
Capturing Variants of Transliterated Arabic Names in English Text

Abdusalam F. Ahmad Nwesri Nabila Al-Mabrouk S. Shinbir
University of Sebha, PO Box 64756,

 Gharian, Libya
Al-tahaddi for computers, PO Box 64756,

Gharian, Libya
nwesri@sebhau.edu.ly n.shinbir@al-tahaddi.com

Abstract

Transliteration is the process of representing words of one language into
another using corresponding equivalent phonemes. For example,
“Mohammed”, “Mohammad”, or “Muhammed” are three valid
transliterations to the Arabic proper noun “محمد”. Transliteration from
Arabic to English usually results in several different versions for the same
Arabic name causing some names to have more than 40 different versions.
Finding transliterated names is a problem in most languages. In English, this
problem has been studied by researchers and many techniques have been
developed to find transliterated names referring to the same foreign name.
Techniques such as string matching and phonetic matching have been used
to find similar names. However, some of these techniques were designed to
find similar names of English origin and not a specific transliterated names.
In this paper we review current techniques used to find variants of the same
name and introduce a new technique we specifically developed to find
transliterated Arabic names in English text. We developed a data set of more
than 25,000 transliterated Arabic names and tested the effectiveness of
current and the new technique on finding 115 names within that list. Our
results show that our technique is superior to all other techniques. We also
present an online system that we developed to find transliterated Arabic
names on the web using our technique.

1 	Introduction	
Transliterated Arabic names in English exhibit many different variants, reaching 40 variants
for the same name [Arbabi et al., 1994]. Yet, there is no search engine which deals with
finding documents that contain the different versions of the same Arabic name.

Arabic names have become very common in the west due to the increasing immigrants
to the western countries. For example, in Britain, the name “Mohammed” — written in 14
different spellings — was the second most popular names for baby boys in year 2006.i

Searching for Arabic names in the Internet is of interest to many non-Arabic people due
to the fact that many news events are associated with the Middle East. Many news agencies
daily report Arabic names written in Latin characters with different spellings used to represent
the same person. Non-Arabic speaking users who want to find Arabic names usually type the
phonemes of Arabic name or as they hear it in the news. If they mistakenly type one version
which is not found in the search engine index, they miss finding relevant documents as the
search engine mismatches the user version with versions found in its index. Furthermore, if
the search engine succeeds in matching the user version with one of its index terms, it usually
matches it with only one version and rarely retrieves documents that contain variants for the
same name.

In this paper, we aim at improving finding transliterated Arabic name variants in
English text. We also aim at utilizing name matching algorithms to find documents that
contain variants of Arabic transliterated names in the user query.

2 Finding	Names	in	English	
Most important words in the user query are proper nouns [Abduljaleel and Larkey, 2003].
Proper nouns are names of people, places and organizations. These words usually carry more
weight than other words in the query and give an important role to find documents related to
the user query. Personal names may have variants within the same language such ’Gale’ as
’Gayl’ in English. According to Peter [Christen, 2006a], variants of names are generated from
different sources such as:

• Confusion between similar letters when reading handwriting such as ’q’ and ’g’.
• Entering data manually causes typing the wrong spelling. For example, writing

’Sydeny’ instead of ’Sydney’.
• Online entering of data such as over telephone link.
• Limitations in the maximum length of input fields can force people to use

abbreviations, initials only, or even disregard some parts of name.
Another major source of errors is transliteration of foreign names. Foreign names are

characterized by having different versions [Pirkola et al., 2001, Nwesri et al., 2007]. This is
due to the fact that phonemes are transliterated differently from their original language. For
example, the sound for the letter “خ” in Arabic as in the word “خالد” has no similar sound in
English. This is sometimes represented using the letter “k” as in “Kaled” and sometimes
using the letters “kh” as in “Khaled”. [Alghamdi, 2005] states that there are about 21 sounds
in Arabic that have no similar sounds in English. This creates a problem in writing Arabic
names in English.

2.1 Name	Matching	Algorithms	
Finding variants of the same name in English have been investigated by many researchers
[Zobel and Dart, 1996, Christen, 2006a]. Several similarity matching algorithms have been
developed to find name variants. In the following section we present some of these
techniques. Name matching algorithms can be grouped into two main groups: phonetic
matching algorithms, and string similarity matching algorithms. Phonetic string algorithms
use sounds to match names. One instance of such algorithms is Soundex.

