypesin C. They are given in Table 2.1 with their modifiers:

Table 2.1(a) Basic datatypesin C with their modifiers:

TYPE C KEYWORD
Character char
Integer int
Floating point float
Double floating point double
Vaueless void
Pointer *

M.Sc Thesis Chapter Two: C and FORTRAN Data and Programs

All of these except for void, may be modified by the following keywords:

Table 2.1(b) Basic datatypes in C with their modifiers:

TYPE MODIFIERS(pr efixes)

signed

unsigned

short

long

far and near for pointers

Theterm [memory class] isoptional and specifies how, when and where a memory space is
allocated for the declared variable(s) [15]. The following memory classes are supported by C as
shownin Table 2.2.

Table 2.2: Memory classesin C

Specifier Key word Memory class description
Auto (or none) automatic Spaceisallocated in stack area
register CPU registers Datavaueisin CPU register
extern External Datain stack fixed area
static Stack fixed area | A variableretainsits value if

local. A variable scope within
itsfile.

For afull understanding of memory class requirements, here is a good grasp of three distinct
but related concepts of its need:

duration of the valid value of adataitem.

scope of the declared variable.

Linkage and when binding and allocating take place.

9

M.Sc Thesis Chapter Two: C and FORTRAN Data and Programs

Storage class specifiers help to specify the type of storage used for data objects. Only one
storage class specifier is permitted in adeclaration. But if the storage class specifier in the
declaration statement is omitted, a default is taken as automeatic.

There are only two types of duration of objects. static duration and automatic duration.
Static duration means that the object has its storage allocated permanently as long asthe
program is under execution. An automatic memory class means that the storage is
allocated and freed as necessary an according where a variable is declared. Thusthe
duration of a data object depends on the storage class specifier used and the position
(block, module or file scope) of the declaration concerned [13].

The different types of scopes of a variable (and also for afunction) determine where in
the program spin a variable (or a function(can be seen and is alife so that it can be
accessed. Usually the scope of avariable starts from the point where it has been declared
until its lifetime isterminated. The scope of avariable (or afunction) could be one of
the following types.

- Function scope: the variable is visible within the function where it is declared from
the point of declaration up to end of the function module. Note that this type of the
scopeis not valid for functions since C language does not allow declaring a function
inside a function. Such variables are called local variable for that function.

File scope: avariable is declared as a global variable for program modules
(functions) and is visible only within the file where it is declared. Such global
variables are not visible in the next filesif exist. Usually those variables are
classified as static global variables.

Block scope: C language allow avariable to be declared within a block of statements.
A block of statements is a sequence of statements encapsulated between the symbols

“{*,‘}. It could be an iteration block or a selection block.

10

M.Sc Thesis Chapter Two: C and FORTRAN Data and Programs

Function prototype scope: It isthe same as global variables for functions
declarations. A function is visible from the point where its prototype is declared until
end of program. If a program consists of many files then a function scope can be
limited to itsfile by classifying its type as static.

Program scope: a variable is declared as a global, non static or asthe case of
extern. The variable isvisible to al the files constituting the program [9, 5].

Linkage is used to determine what makes the same name declared in different scopes
refer to the same data object. The rules of linkage process are a little complicated.
There are three different types of linkage that are described as follows:

1. A declaration outside a function (file scope) which contains the static storage
class specifier resultsin internal linkage for that name. (The Standard requires
that function declarations which contain static must be at file scope, outside any
block)

2. If adeclaration contains the extern storage class specifier, or isthe declaration of
afunction with no storage class specifier (or both), then: If there isalready a
visible declaration of that identifier with file scope, the resulting linkage isthe
same asthat of the visible declaration; otherwise the result is external linkage.

3. If afile scope declaration is neither the declaration of a function nor contains an
explicit storage class specifier, then the result is external linkage.

4. Any other form of a declaration results in no linkage.

2.2.1.2 Compound data types
The C language has two compound data types. records (structs and unions) and arrays.
Strings in C are arrays of characters, so they are not distinct compound data type. Follows

a brief description of these compound data types:

11

M.Sc Thesis Chapter Two: C and FORTRAN Data and Programs

Records. arecordsin Ciseither astruc or aunion. In both cases more than one dataitem
of different types are encapsulated in one data structure under one name. In arecord data
items are stuffed in memory one after the other and each occupies a memory space
according to itstype. The address of the record in memory is the address of itsfirst
element. Thus each element has its own address. Whereas in a union all elements share the
same address which is in turn the address of the union and its first element. Data in a union
isvalid only for the last accessed element since all elements overlap each other. The
following examples shows some records declaration in C:
sruct gun {
char name[50];
int magazinesize;
float calibre;
} rec;

Thisisarecord of three elements (fields) has the name rec. The first element is an array of type
string of 50 characters, the second element " magazinesize" of type integer and the third field

isnamed" calibre" of type float. Figure 2.1 shows how this record is alocated in memory.

address= 50 location for
thefield
"name”

rec

2 locations for
thefield
"magazinesize

4 |ocations for
thefield
"calibre"

Figure 2.1: Memory allocation
for arecord

12

M.Sc Thesis Chapter Two: C and FORTRAN Data and Programs

The next example is a union named anumber. The first element is an array of type short integer
and named "shortnumber”, the second element " longnumber" of type long integer and the third
field is named" floatnumber " of type double. Figure 2.2 shows how this union is allocated in
memory.
union number {

short shortnumber;

long longnumber;

double floathnumber;

} anumber;
Main Memory
A number A number

shortnumber | slocations
dlocated for the
union's d ements

longnumber

floatnumber

Figure 2.2: Memory allocation for aunion

Arrays. Inprinciple arraysin C are similar to those found in FORTRAN-77 that it isan
aggregate of elements of the same type under one name. In C language there isagreat relation
between arrays and pointers. A pointer to a datatype can be considered as an array of that type
and an array name is considered as a pointer to itsfirst element. The next satement shows how
arrays are declared in C:

Type Nameg size]

The array can be declared of any class and type and can be initialized with certain values. In C

13

M.Sc Thesis Chapter Two: C and FORTRAN Data and Programs

Array subscript sarts from 0 and end one less than the array size and can be of any dimension.
In C Strings are defined as arrays of characters . Global arrays and static arraysin C are static
arrays in which the following properties are valid:
- Range of subscripts is statically bound (at compile time).
- Storage allocations are static (initial program load time)
While local arrays that are not static are fixed stack-dynamic arrays for which the following
properties are valid:

- Subscript ranges are statically bound.
- Allocation is done at declaration time (on the stack) [9, 15].
Pointers. Pointer isafundamental and important part of C. If pointers are not used
properly then basically all the power and flexibility that C allows are lost. A pointer isa
special integer datatype. A variable declared as a pointer holds an integer data value of
the form of unsigned hexadecimal. That data value is interpreted as an address of a
memory location where the pointer points to. In other words a pointer holds an address of
another variable that is bound with data value in memory. It pointsto any variable type;
basic and compound; or a function or to another pointer or to nothing (void pointer). The
form to declare a pointer is given next:

int *p; //pointer declaration

int y=25; // normal integer declaration

p=&Yy; // pointer assignment
In the first statement p is a variable of type pointer that pointsto an integer value in
memory. In the third statement p holds the address of y, which means it now pointsto a

memory location where the value 25 is stored as shown in Figure 2.3.

14

M.Sc Thesis Chapter Two: C and FORTRAN Data and Programs

Main Memory

P L 00f8 - -

| ER N —

y 00f8 > o5 <-

~igure 2.3: Pointers and data values in memory

A pointer isinitialized as variables but usually this is done with great care and its displacement
is done with the size of the data type it pointsto. Two operators are associated with pointers. a
start ‘*’ isthe referencing operator and ‘&’ isthe dereferencing operator. The referencing
operator is used to declare a variable as a pointer in the declaration statement and if it is used
with a pointer elsewhere means the contents of the memory location where the pointer points
to. The dereferencing operator means address of avariable and is used with data variables to
get the address of a dataitem in memory [12, 14].
2.2.2 C Program Organization

A typical C program is organized as modules called functions. As aresult of atop down
design the whole program becomes a set of functions interacting by passing parameters
as data values.
2.2.2.1- Function modules

A module is an encapsulated subprogram that doses a certain task for the whole

program. To coordinate the operation of the whole program a main function is needed
and has the dedicated name main in C. This function is the entry point of the program

and from which other functions can be called. At least one function has to be called from

15

M.Sc Thesis Chapter Two: C and FORTRAN Data and Programs

the main function. The main function controls the program transfer sequence [10]. This

structure builds a modular program structure as given in Figure 2.4

Main Function

Data
Function A F i
unction B
Data, DataA Data, DataB
Function C

Figure 2.4: Modular Program structurein C

Each module as a C function has a standard organization as given in Figure 2.5. The

function head is its interface with the other modules in the program.

Function Head —» (TypefunctionName (argument list)

{

Function Body —» Statements

_ ! y,

Figure 2.5: Function module organization

The returned type specifies the type of the value that is returned by the function name.
Thistype might be of a basic datatype or a compound datatype or a pointer or nothing
(void). However for a compound data type it is better to return a pointer to that type to
avoid moving huge amount of data values between the program modules. This factor isa

very important for both memory space utilization and program performance.

16

M.Sc Thesis Chapter Two: C and FORTRAN Data and Programs

As the function header acts as an interface, it contains an identifier for the function as a
function name. This name follows the variable naming conventions in C programming
and has to be used by the other program modules (including the main function) to call
this function. The argument list between the bracketsis individual declarations of each
parameter. The variables names are treated as local variables for the function and they
receive the data values sent by the modules that cal this function.

Thetwo symbols‘{“and }' encapsulate the function body as a one programming units.
The first symbol works as the entry point to the function and the second as the normal
exit point. The function body contains the language statements starting with declaring
local variablesthat are used by that function.

If the function returns a value then the statement “ return variable name; ” is used at the exit
points. Otherwise the returned value from the function should be of type void and no
return statement is used.

Functions in C language exist in three categories. The first one is Standard Library
functions and the second one is System Library function whereas the third one isthe
user-defined functions. The first two categories are precompiled and ready to use
functions and classified under header files as object modules. The programmer is allowed
to call and use these functions by including their header files as required. Those functions
are of general benefits and common use routines.

The third category is left for the user to develop his own functions as C text program
encapsulated in a module following the described organization. However since a function
name istreated as a variable in C so that it has to be declared. Declaring a user-defined
function in C follows the following form:

Retur ned-type function name(parameters type);

17

M.Sc Thesis Chapter Two: C and FORTRAN Data and Programs

This declaration statement tells the followings:

- reserving a memory space for the function returned value and the parameters. This
gpace works as atemplate for the data values to be passed and returned from the function.
- binding that space with the function name.

- The statement determines the function scope and istreated a global variable. Note that
in Citisnot allowed to declare afunction inside a function to retain the modularity
principle and concept in programming. On the other hand any function should be
declared to make it visible to other program modules that follow [15, 17].
2.2.2.2 Parameters passing
Parameters passing between program modules can be established in three ways. The
selection of which way to use depends on how the called module interface is organized
and the amount of datato be passed to that module. Follows a brief description of these
three ways:

1. Passing the values through the function parameters using local variables: here the
number and type of the function parameters should agreein its head, call statement and
its declaration (prototype statement). The call statement sends the values of its variables
list (or constant values if exist) to the variables listed in the function head. Those
variables are treated as local variablesin the function. Thusthe variablesin the callee
modul e (the module that calls the function) do not lose their values even not changed and
retain their original states. When the function completes its process and if it returns a
value, the callee module should receive that value in alocal variable of atype the same as
the type of the function name.

Thistype of modules data exchange enables the program modules to exchange data
values without altering the local variables of each other. Also it provides a clear

independent and isolated interface between the modules. Modules using this way of data

18

M.Sc Thesis Chapter Two: C and FORTRAN Data and Programs

passing are independent from the callee modules and can be reused safely without the
program modification or regrictions and can be replaced by enhanced modules which
increases the program maintainability. The drawback of this strategy isthat if the amount
of data values to be passed is large enough this will result in duplication of memory space
required for the same data (in the callee module and in the called function is the same
copy of data values and occupies the same space size). Another drawback is that moving
huge data between program modules results in overhead time that increases program
execution time. The scope of local varialesis limited within the function and hence
cannot be accessed elsewhere. Figure 2.6 shows how modul es exchange data by passing

values.

Callee program

Function(parameters) Value(s)

Head parameters | cCalled module of
function the parameters

Figure 2.6: Modules data exchange by passing values

2. Passing the values through the heap area using global variables: This strategy uses
global areato pass the data values through global variables. The global variables are
declared outside program modules encapsulation. So that they are visible from the point
they are declared up to the end of the program unless they are classified as static where
their scopeis limited to the program modules within the file they are declared.

Since global variables are visible by the modules following their declaration, any module

can write data values into these variables and another module (even the same module)

19

M.Sc Thesis Chapter Two: C and FORTRAN Data and Programs

can read those values as shown in Figure 2.7. Thus data passing and returning is easy
especially for ahuge amount of data. This scheme speeds up program execution but it
consumes much memory from the global area. A module should be aware about the
names, type, size of the global variables and is not allowed to use the same names as

local variables.

