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QUALITATIVE PROPERTIES OF SOME HIGHER ORDER
DIFFERENCE EQUATIONS

H. EL-METWALLY; E.M. ELABBASY AND A. ESHTIBA

Abstract. The main objective of this paper is to study the global attractivity,
and the boundedness for the solutions of the rational di¤erence equation

xn+1 = �+
�xpn�k + 
x

q
n�m

Axpn�k +Bx
q
n�m

, n � 0;

where the parameters �; �; 
;A;B; p and q 2 (0;1) and the initial condi-
tions x�l; x�l+1; :::; x�1; x0 where l = maxfk;mg are positive real numbers.

1. INTRODUCTION

Recursive sequences are also often called di¤erence equations, which are very
important in mathematical theory and application [1-13]. Hence, it is very valuable
to investigate the behavior of solutions of the system of di¤erence equations and to
present thestability character of equilibrium points.
In this paper we study the global attractivity, and the boundedness for the

solutions of the rational di¤erence equation

xn+1 = �+
�xpn�k + 
x

q
n�m

Axpn�k +Bx
q
n�m

, n � 0; (1)

where the parameters �; �; 
;A;B; p; and q 2 (0;1) and the initial conditions
x�l; x�l+1; :::; x�1; x0 where l = maxfk;mg are positive real numbers.

Here, we recall some notations and results which will be useful in our investiga-
tion.

Let I be an interval real numbers and let f : Ik+1 � I ! I be continuously
di¤erentiable function. Consider the di¤erence equation

xn+1 = f(xn; xn�1; :::; xn�k); n = 0; 1; 2; :::; (2)

with x�k; x�k+1; :::; x0 2 I: Let x be the equilibrium point of Eq.(2).
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The linearized equation of Eq.(2) about the equilibrium point x is

yn+1 = p1yn + p2yn�1 + :::+ pk+1yn�k;

where pi =
@f
@xni

(x; x; :::; x); i = 0; 1; :::; k:

Theorem A [15]: Assume that p1; p2; :::; pk+1 2 R: Then
k+1X

i=1

j pi j< 1;

is a su¢ cient condition for the locally stability of Eq.(2).

Theorem B [15]: Consider the di¤erence equation

yn+1 = g(yn; :::; yn�k); n = 0; 1; :::; (3)

where g 2 C[(0;1)k+1; (0;1)] is increasing in each of its arguments and where the
initial conditions y�k; :::; y0 are positive. Assume that Eq.(3) has a unique positive
equilibrium x and suppose that the function h de�ned by

h(y) = g(y; y; :::; y); y 2 (0;1);
satis�es

(h(y)� y)(y � y) < 0 for x 6= x:
Then y is a global attractor of all positive solutions of Eq.(3).

Consider the di¤erence equation

xn+1 = f(xn; xn�1); n � 0: (4)

Theorem C [14]: Let [a; b] be an interval of real numbers and assume that

f : [a; b]� [a; b]! [a; b]

is a continuous function satisfying the following properties:
(a) f(x; y) is non-increasing in x 2 [a; b] for each y 2 [a; b] , and f(x; y) is

non-decreasing in y 2 [a; b] for each x 2 [a; b];
(b) Eq.(4) has no solutions of prime period two in [a; b].
Then Eq:(4) has a unique equilibrium x 2 [a; b] and every solution of Eq:(4)

converges to x:

2. Main Results

The work of this paper dividel into two parts; Part I concerned with the special
cases of Eq.(1) and Part II deals with the general Eq.(1).

Part I
Here, we consider the following cases of Eq.(1).
(1) Whenever A = 
 = 0 then Eq.(1) has the form

xn+1 = �+
�xpn�k
Bxqn�m

; n � 0: (5)
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(2) Whenever A = 0 then Eq.(1) has the form

xn+1 = �+
�xpn�k + 
x

q
n�m

Bxqn�m
,

or

xn+1 = C +
�xpn�k
Bxqn�m

, n � 0; (6)

where C = �+ 

B :

3. Whenever � = B = 0 then Eq.(1) has the form

xn+1 = �+

xqn�m
Axpn�k

, n � 0: (7)

4. Whenever B = 0 then Eq.(1) has the form

xn+1 = �+
�xpn�k + 
x

q
n�m

Axpn�k
,

or

xn+1 = D +

xqn�m
Axpn�k

; n � 0; (8)

where D = �+ �
A :

5. Whenever � = 0 then Eq.(1) has the form

xn+1 = �+

xqn�m

Axpn�k +Bx
q
n�m

, n � 0: (9)

6. Whenever 
 = 0 then Eq.(1) has the form

xn+1 = �+
�xpn�k

Axpn�k +Bx
q
n�m

, n � 0: (10)

In the following we investigate the behavior of the solutions to the special
cases of Eq.(1).