2.1.1 Soundex	
The Soundex algorithm, patented in 1918 by Odell and Russell [Hall and Dowling, 1980], is
designed to find spelling variations of names. It groups different characters under 6 different
codes. It replaces characters by codes except the first characters; disregards vowels, “h”, and
“w”; and limits the final code to 4 characters. Table 1 shows these groups. The algorithm can
be summarized in the following steps:

• Replace all but the first letter of the string by its phonetic code.
• Eliminate any adjacent repetition of codes.
• Eliminate all occurrences of code 0,i.e. eliminate all vowels.
• Return the first four characters of the resulting string.

Using this algorithm, names such as “Nabila”, “Nabilah”, and “Nabeela” have the same code
“N140”. However, the name ”Nabil” would also have the same code, although they are
different. Another algorithm that measures the similarity between two strings is the
Levenshtein Edit Distance.

Code 0 1 2 3 4 5 6
Group a e I o u y h w b p f v c g j k q s x z d t l m n r

Table 1. Groups used by Soundex algorithm to encode names.

 N a b i l a
 0 1 2 3 4 5 6

(0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0)

N 1 0 1 2 3 4 5

(0,1) (1,1) (2,1) (3,1) (4,1) (5,1) (6,1)

a 2 1 0 1 2 3 4

(0,2) (1,2) (2,2) (3,2) (4,2) (5,2) (6,2)

b 3 2 1 0 1 2 3

(0,3) (1,3) (2,3) (3,3) (4,3) (5,3) (6,3)

i 4 3 2 1 0 1 2

(0,4) (1,4) (2,4) (3,4) (4,4) (5,4) (6,4)

l 5 4 3 2 1 0 1

(0,5) (1,5) (2,5) (3,5) (4,5) (5,5) (6,5)

a 6 5 4 3 2 1 0

(0,6) (1,6) (2,6) (3,6) (4,6) (5,6) (6,6)

h 7 6 5 4 3 2 1

(0,7) (1,7) (2,7) (3,7) (4,7) (5,7) (6,7)

Table 2. Calculating Edit Distance between the strings “Nabila” and “Nabilah”. The
final computed distances is in the bottom-right [position (6,7)].

2.1.2 Levenshtein	Edit	Distance	
This algorithm calculates the distance between two strings in terms of the number of
insertion, deletions or substitutions required to change one string to another. The edit distance
is calculated using the recurrence relation shown in Equation 1. For examples, the edit
distance between “nabila” and “nabilah” is 1 (delete “h”) and the edit distance between
“abdul” and “abdel” is 1 (replace “u” with “e”). Calculating the distance using Edit Distance
is shown in Table 2.

where s is a string with length n indexed using i, t is a string of length m indexed using j, and
d(s[i], t[j]) = 0 if s[i] = t[j], 1 otherwise. The algorithm uses a matrix to align the two strings.
It first assigns the values of i and j to the first row and first column respectively. Starting at
edit(1, 1), and ending at position edit(n,m), the algorithm compares the character of s[i] to the
character t[j], and the adjacent previous characters. The final distance is found at edit(n, m).

2.1.3 Gram	Count	
The n-grams of a string are overlapping windows of size n characters. For example, the 3-
grams for the string “Nabila” are : “Nab”, “abi”, “bil” and “ila”. and the 3-grams for

edit(0, 0) = 0
edit(i, 0) = i
edit(0, j) = j
edit(i, j) = min[edit(i-1, j) + 1, edit(i, j-1) + 1, edit(i-1, j-1) + d(si, ti)] (1)

“Nabilah” are : “Nab”, “abi”, “bil”, “ila” and “lah”. The Gram Count measure uses the
number of common n-grams between a string s and string t to compute their similarity. One
measure used by Pfeifer et al. [1996] calculates the similarity between strings s and t as:

