

140

 - ISSN 202153 2021 -المجلة الليبية لعلوم التعليم العدد الرابع أغسطس

Analysis and comparison of data compression

Techniques and their application to text files

Jalal M. Mehalhal1*, 𝐴𝑑𝑒𝑚𝐴. 𝑏𝑒𝑛𝑠𝑎𝑖𝑑2 , 𝑀𝑢ℎ𝑚𝑒𝑑 𝐹. 𝐴𝑔𝑏𝑖𝑠ℎ𝑎1

Abstract

Due to the rapid development in information technology in terms

of information exchange and transmission through different

transmission media, and the provision of storage places. when the

volume of data is smaller, this means that, it provides better

transmission speed. and saves time, which led to the emergence of

data compression techniques to reduce its size without

compromising the quality of the data.

Data compression is still an important topic of research and has

many applications and required uses.

This paper presents a study of some of the data compression

methods: Huffmann and Huffmann shift code, binary shift code

algorithm, and the LZW method, analyzing and comparing

between them, using a fixed text for all methods.

keywords: Data compression, compression techniques,

Huffmann, Huffmann shift code, binary shift code , LZW.

1. Introduction

Data compression technology is primarily a branch of information

theory that deals with techniques related to minimizing the amount

of data to be transferred and preserved. Data compression is a

method of representing data using fewer bits than the original data

[6].

Data compression is of great importance in business data

processing, as it helps us reduce resource usage such as data

storage space or transmission capacity [5].

141

 - ISSN 202153 2021 -المجلة الليبية لعلوم التعليم العدد الرابع أغسطس

With the increasing development of technology and internet

networks supported by programs and devices that facilitate the

spread of information very quickly over the Internet around the

world. The information obtained can be easily sent over the

Internet as a means of communication for IT experts. However,

not all information can be sent easily. There is a large volume that

can hinder the fast data transfer and save on the storage in the

computer. There are a number of different data compression

methodologies that use technologies mainly for speed, efficiency,

performance as well as cost savings [2].

Compression is the process of converting a data set into a code to

save the need for storage and transmission of data making it easier

to transmit a data.

With the compression of a can save in terms of time and storage

that exist in memory. The data process of data compression is

shown in figure 1[2].

Figure 1: The data process of data compression [2]

In figure 1, explain the process of data compression in general.

how the data when not compressed then uncompressed data will

be continued and processed by compression method that is lossless

compression then the data has been compressed will produce a size

smaller than the size of the file before it is compressed.

1.1 CLASSIFICATION METHODS :

Data compression methods can also be categorized into static and

dynamic compression methods. In static method, mapping from

142

 - ISSN 202153 2021 -المجلة الليبية لعلوم التعليم العدد الرابع أغسطس

the set of messages to the set of codeword is fixed before

transmission begins. Huffman coding [Huffman 1952] is the

example of classic static defined word scheme. On the other hand,

dynamic method changes the mapping of set of messages to the set

of codeword over a period of time. For instance dynamic Huffman

coding computes approximate probability of occurrence of a set of

characters in a message[6].

1.2 FUNDAMENTALS FOR COMPRESSION

Compression can be divided into two categories, as Lossy and

Lossless compression.

Lossy compression means that some data is lost when it is

decompressed. Lossy compression bases on the assumption that

the current data files save more information than human beings

can "perceive”. Thus the irrelevant data can be removed.

Lossless compression means that when the data is decompressed,

the result is a bit-for-bit perfect match with the original one. The

name lossless means "no data is lost", the data is only saved more

efficiently in its compressed state, but nothing of it is removed.