Heap Area
Global variables
Callee program Called module

Figure 2.7: Modules data exchange by global variables

3. Passing a pointer to adatavalue: To utilize the memory space and increasing program
speed, pointersto data values are passed between program modules without moving the
dataitself. A module passes a pointer of the datato be passed showing its space and
location in memory as shows in Figure 2.8. The called module receives that pointer as a
parameter and uses it to dereference data values in the main memory where read or write
operation are performed. This scheme also isolates the modules and increase program
generality and reusability. Most of the library functions use this strategy for its
advantages. Care should be taken when dealing with pointers and type casting has to be
used for void pointers.

It isworthily to note that programmers tend to mix one strategy with another in their

applications.

20

M.Sc Thesis Chapter Two: C and FORTRAN Data and Programs

Memory

Callee program %’
Deref;raery'
Pqinters d Data

ata

y

Called module

Figure 2.8: Modules data exchanae by pointers

2.2.2.3 - M ulti file program

A source program written in C language can exist in one text file or distributed in many
files. A one file program accommodates its al variables (especially those declared in the
global area) and its all modules. So for global variables they retain their scopes from the
point they are declared up to the end of the program file. Local variables however have
no problem since they have scope and lifetime duration only inside their modules
(functions).

A multi file program have some problems with the global variable and functions modules
that are declared in one file and used in another file. Those variables and functions are
called external wherethey are externally defined of this file. Such variables and functions
should be of type extern memory class. The compiler then sets aside an unresolved
symbol whenever it founds areference to such avariable or afunction. Then the linker
resolves these symbols if they are found in other files object codes. Thisisavery
important concept in developing large programsin C as a project distributed among many
files or using other developed source modules kept in separate files. Each file can be
compiled independently producing object code file with unresolved symbols as shown in
figure 3.9. To produce an executable program code all object codes are linked to gather.

During the linkage process all missing symbols (those are defined as externals) are

21

M.Sc Thesis Chapter Two: C and FORTRAN Data and Programs

matched and resolved. If all symbols are resolved then a combined machine code is

produced otherwise a linking error is raised as shown in Figure 2.9.

EET AEET

Source T ¢

fle—>] Compiler Object code

: : linker Executable code file
X . I
Source — Object code o
. ——p Compiler Linking
file
1 Error
EET

Figure 2.9: Multi file program linking

2.3 FORTRAN-77 Programs

FORTRAN is agenera-purpose, procedural, imperative programming language that is
especially suited to numerical computations and scientific applications. Originally
developed by IBM in 1950s for scientific and engineering applications and given a name
FORTRAN as FORmula TRANSlation language. It was developed earlier for scientific
applications that require high precision arithmetic calculations. It has many versions and
FORTRAN-77 isthe widely used version before the recent evolution of computer
programming. Many applications are still exist that were written in FORTRAN-77 [14].
And that isthe reason for selecting it as a counterpart for C language in this research.
2.3.1 Data Typesin FORTRAN-77

Fortran-77, with its emphasis on numerical operations, has four datatypes just for

numbers. These are collectively known as the arithmetic datatypes. Arithmetic
expressions can include mixtures of datatypes and, in most cases, automatic type

conversion is provided. The arithmetic datatypes are integer, real, complex, double.

22

M.Sc Thesis Chapter Two: C and FORTRAN Data and Programs

Other datatypes rather than the arithmetic ones include logical and character datatype.
FORTRAN has an implicit data type mechanism, where the first character of avariable
name determines the data type of the variable. If the first character of the variable name
isone of the charactersl, J, K, L, M, or N, then the variable has an integer type unless it

is explicitly overridden with atype declaration statement. Variables beginning with other
characters rather than those mentioned are assumed to be of type real.

It isusually better to explicitly declare each variable name for the expected datatype that the
variable to contain with a type declaration statement at the beginning of a program unit. The

declaration statement is of the form:

<data type> <variable list>

where <data type> can be INTEGER, REAL, DOUBLE PRECISION, COMPLEX,
CHARACTER or LOGICAL and <variablelist> isthe name of one or more variables

separated by commas. For example the following declarations are valid:

INTEGER COUNT,DAY
REAL AMT,AVG,BAL
LOGICAL YESNO

CHARACTER MASK

FORTRAN variable name may be from one to six characterslong. A variable name may
consist of letters and numbers only, no special characters, and the first character must be
aletter. Fortran-77 is not case sensitive so lower case and upper case letters are the same.
However programmers tended to use capital |etters only for readability purposes. There
are no redrictions to use the language keywords as variables names. Table 2.3 showsthe

declaration keywords used by FORTRAN-77:

23

M.Sc Thesis Chapter Two: C and FORTRAN Data and Programs

Table 2.3: Declaration Keywords in Fortran-77

TYPE FORTRAN KEYWORD
characters CHARACTER
single precison complex number COMPLEX

double precision floating point number DOUBLE PRECISION

integer INTEGER
boolean (true or false) LOGICAL
single precision floating point number REAL

In FORTRAN-77 data binding is static. That means all variables are bound to data values

at compile time and the data type remains unchanged along the program span. So it isa
strong typed language as well. FORTRAN-77 only allows static storage allocation, so that
variable allocation isonly static at compile time.

FORTRAN-77 distinguishes between global and local variables. Local variables are declared
with a program unit (function or subroutine), while global variables are declared outside
program unit. The scope of alocal variable is limited to the subroutine or function in which it
appears and declared; so that it is not visible elsewhere in the program. Semantically, the
lifetime of alocal FORTRAN variable encompasses a single execution of the variable's
subroutine [10].

The CHARACTER type declares a variable that can hold an ASCII character. Only one
character is allowed between single quotes. While the LOGICAL type declarers a variable to

be of a Boolean value True or False. Other types acts as in C language.

24

M.Sc Thesis Chapter Two: C and FORTRAN Data and Programs

2.3.2 Basic vs. compound data types

The basic data types in FORTRAN include integer, real, double precision real numbers,
character, and logical data. While The compound data types in FORTRAN are complex,
arrays, strings and unions (called equivalence). Complex numbers, stored as an ordered
pair of real numbers. The first number represents the real part while the second number
represents the imaginary part of the complex number.
The DIMENSION statement is used to tell the compiler how many elements will be
contained in an array and must appear before any executable statement in the program as

it isthe case with all declaration statements. The format to declare an array is.

DIMENSION <v>(<s>) |, <v>(<S>), ... <v>(<S>)

Where <v> isthe name of the array variable and <s> is the maximum number of
elements that will be stored in the array. FORTRAN allows for the use of arrays with up
to three dimensions, so the entry for <s> may specify from one to three values, separated
by commes.

If an array variable is explicitly typed with a REAL, INTEGER, DOUBLE PRECISION,
COMPLEX, or LOGICAL statement, it is possible to specify the characteristics of the
array on the type statement. It isthen not necessary to include aDIMENSION statement
defining the array. For example, to declare an array of type DOUBLE PRECISION to
hold 50 values it could be as follows:

DOUBLE PRECI SION AVG(50)

The lower bound of each dimension isone unlessit is declared otherwise. Thereis no

[imit on the upper bound provided it is not less than the lower bound. Arrays of

25

M.Sc Thesis Chapter Two: C and FORTRAN Data and Programs

characters form strings, for example an array of 30 characters called LINE would be
declared as follows:

CHARACTER LINE(30)

Unions or EQUIVALENCE in FORTRAN are like records that their elements share the
same address and declared by the following statement :
EQUIVALENCE (A, B, C, D), (X(1), Y(1))

This statement allows all listed variables to share the same memory address. Those listed
variables could be of different types and are not related to each other. So each variable
had to be declared indecently. This means that there is no encapsulation of the listed
variable under one name. Each variable is accessed directly by its own name. However
the validity of the datain this shared memory space is for the last written element [10].
2.3.3 Program Structure and parameters passing in FORTRAN-77

FORTRAN-77 is not amodular programming language. However it enables the
programmer to build subprograms as functions or subroutines each called a program unit.
2.3.3.1 Program units
Functions and subroutines have to be in the same file where the whole program is

located. A function has the structure shown in Figure 2.10.

(Function fname (argument list) A
Declaration statements
fname: returned value
return

_____ J

Figure 2.10: Function structurein Fortran

The function subprogram begins with the keyword function and ends with the keyword

end. Only the names of the received parameters are used within the function head. Inside

26

M.Sc Thesis Chapter Two: C and FORTRAN Data and Programs

the function those variables are declared as necessary. The keyword return is used
whenever avalue has to be returned. Thus somewhere in the function body the name of
the function is assigned the value to be returned to the callee program unit. So the
function in Fortran may receive many values but it returns only one by its name.

A subroutine in FORTRAN-77 does not return a value through its name. However it
receives alist of variables namesto work on. Figure 2.11 shows the structure of the

subroutines in FORTRAN-77:

(Subroutine sname (arqument list))
Declaration statements
end

\)

Figure 2.11: Subroutine structurein Fortran

It is best to think of the subroutine as the more general form of procedure; the function
should be regarded as a special case for use when it's only need to return asingle value to
the calling unit.

2.3.3.2 Information Transfer

Information can be transferred to and from an external procedure (function or subroutine)

by one of two methods:

1- Asan argument list: Thisisthe preferred method of interfacing asit is the most
flexible and modular. Information is sent / received by its variables namesin the
calling statement, program unit argument list and the return statement.

2- Common Blocks: A common block isalist of variables of any type storedina
named area which may be accessed directly in more than one program unit (the

original program ,functions, subroutines). Common blocks are mainly used to

27

M.Sc Thesis Chapter Two: C and FORTRAN Data and Programs

transfer information from one program unit to another globally. They can be used as
an alternative approach to argument list transfers or in addition to them. Thisis
equivalent to C global variables. A COMMON block is declared together with any
other declarative statements just with a sub-program (function or a subroutine):
PROGRAM EXAMPLE
REAL X

DIMENSION X(100)

COMMON X

END

SUBROUTINE PASS1
REAL Y

DIMENSION Y(100)

COMMON Y

END
This has the effect of allowing the data stored in array X in the main program segment to
beused asarray Y in the subroutine. This particular form of the COMMON is known as
‘blank’ COMMON, since the common block has not been given a name. A name might
be assigned to acommon block, so that many common blocks can distinguish easily:

COMMON /A/ X(100)
COMMON /XRAY/ Y(20),B(30),Z

COMMON /HEAT/ A(25)

28

M.Sc Thesis Chapter Two: C and FORTRAN Data and Programs

Using common blocks, the communication between program units is effected through the
sequence of the variables: a section of memory is set asde so that more than one program

unit accesses it. Figure 2.12 shows how this is done by the following example:—

Main Memory

Modulel

A DATA
Module2 B g

Common /DATA/ A,B

Figure 2.12: Using common blocks

The fact that these had different descriptions in the calling routine is of no significance to
Fortran. Programmers must be careful with common blocks, especially when they note
that anything in a named common block may become undefined when the block exited or
leave a sub-program using END or RETURN, unless the SAVE declaration is used.
Essentially, thiswould only apply to the case where areturn to aroutine which does not

have the named common block in it [17, 10].
2.4 Differences and Similarities between C and FORTRAN- 77

There are many similarities and differences between C and FORTRAN-77 in the
supported datatypes and program organization. These are summarized in the next
subsections.

2.4.1 Similarities

Both languages support functions as encapsulated one program unit that returnsa single
value through its name. While some Fortran implementations permit a function to be
referenced by a CALL statement, it is decidedly nonportable to do so, and isaviolation

29

M.Sc Thesis Chapter Two: C and FORTRAN Data and Programs

of international standards for Fortran. So that a function is referenced similarly by its
nameasin C.
Good programming practice declares non-value-returning functions to be of type void in
C, and value-returning ones to be of any non- void scalar type. Both languages support
nearly the same basic data types and the commonly used compound data types that
include arrays and structs (only unions and Complex in Fortran-77).
Both languages are strongly typed languages although Fortran-77 has implicit declaration
depends on the first letter of avariables. And in both languages binding and allocation is
done statically at compile-time (C has also dynamic allocation at run time).
Both languages have the strategy to pass parameters to functions as arguments or global
area variables. C uses call by value and by reference which is equivaent to call by name
in Fortran-77 to pass parameters to functions as arguments. The global areain C is
similar to the common area in Fortran-77. Fortran-77 provides COMMON blocks for
shared global memory via COMMON statement.
Parameters passing between program functions is nearly similar in both languges,
passing by name in Fortran is equivalent to passing by pointer in C, global variablesin C
isequivalent to common blocks in Fortran. The calling processis similar in both
languages.
2.4.2 Differences

Fortran-77 stores arrays in row order, with the first subscript increasing most rapidly. C
stores arrays in column order with the last subscript increasing most rapidly.
Fortran-77 array indexing starts at one, while C indexing starts at zero. An N-by-N matrix
isdeclared in Fortran as type name A(N,N), and indexed from 1 to N, while a
corresponding C array is declared as type name A[N][N] and indexing starts from O to N-

1 in both dimensions.

30

M.Sc Thesis Chapter Two: C and FORTRAN Data and Programs

Fortran-77 has SUBROUTINE as a program unit, which does not return a value, and
must be invoked by a CALL statement, and FUNCTION, which returns a scalar value,
and must be invoked by function-like notation in an expression. Whereas C does not have
subroutines but supports functions as Fortran-77.

Fortran-77 functions can return only scalar values, not arrays or any compound data tyoes
whereas C does return any datatype including arrays, structs, pointers and so on [11].
Calling by value is not supported by Fortran and calling by name is not supported by C.