𝐺𝑟𝑎𝑚𝐶𝑜𝑢𝑛𝑡 = 𝑠𝑖𝑚 𝑠, 𝑡 = 	
|	𝐺0 	∩ 	𝐺2|
|	𝐺0 	∪ 	𝐺2|

																																																												(2)

where Gs is the set of grams in string s, and Gt is the set of grams in string t. The absolute sign
is used to show that the number of n-grams is returned. For example, if n=3, then the
similarity between “Nabila” and “Nabilah” using this measure

gramCount Nabila, Nabilah =
𝑁𝑎𝑏, 𝑎𝑏𝑖, 𝑏𝑖𝑙, 𝑖𝑙𝑎 ∩ 𝑁𝑎𝑏, 𝑎𝑏𝑖, 𝑏𝑖𝑙, 𝑖𝑙𝑎, 𝑙𝑎ℎ
𝑁𝑎𝑏, 𝑎𝑏𝑖, 𝑏𝑖𝑙, 𝑖𝑙𝑎 ∪ 𝑁𝑎𝑏, 𝑎𝑏𝑖, 𝑏𝑖𝑙, 𝑖𝑙𝑎, 𝑙𝑎ℎ

																																						= 	
| 𝑁𝑎𝑏, 𝑎𝑏𝑖, 𝑏𝑖𝑙, 𝑖𝑙𝑎 |	

{𝑁𝑎𝑏, 𝑎𝑏𝑖, 𝑏𝑖𝑙, 𝑖𝑙𝑎, 𝑙𝑎ℎ}|	 = 	
4
5 = 0.8

2.1.4 Gram	Distance	
Another measure uses n-grams is the Gram distance [Ukkonen, 1992], which computes the
distance between two strings as:

𝑔𝑟𝑎𝑚𝐷𝑖𝑠𝑡 𝑠, 𝑡 = 𝐺0 +	 𝐺2 − 	2× 𝐺0 ∩ 𝐺2 																																															(3)	

According to this measure, the distance between “Nabila” and “Nabilah”

gramDist Nabila, Nabilah = |{𝑁𝑎𝑏, 𝑎𝑏𝑖, 𝑏𝑖𝑙, 𝑖𝑙𝑎}| 	+ 	 |{𝑁𝑎𝑏, 𝑎𝑏𝑖, 𝑏𝑖𝑙, 𝑖𝑙𝑎, 𝑙𝑎ℎ}|
																																																																		−	2	×	|{𝑁𝑎𝑏, 𝑎𝑏𝑖, 𝑏𝑖𝑙, 𝑖𝑙𝑎} ∩ {𝑁𝑎𝑏, 𝑎𝑏𝑖, 𝑏𝑖𝑙, 𝑖𝑙𝑎, 𝑙𝑎ℎ}|

= 4 + 5 − 2	×4 = 1		

2.1.5 The	Dice	Measure	
Introduced in 1945 [Dice, 1945], the Dice measure computes the similarity between strings s
and t using the equation:

𝐷𝑖𝑐𝑒 𝑠, 𝑡 = 	
2× 𝐺0 ∩ 𝐺2
𝐺0 +	 𝐺2

																																																																																(4)	

The similarity between “Nabila” and “Nabilah” when using this measure and 3-grams

gramDist Nabila, Nabilah =
2	×	|{𝑁𝑎𝑏, 𝑎𝑏𝑖, 𝑏𝑖𝑙, 𝑖𝑙𝑎} ∩ {𝑁𝑎𝑏, 𝑎𝑏𝑖, 𝑏𝑖𝑙, 𝑖𝑙𝑎, 𝑙𝑎ℎ}|
|{𝑁𝑎𝑏, 𝑎𝑏𝑖, 𝑏𝑖𝑙, 𝑖𝑙𝑎}| 	+ 	 |{𝑁𝑎𝑏, 𝑎𝑏𝑖, 𝑏𝑖𝑙, 𝑖𝑙𝑎, 𝑙𝑎ℎ}| 																			

= 	
2	×4
9 = 0.89

3 Related	Work	
Finding names in English has been studied in depth by many researchers. In this section we
report experiments to find name variants in English.

Zobel and Dart [1995] tested the effectiveness of phonetic-matching and string
similarity techniques in finding name variants. They used a list of 31,763 distinct English
personal names extracted from student names and used 48 randomly-chosen names as queries.
Zobel and Dart [1995] used 9 algorithms including Edit Distance, gram- Count, gramDist, and

Soundex. They evaluated the top 200 answers returned by the different algorithms and found
that the Edit Distance finds name variants better than other algorithms, with a precision of
63.7%, followed by gramDist and gramCount. The Soundex algorithm perform poorer than
other string similarity algorithms. Zobel and Dart [1996] used another list of over than 30,000
distinct English names extracted from the Web to test the performance of phonetic and string
similarity algorithms in finding name variants. They randomly selected 100 names as queries
from the Melbourne White Pages telephone directory. Their results also show that the Edit
Distance and the Q-grams algorithms are better than the Soundex algorithm in finding name
variants.