1.3 Data Compression

 Data compression is a procedure through which a file (text,

Audio, and Video) could also be modified to one more

(compressed) file, such that the normal file could also be

completely recovered from the long-established file without any

loss of exact knowledge. This process may be subsidiary if one

wishes to save lots of the storage space. For instance if one wishes

to retailer a 4MB file, it is usually top-rated to first compress it to

a smaller size to save the storage space. Additionally compressed

files are much more effectively exchanged over the web for the

reason that they add and down load much faster. We require the

potential to reconstitute the original file from the compressed

143

 - ISSN 202153 2021 -المجلة الليبية لعلوم التعليم العدد الرابع أغسطس

variation at any time. Data compression is a method of encoding

rules that sanctions substantial reduction in the total number of bits

to store or transmit a file. The more data being handled, the more

it costs in phrases of storage and transmission costs. In short, Data

Compression is the method of encoding data to fewer bits than the

customary illustration in order that it takes less storage space and

not more transmission time even as communicating over a

network. There are two mainly two types of Data Compression:

1. Lossy Compression

2. Lossless Compression[7]

Figure 2: Types of Data Compression

2. Related works

In Paper [1] , researchers conducted a study about compression

methods (Huffman, Shannon Fano, Tunstall, Lempel Ziv Welch

and run-length encoding) and applied them to a text file and how

each method works and compares between them.

In Paper[2], researchers studied compression methods (LZW,

Huffman, Fixed-length code (FLC), and Huffman after using

Fixed-length code (HFLC)).

144

 - ISSN 202153 2021 -المجلة الليبية لعلوم التعليم العدد الرابع أغسطس

 And applied them to a group of different files and comparing

between them, and as a result of that it was concluded that the

LZW method is the best, especially for large files and then

huffman respectively.

3. Data Compression Techniques

 There are two different ways that data compression methods and

algorithms can be categorized as the lossless and lossy, the

methods are classified according to a fixed or variable. Lossless

compressions are run-length; Huffman, delta, LZW etc.[5].

3.1 Huffman Compression Technique

There are many types of Huffman coding, some are use a

Huffman-like algorithm, and others find optimal prefix codes

(while, for example, putting different restrictions on the output).

In the latter case, the method need not be Huffman-like, and,

indeed, need not even be polynomial time. An

exhaustive list of papers on Huffman coding and it’s variations are

given here as follows:

The n-ary Huffman algorithm uses the {0, 1, ... , n − 1} alphabet

to encode message and build an n-ary tree. This approach was

considered by Huffman in his original paper. The same algorithm

applies as for binary (n equals 2) codes, except that the n least

probable symbols are taken together, instead of

just the 2 least probable. Note that for n greater than 2, not all sets

of source words can properly form an n-ary tree for Huffman

coding. In this case, additional 0-probability place holders must be

added.

This is because the tree must form an n to 1 contractor; for binary

coding, this is a 2 to 1 contractor, and any sized set can form such

a contractor. If the number of source words is congruent to 1

modulo n-1, then the set of source words will form a proper

Huffman tree.

145

 - ISSN 202153 2021 -المجلة الليبية لعلوم التعليم العدد الرابع أغسطس

A variation called adaptive Huffman coding which is involved for

calculating the probabilities dynamically based on recent actual

frequencies in the sequence of source symbols, and changing the

coding tree structure to match the updated probability estimates.

Most often, the weights used in implementations of Huffman

coding represent numeric probabilities, but the algorithm which

given above does not require this; it requires only the weights form

a totally ordered commutative monoid, meaning a way to order

weights and to add them. The Huffman template algorithm enables

one to use any kind of weights (costs, frequencies, pairs of

weights, nonnumerical weights) and one of many combining

methods (not just addition). Such algorithms can solve other

minimization problems, a problem first applied to the circuit

design.

Length-limited Huffman coding is a variant where the goal is still

to achieve a minimum weighted path length, but there is an

additional restriction that the length of each code word must be

less than a given constant. The package-merge algorithm solves

this problem with a simple greedy approach which is very similar

to that is used by Huffman's algorithm. It’s time complexity is

O(nL), where L is the maximum length of a code word. No

algorithm is known to solve this problem in linear or linearithmic

time, unlike the pre-sorted and unsorted conventional Huffman

problems, respectively[5].

3.2 LZW Compression Technique

 LZW compression named after its developers, A. Lempel and J.