Case 1. Study of Eq.(5)

In this section, we study the local stability, the boundedness, global attractivity,
oscillatery, and periodicity for the solutions of the equation

xn+1 = �+
�xpn�k
Bxqn�m

; n � 0:

Local Stability and boundedness of Eq.(5)

It is easy to see that Eq.(5) has a unique positive equilibrium point and is given
by

x = �+
�xp

Bxq
:

Let f : (0;1)2 ! (0;1) be a function de�ned by

f(u; v) = �+
�up

Bvq
:
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Therefore,

@f(u; v)

@u
= E

pup�1

vq
; and

@f(u; v)

@v
= �E qv

q�1up

(vq)2
;

where E = �
B : Set

p1 = Epx
p�q�1; and p2 = �Eqxp�q�1:

Then the linearized equation of Eq.(5) about x is

yn+1 + p2yn�m + p1yn�k = 0;

where p2 = �fu(x; x); and p1 = �fv(x; x): whose characteristic equation is

�k+1 + p2�
k�m + p1 = 0:

Theorem 1. If x < 1
p�q�1

p
E(p+q)

; then the positive equilibrium point x of Eq.(5)

is locally asymptotically stable, and is called a sink.

Proof. We set p1 = Epxp�q�1; and p2 = �Eqxp�q�1: Then

jp1j+ jp2j < 1, Epxp�q�1 + Eqxp�q�1 < 1;

which is valid i¤

xp+q�1 <
1

E(p+ q)
:

So by Theorem A x is locally asymptotically stable when x < 1
p�q�1

p
E(p+q)

: �

Here, we investigate the bounded character of Eq.(5).

Theorem 2. If 0 < p < 1; then the Eq.(5) is bounded and persists.

Proof. Assume that fxng be a solution of Eq.(5). We obtain from Eq.(5) that

xn+1 > �; for n � 0:
Hence fxng persists. It follows again from Eq.(5) that

xn+1 � �+ Lxpn�k,

where L = �
B�q : Now we consider the di¤erence equation

yn+1 = �+ Ly
p
n; for n � 0: (11)

Let fyng be a solution of Eq.(11) with y0 = x0. Then obviously
xn+1 � yn+1; for n = 0; 1; ::: .

We shall prove that the sequence fyng is bounded. Let
f(x) = �+ Lxp:

Then
f
0
(x) = Lpxp�1 > 0; and f

00
(x) = Lp(p� 1)xp�2 < 0:

Therefore the function f is increasing and concave . Thus we obtain that there is
a unique �xed point y� of the equation f(y) = y: Also the function f satis�es

(f(y)� y)(y � y�) < 0; y 2 (0;1):
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It follows by Theorem C that y� is a global attractor of all positive solutions of
Eq.(11) and so fyng is bounded. Therefore from Eq.(5) the sequence fxng is also
bounded. This completes the proof of the theorem. �

Global attractivity for Eq.(5)

Here we study the global asymptotic stability of the positive solutions of Eq.(5).

Theorem 3. Assume that 0 < p < 1 < q; � > E(p + q � 1)
1

q�p+1 : Then every
positive solution of Eq.(5) converges to the unique positive equilibrium point x of
Eq.(5).

Proof. Note that when 0 < p < 1 < q; it was shown in Theorem 2 that every
positive solution of Eq.(5) is bounded. Then we have the following

s = lim
n!1

inf xn; and S = lim
n!1

supxn:

It is clear that s � S: We want to proof that s � S: Now it is easy to see from
Eq.(5) that

s � �+ E s
p

Sq
; and S � �+ ES

p

sq
:

Thus we have

sSq � �Sq + Esp; and sqS � asq + ESp:
Thus

�sq�1Sq + Espsq�1 � �sqSq�1 + ESpSq�1:
Then we get

�Sq�1sq�1(S � s) � E(Sp+q�1 � sp+q�1):
So

�Sq�1sq�1 � ES
p+q�1 � sp+q�1

S � s : (12)

If we consider the function xp+q�1; then there exists a c 2 (s; S) such that
Sp+q�1 � sp+q�1