Pfeifer et al. [1995, 1996] used a list of 14,972 distinct names from different sources
and randomly chosen 90 names as queries. They tested the effectiveness of finding name
variants using phonetic and string similarity algorithms including Soundex, and n-grams.
Their results show that all similarity techniques are significantly better than the exact match
technique, and that the tailed n-grams perform better than the Soundex algorithm.

Holmes et al. [2004] used a list of 5,819 transliterated Arabic names and 150 queries
that have variants in the list to evaluate the performance of their n-grams algorithm. They
generate n-grams of Arabic names and then replace certain characters using 45 transformation
rules. They compute similarity using the Dice measure presented in the previous section.
They achieved an average precision of 90% with a recall of 100%.

Christen [2006a,b] used the test set of Pfeifer et al. [1996] and created three more lists
by extracting unique names from healthcare records to evaluate the effectiveness of
approximate matching algorithms in finding name variants. They evaluated 24 algorithms and
reached the conclusion that name matching algorithms should be chosen based on the data set
in hand.

Nwesri et al. [2007] created two data sets to test the effectiveness of finding foreign
name variants in Arabic text. The first list contains foreign word variants extracted from
Arabic text, while the second contains variants manually transliterated from English words.
They clustered name variants and used every variant as a query. They showed that
normalizing foreign words by removing vowels and mapping different letter transliterations to
one lead to the best results when using the first data set; but that string similarity algorithms
such as gramCount and Dice are better than normalization and phonetic algorithms when
using the second data set.

Most of the research conducted on finding name variants was conducted to test the
effectiveness of string and phonetic matching algorithms in finding name variants along lists
of names. There is little research on finding name variants within a text environment. Finding
names in this environment is different as many words in the text affect results. For example,
the Soundex algorithm considers the name “Nabila”, the word “Nobel”, and the name
“Nepal” as similar. We believe that the performance of string similarity and phonetic
algorithms would be affected if they were tested to find names within text documents.

Query expansion has been used to expand queries with name variants. For example,
Larkey et al. [2003] tested the effectiveness of using several translation and transliteration
sources to improving finding Arabic documents using English queries. They translated
queries from English to Arabic and generated different variants for proper nouns in English
queries. Then they formed Arabic queries from translated words and replaces proper nouns
with their generated transliterations. They found that this improves retrieval effectiveness.
AbdulJaleel and Larkey [2002] also tested using English queries to search an Arabic text
collection. To test the effectiveness of transliteration on retrieval performance, they translated
queries using the bilingual dictionary and expanding queries by automatically transliterating
names. Their results show that expanding queries using different transliterations generally
increases the performance over the baseline.

4 Experiments	
In order to test the effectiveness of existing algorithms, we built a dataset of transliterated
Arabic names. We started looking for Arabic names written in the Roman script. We used the
Google search engine to search for Arabic names using our own transliteration versions of
some names. We started with some pages dedicated to Arabic names written in English on the
web. We collected a list of 3,245 full names out of which we extracted 2,788 unique single
names. We have also crawled lists of graduates from Arabic universities. We crawled the
alumni lists from the University of Beirut from year 1964 to 2007.ii Our final list had 25,876
unique transliterated Arabic names.

We created the test set by randomly choosing 200 names from our name list. To
determine the variants of names for the 200 names in the 25,876 names, we used the pooling
technique used in IR research to determine relevant documents to a query in a large text
collections [Voorhees, 2003]. To collect the possible variants for each name in our data set,
we used the Dice, Edit Distance, Gram count, Gram Distance, and Soundex algorithms (see
Section 2.1) to find the possible variants for that name. As all algorithms except the Soundex,
return a ranked list of variants; we add the first 10 variants returned by each algorithm to the
pool. For every name, we removed repeated variants and left only the unique variants. Then
we manually refined that list and left the actual variants. If the name has no variants, we
remove it from the test set. Our final test set has 115 names with their variants.