Ziv, with later modifications by Terry A. Welch. It is the foremost

technique for general purpose data compression due to its

simplicity and versatility. Typically, you can expect LZW to

compress text, executable code, and similar data files to

146

 - ISSN 202153 2021 -المجلة الليبية لعلوم التعليم العدد الرابع أغسطس

about one-half their original size. LZW also performs well when

presented with an extremely redundant data files, such as tabulated

numbers, computer LZW is the basis of several personal computer

utilities that claim to "double the capacity of your hard drive." If

the codeword length is not sufficiently large, Lempel-Ziv codes

may also rise slowly to reasonable efficiency, maintain good

performance briefly, and fail to make any gains once source code,

and acquired signals. Compression ratios of 5:1 are common for

these cases. [5]

LZW Encoding Algorithm

Step 1: At the start, the dictionary contains all possible roots, and

P is empty

Step 2: C: = next character in the char stream;

Step 3: Is the string P+C present in the dictionary?

(a) if it is, P := P+C (extend P with C);

(b) if not,

–output the code word which denotes P to the code stream;

– add the string P+C to the dictionary;

–P: = C (P now contains only the character C); (c) Are there more

characters in the char stream?

–if yes, go back to step 2;

–if not:

Step 4: Output the code word which denotes P to the code stream;

Step 5: END.

The fundamental theory of LZW compression algorithm is: any

predictable data can demonstrate such predictability by certain

mark and shorten the data length. During the process of LZW

compression, as the length of each code in the code stream of a

datum produced after compression is less than N, or the

compression algorithm can represent number of 0~2n- l, therefore

the string list can accommodate number of 2n at the maximum.

147

 - ISSN 202153 2021 -المجلة الليبية لعلوم التعليم العدد الرابع أغسطس

But each element of the input data stream after compression is a

byte, which represents 0~255 possible assignments. Secondly,

compression program takes one byte from

the input character stream. Two buffers of current prefix code and

current string are used to store data.

Prefix position is for the code processed last time, current string is

for the character string represented by prefix code and characters

read just now. When the program starts, both the prefix code and

current string are blank. Thirdly, program searches for current

string in the string list after initialization.

Fourthly, read the next byte from input stream, and add this

character behind current string, now the current string contains 2

bytes, and repeat the third step.

3.3 Huffman Shift Coding Algorithm

 On Shift Huffman Coding, the symbol is divided into several

blocks of the same size. Usually the block size is 2k -1 symbols,

where k is a positive integer. If k = 1, then the Shift Huffman

Coding Huffman same as Shift Coding Standard.

The symbol of the first block to be encoded using Huffman Coding

exactly standard. When encodes a symbol of the first block, were

also coded symbol hypothesis frequency of occurrence equal to

the number of frequency of occurrence of the symbols of the other

blocks. The only difference between

one block to the next block is then the result of the addition of the

prefix encoding the hypothesis symbols used to mark each block.

With Huffman Shift Coding algorithm, it could increase the use of

less time and average - average length of the code more efficient.

Broadly speaking, the following compression algorithms Huffman

Coding Shift work:

1. Source Symbol arranged so that the possibilities that arise from

the largest to the smallest.

148

 - ISSN 202153 2021 -المجلة الليبية لعلوم التعليم العدد الرابع أغسطس

2. The symbol of the first block will be encoded using Huffman

Coding Standard. When encodes a symbol of the first block, were

also coded symbol hypothesis frequency of occurrence equal to

the number of frequency of occurrence of the symbols of the other

blocks. The only difference between one block to the next block is

the addition of one or more code prefix result of the encoding

symbols to mark each block hypothesis.

3. Symbols hypothesis of Huffman coding, we think of as C.The

total number of source symbols are divided into several blocks of

symbols of the same size.

4. The second symbol of the code block is CK−1 coupled with the

symbol of all I first block of Huffman Coding.

There are differences in the formation of the tree Huffman Coding

Shift this. As shown in the following figure.[3]

Figure 3:. Huffman Shift Coding process

4. Results and Discussion

Four compression algorithms are tested on a text file in a normal

English language format and calculate the message size before

and after the implementation of the algorithm and compare them.

149

 - ISSN 202153 2021 -المجلة الليبية لعلوم التعليم العدد الرابع أغسطس

The following message was chosen for compression analysis, and

the selection was random and the results were as follows:

Jalal Mohammed And Adam Are Friends

1- Hoffmann's method of data compression:

An algorithm that does not give a code of equal length for every

letter or symbol in the segment is called a variable length cipher

algorithm.