S � s = (p+ q � 1)cp+q�2 � (p+ q � 1)Sp+q�2: (13)

Theen from (12) and (13) we get

�Sq�1sq�1 � E(p+ q � 1)Sp+q�2:
or

�S1�psq�1 � E(p+ q � 1):
Since S � � and s � �. Then we obtain

��1�p�q�1 = �q�p+1 � E(p+ q � 1):
which contradicts to 0 < p < 1 < q: Which implies that s = S: Thus the proof

is complete. �

Example 1. Figure (1) shows the global attractivity of the equilibrium point x =
1:1837 of Eq.(5) whenever x�1 = 5:6487; x0 = 1:0231; p = 0:5; q = 0:9; � = 0:7;
� = 0:19; and B = 0:52:



JFCA-2018/9(2) QUALITATIVE PROPERTIES OF SOME DIFF. EQ. 39

Figure (1)

Oscillatery of the solutions for Eq.(5)

In the next theorem, we study the oscillatery character of Eq.(5).

Theorem 4. Assume that k is odd and m is even and m < k; then Eq.(5) has
oscillatory solutions.

Proof. Case (1) let fxng be a solution of Eq.(5)with
x�k; x�k+1; :::; x�1 � x; and x�m+1; x�m+1; :::; x0 < x:

We get from Eq.(5) that

x1 = �+
�xp�k
Bxq�m

� �+ �xp

Bxq
= x;

and

x2 = �+
�xp�m+1
Bxq�k+1

< �+
�xp

Bxq
= x

Then, the result follows by induction.
Case (2) let

x�m; x�m+1; :::; x0 � x; and x�k+1; x�k+1; :::; x�1 < x:

is similary the case (1). Then it will be omitted. �
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Example 2. Figure (2) shows the oscillatory solutions of Eq.(5) whenever x�1 =
1:6487; x0 = 2:0231; � = 0:23; p = 0:2; q = 2; � = 0:9; and B = 0:5.

Figure (2)

Periodicity for Eq.(5)

The next theorem deals with the existence of periodic solutions to Eq.5).

Theorem 5. Let k is odd and m is even. If < 0 < p < 1 < q; then a solution of
Eq.(5) is a periodic solution of priod period two.

Proof. Let fxng be a solution of Eq.(5), with the initial values, we must �nd some
positive numbers x�1; x0 such that

x�1 =
�Bxq0 + �x

p
�1

Bxq0
; and x0 = �+

�Bxq�1 + �x
p
0

Bxq�1
: (14)

Let x� = x; and x0 = y; then we obtain from (14)

x =
�Byq + �xp

Byq
; and y =

�Bxq + �yp

Bxq
: (15)

Now we want to prove that (15) has a solution (x; y); x > 0; y > 0: From the
�rst relation of (15) we have

y =
�
1
q x

p
q

B
1
q (x� �)

1
q

: (16)
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From (16) and the second relation of (15) we get

�
1
q x

p
q

B
1
q (x� �)

1
q

� �
p+q
q x

p2�q2
q

B
p+q
q (x� �)

p
q

� � = 0:

Now de�ne the function

f(x) =
1

(x� �)
1
q

((
�

B
)
1
q x

p
q � ( �

B
)
p+q
q x

p2�q2
q (x� �)

1�p
q )� �; x > �: (17)

Then
lim
x!�+

f(x) =1; lim
x!1

f(x) = ��:

Hence Eq.(17) has at least one solution x > �: Then if y = �
1
q x

p
q

B
1
q (x��)

1
q
; we have

that the solution fxng1n=�1 is periodic of prime period two. Thus the proof is
complete. �

Example 3. Figure (3) shows the periodicity solutions of Eq.(5) whenever x�1 =
1:737; x0 = 2:423; � = 0:7; p = 0:2; q = 4; � = 0:5; and B = 0:32:

Figure (3)

Case 2. Study of Eq.(6)

This equation is similar of Eq.(5) and its investigation is similar to Eq.(5) and
so will be omitted.
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Case 3. Study of Eq.(7)

The proofs of the theorems in this section are similar to the proofs of the theorems
in Section 3 and will be left to the reader.

Theorem 6. If x < 1
q�p�1

p
F (p+q)

; then the positive equilibrium point x of Eq.(7)

is locally asymptotically stable, and is called a sink.

Theorem 7. If 0 < q < 1; then the Eq.(7) is bounded and persists.