2.5 Summary:

the outcome of this chapter compares C and FORTRAN-77 data types, binding,
allocation and program organization. The following points concluding this chapter:
In both languages, any variable of any type should be declared before use in order
to allocate the required memory space and binding it with data value.
In C language any function should be declared to make it visible to other

program modules.
Passing parameters through the call statement as arguments is done in C by value
and by reference and in Fortran-77 is done by name. However calling by name is
equivalent to calling by reference.
Passing parameters through global variablesin C is equivalent to passing
parameters through common blocks between functions in Fortran-77.
In C afunction returns a value of any type through the function name whereas in
Fortran-77 only scalar data value is returned by the function name. Soin a
fortran-77 function should exist an assignment statement to assign that value to

the function name.

31

M.Sc Thesis Chapter Two: C and FORTRAN Data and Programs

To mix these two languages, the similarities proper have to be utilized and the
differences must be defined and studied for solutions.

Management of dynamically-allocated heap memory is similar in both languages
and has to be utilized for proposed solution.

Even though each language has its syntax and naming convention for variables it

is clear that the mapping between the two languages is not a hard task.

32

M.Sc. Thesis Chapter Three: Data Variables Emigration Method

Chapter Three: Data Variables Emigration Method

The proposed method for mixed-languages programming in this research enables the
programmer to develop programs using C and FORTRAN 77 77languages together. A
program has to be organized in sections and modules each written in one of these two
languages.
A solution of reusing previous FORTRAN 77 code with C code isto develop a method that
enables the programmer to write and mix his programs in both languages (C and FORTRAN
77) at the same time. The method should be transparent from the programmer so that he feels
smooth as if he were writing his code using one language. By this solution the programmer
can:

- Develop programs in both C and FORTRAN 77 77languages.

- Reusing previously developed code written in C or FORTRAN 77 either exist in source
format or object format aslibrary modules.

- Getting a language benefits of data presentation and procedures performance that not
exist in the other language.

- The same methodology can be used for other languages by following the same concepts of
the proposed method.

- Code conversion/ data types mapping are transparent from the user so that increasing his
productivity.
3.1 Method assumptions

The method is based on a proposed technique in this research that enables data variables to

emigrate between different program sections and modules. Here we deal with FORTRAN 77

33

M.Sc. Thesis Chapter Three: Data Variables Emigration Method

77code lines inserted within a C program and calling a FORTRAN 77 77 module fromaC
function. To simplify the development of the proposed method, the following assumptions
are taken into account:

1- The original mixed-language programis a C program that uses FORTRAN 77 77code (F-
code). The F-code is either embedded code lines within the C code or separate FORTRAN 77
77function.

2. The C code is organized as a main module (main function) that contains C code and
FORTRAN 77 code sections. These C and FORTRAN 77 code sections needn’t bein a
specific order.

3. Cfunction (user defined function code) is called from C program sections and FORTRAN
77 functions are called from both C or FORTRAN 77 77 sections or modules.

4- A FORTRAN 77 77can access and use variables from a C section and vice versa.

5- A pre-processor hasto be developed to partition the original mixed-language program into
separated C and FORTRAN 77 77 modules according to the above assumptions. The pre-
processor also has to define the way to exchange data between the C modules and

FORTRAN 77 functions,
3.2 The pre-processor structure and functionality

By processing we mean compiling and then linking program modules to generate an
executable code. By pre-processing we mean preparing the source code written in a mixed-
language for that compilation and linking process.

The pre-processor is the entry point for the proposed mixed-languages programming
methodology. It is a software (has been developed here) that takesthe original program
written in C and FORTRAN 77 77languages and does the following tasks:

1. Identifiesthe program sections: i.ewhich section contains a C code and which section

contains a FORTRAN 77 code. The pre-processor utilizes the layout organization of the

34

M.Sc. Thesis Chapter Three: Data Variables Emigration Method

mixed-language program proposed by this method. The source program contains
preprocessing directives that are described as follows:

%OC name: indicates the starting section of a mixed-language program. Asit was
mentioned, the first section isa C main function. This symbol also identifies the proposed
methodology programming style. The name is a tag name for the mixed-language program
entry point. Thisentry point is the C main function.

%CS name: astart of C-code lines section, this section contains code lineswritten in C
language that follow FORTRAN 77 code lines. The name identifies this code section name.
The pre-processor adds the extension .c for this name during partition process.

% FS name: astarting point of a FORTRAN 77-code section. The name will be extended
by the extension .for by the pre-processor and assigned to the FORTRAN 77 77module
generated during preprocess. The end of any section is detected by the starting tag for the
next section.

%CM name: here starts a C function module. It is a user defined function and has to
follow the rules used by C programming organization. The name will be given to the module
that is produced during the program preprocessing after adding the extension .ctoit.

%FM name: herestartsa FORTRAN 77 77function module. It is a user defined function
and has to follow the rules used by FORTRAN 77 77programming organization. The name
will be given to the module that is produced during the program preprocessing after adding
the extension .for to it.

$ var-lig $: list with variables names that emigrate from the previous section to the next
code section. These variables are declared and defined in C-code section and used in F-code
section including any returned value from a FORTRAN 77 module.

%END thisdirective indicates the end of the source program written in the mixed-

language programming method. By detecting this tag the pre-processor terminates its first

35

M.Sc. Thesis Chapter Three: Data Variables Emigration Method

phase (program splitting into C and FORTRAN 77 modules) and enters the next phase for
emigrated variables locating and mapping as it will be described in next.
In al cases the given name follows the naming conventions used by the system under use.

2. Preparing a table with the emigrated variables. The preprocessor uses the emigration

statement to define the emigrated variables types and names and the way how they emigrated.
More specific format of the emigration statement is given below:
$tag, type varname, type varname, . . . ,<type varname $
Tag:

> The variables are passed as arguments in the call statement.

A The variables are passed as global parameters.

I' No variable is passed.

< Thevariableisareturned value.

The preprocessor builds an Emigration Symbol Table (EST). Thistable list all emigrated
variables with their names and the module name for variables name mapping between C and
FORTRAN 77. Thistable has the form shown next:

Table 3.1: The Emigration Symbol Table (EST)

Variable-name/type | Sourcemodule | Modified name/type | Degtination module

3. Building the required satements. The preproessor builds the required statements to

encapsul ate each module, declaring of each module, calling each module and parameters
passing. It also builds the required statements to introduce the external modules.

4. Preparing all generated modules for_ compilation and linking: The prepocessor passes

each module to its compiler for compilation.

36

M.Sc. Thesis Chapter Three: Data Variables Emigration Method

3.3 Mapping between C and FORTRAN 77 variables

Both languages support the most basic data types and other compound data types. Data
types differ in size, type declaration convention and variables naming conventions as given in
Table 3.2.

The naming conventions of data variables in C differ slightly from those in FORTRAN 77.
Any variable that is declared in a C-code section and emigrated to a F-code section has to be
mapped into the corresponding type and name convention used by the FORTRAN 77

language as given in the Table 3.3.

Table3.2: Datatypesin C and Table 3.3: Naming conventions of C and

Fortran Fortran data tvoes

C FORTRAN 77 | [Type C FORTRAN 77
short int integer*2 Basic* | A A
long int or int integer Array A[7] A(7)
int iabc[3][2]; integer iabc(2,3) | | Record | Struct{ ...} R; | none
int logical Pointer | *p, &p none
or unsigned char | logical*1 complex | Struct { ouble, dr, di
float real double
double real*8 *integer, character, float, double
struct{float r, i;} | complex
struct{ double dr, | double complex
di;}
char abc[6]; character*6 abc
#define parameter
PARAMETER
value

The emigrated variables from a C-code section to a F-code section are treated as parameters passed
between a C-Function and an F-Function. The call processisfor C call by reference and for

FORTRAN 77 call by name. There are three ways how parameters are passed between C function and

37

M.Sc. Thesis Chapter Three: Data Variables Emigration Method

FORTRAN 77 function as illustrated by figure 4.1:

First: A C code callsaFORTRAN 77 module and passes the parameters as arguments in the call
statement. Here variables are emigrated from a C function to a FORTRAN 77 function and the
returned value is emigrated back to the C function through the FORTRAN 77 function name as shown

inFigure 3.1 (a).

C Module FORTRAN Module

Parameters

Variable=FunctionName(p —

arameters lig); Returnvalues |

(a)

| Global Areal common block |

N P S Parameters C FORTRAN Module
C Module FORTRAN Module

14
_ Call with no
Functi on(i/ Function(); parameters

(b) (©

Figure3.1: Parameters passing between C and Fortran modules
a asarguments
b: as global variables
C: No parameters

Second: A C code callsa FORTRAN 77 module and passes the parameters as global
variables. Variables are emigrated externally from the function call. They are placed by the C
function in aglobal area where they become accessible by a FORTRAN 77 module in a
common block area as shown in figure 4.1 (b).

Third: A C code callsaFORTRAN 77 module without passing any parameters. The

38

M.Sc. Thesis Chapter Three: Data Variables Emigration Method

FORTRAN 77 module works as standalone and does its task independently form the C
module.

These three ways of parameters passing can be mixed as needed. But to simplify the
evaluation of the proposed method, each way is implemented and tested seperatly.

When using a common area to transfer the values of the emigrated variables some notes have
to be considered:

1. FORTRAN 77 common block and global C struct of same name are equivalent.

2. Never use un-named common blocks. A common block must have a name. So that it
become known for both modules.

3. Reference variables within the common area in same order, same type and with the same
name for both C and FORTRAN 77 modules. So that valid data is obtained.

4. Character datais aligned on word boundaries and other types have to be considered as
shownin Tables3.1, 3.2.

The following program segment List 3.1 illustrates how to build the common area for data

values transfer between FORTRAN 77 and C and its naming conventions.

C: FORTRAN 77:
extern struct{ DOUBLE PRECISION X
double x; INTEGERA, B, C
inta, b, c; COMMON/ABC/ X, A, B, C
} abc_;

List 3.1: Common area implementation

Note that the use of extern requires that the common block be referenced first by FORTRAN
77. 1f it isreferenced first by C then drop the extern as in this research. The extern statement
states that it istrying to reference memory areawhich has already been set aside el sewhere by
another program module reside in another file.

Byte alignment can be a source of data corruption if memory boundaries between FORTRAN

39

M.Sc. Thesis Chapter Three: Data Variables Emigration Method

77 and C are different. Each language may also align data structure differently. So it must
preserve the alignment of memory between the C "struct”" and FORTRAN 77 "common
block™" by ordering the variablesin the exact same order and exactly matching the size of
each variable [19]. It is best to order the variables from the largest word size down to the
smallest starting with "double" followed by "float" and "int". Bool and byte aligned data

should be listed last as it is shown in the following program segment List 3.2:

C: FORTRAN 77:

extern struct{ INTEGER A, B, C
int & DOUBLE PRECISION D, E, F
double d; LOGICAL*1 FLAG
unsigned char flag; COMMON/ABC/ A, D, FLAG, B, E,F
int b;
double g

} abc_;

List 3.2: Variables alignment

3.4 M odules calling process

The emigrated variables from a C-code section to a F-code section are treated as
parameters passed between a C-Function and a F-Function using the described strategies to
transfer the values of these variables. The entry point names for some FORTRAN 77
compilers have an underscore appended to the name. Thisis also true for common

block/structure names and hasto be considered in the calling process as shown below:

C FORTRAN 77

subra (...) | cal subrA(...)

40

M.Sc. Thesis Chapter Three: Data Variables Emigration Method

All arguments in FORTRAN 77 are passed by reference and not by value. Thus C must pass

function arguments as pointersto dereference those val ues as shown next:

C FORTRAN 77

subra_(int *i, float *x) | Call subra(i,x)

The following program segment List 3.3 showsa C program callingaFORTRAN 77

subroutine using passing the parameters as arguments and has the following form:

testC.c

testF.for

#include <iostream>

using namespace std;

extern void fortfunc_(int *ii, float *ff);

main()

{
intii=5;
float ff=5.5;
fortfunc_(&ii, & ff);

return O;

subroutine for tfunc(ii,ff)
integer ii
real*4 ff
write(6,100) i, ff

100 format('ii=',i2," ff="f6.3)
return

end

List 3.3: C function calls FORTRAN 77 subroutine

While the following program segment List 3.4 shows a FORTRAN 77 program calling aC

function by passing the parameters as global variables through the common area:

testF.for

testC.c

program test

integer i, jj, kk
common/ijk/ ii, jj, kk
real*8 ff

character*32 cc

#include <stdio.h>

extern struct

{
int ii, jj, kk;

41

M.Sc. Thesis Chapter Three: Data Variables Emigration Method

=2 ik
ii=3
kk =4 int doubleijk_(char *cc, int I)
ff = 9.0567 {
cc = 'Example of a character string' printf("From doublel K: %s\n",cc);
write(6,10) ii, ff ijk_.ii *=2;
10 format('ii=",i2,' ff=",f10.4) ijk_.jj *=2;
call abc(ii) ijk_.kk *=2;
write(6,20) i return(l);
20 format(ii=",i2) }

write(6,30) i, jj, kk
call doublel JK(cc)
write(6,30) i, jj, kk
30 format(lii=",i2,'jj=",i2, 'kk=",i2)
write(6, 40) cc
40 format(a32)
sop
end
subroutine abc(jj)
i=ij*2
return

end

List 3.4: FORTRAN 77 program calls a C function and aFORTRAN 77 Subroutine

3.5 The operational flowchart

The sequence of the operations followed by the proposed method as a software
development environment is described first by the diagram shown in Figure 3.2 and the

emphasis of each phase isindividually given later.