The huffman coding technique is the most common method used

to remove redundant data based on the following:

• The more prominent symbol is assigned a shorter code

than the less visible symbols in the same segment.

• The two less-repeated symbols will have a code of the

same length, and differ in the way it is represented.

To apply the method to the chosen text, we follow the following

steps:

1- We do a statistic about the file whose size is to be reduced,

after

repeating each letter.

S I F R N D E H O M Space L A J

1 1 1 2 2 4 3 1 1 4 5 2 7 1

Then we arrange the letters by the number of repetitions

S I F H O J R N L E D M SP A

1 1 1 1 1 1 2 2 2 3 4 4 5 7

2- We build a binary tree by selecting the letters with the least

repetition and connecting them together.

3- We record the paths for each letter of the original letters of the

file, by tracing the paths of binary tree from root to leaves.

150

 - ISSN 202153 2021 -المجلة الليبية لعلوم التعليم العدد الرابع أغسطس

When creating the compressed file, we replace the original

characters with their paths computed in the previous step.

M Space L A J letter

110 011 0010 000 00110 code

N D E H O letter

0100 101 111 01010 00111 code

 S I F R letter

 10011 10010 01011 1000 code

We can calculate the size and percentage of the new file by

multiplying the path length of each letter by the letter frequency.

M Space L A J letter

110 011 0010 000 00110 code

3 3 4 3 5 No of bits

4 5 2 7 1 No of repetitions

of the character

12 15 8 21 5 Total

N D E H O Letter

0100 101 111 01010 00111 Code

4 3 3 5 5 No of bits

2 4 3 1 1 No of repetitions

of the character

8 12 9 5 5 Total

 S I F R Letter

10011 10010 01011 1000 Code

5 5 5 3 No of bits

151

 - ISSN 202153 2021 -المجلة الليبية لعلوم التعليم العدد الرابع أغسطس

1 1 1 2 No of repetitions

of the character

5 5 5 6 Total

From here we note :

The total size of the message: ‌‌8‌ * ‌‌280‌‌=35‌ bit

The size of the message after applying the compression

algorithm: ‌121 bit

Data compression ratio = (total message size - message size after

compression) / message size

 =(280-121)/280=0.567

That is, reducing the size of the message to 56% of the original

size.

2-The HUFFMAN SHIFT CODE algorithm

1- We arrange the symbols according to the most probability.

2 Divide the total number of message codes into blocks of a

number of characters.

3- The letter is encoded according to the Hoffman code.

4- Encoding the elements inside each block with the same

encoding for the previous group.

5- Adding a special code indicating each block, and this code is

known to

the FAC code (decoding algorithm).

E D M Space A letter

111 110 10 01 00 code

O J R N L letter

00111 00110 0010 0001 0000 code

 S I F H letter

 0000110 000010 000001 000000 code

152

 - ISSN 202153 2021 -المجلة الليبية لعلوم التعليم العدد الرابع أغسطس

6-Calculate the size of the message after using the method‌:

The number of bits represented by each letter is counted and

multiplied by the number of times the character is repeated:

E D M Space A letter

111 110 10 01 00 code

3 3 2 2 2 No of bits

3 4 4 5 7

No of

repetitions of

the character

9 12 8 10 14 Total

O J R N L letter

00111 00110 0010 0001 0000 code

5 5 4 4 4 No of bits

1 1 2 2 2

No of

repetitions of

the character

5 5 8 8 8 Total

S I F H letter

0000110 000010 000001 000000 code

7 6 6 6 No of bits

1 1 1 1

No of

repetitions of

the character

7 6 6 6 Total

From here we note :

The total size of the message: ‌‌8‌ * ‌‌280‌‌=35‌ bit

The size of the message after applying the compression

algorithm: ‌112 bit

153

 - ISSN 202153 2021 -المجلة الليبية لعلوم التعليم العدد الرابع أغسطس

Data compression ratio = (total message size - message size after

compression) / message size

 =(280-112)/280=0.6

That is, reducing the size of the message to 60% of the original

size.

3- the binary shift code

We follow the same Hoffmann indentation method, but

Hoffman's code is not used in Step # 3 and instead is used regular

binary encoding.