5 Evaluation	of	Existing	Algorithms	
We run the different algorithms using the test set. For each algorithm, we calculate the
average precision and recall. For every name, we use the individual algorithms to search our
data set and find its variants. We calculate recall and precision as follows:

𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑇ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑜𝑟𝑟𝑒𝑐𝑡	𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠	𝑟𝑒𝑡𝑢𝑟𝑛𝑒𝑑	

𝑇ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑎𝑙𝑙	𝑐𝑜𝑟𝑟𝑒𝑐𝑡	𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠 	

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑜𝑟𝑟𝑒𝑐𝑡	𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠	𝑟𝑒𝑡𝑢𝑟𝑛𝑒𝑑
𝑇ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑎𝑙𝑙	𝑟𝑒𝑡𝑢𝑟𝑛𝑒𝑑	𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠

As an example, suppose that the name “Nabila” has three variants (Nabila, Nabeela, and

Nabilah), and an algorithm “X” returns (Nabila, Nabeela, Nabil, Nabeel, Nabel) as variants of
Nabila. Then, the precision of algorithm X is b

c
= 0.4, the recall is b

d
= 0.6.

In many cases algorithms show better recall than other algorithms but have lower
precision or vice versa. Another measure that combines precision and recall is called F
measure [Baeza-Yates and Ribeiro-Neto, 1999]. A harmonic version of this measure is called
F1 and is computed as:

𝐹g	𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 	
2	×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	×𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑎𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Accordingly the F1 measure is b×h.i×h.j

h.ikh.j
= 0.48.

Algorithm Relevant

Retrieved
Retrieved Recall Precision F1 Measure

Exact Match 115 115 0.236 1.000 0.382
Soundex 398 5,654 0.816 0.070 0.129
Dice 175 340 0.359 0.515 0.423
Edit Distance 279 590 0.572 0.473 0.518
Gram Count 153 250 0.314 0.612 0.415
Gram Distance 130 194 0.266 0.670 0.381

Table 3. Best results obtained by different algorithms. The number of actual relevant
name variants is 488.

We compute the final precision and recall for each algorithm by averaging the result of
the 115 names in our list. As our objective is to get the best possible variants to a name, we
calculate the precision over 100% recall of each algorithm. For ranked algorithms, we
determined the best threshold at which the algorithm achieves the best precision and recall by
running algorithms at the different threshold values and observing results. Table 3 shows the
best results produced by the different algorithms compared with the exact match technique.

Results show that the exact match technique, where we compare words without any
processing, captures 24% of the names. This shows the importance of using techniques to find
other variants (around 75%).

The Soundex algorithm captures around 82% of variants, however, the precision is very
low. The Edit Distance algorithm captures about 57% of the variants — twice as many as the
exact match — however, the precision is only 47%. The gramDist algorithm has the best
precision (67%), with only 15 more variants captured than the exact match. The gramCount
algorithm has a slight lower precision than the gromDist, but it finds more variants (Recall is
31%). The Dice algorithm has a precision of 51% and a recall of 37%.

As can be seen from the results, none of the algorithms captures all the variants. All
algorithms either have a low recall or a low precision. Applications such as search engines,
that require direct interaction with users require higher precision, as the users usually look for
the first few pages returned. Using an algorithm with lower precision to expand the query
causes many unrelated words to be used in the user query. This affects the result of search
engine as non-relevant documents with unrelated names would be also retrieved and might be
ranked at the first top 10 retrieved documents. We need to consider precision and increase
recall to capture as much variants as possible.

In the following section, we describe the algorithm that we implemented specifically to
find Arabic name variants. We then compare its effectiveness with other algorithms.

6 The	EngNORM	Algorithm		
According to results in the previous section, we decided to implement another algorithm that
finds Arabic name variants. We created our algorithm based on our knowledge of Arabic
names in English and the way they are written and based on our observation on names
collected from the web. In order to introduce a new algorithm that finds Arabic name variants,
we considered the mappings between Arabic and English characters presented in Abduljaleel
and Larkey [2003], and analyzed a sample of transliterated Arabic names. We observed the
following differences in written Arabic names:

• Names that start with the definite article “الـ” are transliterated differently to either
“Al”, “Al-”, “El”, or “’El-”.