The source program is a mixed language source program, prepared by any text editor in

the form organized in the way described earlier. C and FORTRAN 77 sections and modules

42

M.Sc. Thesis Chapter Three: Data Variables Emigration Method

should begin with the required directives. All emigrated variables have to be encapsulated in
the emigration statement. The mixed-language program is saved in a file under a name with
the extension .mix. Preprocessing of this files goes into four phases to obtain an executable

code. These phases are described next.

%0C

%FM

FORTRﬂ:'EET
Compiler
.obj I_
— .obj

i
1
:
1
: 7Y
1
1
1
1
1
1

1 1
1 1
1 1
1 1
1 1
1 1
‘ :
L | j :
%C ' Preprocessor C : c :
| ommon EXE
S .FOR EET .
%EM ' \ Linker !
: C — EET ! i
1 | 1
%CM i : B ¥ :
! | C Compiler i N !
| . L | ob —n .
1 1 1! 1
1 1 1! 1
! 1 : : 1

Modules Table
%END
Source Phasel & II: Phaselll: PhaselV:
program .mix preprocessing Compiling Linking

Figure 3.2: Sequence of operations

Phase | Splitting the mixed-language program into C and FORTRAN 77 separated modules:
The pre-processor distinguishes the program sections and modules from the directives
statements inserted at the beginning of each section and module. Code lines located between
two directive statements are considered as a module of the type specified in the first directive
statement. Each module is cut and saved to a separate file with the name given in the modules
tag identifier.

The pre-processor also builds a table with the modules names and type (C or FORTRAN 77
as appeared in the sequence of the original program) that to be used by next phase. The
following operational flowchart in Figure 3.3 describes this process.

The Modules Table is needed to save information about the splited modules. It contains three

columns as shown in Table 3.2. Each entry in thistable saves the name given to the separated

43

M.Sc. Thesis Chapter Three: Data Variables Emigration Method

module (it is taken from the second token from the directive statement). The file type shows
whether the module contains C code or FORTRAN 77 code. The third field indicates whether
the code is F-code lines embedded within C-code or a ssandalone module of C or F code. The

table is then used by the next phases to access these modules for afarther preprocessing.

Table 3.4: The Modules table

File name Type: .Cl.for | Section/module

FORTRAN 77 code existsin the original program in two forms: F-code lines embedded into
C-code module or a separate F-module (function/subroutine) that is called from a F-Module.
For the first form the F-code lines have to be organized and encapsulated asa FORTRAN 77
function. Thisresults in adding a C call to this module in the place of the F-code lines and
adding the required extern struct/common area constructs to the generated F-module at the
right places according to the strategy to be used to pass the parameters section that follow.
For the second form C calls F-module. The pre-processor has to add the extern

struct/common area constructs in the right places in each module.

The above description of phase | results in that no need to separate the C-code linesin a
separate modules since they are treated as a continuation in their C-module. So we have an
original program that is written in a mixed-programming languages (C and FORTRAN 77)
with the following properties.

(@) The overall view of the program isa C program with a main function as an entry point of
program execution control flow and other functions (modules) as given in Figure 3.4-a

(b) F-code lines (as a continuous block) are inserted within a C-program (in the main

function)

44

M.Sc. Thesis Chapter Three: Data Variables Emigration Method

Open source file nam.mix

Found? No
Yes
Read first lineinto Tokenl holds the tag
Tokenl and Token2 and Token2 holdsthe
name
v
No
Is
Tokenl="%QC"
y

File Format

Errar

Source File
not found

Create afile with the name
[Token2].c/for and saveits
info inthe Modulestable

ol v
o 4

Read next line Stop

No
Yes

Close current file and
Token2=name

Save lineinto
file

v

!

@

Figure 3.3: Operational flowchart: Phase |

<

M.Sc. Thesis

Chapter Three: Data Variables Emigration Method

%0C name
Main C function

Main C function
C-code lines

C-code lines

> F- Module
%FS name C calls F-module
F-code lines also
call F-module

(generated)

C-code lines

%CS name
C-code lines C-Module

%CM name
C-Module

A

%FM name F- Module
F-module

(original)

a Original Program b: Split Program

Figure 3.4: Original File Splitting

(c) F-modules are appended to the C program and called from C sections or FORTRAN 77
sections as shown in figure 3.4-b above.

Phase |1: Scanning each module file and generating the Emigration Symbol Table (EST)e:
F-code sections use C-variables with C naming conventions declared at the start of a C-
module are treated as F-modules (functions or subroutines). So the emigrated variables have
to be sent as parameters to that generated F-module using one of the described strategies.
The F-code section may also contain F-variables declared at the start of this section. So they
are considered as local variables within the generated module. C-code sections that use
FORTRAN 77 variables are beyond the scope of this research for now and left as future

work.

46

M.Sc. Thesis Chapter Three: Data Variables Emigration Method

Therefore C-code sections are treated as continuation code lines of the last C-code lines. Only
the returned value from an F-module is handled in the C section.

To complete the job the following three questions have to be answered:

1. How to collect the emigrated variables ?

2. How to map the variables naming conventions and declarations?

3. How to encapsulate each module and add therequired extern struct/common area
constructs.

Now we answer the first question with the following description:

- Case of C-variables are used by F-code section: a directive statement for the preprocesor
is introduced to accommodate all C-variablesthat areto be used by a F-code section and
declared in aC-code. The directive statement takesthe following form:

$tag,” type name, typename,type name, returned type name $
where type is the type of the emigrated variable and name is the name of the variable in C
naming convention. All variables are separated by commas.

An example of this might be as follows:

% OC EXAMPLE
main() {
inta
char b;
float c;
scanf(* %d %c %f” & a, &b, &c);
% FS sectionl
$ >, int a,char b, float ¢, < void $
DO 101=15
c=(c*a)/b
10 continue
% CS section2
printf(* c=%f\n"c);
}
% END
List 3.5: Mixed program example

47

M.Sc. Thesis Chapter Three: Data Variables Emigration Method

Thus the pre-processor hasto collect all variables listed in this directive statement and treats
them as emigrated variables. These variables are then saved in the emigration Symbol Table
(EST) for each generated F-module. This set of variables isthen converted to its
corresponding types and names used in F-module which answer the second question. The
converted and the original names are then used to construct the call statement parameters list
or the common area space in both C- Module and F-Module. For F-module call statement,
call normally and the module specifies$... $the set of the received variables.

To build the common area constructs and to convert naming conventions the method uses
this EST table and the process is done automatically by the method preprocessor. The
FORTRAN 77 code needs then to be scanned and each emigrated variable is replaced by its
corresponding renamed variable from the EST table as described in the section of Mapping
between C and FORTRAN 77 variables earlier. What we have now? On one hand the Module
Table, EST table and on the other hand the program modules (C and FORTRAN 77
subprograms) and FORTRAN 77 and C sections each in a separate file under its specified
name. The process to build a main program in C that calls FORTRAN 77 modules and C
modules and collecting the emigrated variables, is done as follows:

1. At each place of a FORTRAN 77 section in the main module place acall statement to
FORTRAN 77 function, the parameters are given in the emigration statement with the way
how to pass them and the returned value.

2. Each FORTRAN 77 module then calls FORTRAN 77 module(s) normally.

3. Original C modules and F modules are kept asthey are and called normally.

4. C sections are returned to their original place with no added information.

The following flowchart illustrates this process:

48

M.Sc. Thesis Chapter Three: Data Variables Emigration Method

START

Take first module with its name
(name.c) as the main C program

;l

This loop goes until end-of-Modules Table

Take next module with its
name from Module Table

'

Is C Type ?

NO (F —Type here)

Is a section?

No (itis a complete C function)

A 4

Append it to the C program file and
discard its file and from M. Table

Leave it as it is with its name in
the new Modules table

Isa Section?

No Itis a complete F function/subroutine

A4

Append a call, add extern to C Leave it as it is with its name
main as describe in next flowchart in the new Modules table

l

Encapsulate, add common declarations
to F module as describe in next flowchart

!

new modules table

Add the module in the

A 4

Figure 3.5: Modules encapsula on process

Mapping the emigrated variables and encapsulating each module by adding the

common/extern struct constructs and the other statements.

49

M.Sc. Thesis Chapter Three: Data Variables Emigration Method

FORTRAN 77 modules are treated as external entities by C modules. This process goesin
the following steps.
a inserting the call statement in the calling C program:
a1 the call statement and function prototype.
a2 the extern struct statement if parameters are to be passed globally
The next flowchart in figure 4.6 shows the sequence to be followed to insert the call
statement and the extern/ struct statement:
b: Heading the F-module:
b-1 the function head and Variables list
b-2 the common statement and variables declaration
b-3 the return and end statements.

Asaresult from that sequence we get each module ready to be compiled.

50

M.Sc. Thesis

Chapter Three: Data Variables Emigration Method

> = Arauments

Inserting call to F-module
and adding struct to C main

v

Preparethe cal statement
name ();

A4

Investigate how the
parameters are emigrated

v

?
first tag in the
directive:

1= no parameters passing

y

" = global

A4

A 4

Get alist of variables
and add & to each one

y

Prepare extern statement
with list of emigrated
variables

Insert the modified list of variables
into the call statement

A\ 4

Prepare areturn list with type <

A
Assign emigrated variables

v

Insert an empty
call statement

Insert the function call statement

v

Retrieve emigrated variables

|A

<«

«

A 4

Prepare the prototype statement
extern type name_();

!

Put each statement in its
correct place

Figure 3.6: Modules call process

51

M.Sc. Thesis Chapter Three: Data Variables Emigration Method

(START)

build the module head as
follows:
name(emigrated variables list)

v

Declare emigrated variables using EST
table with Fortran naming Data is exchanged via the common area or

common/name/emigrated variables list | Passed as parameters via call statements
use EST table to do that.

v

Append to the module
return statement if necessary
and end statement

A
(stop)

Figure 3.7: Encapsulating F-modules and renaming of emigrated variables

Phasel11: Compile each module separately using its used complier into object code.

Now each module is compiled separately to produce an object code file with the same name.
Save the produced object code files using the names in the Module Table. The produced
object files should be of the same format. Any syntax errors are detected here by the used
language compiler and to be corrected by the used external editor and have to be
preprocessed again. If no errors are detected then link EET table (External Entry Table) is

generated for each module. Now all program modules are ready to be linked together.

52

M.Sc. Thesis Chapter Three: Data Variables Emigration Method

Phase 1V: Linking and Final executable code generation. If all modules were compiled
successfully then all object files are passed to a common linker to produce the executable
code. The common linker has to match all undefined foreign symbolsin all EET tables. It
generates an augmented Entry External table AEET. From thistable all symbols are resolved.
If any symbol is not resolved then alinker error is prompted and the error has to be corrected
at the source level. Thus the program has to be preprocessed again.

If no errors are detected then an executable code with the name name.exe is produced and

can be run. Figure 3.8 summarize the whole process.

53

M.Sc. Thesis Chapter Three: Data Variables Emigration Method

(START)

<
<

Edit a mixed-language program
and save it in a file under the
name: name.mix

v

Preprocess the name.mix file
and generate: C main, F-modules
c-modules and Modules Table

.

Using the Modules table: select
next module
Yes
Is it F-
module ?
A 4
e th ul - Compile the module using
Comp_l e the module ”S'”9 c FORTRAN compiler and save the
compiler and save the object .
object code as name.o
code as name.o
1 v
v
Yes
Errors?
More
modules ?
Link all .o files using a common
linker , produce name.exe file
No Any Yes
Errors? v

STOP Report the errors

v

Figure 3.8: Compile each module separately and linking

54

M.Sc. Thesis Chapter Three: Data Variables Emigration Method

3.6 Illustration Examples

Three examples are presented here to illustrate the idea and following the given process.
The first example uses FORTRAN 77 code lines inserted in the main C function that passthe
parameters as arguments. The second example use global areato pass the parameters while
example3 doesn't pass any parameters.
Examplel: C program uses F-Code section that finds the 10™ sum of two integers. The C
program reads the two integers then it outputs the result. The whole program in mixed-

language format is as follows:

% OC Examplel
#include <stdio.h>
main() {
int a, b, sum;
printf(“ Enter two integers. “);
scanf(“%d %d” ,&a, &b);
% FS AddI nteger
$>,int a, int b, <int sum$
INTEGER r
sum=0
dor=1, 10
sum=sunt+(a + b)
10 continue
% CS output
printf(* For a=%d and b=%d “, a, b):
printf(“ the 10" sumis %d\n”, sum);
}
% END

List 3.6: Examplel, passing parameters as arguments

55

M.Sc. Thesis Chapter Three: Data Variables Emigration Method

Now let us preprocess this program and build the required tables and modules.

Phase | : Splitting the mixed-language program into C and FORTRAN 77 separated modules.
The given program consists of three sections. The first section isthe C main

function. The second section is F-code lines and the third section is C-code lines. Thereisa

list with three variables that are emigrated from the C section to a F-code section as

arguments. The program ends with END directive statements indicating no more code lines

exist.

