

First Report of the Metallo-β-Lactamase SPM-1 in Europe^{\neq}

In 1997, the first SPM-1-positive *Pseudomonas aeruginosa* isolate (48-1997A) from a 4-year-old leukemic girl in San Paulo, Brazil, was characterized. *bla*_{SPM-1} was flanked by two IS*CR* elements, designated IS*CR4*, and probably transposes via a mechanism called rolling-circle replication (8). Reports of IS*CR* elements are continually being linked with antibiotic resistance, particularly β-lactamases in Gram-negative bacteria (http://www.cardiff.ac.uk/medic/aboutus/departments/medicalmicrobiology/genetics/iscr_elements.html) (3, 4, 8).

In 2007, a single isolate of *P. aeruginosa*, designated BH121, was recovered from a soft-wound infection of a 34-year-old Swiss male. The patient received primary care at the Regional General Hospital in Recife, Brazil, before being transported to the University Hospital Basel. *P. aeruginosa* BH121 gave a positive result with the MBL Etest (AB BioMérieux, Solna, Sweden). MICs were determined by agar dilution in accordance with CLSI guidelines (2). BH121 was resistant to all antibiotics (piperacillin-tazobactum, ceftazidime, cefotaxime, cefepime, meropenem, imipenem, all aminoglycosides, and all fluoroquinolones) except aztreonam and colistin. Imipenem hydrolysis by crude cell extracts from BH121 suggested the presence of an active metallo-β-lactamase (MBL) (7).

PCR analysis detected $bla_{\rm SPM-1}$ and was thus extended to determine flanking sequences, which showed that the MBL gene is flanked by two copies of ISCR4-like elements. Sequence analysis confirmed that BH121 carries $bla_{\rm SPM-1}$ and that it possesses two copies of ISCR4 identical to that reported by Poirel et al., indicating perfect preservation of this DNA region for >10 years (5, 7, 10).

DNA macroanalysis using pulsed-field gel electrophoresis (PFGE) after restriction with SpeI was undertaken to ascertain the relatedness of BH121 to 15 other SPM-1-positive *P. aeruginosa* isolates from Brazil between 1997 and 2007 (6). This analysis showed that BH121 had a DNA restriction pattern almost identical to that of the other Brazilian strains, differing by only three or four bands, thus indicating that all isolates of *P. aeruginosa* are distantly related.

Genomic DNAs from *P. aeruginosa* BH121 and the 15 retrospective Brazilian isolates were digested with SpeI and probed with *bla*_{SPM-1}. Probing of SpeI genomic DNA digests of the clinical *P. aeruginosa* isolates with *bla*_{SPM-1} shows two copies of the MBL gene in three strains, including *P. aeruginosa* BH121 and the index case strain, 48-1997. The duplication of *bla*_{SPM-1} is likely to have arisen from IS*CR4* transposition proceeded by homologous recombination.

To determine the genetic location of the MBL gene, genomic DNA from all isolates was digested separately with nucleases S1 and I-Ceu-1, separated by PFGE, and subsequently probed with $bla_{\rm SPM-1}$ (1). Data showed that the $bla_{\rm SPM-1}$ probe hybridized only to chromosomal DNA and not the separated plasmid bands, indicating that the MBL gene is chromosomally mediated. DNA digestion with I-Ceu-1 and probing with $bla_{\rm SPM-1}$ also confirmed that the gene is chromosomally encoded.

This is the first reported case of a P. aeruginosa isolate possessing $bla_{\rm SPM-1}$ outside Brazil and shows that BH121 is closely related to isolates originating from Brazil. Moreover, $bla_{\rm SPM-1}$ probing of digested DNA indicates that the SPM-1 gene is chromosomally mediated and, interestingly, that there

are at least two copies of bla_{SPM-1} in *P. aeruginosa* BH121, indicating that ISCR4 is likely to be active (9).

REFERENCES

- Barton, B. M., G. P. Harding, and A. J. Zuccarelli. 1995. A general method for detecting and sizing large plasmids. Anal. Biochem. 226:235–240.
- Clinical and Laboratory Standards Institute. 2007. Performance standards for antimicrobial susceptibility testing; seventeenth informational supplement. M100-S17. Clinical and Laboratory Standards Institute, Wayne, PA.
- Enoch, D. A., C. I. Birkett, and H. A. Ludlam. 2007. Non-fermentative Gram-negative bacteria. Int. J. Antimicrob. Agents 29(Suppl. 3):S33–S41.
- Furtado, G. H., S. T. Martins, A. M. Machado, S. B. Wey, and E. A. Medeiros. 2006. Clinical culture surveillance of carbapenem-resistant *Pseudomonas aeruginosa* and *Acinetobacter* species in a teaching hospital in Sao Paulo, Brazil: a 7-year study. Infect. Control Hosp. Epidemiol. 27:1270–1273.
- Poirel, L., M. Magalhaes, M. Lopes, and P. Nordmann. 2004. Molecular analysis of metallo-β-lactamase gene bla(SPM-1)-surrounding sequences from disseminated *Pseudomonas aeruginosa* isolates in Recife, Brazil. Antimicrob. Agents Chemother. 48:1406–1409.
- Tenover, F. C., R. D. Arbeit, R. V. Goering, P. A. Michelsen, B. E. Murray, D. H. Persing, and B. Swaminathan. 1995. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J. Clin. Microbiol. 33:2233–2239.
- Toleman, M. A., A. M. Simm, T. A. Murphy, A. C. Gales, D. J. Biedenbach, R. N. Jones, and T. R. Walsh. 2002. Molecular characterization of SPM-1, a novel metallo-β-lactamase isolated in America: report from the SENTRY antimicrobial surveillance programme. J. Antimicrob. Chemother. 50:673– 679.
- Toleman, M. A., P. M. Bennett, and T. R. Walsh. 2006. ISCR elements: novel gene-capturing systems of the 21st century? Microbiol. Mol. Biol. Rev. 70: 296–316.
- Viana Vieira, V., E. Lourenço da Fonseca, and A. C. Paulo Vincente. 2005. Metallo-β-lactamases produced by carbapenem-resistant *Pseudomonas aeruginosa* in Brazil. Clin. Microbiol. Infect. 11:937.
- Zavascki, A. P., P. B. Gaspareto, A. F. Martins, A. L. Gonçalves, and A. L. Barth. 2005. Outbreak of carbapenem-resistant *Pseudomonas aeruginosa* producing SPM-1 metallo-β-lactamase in a teaching hospital in southern Brazil. J. Antimicrob. Chemother. 56:1148–1151.

Allaaeddin El Salabi Mark A. Toleman Janis Weeks

Department of Medical Microbiology School of Medicine Cardiff University Heath Park, Cardiff CF14 4XN, United Kingdom

Thomas Bruderer

Institut für Klinische Mikrobiologie und Immunologie Frohbergstrasse 3 9001 St. Gallen, Switzerland

Reno Frei

Universitätsspital Basel Labormedizin Klinische Mikrobiologie Abteilungsleiter Petersgraben 4 CH-4031 Basel, Switzerland

Timothy R. Walsh*

Department of Medical Microbiology School of Medicine Cardiff University Heath Park, Cardiff CF14 4XN, United Kingdom

*Phone: 44 (0)2920 744725 Fax: 44 (0)2920 742161 E-mail: WalshTR@Cardiff.ac.uk

[∇] Published ahead of print on 26 October 2009.