• Some Arabic characters such as “غ” and “خ” are mapped to more than one English
character usually by adding the letter “h” after their respective translated equivalent.

Algorithm	 Relevant	
Retrieved	 Retrieved	 Recall	 Precision	 F1	Measure	

ExactMatch	 115	 115	 0.236	 1.000	 0.382	
Soundex	 398	 5,654	 0.816	 0.070	 0.129	
Dice	 175	 340	 0.359	 0.515	 0.423	
EngNORM	 227	 274	 0.465	 0.828	 0.596	
Edit	Distance	 279	 590	 0.572	 0.473	 0.518	
Gram	Count		 153	 250	 0.314	 0.612	 0.415	
Gram	Distance	 130	 194	 0.266	 0.670	 0.381	

Table 4. EngNORM results compared to other algorithms. The number of actual
relevant name variants is 488.

• Compound names that start with “عبد” are transliterated differently to either “Abdul”,
“Abdul-”, “Abdel”, “Abdel-”, “Abdu”, or “Abde”. For example, the name “عبدالسلام”
is transliterated to “Abdussalam”, “Abdul-salam”, Abdel-salam”, or “Abdulsalam”.

• The Arabic feminine singular ending “ـة” is transliterated to either “a” or “ah”. For
example, “جمیلة” is transliterated to “jamila” or “jamilah”.

• Single Arabic characters are in some cases mapped to one English characters and in
some others mapped to double English characters. For Example, the character “ـمـ” in
the name “محمد” is sometimes transliterated to a single “m” as in “mohamed” and
sometimes transliterated to a double “mm” as in “mohammed”.

Based on these observations, we implemented our new algorithm which normalizes
these errors and maps different English characters used to represent the same Arabic character
to one characters. The new algorithm is called EngNORM and works as follows:

• Convert all letters to lower case.
• Remove double character.
• Remove “h” if proceeded by “g”, “d”, “t”, or “k”.
• Replace “u” with “e” in the sequence “dul”.
• Remove the hyphen character “-” and final “h”.
• Replace “q” with “k”, “g” with “j”, “p” with “b”, “v” with “f”, “o” with “u”, and “e”

and “y” with “I”.
• Remove a vowel only if it is proceeded by another vowel and followed by a

consonant.
Results of running our algorithm on the same test set are shown in Table 4. Results

show that our algorithm is better than all other algorithms, as it produces better precision
while doubling the recall value. Our algorithm captures as twice variants as the exact match
algorithm (47%) at a precision of 83%. It performs significantly better than the Edit Distance
algorithm (t-test, p<0.05), and significantly better than other algorithms in the confidence
level of 99% (p<0.001).

7 Finding	Variants	on	The	Web	
In order to find variants of Arabic names, we implemented a system that utilizes our
algorithm to find variants of the input name and expands the user query with its possible
variants. To differentiate between English native words and Arabic names, we used an
English dictionary

`

Figure 1. System architecture. The system has two main components: parser and
expander.

to avoid expanding English native words. We also used the EngNORM algorithm to create a
list of Arabic name variants form our 25,876 crawled Arabic names. The list contains name
variants indexed by their normalized version. For example “nabila”, “nabeela”, “nabilah” are
indexed by “nabila”.

Figure 1 shows the design of our system. The system begins by parsing the user query
and determining non-English words by checking then against the English dictionary. It then
checks the normalized word against our index in the name variants list. If the word is not
found in the English dictionary, and it is found in the name list, we fetch its variants and add
them to the original query. If it is not found in our list, we add it as a new entry to the variants
list. This allows our list to grow and include new name variants. We send the final expanded
query to the search engine. The user receives the results. Figure 2 shows the results of
searching Google using the Arabic name “Nabila”, while Figure 3 shows the Google results
using our system. It is clear that the top retrieved pages are not the same and our system
considers other name variants. The system can be tested on http://www.al-tahaddi.com/ANS/.

Figure 2. Search using the Google search engine with the transliterated Arabic name
“Nabila”. Only documents containing ”Nabila” are retrieved.

Figure 3. Search using the Google search engine with the expanded query generated by
our system for the transliterated Arabic name “Nabila”. Documents containing
“Nabila”, “Nabeela”, and “Nabilah” are retrieved.