By following the steps given by the flowchart in Phase | we can build the followings:

the program file is found under the name given by the editor .mix: so we can proceed.

Token1="%0C" Token2="Examplel” : the file format is OK.

A fileis now created with the name Examplel.c and the Modules table looks as follows:

Table 3.5: Examplel: Modules table 1.

FileName | Type | Category

Examplel.c | C M

All lines until next "%" are copied directly to Examplel.c File since they are C code lines.
The File contents will look like this:
Examplel.c

#include <stdio.h>
main() {
int a, b, sum;
printf(“ Enter two integers. “);
scanf(“%d %d” ,&a, &b);

List 3.7: Examplel.c

56

M.Sc. Thesis Chapter Three: Data Variables Emigration Method

Now Examplel.C is closed and Tokenl="%FS’ and Token2="addInteger” so create afile
with the name addl nteger.for and insert it in the Modules Table.

Now transfer al lines until "% "to this file. So the file addinteger.for will contain the
following code here with the modules table as shown below:

Table 3.6: Examplel: Modules table 2

File Name Type | Category

Example.c C M

addinteger.for | F S

addl nteger.for

$>, int a int b,< int sum$
INTEGER r
sum=0
do10r=1, 10
sum=sunt+(a + b)

10 continue

List 3.8: addInteger.for

The same sequence is repeated for %CS output until %6END. We get another file contains C
code lines with name output.c as shown with the updated modules table:

Table 3.7: Examplel: Modules table 3:

File Name Type | Category

Example.c C M
addinteger.for | F S
Output.c C S

57

M.Sc. Thesis Chapter Three: Data Variables Emigration Method

output.c

printf(* For a=%d and b=%d “, a, b):
printf(* the 10" sumis %d\n”, sum);

List 3.9: output.c

So we completed Phase | since we detect the %END directive. The result is threefiles:
Examplel.c addinteger.for ooutput.c and ther information inthe Modules Table.
Note the emigration statement exist at the beginning of the FORTRAN 77 file.

Phasell: generating the Emigration Symbol Table (EST table) and building the required
statements.
The main C programis Examplel.c asthefirst entry from Module Table and it has no

EST table.

#include <stdio.h>
main() {
int a, b, sum;
printf(“ Enter two integers. “);
scanf(“%d %d” ,&a, &b);

List 3.10: Examplel.c

- Next entry from the Module Table is a F-section named addI nteger.for and has an

EST table as shown next:

58

M.Sc. Thesis Chapter Three: Data Variables Emigration Method

Table 3.8: Examplel: The EST table 1:

Name Type Source Destination | Modelled name
a int C F a
b int C F b
sum int C F sum

Building the required statements:
call statement: sum = addinteger (&a, &b) ;

druct satement: not needed since the parameters are passed as argument
extern statement: extern int addinteher _(int *,int *) ;
The emigration statement is full indicating that the parameters are passed as argumentsto the
FORTRAN 77 module. So no need for struct statement and the other two statements are

inserted in the C module. Now Examplel.c file looks like this:

Examplel.c

extern int addinteger_(int *, int *);
#include <stdio.h>
main() {
int & b, sum;
printf(“ Enter two integers: “);
scanf(“%d %d” ,&a, &b);
sum=addInteger (&a, &b) ;

List 3.11: Examplel.c

59

M.Sc. Thesis Chapter Three: Data Variables Emigration Method

FORTRAN 77 module encapsulation and adding common statement: Following the process
from the flowchart we get the F module encapsulated as follows:
Encapsulation: use EST table to add declarations and naming conventions for the emigrated

variables.

addInteger.for

Function addl nteger(a, b)
INTEGER a

INTEGER b

INTEGER sum

INTEGER r
sum=0
do 10r=1, 10
sum=sum+(a + b)
10 continue
addInteger=sum

return
End

List 3.12: addinteger.for

- EST table containsthe following variables:

Table 3.9: Examplel: The EST table 2:

Variable-name/type | Sourcemodule | Modified name/type | Degtination module
inta Examplel.c | INTEGER a addinteger.for
intb Examplel.c | INTEGER b addinteger.for
int sum Examplel.c | INTEGER sum addinteger.for

60

M.Sc. Thesis Chapter Three: Data Variables Emigration Method

- Next entry from Module table shows the next module is a C-code section. So append it to
the last C-module file with no added information. Delete its file and entry from the Modules
table. The resultsis as follows:

Table 3.10: Example 1: Modules table 4:

File Name Type | Category
Examplel.c C M
addinteger.for | F M
Examplel.c addInteger.for
extern int addinteger_(int *, int *); Function addInteger(a, b)
#include <stdio.h> INTEGER a
main() { INTEGER b
int a, b, sum;
. . INTEGER sum
printf(“ Enter two integers: “);
INTEGER r
scanf(“%d %d”,&a, &b);
sum=0
sum=addInteger (& a, &b);
dol0r=1, 10

printf(“ For a=%d and b=%d “, a, b):
printf(“ the 10" sumis %d\n”, sum):;

sum=sum+(a + b)

10 continue
} addinteger=sum
return
end
List 3.13: Finale Examplel.c List 3.14: Final addInteger.for

PhaseI11: now to compile the modules with the names listed in the Modules Table. The pre-
processor sands each module to its language compiler:

Examplel.c & C compiler & Examplel.o

61

M.Sc. Thesis Chapter Three: Data Variables Emigration Method

addInteger.for & F77 compiler & addInteger.o
Phase 1V: now the pre-processor send all the object code modules (Examplel.o,
addinteger.o) to the common linker and get an executable code :

Examplel.o, addInteger.o & common linker & Examplel.exe

Phase V: run the program, Examplel and check its output !!!
Example2: The same example as above but here the C program calls F-module that
performs the addition and a C-Module for outputting the result. Data exchange is done
through the common area. C and FORTRAN 77 direct function call does not need much
preprocessing since passing the parameters is done through the global area

The preprocessing of the mixed language file generates the following files:

Example2.c Addinteger.for
extern void addInteger _(void); Integer function AddInteger()
struct{ int & int b, int sum;} abc _; INTEGER a
int a,b,sum; INTEGER b
#include <stdio.h> INTEGER sum
void output(void); Common/abc/ a, b, sum
main() {
INTEGER r
printf(“ Enter two integers: “);
sum=0
scanf(“%d %d” & a, &b);
. do 10 r=1, 10
abc _.a=g;
abc_.b=b; sum=sum+(a + b)
Addinteger_(); 10 continue
a=abc _.g; return
b=abc _.b; end
sum=abc_.sum;
output();
}
List 3.16: Addinteger.for in
List 3.15: Example2.c Example2

62

M.Sc. Thesis Chapter Three: Data Variables Emigration Method

Output.c

void output()
{

printf(* For a=%d
and b=%d “, a, b):
printf(“ the 10"
sumis %d\n”, sum);
}
List 4.17: output.cin
The emigration statement for such acall inthe original .mix file is as follows:
$,inta, intb, int sum, <void$ wherethe symbol ‘' meansthese variables are
emigrated globally through the common area between the C module and the FORTRAN 77

function. There is no returned variables and that is why " < void" is added.

The Modules table during generating these files looks as follows:

Table 3.11: Example2: Modules table 1:

File Name Type | Category

Example.c C M
addintger.for | F M
Output.c C M

63

M.Sc. Thesis Chapter Three: Data Variables Emigration Method

Example 3: A C program callsa FORTRAN 77 function without passing any parameters.
The FORTRAN 77 function does itstask independently by computing the sum and
printing it on the screen. Here only the FORTRAN 77 function has to be declared as

extern entity for the C program and called using C convention:

addinteger.for
example3.C
integer function AddInteger()

extern void addlInteger _(void); INTEGER r
#include <stdio.h> INTEGER a
main() { INTEGER b

printf(“Now Calling INTEGER sun
addInteger “); sum=0

AddInteger _(); read(*,*) a,b
} do 10 r=1, 10
sum=sum+(a + b)

List 3.18: Example3.c 10 continue

wite(*,5) sum
5 format(‘ sum=",sum)
return
end
List 3.19: Addinteger in example3

The variable emigration statement for such a call in the original .mix programis as
follows. $!$ thismeansan empty emigration statement!. No variables are
emigrated.

All these steps will be shown practically in the next chapter with the evaluation results.

64

M.Sc. Thesis Chapter Three: Data Variables Emigration Method

3.7 Summary

As aresult from this chapter the following points are concluded:

Mixing C and FORTRAN 77 77as aone source file or separated source filesis
possible by the proposed method.
Variables from a C module are emigrated to a FORTRAN 77 module in three ways:
as arguments parameters in the call statement, as global parametersthrough a
common area and no passing at all.

FORTRAN 77 modules are treated as external entities to C modules.
A pre-processor isrequired to implement this method. The pre-processor partitions a
mixed-language program written in both languages (C and FORTRAN 77) into
separated modules.
The preprocessor inserts an emigration statement before code sections written in
FORTRAN 77. This statements identifies the variables to be emigrated and the way
how they emigrate.
The method utilizes two main features in C and FORTRAN 77 languages. These are
C language call by reference isthe same as FORTRAN 77 call by name and that
extern struct in C language is equivalent to a named common block statement in
FORTRAN 77.
The method works practically if and only if two system programs exist with required
conditions:

1. The compiler for each language produces an object code with standard format as

the other compiler does.

65

M.Sc. Thesis Chapter Three: Data Variables Emigration Method

2. There exists a common linker that links the produced object codes for both
languages and produces an executable machine code.

The three examples were given only for illustration purpose and will be shown in the
next chapter asthey appear in practice with real output results and evaluation. There
may be some modifications for practical requirements.

Embedded FORTRAN 77 sections are treated as functions. Real separated functions/

subroutines are treated as modules.

66

M.Sc. Thesis Chapter Four: Evaluation and Results

Chapter Four: Evaluation and Results

Here are the results obtained from this research. A prototype of a software
development environment is developed to evaluate the proposed method. Three
program examples are presented here for results evaluation and discussions.
4.1 Evaluation Environment

A software package was developed in C language to be used as an evaluation
environment of this research and as implementation of the proposed method. The
package consists of a Turbo C editor, apre-processor, C compiler , FORTRAN 77

compiler and acommon linker as shown in Figure 4.1.

F modules

r----" - """F"""""""- - | - T T —l
: C compiler |
| EST Table U |
| MinGW |
: I GCC |_> Common :
! Mixed lan es Linker :
. IX U
Turbo Editor : guag F compiler |
TC.exe > preprocessor L, . GNU :
} GNU G77 |
| 7\ :
| 4 |
|| ModulesTable }
: C modules exefile :
|
: |
| |
| |
|

Figure 4.1: Evaluation Environment

67

M.Sc. Thesis Chapter Four: Evaluation and Results

The Turbo C editor is used just to enter the source program written in mixed
languages C and FORTRAN 77 as atext file and saving it into afile with a given
name

and extension .mix. The package callsthis editor internally without the user
intervention. The source program can be edited and its text can be processed to get a
clean source program written in C and FORTRAN 77. The mixed language program
should exist in one text file.

A pre-processor that implements the proposed method was developed in C language
asgiven in appendix A. It was built in modules interacting between each other to
perform the following tasks:

1. A main module that coordinates all tasks of the software development environment.
It callsthe Turbo C editor and then the preprocessing functions, the languages
compilers and the common linker.

2. Implementing the following preprocessoing functions:

- File Splitting: this function splits the source program written in a mixed languages
into C and FORTRAN 77 program Modules. This function utilizes the "%" directive
statements. Each separated module is saved into afile with the name given in the
directive statement and with extension of its module type. It generates modules table
and EST table.

- Encapsulating C and FORTRAN 77 Modules: this function prepares the required
extern, call and common statements and inserts them in the proper placesin the
spitted C and FORTRAN 77 modules. It also encapsulate each FORTRAN 77 module
as afunction by adding the required head and variables names mapping and

declaration.

68

M.Sc. Thesis Chapter Four: Evaluation and Results

3. The package uses open source MinGW C comiler to translate C modules into
object codes A minimized GNU Compilers Collection for windows), it isaversion
developed for researches, obtained from GNU Open Source development project
group [23], . GNU FORTRAN 77 compiler for FORTRAN 77 modules translation.
A common linker from GNU project is used to link all object modules.

The common linker used here is an Open Source GNU version adapted for this
application. The original linker is obtained from GNU Open Source development
project group [22]. Thislinker collects all EET tables and builds acommon AEET
table to resolve the symbols represent the emigrated variables between all modules.
Any linking errors are signalled here and if no errorsthen afinal executable code is
generated under the name of the original program tag identifier with the extension

.exe.
4.2 Examplesand results

The evaluation environment as it does its main functions it should display the
necessary information like the number and the names of generated files, modules
table, EST table ... etc. Three examples are presented here to show the results
obtained and the capability of the proposed method for programming in a mixed-
language environment using C and FORTRAN 77.

Example 1:

Even though the task of the listed programin List 4.1 is not significant but it is
taken as an image from the evaluation environment and has the following objectives:
1. How amixed language program is organized.

2. How to use and where to place the variables emigration statement.

3. How FORTRAN 77 code lines are embedded into a C module.

69

M.Sc. Thesis Chapter Four: Evaluation and Results

4. How to passthe variables in the variables emigration statement to the FORTRAN

77 module as arguments.