Theorem 8. Assume that 0 < q < 1 < p; � > F (q + p � 1)
1

p�q+1 : Then every
positive solution of Eq.(7) converges to the unique positive equilibrium point x of
Eq.(7).

Theorem 9. Assume that m is odd and k is even and k < m; then Eq.(7) has
oscillatory solutions.

Theorem 10. Let m is odd and k is even. If < 0 < q < 1 < p; then Eq.(7) has
periodic solutions of priod two.

Case 4. Study of Eq.(8)

This equation is similar of Eq.(7) and its investigation is similar to Eq.(7) and
so will be omitted.

Case 5. Study of Eq.(9)

Local Stability and boundedness for Eq.(9)

Eq.(9) has a unique positive equilibrium point and is given by

x = �+
�xp

Axp +Bxq
:

Let f : (0;1)2 ! (0;1) be a function de�ned by

f(u; v) = �+
�up

Aup + aBvq
:

Therefore,

@f(u; v)

@u
=
A�pvqup�1

(Aup +Bvq)2
; and

@f(u; v)

@v
= � �Bqvq�1up

(Aup +Bvq)2
;

Set

p1 =
A�pxq+p�1

(Axp +Bxq)2
; and p2 = �

B�qxq+p�1

(Axp +Bxq)2
:

Then the linearized equation of Eq.(9) about x is

yn+1 + p2yn�m + p1yn�k = 0;
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where p2 = �fu(x; x); and p1 = �fv(x; x): whose characteristic equation is
�k+1 + p2�

k�m + p1 = 0:

Theorem 11. If xp+q�1

(Axp+Bxq)2 <
1

�B(p+q) ; then the positive equilibrium point x of
Eq.(9) is locally asymptotically stable, and is called a sink.

Proof. We set p1 =
A�pxq+p�1

(Axp+Bxq)2 ; and p2 = �
B�qxq+p�1

(Axp+Bxq)2 : Therefore

jp1j+ jp2j < 1,
A�pxq+p�1

(Axp +Bxq)2
+

B�qxq+p�1

(Axp +Bxq)2
< 1:

which is valid i¤
xp+q�1

(Axp +Bxq)2
<

1

�B(p+ q)
:

So by Theorem A x is locally asymptotically stable when xp+q�1

(Axp+Bxq)2 <
1

�B(p+q) :

�
Theorem 12. If 0 < p < 1; then the Eq.(9) is bounded and persists.

Proof. Assume that fxng be a solution of Eq.(9). We obtain from Eq.(9) that

xn+1 > �; for n � 0:
Hence fxng persists. It follows again from Eq.(9) that

xn+1 � �+
�xpn�k

A�p +B�q
� �+

�xpn�k
B�q

, for n � 0:

The rest of the proof is similar to the proof of the Theorem 2 and will be omitted. �

Global Stability of Eq.(9)

In this section we investigate the global asymptotic stability of Eq.(9).

Theorem 13. The positive equilibrium point x is a global attractor of Eq.(9). If

(AMP +Bmq)(Amp +BMq) 6= �B(
1X
i=1

�i�1Mp+q�i +

1X
i=1

�p+q�iM i�1); (18)

where M is given by M = �+ �Mp

A�p+B�q :

Proof. We can see that the function

f(u; v) = �+
�up

Aup +Bvq
;

is increasing in u and decreasing in v: Since Eq.(9) is bounded by Theorem 2.
Suppose that (m;M) is a solution of the system

M = f(M;m); and m = f(m;M):

We obtain from Eq.(1) that

M = �+
�Mp

AMP +Bmq
; and m = �+

�mp

AmP +BMq
:

Thus

(M �m)(AMP +Bmq)(Amp +BMq)�B�(Mp+q �mp+q) = 0:
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Then we obtain

(M�m)[(AMP+Bmq)(Amp+BMq)�B�(
1X
i=1

�i�1Mp+q�i+
1X
i=1

�p+q�iM i�1)] = 0:

Scien the condition (18) holds, then we get

M = m

It follows by Theorem C that x is a global attractor of Eq.(9), and then the proof
is complete. �

Example 4. Figure (4) shows the global attractivity of the equilibrium point of
Eq.(9) whenever x�1 = 5:4235; x0 = 8:987; p = 0:2; q = 0:3; � = 0:6; � = 0:4;
A = 0:4521; and B = 1:563:

Figure (4)

Case 6: Study of Eq.(10)

This equation is the same of Eq.(9) and its investigation is similar to Eq.(9) and
so will be omitted.