8 Conclusions	
We have implemented an algorithm that finds variants of transliterated Arabic Names. We
compared this algorithm with other algorithms used to find name variants in English. We
have shown that our algorithm outperformed other algorithms and have implemented a system
that utilizes this algorithm to expand the user query with name variants in order to find
documents contain such variants using major search engines.

9 References	
AbdulJaleel, N. and Larkey. L., English to Arabic transliteration for information retrieval: A

statistical approach. Technical Report IR-261, University of Massachusetts, 2002.
AbdulJaleel, N. and Larkey. L., Statistical transliteration for English-Arabic cross-language

information retrieval. In Proceedings of the International Conference on Information
and Knowledge Management, pages 139–146, New Orleans, LA, USA, 2003. ACM
Press.

Alghamdi, M., Algorithms for romanizing Arabic names. Journal of King Saud University:
Computer Sciences and Information., 17:1–27, 2005. In Arabic.

Arbabi, M., Fischthal, S. M., Cheng, V. C., and Bart, E., Algorithms for Arabic name
transliteration. IBM Journal of Research and Development, 38(2):183–194, 1994.

Baeza-Yates, R. A. and Ribeiro-Neto, B. A., Modern Information Retrieval. ACM Press /
Addison-Wesley, 1999. ISBN 0-201-39829-X. URL sunsite.dcc. uchile.cl/irbook/.

Christen, P., A comparison of personal name matching: Techniques and practical issues.
Technical report, The Australian National University, September 2006a.

Christen, P., A comparison of personal name matching: Techniques and practical issues. Sixth
IEEE International Conference on Data Mining - Workshops (ICDMW’06), 0:290–
294, 2006b.

Dice, L. R., Measures of the amount of ecologic association between species. Ecology,
26(3):297–302, July 1945. P. A. V. Hall and G. R. Dowling. Approximate string
matching. ACM Computing Surveys, 12(4):381–402, 1980.

D. Holmes, Kashfi, S., and Aqeel, S. U., Transliterated Arabic name search. In The 3rd
IASTED International Conference on Communications, Internet, and Information
Technology, pages 267–273, St. Thomas, US Virgin Islands, 2004.

Larkey, L., AbdulJaleel, N. and Connell, M., What is a name?: Proper names in Arabic cross
language information retrieval. Technical Report IR-278, University of
Massachusetts, 2003.

Nwesri, A. F., Tahaghoghi, S., and Scholer, F., Finding variants of Out-of-Vocabulary Words
in Arabic. In Proceedings of the 2007 Workshop on Computational Approaches to
Semitic Languages: Common Issues and Resources, pages 49–56, Prague, Czech
Republic, June 2007. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/W/ W07/W07-0807.

Pfeifer, U., Poersch, T., and Fuhr, N., Searching proper names in databases. In R. Kuhlen and
M. Rittberger, editors, Hypertext - Information Retrieval - Multimedia,
Synergieeffekte elektronischer Informationssysteme, HIM ’95, volume 20 of
Schriften zur Informationswissenschaft, pages 259–275, Konstanz, April 1995.
Universit¨atsverlag Konstanz.

Pfeifer, U., Poersch, T., and Fuhr, N., Retrieval effectiveness of proper name search methods.
Information Processing & Management, 32(6):667–679, 1996.

Pirkola , A., Hedlund, T., Keskustalo, H., and Järvelin, K., Dictionary-based cross-language
information retrieval: Problems, methods, and research findings. Journal of
Information Retrieval, 4(3-4):209–230, 2001.

Ukkonen, E., Approximate string-matching with q-grams and maximal matches. Theory
Computer Science., 92(1):191– 211, 1992.

Voorhees, E. M., Overview of the TREC 2003 question answering track. In Proceedings of
the Text Retrieval Conference (TREC), pages 54–68, 2003.

Zobel, J. and Dart, P., Finding approximate matches in large lexicons. Software - Practice and
Experience, 25(3):331– 345, 1995.

Zobel, J. and Dart, P., Phonetic string matching: lessons from information retrieval. In The
Nineteenth annual international ACM SIGIR conference on Research and
development in information retrieval, pages 166–172, New York, NY, USA, 1996.
ACM Press.

	

																																																													
i http://www.timesonline.co.uk/tol/news/uk/
article1890354.ece	
ii http://www.bau.edu.lb/Alumni/english_branch.html	