BN C\Users\musbah\DOCUME~1\OLD-CO~1\OLDPOR~1\TC\TC.EXE e 5

#0C Exanplel
Hinclude <stdio.h>
main{> {
int a, b. sum;
printf("Enter two integers: ''>;
scanf("xd xd".&a.&bl;
<F5 AddInteger
| . int b. < int sum %
IMTEGER »
sum=H
de »=1, 18
sum=sum+{a+h>
18 continue
= CS output
printf{"For a=xd and h=xd4d'. a.bd>;
}printf(" the 18th sum is xdwn".sum);

< END

ar

List 4.1: Examplel Mixed-Language program
The result from the preprocessing of this mixed-language program is given in figure
4.1 next. The Modules table has three entries since the original program has three
sections and splited into three files. The first file contains the original C program
section and the second file contains the FORTRAN 77 section and the third file holds

the rest of the C program.

]

EH C\Users\musbah\DOCUME-~1\0LD-CO~1\OLDPOR~INTC\TC.EXE o () [

Splitting Phase Information:

3 files: Examplel.c AddInteger._for output.c
Modules Table:

Examplel.c © H

AddInteger F S

output G 5

Examplel _c_

Figure 4.1: Spliting Phase Information

70

M.Sc. Thesis Chapter Four: Evaluation and Results

In Figure 4.2 the outputs from the evaluation environment for the second phase are
shown. Here the extern statement is build and listed where the FORTRAN 77 module
is encapsulated as shown by adding the required haed , variables mapping and
declaration. Also the two secition of the C files are combined to form one complete C
function. A call statement to the FORTRAN 77 module with the addresses of the

emigrated variables is inserted.

Bl C\Users\musbah\DOCUME~1\OLD-CO~ 1\OLDPOR~I\TC\TC.EXE =]

Phaze II outputs:
Function Declaration: extern int AddInteger_<int *. int);
Function Call: sum=AddInteger_<&a, &hd>;

Function Head: functiion AddInteger<a, bh>
Variahles: integer a
integer b
AddInteger=sum
return
end
Modules encapsulation:
C MHodule:
extern int AddInteger_ C(int *=*.int >3
flinclude <stdio.h>
main(> {
int a. b, sum;
printf ("Enter two integers: ">;
scanf {"zd »d".&a.&bd;
sum=AddInteger_<C&a.&hd;

printf{"For a=xd and b=xd". a.bh};
}printf(" the 18th sum i=s xd~n".sumd;

Figure 4.2: Phase Il outputs

Now for the third phase, each module is passed to its corresponding compiler the
response of each compiler is shown in Figure 4.3.The modules table information is
used to select which compiler to use for which module. At this stage two object code

files are obtained as denoted in the figure.

71

M.Sc. Thesis Chapter Four: Evaluation and Results

EE C\Users\musbah\DOCUME~1401LD-CO~ 1\OLDPOR ~ 1NTCATC.EXE o 5 S
ow Compilation phase:

Examplel .c : gce —¢c examplel .c

Mo errors

fddInteger_.for: f21ibh Addintegewr
Mo errors

Linking: g?? —ffree —otestl.exe examlel.o AddInteger.o
Mo Erors

Huning the executahle code: testl

Enter» two entegers : 2 &
for a=2 and b=5 the 18th sum is 25

ezssion Completed

Figure 4.3: Compilation and Linking

Figure 4.3 also shows the common linker output. The two object code files are linked
and one executable file is generated. The package prompts the user whether to run this
executable program or not. Here the program is run and the results are as shown.
Exactly what is expected from tracing the original program.

Example 2:

The same original mixed language program is used here but the parameters are
emigrated through the global area. As shown inList 4.2, the variables emigration
statement showsthat the listed variables are to be passed globally to the next
FORTRAN 77 code section. The program till retains its original format. Therefore
this example has the same objective and i addition it illustrated the second strategy of

parameters emigration.

72

M.Sc. Thesis Chapter Four: Evaluation and Results

¢+ Command Prompt - tc
Edit Search Run

EXAMPLE2.C

[
»0GC Examplel

main¢>» {
int a,. h, sum;
printf
scanf ¢ S&a, &bh>;

#F5 AddInteger

“,. int a, int b, int sum, < void

INTEGER »

sum=@A

do 18 »=1, 18

output<d;

B

»CH output

void tputC> {
printf ¢ sa.hd;
printf{ S3UMm);

«END

e 1:42

Fi Help F2 Save

F3 Open Alt-F? Compile F9? Make Fi#d Henu

List 4.2: Example2 Mixed-Language program

Figure 4.4 presents the same outputs as for examplel and we get three files. The
interesting output for this example is the construction of the extern struct for the C
module and the common statement for the FORTRAN 77 module as presented in
Figure 4.5. The call statement uses no parameters since all parameters are passed

between the extern struct and the common area.

73

M.Sc. Thesis Chapter Four: Evaluation and Results

¢+ Command Prompt - tc

Function Declaration: extren void AddInteger<void);
void output<void?;
Function Call: AddInteger{};
output{r;

Function Head: function AddInteger()
commonsabesa.b,.sum
Variahles: integer a
integer b
integer sum
return
end
Modules encapsulation:
IC Module:
extern void AddIntegerCvoidl};

woid output{uodid);
extern structi{int a. int b. int sum;} abc_;
finclude<stdio.h>
mainc» {
int a, b, sum;
printf ("Enter two integewrs: ');
scanf {"xdxd" . &a . &bh);
abc_.a=a;
abc_.b=h;
AddInteger<);
a=abc_.as
b=ahc_.h;
sum=abhc__sum;
output{>;

Figure 4.5: Extern struct and Common area statements
In the second phase, the extern struct is added to the C module with a definition of the
FORTRAN 77 module as an external entity. For the FORTRAN 77 module the
common statement with the required parameters is added at the begging of the
FORTRAN 77 module. List 4.3 presents the complete encapsulated C and FORTRAN

77 modules.

BE Ch\Usersimusbah\DOCUME~1\OLD-CO~1\0LDPOR~1\TC\TC.EXE e |-

integer a

integer b

integer sum
commonsabcs a.b.sum
function AddInteger < >
INTEGER »

sum=8

do »=1. 18
sum=sum+{a+h>

18 continue

FELUEN
end

void output{> £
printf{"fir a=xd and b=xd ".a.h>;

printf{"the 18th sum is xd~n".sum’;
¥

List 4.3: Encapsulated C and FORTRAN 77 Modules

74

M.Sc. Thesis Chapter Four: Evaluation and Results

The output from running the generated executable code is given in Figure 4.6. The

same results are obtained which verifies the capability of the proposed method.

B C:\Users\musbah\DOCUME~1\OLD-CO~1\OLDPOR~ INTC\TC.EXE || 5
Mow Compilation phase:
: gce —c examplel.c
I gocc —0 output.c

AddInteger.for: f21ib Addlinteger

g?? —ffree —otest2_exe examlel .o Addinteger.o ouput.o

[RBuning the executable code: test2

Enter two entegers = 2 §
for a=2 and b=5 the 18th sum iz 25

Session Completed

Figure 4.6: Run output of Example2
Example3
Here the third way to pass the parametersistesed. The C module call the FORTRAN
77 module with its name without passing any parameters. The FORTRAN 77 module
does its task independently. Thus the mixed-language source program, it has just a
call. Here still a variable emigration statement and the processor directives are
needed. The emigration statement is empty indicating no parameters are passed. List
4.4 presents the original program showing two parts but in one file: the first part has
the origina program in the mixed-language format, while the second part gives the

standalone FORTRAN 77 function.

75

M.Sc. Thesis Chapter Four

: Evaluation and Results

By ChUsers\musbah\DOCUME~\OLD-CO~INOLDPOR~INTCATC EXE
“h>

b, sum;
printf("Enter two integers: "2;
scanf {"xd xd".&a. &bd;
ZFR$HddInteger
1
AddInteger<l;
<GS output
printf{"For a=<d and h=xd". a.h>;
printf{" the 18th sum iz *ds~n".sumd;

< FM
function AddInteger <>
INTEGER r».a.h.zum
sum=§
read(*.%*) a.h
do »=1,. 18
sum=sum+Ca+h}
18 continue
write(*.52 sum
5 format{" sum=’_.sum?
return
end
< END_

|D|@—E&—

List 4.4: Example3 Modules

Since the emigration statement is empty, the pre-processor treats the FORTRAN 77

module as an external function to the C module. Thusit just moves the FORTRAN 77

module into a separate file as it is without modification. In the C module the pre-

processor adds the extern declaration without any parameters for the FORTRAN 77

module. The call statement remains as its and the pre-processor directives are

removed.

By preprocessing this mixed-language program the outputs shown in Figure 4.7 are

obtained.

76

M.Sc. Thesis Chapter Four: Evaluation and Results

B C:\Users\musbah\DOCUME~1\OLD-CO~1\OLDPOR~1\TCATC.EXE ESHEERT X

Bplitting Phase Information:
3 filez: Examplel.c AddInteger.for output .c
Modules Table:
Examplel.c C H
AddInteger F M
output C B
Examplel .c
finclude {stdio.h>

h. sum;
printf {"Enter two integewrs: "};
scanf{"xd xd".&a.&b>;

AddInteger.for

function AddInteger(>

INTEGER ».a.bh.zum

sum=8

do »=1,. 18

sum=sun+{a+h}
18 continue
output.c

printf{"For a=xd and h=xd". a.h>;
printf{" the 18th sum iz xdwn".sum?;
£

Figure 4.7: Preprocessor outputs for Phase |

The interpretation of the given output is the same as for the previous examples. When
both files are compiled and linked an executable file is obtained and it produced the
shown results in Figure 4.8 when it was executed. The same results are obtained as in

the previous examples.

&EE C\Users\musbah\DOCUME~140LD-CO~ 1\OLDPOR~ 1\TC\TC.EXE ||
ow Compilation phase:

Examplel.c : gcc —c examplel.c

No errors

AddInteger.for: f21ib AddInteger

Mo errors

g?? —ffree —otestd_exe examlel.o AddInteger.o

Runing the executable code: test3

Enter two entegers = 2 5
sum= 25

Session Completed

Figure 4.8: Example3 results

77

M.Sc. Thesis Chapter Four: Evaluation and Results

4.3 Method perfor mance

By analyzing the results obtained from the evaluation environment using the three
examples presented in section 4.2, the following points summarizes the capabilities of
the proposed method and the performance of its pre-processor:

1. Using the evaluation environment a programmer can develop a mixed-language
programs written in C and FORTRAN 77 freely.

2. The outputs for the three strategies of parameters emigration isthe same, but their
usage depends on the programmer and the program organization.

3. Three ways of variables emigration can be used and mixed. These are : passing
parameters as arguments in the call statement, passing parameters as global arguments
through a common area and no parameters are passed where a FORTRAN 77

function does its task independently.

4. In practice these three options of parameters passing may be mixed or selecting one
type for a certain module and other type for another module. They are presented here

separately to show how they are used and how the environment implements them.

4.4 Applications of the method

Mixed-Languages Programming is a field of challenge today. Many researches and
many methods are developed for this purpose. They share the ideato get the benefits
from different programming languages for an application and to overcome the gape of
programs conversions from one language to another. The method presented in this
research is one of the attempts in this direction of programming due to the fact that C

and FORTRAN 77 arewidely used past and present languages.

78

M.Sc. Thesis Chapter Four: Evaluation and Results

The applications of such a mixed-language programming methodology are
summarized as follows:

1. The method enables programmers to get use of the data types and procedures from
more than one language.

2. In critical applications N-version programming is often used to get more reliable
outputs. By this methodology more reliable results are obtained from one program.
The critical section may be written in the language that provides reliable procedures
and accurate datatypesthat best modelsthe real world data.

3. Parallel processing of different sections written in different programming languages
and can be executed on different hardware platforms.

4. For educational processit gives a sense of the differences and similarities between
different programming languages and how data is represented in memory and passed
between program modules.

5. Verification and acceptance test modules can be built using this method since this
method can embed the testing module where ever it is necessary.

6. Normal programmers do not know how to mix C and FORTRAN 77 . So by this
method simply a programmer develops his programs using C and FORTRAN 77 as if
he were programming with a homogeneous programming language that supports both
C and FORTRAN 77 datatypes. The programming goes smoothly with no need from
the programmer to know how to map these data types or how to organize the program
different modules. Thereby this method increase programmer productivity and
enhances software reliability and efficiency.

7. Old developed FORTRAN 77 modules are reused at the source and object code

levels using this method.

79

M.Sc. Thesis Chapter Four: Evaluation and Results

8. This method can be used for both Modules interfacing (interacting modules) and
mixed modules.

9. By mixing C and FORTRAN 77 based on data variable emigration, a new direction
in programming has been produced. The software development environment built in
this research is simple, effective and has the benefit of original languages compilers

so it did not change any language's syntax.

80

M.Sc. Thesis Chapter Five: Conclusion and Future Work

Chapter Five: Conclusion and Future Work

As the end of thiswork, some conclusions and remarks on this research are presented. The
conclusions present what have been achieved and the results obtained from this research.
Whereas the future work presents what have been left for further investigation and

implementation.

5.1 Conclusion

In this research, The focus was on the data types supported by C and Fortran-77
programming languages since they are selected as the platform of thisresearch. Both
languages support almost similar data types with different sizes, binding and memory
alocation. Data exchange between such languages led to investigate their program
organization. The outcome was there is an intersection in this direction. Both languages use
functions as sub programs. Also both languages can pass parameters by references and names
which is equivalent. On the other hand passing the parameters between program modules
globally is equivalent in both languages for extern struct in C and common block statement in
Fortran-77.