Part II
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Now we investigate the behavior of the solutions of Eq.(1).

Local Stability of the Equilibruim Points the boundedness of Eq.(1).

In this section we study the local stability character of the positive equilibrium
points of Eq.(1). Eq.(1) has a unique positive equilibrium point and is given by

x = �+
�xp + 
xq

Axp +Bxq
:

Let f : (0;1)2 ! (0;1) be a function de�ned by

f(u; v) = �+
�up + 
vq

Aup +Bvq
:

Therefore,

@f(u; v)

@u
=
pvqup�1(B� �A
)
(Aup +Bvq)2

; and
@f(u; v)

@v
= �qu

pvq�1(B� �A
)
(Aup +Bvq)2

:

Set

p1 =
pxp+q�1(B� �A
)
(Axp +Bxq)2

; and p2 = �
qxp+q�1(B� �A
)
(Axp +Bxq)2

:

Then the linearized equation of Eq.(1) about x is

yn+1 + p2yn�m + p1yn�k = 0;

where p2 = �fu(x; x); and p1 = �fv(x; x): whose characteristic equation is

�k+1 + p2�
k�m + p1 = 0:

Theorem 14. If AB <
�

 and

xp+q�1

(Axp+Bxq)2 <
1

(p+q)(B��A
) ; then the positive equilib-
rium point x of Eq.(1) is locally asymptotically stable, and is called a sink.

Proof. We set p1 =
pxp+q�1(B��A
)
(Axp+Bxq)2 ; and p2 = � qxp+q�1(B��A
)

(Axp+Bxq)2 : So by Theorem A

jp1j+ jp2j < 1,
pxp+q�1(B� �A
)
(Axp +Bxq)2

+
qxp+q�1(B� �A
)
(Axp +Bxq)2

< 1:

which is valid i¤
xp+q�1

(Axp +Bxq)2
<

1

(p+ q)(B� �A
) :

So x is locally asymptotically stable when xp+q�1

(Axp+Bxq)2 <
1

(p+q)(B��A
) : �

Theorem 15. Every solution of Eq.(1) is bounded and persists.

Proof. Let fxng be a positive solution of Eq.(1). We obtain from Eq.(1) that

xn+1 > �; for n � 0:
Hence fxng persists. It follows again from Eq.(1) that

xn+1 = �+
�xpn�k + 
x

q
n�m

Axpn�k +Bx
q
n�m

� �+
maxf�; 
g(xn�k + xn�m)
minfA;Bg(xn�k + xn�m)

= �+
maxf�; 
g
minfA;Bg =M:
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Thus we get

0 < � � xn < �+
maxf�; 
g
minfA;Bg =M <1; for all n � 1:

Therefore every solution of Eq.(1) is bounded and persists. Hence the result
holds. �

Global Stability of Eq.(1)

In this section we investigate the global asymptotic stability of Eq.(1).

Theorem 16. If (B��A
)(
1P
i=1

�i�1Mp+q�i+
1P
i=1

�p+q�iM i�1) 6= (AMP+Bmq)(Amp+

BMq), and A
B < �


 ; then the positive equilibrium point x is a global attractor of
Eq.(1).

Proof. We can see that the function

f(u; v) = �+
�up + 
vq

Aup +Bvq
;

is increasing in u and decreasing in v: Suppose that (m;M) is a solution of the
system

M = f(M;m); and m = f(m;M):

We obtain from Eq.(1) that

M = �+
�Mp + 
mq

AMP +Bmq
; and m = �+

�mp + 
Mq

AmP +BMq
:

Thus

(M�m)[(B��A
)(
1X
i=1

�i�1Mp+q�i+
1X
i=1

�p+q�iM i�1)�(AMP+Bmq)(Amp+BMq)] = 0:

Since B� > A
;

(B� � A
)(
1P
i=1

�i�1Mp+q�i +
1P
i=1

�p+q�iM i�1) 6= (AMP + Bmq)(Amp + BMq)

hold. Then we obtain

m =M:

It follows by Theorem C that x is a global attractor of Eq.(1), and then the proof
is complete. �

Example 5. Figure (5) shows the global attractivity of the equilibrium point of
Eq.(1) whenever x�1 = 2:4235; x0 = 1:987; p = 0:7; q = 0:9; � = 0:6; � = 0:4;

 = 0:2; A = 0:4521; and B = 0:52:
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Figure (5)
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