As aresault from the above investigation a method was proposed and developed to mix C and
Fortran-77 programming in one source program. The method solves many problems of
programs conversions and interfacing problems between the two selected languages. It was
described fully with demonstration examples. A peprocessor was developed with special
directives to implement this method. To keep the programmer comfortable with the proposed
method, the normal language syntax is unchanged and the languages normal compilers are

used. A common linker isimported and used from the GNU group.

81

M.Sc. Thesis Chapter Five: Conclusion and Future Work

A complete evaluation environment is integrated that includes a Turbo C editor, the pre-
processor, the languages compilers and the common linker. The environment was then used
to evaluate the capabilities of the proposed method. Three examples each using a different
strategy for variables emigration as parameters passing were developed and tested on this
environment. The results obtained verified the performance and proofed the capabilities of

the proposed method.

5.2 Future Work

Since any work can not be completely established, here are some future work activities to
enhance or to add some capabilities for the proposed method:
1. More data types including compound and user defined have to be added especially those

compound ones.

2. Considering Fortran Subroutines as modules. Thisrequires a little addition in the pre-
processor to build the required head and considering the subroutine organization and calling
requirements.

3. Making the environment to call C functions from Fortran modules. The same ideaiisto be
applied and the same added programming constructs are to be used reversely.

4. The same approach can be followed to add more languages in the environment.

82

10.

11.

References

-" A Fortran-to-C Converter” S I. FeldmanDavid M. Gay, Mark W. Maimone and
N. L. Schryer issued May 16, 1990, Bell Communications Research,

" Data representation for mixed-language program development” Niklas
Gustafsson, John Hamby- Issue date: May 23, 2000- Assignee: Instantations, Inc.
"C -Programming Tutorial"" Alfred Park 2003 - Georgia Institute of Technology.
"cfortran.h , An interface between C and Fortran 77" - Experiments Division
Programming Group, European Synchrotron Radiation Facility.

"Concepts of Programming Languages" Robert W. Sebesta 4™ Edition (2006)
Publisher: Addison-Wesley.

"Constant valuesin mixed language programming environments' Lawrence R.
Schwarcz - Issue date: Nov 8, 2005- -Assignee: Hewlett-Packard Development
Company, L.P.

"FORTRAN 77 Language Fundamentalsand style" Walter S. Brainerd, Charles
H. Goldberg and Jonathan L. Gross - (July 1985)- Heinle & Heinle Pub.

GNU Open Source The Free Software Foundation's software.

The minimal GNU list for windows, GNU Open Source 26\10\2008.

"Mixed Language Programming — Fortran"" Mike Eddy - 2000 - Bell
Communications Research, Morristown.

"MIXED LANGUAGE PROGRAMMING REALIZATION AND THE
PROVISION OF DATA TYPES' Bo Einarsson -Computer Centre LIDAC -

University of Linkoping.

83

12. “Programming languages design and implementation” Terrence W. Pratt and
Marvin V. Zelkowitz - second edition 1999 — Publisher: prentice hall.

13. "PROGRAMMING LANGUAGE DESIGN CONCEPTS" David A. Waitt,
University of Glasgow with contributions by William Findlay, 2004 Publisher: John
Wiley & Sons Ltd,

14. " Professional Programmer's Guide to Fortran”, Clive G. Page, 2005 - University
of Leicester UK .

15. "The C Book" Mike Banahan, Declan Brady and Mark Doran, second edition,
published by Addison Wesley in1991.

16. " Using C and C++ with Fortran" - Nelson H. F. Beebe — 2001

17."Variable Scope for New Programmers' — Jone Dely - Digital Web Magazine -

www.digital-web.convarticles/variable_scope for_new_programmers - 19\5\2007

84

http://www.digital-web.com/articles/variable_scope_for_new_programmers/

Appendix A:

" The Preprocessor Program List"

85

/**/

/A Mixed-Language Preprocessor for M.Sc. Thesis requirement/

*/Developed by: Dr. Musbah M. Elahresh as a supervisor of the Thesis and Rehab Abdalla as
a student/*

/Date of Development: May 2009/
/Last Date Modified: 04/08/2009/
[Rikk kAR AR AR R A R AR R R R AR A AR A AR
#include <stdio.h<
#include <string.h<
#include <process.h<
#include <io.h<
struct}

char fname[20¢]

char type[3]; /* type and category merged here/*
{ ModTab[20¢ [
char EmgSt[20][20]; /* holds current Emigra on statement/*
int Emgnum=0; /* index counter for EmgSt/*
char call[80]; /* call statement/*
char retst[25]; /* assignement return value statement in F module/*
char strct[80]="struct {\n"; /* exten struct statement/*
char strname[10]; /* shared name of struct and common statements/*
char comon[80]="common /"; /* common satement/*
char Head[80]="func on¢"
char DecSt[20][20]; int Decnum=0¢
char Fdec[80]="extern¢"
int tp=0¢
char varlist[20][20]; /* variables list table/*
int varnum=0¢

int split(FILE *); /* implements Phase I/*

void encapslt(int); /* implements Phase Il recieves number of modules/*

void complink(int); // compile and link

char DcTab[8][20]={"int","integer","float","real","char","character"”,"double","double
precision¢{"

int Tabnum=8; /* number of entries in DcTab/*
int checkname(char(*
void ErrorMsg(ints(

void merg(ints(

/*'k*************************'k'k****'k************************************/

/Main program coordinated Phasel, Phase Il, Phase Ill, Phase IV/
I* */
L L L L L T ———
main} ()

FILE *foct

char OCname[15]="", mask[25]="TC¢"

int flag, numfiles,i¢

clrscre()

printf(** WELCOME TO MIXED-LANGUAGES PROGRAMING ENVIRONMET\n\n¢("
printf("Enter Mixed-Language file name¢(" :

scanf("%s", OCname:(

/ flag=checkname(OCname); check for %OC signature/

strcat(mask,0Cname:(

[system(mask/¢(
if(flag==1) ErrorMsg(flags(
foc=fopen(OCname,"r¢("
numfiles=split(foct(

printf(* \n\nModules Table: \n¢("

for(i=0;i<tp;i(++

printf("%s %s \n", ModTabl[i].fname, ModTabl[i].type:(

printf(*\n Split complete. Check [%d] files\n",numfiless(
getchs()

printf(*\n\n Now Encapsulation: \n¢("

encapslt(numfiless(

printf("Encapsulation completed. Press any Key "); getchs()
merg(numfiles); /* combines separated C sections/*

printf(" Merge is completed. Press any key\n"); getch¢()

complink(numfiless(

printf(* compile and link are completed, run . Press any key\n"); getch¢()

/***/

/split: implements Phase I. It splits the mixed languages/
/program into C and Fortran modules. It saves each module/
/min a separate file. Builds the Modules Table andr returns/

/number of modules/

/***/

int split(FILE *fp(

}
char line[80],c,type[3],name[20¢[
FILE *mp¢

int number=0¢

printf(" Now Splitting: press:\n¢("
while(!feof(fp} ((
fgets(line,80,fps(

printf("%s" lines(

if(line[0} (‘%'==[
fclose(mpe(
sscanf(line,"%c %s %s",&c,type,names(
if(strcmp(type,"END")==0} (
fclose(mp);fclose(fps(
break{:
/printf("Tag=%c type=%s Name=%s\n",c,type,name/:(
if(type[0]=="C") strcat(name,".c¢("
else strcat(name,".for¢("
strcpy(ModTab[tp].fname, names(
strcpy(ModTab[tp++].type,types(
/printf("name=%s \n",name/¢(
mp=fopen(name,"w"); numbers++
fgets(line,80,fp(
printf(*%s" line¢(
o if

if(feof(fp)) line[strlen(line)-1]="\0¢'

fputs(line,mps(
I{ while/

/line[strlen(line)-1]="\0¢'

/I fputs(line,mps(

printf(*\n \aEND OF SPLIT"); getch¢()

return number:

{

/************************************'k'k***********************/

/encapslt: utilizes the Emigration sataement and builds the/

/struct common and call satements. It then encapsulates/

/feach module to be ready for Phase IlI/

J L L e ey

char make(char *, char *); /* help function to build the required sts/*
void InStrct(char *,char); /* insert external struct and call statments/*

void InsCmn(char * char); /* inserts common statement/*

void encapslt(int nmod} (

int mé¢

FILE *tmp¢

char line[80], name[20],pass¢

for(m=0;m<nmod;m++){ /* scan the ModTab and encapsulate each module/*
if(strcemp(ModTab[m].type,"FS")==0} (
tmp=fopen(ModTab[m].fname,"r¢("
fgets(line,80,tmps(
printf("Now preparaing call, extern struct, common statements: \n¢("

pass=make(line,ModTab[m].fname); /* build the required statements/*

printf(*\n\nNow inserting into C module: \n");getchs()

InStrct(ModTab[m-1].fname,pass); /* to be modifed for any CM uses FS/*

printf(""\n\nNow Inserting into Fortran Module:\n");getchs()
InsCmn(ModTab[m].fname,passs(

{ end if/

/ { end for m/

/***************************************'k******'k******'k***************/

/make: a help function constructs the extern struct, call, common/
/statements. Called from encapsulate function/

R R AR R R AR RS AR R AR AR AR AR A AR A KRR AR A KRR

char *MapDc(char¢(*

char *MapVr(char¢(*

char make(char stat[80], char mname[20([

}

/ NOTE: no syntax cheking for the Emigration Statement is made here/
char c, var[20]="",dec[20]="",trm[20¢™"'=[

int k,j=0,L=strlen(stat¢(

/ printf("LINE====%s \n " stat/¢(

mname[strlen(mname)-4]="\0¢'

for(k=0;k<L;k} (++
c=stat[Kk]; /*printf("c=%c ",c/*¢(
if((c=="$")) continue*
if(c} (‘==
strcpy(EmgSt[Emgnum++],var);strset(var,"\0');j=0;con nue{t
var[j++]=ct
{ for k/
strepy(EmgSt[Emgnum-++],vars(
printf(*\n Emigration Statement Entries: %d \n ",Emgnum¢(
for(k=0;k<=Emgnum;k(++

printf(*%s ",EmgSt[ke([

* - printf("\nMMMMM=%s" ,EmgSt[0/*«([

strepy(var,EmgSt[0«([

for(k=0;k<strlen(var) ;k++) if(var[k]=="") continue*
else { c=var[k]; break{ ¢
/ printf("\a\a\n C=%c" c); getch();/getchs()
switch(c} (
case '>": /* passing parameters as arguments in function call/*

/ eventhough the same is repeated for each case, leave it/

/ now prepare call statement/

strepy(trm,EmgSt[Emgnum-1]);sscanf(trm,"%s %s",dec,vars(

if(strcmp(dec,"<")==0) {sscanf(trm,"%s %s %s",dec,dec,var{ ¢(

if(strcemp(dec,"void")!=0} (
strcat(call,var);strcat(call{ ¢("="¢

else {sscanf(dec,"%s" var);strcat(call{s(""

puts(trme(
puts(decs(

puts(vars(

strcat(call,mname);strcat(call¢(")_"«
for(k=1;k<Emgnum-1;k}(++
sscanf(EmgSt[k],"%s %s",var,vars(

strcat(call,"&"); strcat(call,var);strcat(call¢("« "¢

{
call[strlen(call)-2]="\0¢'

strcat(call¢("¢("

printf("Call st: %s \n" call); getchs()

/ prepare return assignment statement/
strepy(retste(™«
strepy(trm,EmgSt[Emgnum-1]);sscanf(trm,"%s %s",dec,vars(

if(strcemp(dec,”<")==0) {sscanf(trm,"%s %s %s",dec,dec,var{ ¢(

if(strcmp(dec,"void™)!=0} (
strcat(retst, mname);strcat(retsts("="¢
strcat(retst,var); strcat(retst,"\n\0{ ¢("

printf(“retst: %s ", retst);getch¢()

/ now declare F-module as externl function with parameters/
strepy(trm,EmgSt[Emgnum-1¢([
sscanf(trm,"%s %s",dec,vars(
if(strcmp(dec,"<")==0) {sscanf(trm,"%s %s %s",dec,dec,var{ ¢(
strcat(Fdec,dec); /*returned type/*
strcat(Fdecs(" "«
strcat(Fdec,mname); strcat(Fdec¢ (") _"
for(k=1;k<Emgnum-1;k++){ /*arguments list as pointers/*
sscanf(EmgsSt[k],"%s %s",dec,vars(
strcat(Fdec,decs(
strcat(Fdecs("™* "¢
strcat(Fdecs("« "¢
{
Fdecl[strlen(Fdec)-2]="\0¢'
strcat(Fdec,");\n¢("

printf("Fdec st: %s \n",Fdec); getch¢()

/ now prepare the function head and declaration statement/
strcat(Head,mname);strcat(Head:(")"
for(k=1;k<Emgnum-1;k}(++
sscanf(EmgsSt[k],"%s %s",dec,var¢(
strcat(Head,var); strcat(Head: (<"«

{
Head[strlen(Head)-1]="\0¢'
strcat(Head,")\n¢("
printf("Head st: %s \n",Head:(

getche()

/ declaration staements/
for(k=1;k<Emgnum;k++){ /*arguments list as pointers/*

sscanf(EmgsSt[k],"%s %s",dec,var¢(

if(strcmp(dec,"<")==0) {sscanf(trm,"%s %s %s",dec,dec,var{ ¢(

strcpy(dec,MapDc(dec)); /* map variables declaration/*

/ strcpy(var,MapVr(var); Map variable name: later/

strcat(DecSt[k-1],dec);strcat(DecSt[k-1]," ");strcat(DecSt[k-1],vars(

strcat(DecSt[k-1],"\n¢("
{
Decnum=k-1¢
printf("DecSt=" \n¢("
for(k=0;k<Decnum;k(++
printf(" %s",DecSt[k¢([
getche()

break:

case "M /* passing parameters as global variables/*

/now prepare call statement/

9-A

strepy(trm,EmgSt[Emgnum-1]);sscanf(trm,"%s %s",dec,vars(
if(stremp(dec,"void")!=0} (

strcat(call,var);strcat(call{ ¢("="¢
else {sscanf(dec,"%s",var);strcat(call{(""

strcat(call,mname);strcat(call,”_();\0¢("

printf(“call st: %s ",call);getchs()

/ prepare assigmnets/
for(k=1;k<Emgnum;k}(++
sscanf(EmgSt[k],"%s %s",dec,vars(
if(strcmp(dec,"void")==0) con nue:
strepy(varlist[k-1],var);varnum=k¢

{

/ - now declare F-module as externl function with No parameters/
strcat(Fdec,dec); /*returned type/*
strcat(Fdecs(" "«
strcat(Fdec,mname); strcat(Fdec,”_();\n\0¢("
printf(*\n Fdec: %s",Fdecs(

getchs()

/ now prepare extern struct and assinments of global variables/
for(k=1;k<Emgnum;k}(++
sscanf(EmgSt[k],"%s %s",dec,vars(
if(k==1) {strcpy(strname,var);strcat(strname,"_\O{¢("
if(strcmp(dec,"void")==0) con nues
strcat(strct,dec(
strcat(strets (" "¢

strcat(strct,vare(

strcat(stret,";\n¢("

10-A

{
strcat(strets(" {¢

strcat(strct,strname);strcat(strct,” ;\n\O¢("
printf(*"\n\nstrct= %s\n",strcts(

getchs()

/now prepare the function head, common and declaration statement/
strcat(Head,mname);strcat(Head,"()\n\O¢("
printf("Head st: %s \n",Head:(
getche()
/ now prepare common statements/
/ and map the conventions/
strname[1]="\0¢'
strcat(comon,strname); strcat(comon¢(* /"¢
for(k=1;k<Emgnum;k}(++
sscanf(EmgsSt[k],"%s %s",dec,vars(
if(k<Emgnum-1) strcat(comon,var:(
if(k<Emgnum-2)strcat(comon(" <"«
{
strcat(comon, "™ \n\O¢("

printf(*comon=%s \n",comon); getch¢()

for(k=1;k<Emgnum;k++){ /* declara ons/*
sscanf(EmgsSt[k],"%s %s",dec,var¢(
if(strcmp(dec,"void")==0) con nue¢
strcpy(dec,MapDc(dec)); /* map variables declaration/*
/ strcpy(var,MapVr(var); Map variable name: later/
strcat(DecSt[k-1],dec);strcat(DecSt[k-1]," ");strcat(DecSt[k-1],vars(

strcat(DecSt[k-1],"\n¢("

11-A

Decnum=k-1¢

printf("DecSt=" \n¢("

for(k=0;k<Decnum;k(++

printf(" %s",DecSt[k¢([
getche()

break:

case 'I': /* no parameters are passed. Standalone function/*
/ now prepare call statement/
strepy(trm,EmgSt[Emgnum-1]);sscanf(trm,"%s %s",dec,vars(
if(strcemp(dec,"void")!=0} (
strcat(call,var);strcat(call{ ¢("="¢
else {sscanf(dec,"%s",var);strcat(call{(""

strcat(call,mname);strcat(call,”_();\0¢("

/ now declare F-module as externl function with No parameters/
strcat(Fdec,dec); /*returned type must be void/*

strcat(Fdecs(" "¢

strcat(Fdec,mname); strcat(Fdec,” _ ();\n\O¢("

printf("\n %s",Fdecs(

getchs()

/ now prepare the function head and declaration statement/
strcat(Head,mname);strcat(Head«(")"
strcat(Head,")\n\O¢("

printf("Head st: %s \n",Head:(
getchs()
break:
default: printf("\n\a Error in: Variables Emigration Statement\a:("

prin (“press any key to exit"); getch(); exit(0); breaks

12-A

{ switch/

return c¢

/***/

/Mapping variables names and declarations to Fortran conventions/

/***/

char *MapDc(char *v(
}
int i¢
for(i=0;i<Tabnum;i=i+2(
if(strcmp(DcTab[i],v)==0) return DcTab[i+1¢]
printf(*\a\a\n Error in Emigration Statement: %s \n",v);exit(0¢(

return NULL:

{
char *MapVr(char *Vr(

}

/***/

/InStrct: a help function inserts the extern, struct, call staements/

13-A

/and assignment at bigen and midle of C module/

/*'k********************'k**/

void InStrct(char *name,char c(
}
FILE *tmp, *fp¢
char line[80¢[
int k¢
fp=fopen(name,"rs("
tmp=fopen("tmp.c"," w¢("

switch(c} (

case¢ 'l

case >": fprintf(tmp,"%s",Fdec(
while(!feof(fp} ((
fgets(line,80,fp¢(
if(feof(fp)) break:
fprintf(tmp,"%s" lines(
{
fprintf(tmp,"%s" call¢(
fclose(fp); fclose(tmps(
tmp=fopen("tmp.c”,"r¢("
fp=fopen(name,"w:("
while(!feof(tmp} ((
fgets(line,80,tmp¢(
/ if(feof(tmp)) break/
fprintf(fp,"%s" line¢(
{
fclose(fp); fclose(tmp(

14-A

break:

case "M': fprintf(tmp,"%s" Fdec!(
fprintf(tmp,"%s" strcts(
while(feof(fp} ((

fgets(line,80,fp¢(
if(feof(fp)) break:
fprintf(tmp,"%s" lines(
{

for(k=0;k<varnum;k} (++

fprintf(tmp,” %s_.%s=%s;\n", strname,varlist[K],varlist[ks([

fprintf(tmp,"%s",call¢(
for(k=0;k<varnum;k} (++

fprintf(tmp,"\n %s=%s_.%s;" varlist[k],strname,varlist[ks([

fclose(fp); fclose(tmps(
tmp=fopen(“tmp.c”,"r¢("
fp=fopen(name,"w:("
while(feof(tmp} ((
fgets(line,80,tmp¢(

fprintf(fp,"%s" line(

fclose(fp); fclose(tmp(

break:

{ switch/

15-A

/***/

/InCmn: a help function inserts common, return assigmnt statemnt/
/at begin of fortran module/
/**/

void InsCmn(char *name,char c(

}

FILE *tmp, *fp¢

char line[80¢[

int k=0¢
strcat(name,".for¢("
fp=fopen(name,"rs("

tmp=fopen("tmp.c","ws("

switch(c} (

caset :'l'

case ">": fprintf(tmp,"\t%s",Head¢(
for(k=0;k<Decnum;k(++
fprintf(tmp,"\t%s",DecSt[k:([

fgets(line,80,fp); /* to skip emg. statemnet/*
while(!feof(fp} ((

fgets(line,80,fp(

if(feof(fp)) break:

fprintf(tmp,"%s" line(

{

fprintf(tmp,"\t%s" retst:(
fprintf(tmp,"\treturn\ns("

fprintf(tmp,"\tend: ("

16-A

fclose(fp); fclose(tmp(
tmp=fopen("tmp.c","re("
fp=fopen(name,"w:("
while(!feof(tmp} ((
fgets(line,80,tmp¢(
printf("%s" line);/*getch/*«()

fprintf(fp,"%s" line(

fclose(fp); fclose(tmps(
printf(* \n\n\n\a Insert into F-module finish. Press any key ");getch¢()

break:

case "N fprintf(tmp,"\t%s" ,Head(
for(k=0;k<Decnum;k(++
fprintf(tmp,"\t%s",DecSt[ks(]

fprintf(tmp,"\t%s",comons(

fgets(line,80,fp); /* to skip emg. statemnet/*
while(!feof(fp} ((
fgets(line,80,fps(
if(feof(fp)) break:

fprintf(tmp,"%s" line(

fprintf(tmp,"\treturn\n¢("
fprintf(tmp,"\tend«("
fclose(fp); fclose(tmp(
tmp=fopen(“tmp.c","r¢("
fp=fopen(name,"w:("
while(!feof(tmp} ((

fgets(line,80,tmp¢(

17-A

printf("%s" line);/*getch/*«()

fprintf(fp,"%s" lines(

fclose(fp); fclose(tmps(
printf(* \n\n\n\a Insert into F-module finish. Press any key ");getch¢()
break:

{ switch/

{

/***/

int checkname(char *name(

}

printf("Now Check file name:< %s > . Press any key \n",names(

return O¢

{
void ErrorMsg(int n(

}
switch(n} (

case 1: prin (“Error: Input File format Error \n"); exit(0¢(

/***/

/merg: combines the splitted C sections to OC program/

/***/

void merg(int nmod} (
inti¢
FILE *fp,*tp¢

char name[25], tmp[25¢[

18-A

char line[80¢[
strcpy(name,ModTab[0].fnames(
fp=fopen(name,"a:("
for(i=0;i<nmod;i} (++
if(strcemp(ModTab[i].type,"CS")==0} (
strepy(tmp,ModTab[i].fnames(
tp=fopen(tmp,"r¢("
fprintf(fp,"\n¢("
while(!feof(tp} ((
fgets(line,80,tp(
if(*feof(tp}((
fprintf(fp,"%s" line(

puts(line{ «(

fclose(tpe(
{

{
fclose(fps(

{

*/

Compile and link function

/-k
void complink(int nom(

}

inti,j; // nom=number of modules

char mask[80],fn[30],0fn[30][10],Ink[80]; //fn=file name, ofn= object file names array

19-A

[[for(i=0;i<nom;i(++

/I puts(ModTabli].fnames(

puts("Now compilings(" :

for(i=0;i<nom-1;i(++

/Ifflush(stdiomask:(
if((ModTabli].type[0])=="F(

==========//copy the FORTRAN files to f\york and compile them
strepy(mask,"copy:("
strcat(mask,ModTab[i].fnames(
strcat(mask," f\\york:("
system(masks(
system(*cd f¢("
system(*'cd york: ("
/[puts(ModTabl[i].fname:(
for(j=0;j<strlen(ModTab[i].fname);j(++
if(ModTabl[i].fname[j]!=".") fn[j]l=ModTab[i].fname[j¢[

else

f[j]="\0¢"

break:

strcpy(mask, f2lib¢ ("
strcat(mask,fn¢(

puts(fns(
getchs()

20-A

system(mask:(

else
}
===// copy the C files to minGW\bin and compile them
system("cd¢("\\
strcpy(mask,"copy:("
strcat(mask,ModTab[i].fnames(
strcat(mask," mingw\\bin¢("
system(masks(
/I puts(mask(
getchs()
*/ system("cd¢("\
system(*'cd \\mingw: ("

system(""cd \\bin/*¢("

strepy(mask,"c:\\mingw\\bin\\gcc -c¢("

strcat(mask,ModTab[i].fname¢(

system(mask:(
puts(ModTab[i].fnames(

getchs()

system("cd¢("\

for(j=0;j<strlen(ModTab[0].fname);j(++

21-A

if(ModTab[0].fname[j]!=".") fn[j]J=ModTab[0].fname[j¢[

else

f[j]="\0¢"

break:

strepy(Ink,"g77 -ffree -form -o¢("
strcat(Ink,fn¢(
strcat(Ink,".exe¢("

for(i=0;i<nom-1;i(++

===// construct the object files (.0) names
for(j=0;j<strlen(ModTab[i].fname);j(++
if(ModTabl[i].fname[j]!=".") fn[j]=ModTab[i].fname[j¢[

else

fn[j]l=ModTabl[i].fnamel[j¢[
fn[++j]="o¢'
fn[++]="\0¢'

Il puts(fn(

break:

========// copy the object files to the mine directory
strcpy(mask, copy ("
strcat(mask,fn¢(
strcat(mask,” f\\mine«("
/! puts(mask(
/I getche()

22-A

system(masks(

strcat(Ink,” .\\mine¢("\\
IIputs(fns(
strcat(Ink,fn¢(

Il puts(Inks(

{

puts("Now linking the object files¢(":

getchs()
system(“cd¢("\

system(“cd f¢("
system(*'cd york: ("
puts(Inks(

system(Ink(

*'k***********************/E N D/*‘k****'k**************************

23-A

	The Great Socialist People.pdf
	Abstract.pdf
	AbstractE.pdf
	content.pdf
	FIGURES INDEX.pdf
	TABLES INDEX.pdf
	PROGRAMS LIST.pdf
	List of terms.pdf
	aknowl.pdf
	Chapter1.pdf
	Chapter2.pdf
	Chapter3.pdf
	Chapter4.pdf
	Chapter5.pdf
	References2.pdf
	Appendix A.pdf
	prepro.pdf