According to the following steps:

1. Find the repetition of letters and their order.

2. Find the binary representation of the letter letters.

3. The letters are divided into three groups and the binary

representation of the letters is done using the regular

binary representation for one group of text, then adding the

same code to the other groups with the addition of a code

representing each group.

So we get the following table:

E D M Space A letter

100 011 010 001 000 code

O J R N L letter

111100 111011 111010 111001 111000 code

 S I F H letter

 111111011 111111010 111111001 111111000 code

To calculate the text size after using the method, we use the

following table:

154

 - ISSN 202153 2021 -المجلة الليبية لعلوم التعليم العدد الرابع أغسطس

E D M Space A letter

100 011 010 001 000 code

3 3 3 3 3 No of bits

3 4 4 5 7

No of

repetitions

of the

character

9 12 12 15 21 Total

O J R N L letter

111100 111011 111010 111001 111000 code

6 6 6 6 6 No of bits

1 1 2 2 2

No of

repetitions

of the

character

6 6 12 12 12 Total

S I F H letter

111111011 111111010 111111001 111111000 code

9 9 9 9 No of bits

1 1 1 1

No of

repetitions

of the

character

9 9 9 9 Total

From here we note :

The total size of the message: ‌‌8‌ * ‌‌280‌‌=35‌ bit

The size of the message after applying the compression

algorithm: ‌153 bit

Data compression ratio = (total message size - message size after

compression) / message size

 =(280-153)/280=0.454

That is, reducing the size of the message to 45% of the original

size.

155

 - ISSN 202153 2021 -المجلة الليبية لعلوم التعليم العدد الرابع أغسطس

4- Compression Algorithm LZW

To apply the LZW algorithm to a text we follow the following

steps:

1. Define a index for each characters of the language in the

dictionary.

Char. Index Char. Index Char. Index Char. Index

V 22 O 15 H 8 A 1

W 23 P 16 I 9 B 2

X 24 Q 17 J 10 C 3

Y 25 R 18 K 11 D 4

Z 26 S 19 L 12 E 5

SPACE 27 T 20 M 13 F 6

 U 21 N 14 G 7

2. Define indexes to characters within the dictionary.

Derived as Pattern Index Derived as Pattern Index

1 d A D 45 17 a J a 28

4 a D A 46 1 l A l 29

36 Space A M Space 47 12 a L a 30

41 R Space A R 48 29 Space A l Space 31

18 e R E 49 27 m Space M 32

5 Space E Space 50 13 o M O 33

27 f Space F 51 15 h O H 34

6 r F R 52 8 a H A 35

18 i R I 53 1 m A M 36

9 e I E 54 13 m M M 37

5 n E N 55 13 e M E 38

43 s N D S 56 5 d E D 39

 4 Space D Space 40

 27 a Space A 41

 1 n A N 42

 14 d N D 43

 4 Space D Space A 44

156

 - ISSN 202153 2021 -المجلة الليبية لعلوم التعليم العدد الرابع أغسطس

Hence the resulting message from the lzw algorithm is the

following string:

17 1 12 29 27 13 15 8 1 13 5 4 27 1 14 40 1 4 36 41 18 5 27 6 18

9 5 43

From here we note :

The total size of the message: ‌‌8‌ * ‌‌280‌‌=35‌ bit

The size of the message after applying the compression

algorithm: 224‌ bit

Data compression ratio = (total message size - message size after

compression) / message size

 =(280-224)/280=0.2

That is, reducing the size of the message to 20% of the original

size.

5.Conclusion

This paper provided an overview of general data compression

methods and a comparison between them in terms of message size

and compression ratio, and it was concluded that Hoffmann's

displacement method gave better results compared to Hoffman's

method and the binary displacement algorithm, but there is a

complexity in representing the data, as for the LZW method, the

message size was Large.

It was noted that the algorithm is more practical when the data is

dealt with the fewest characters, and thus it is highly efficient when

used with images that are represented by a matrix of one and zero,

and there are also differences between message sizes after

compressing it in different proportions, but each of these methods

has Its advantages and disadvantages in pressure‌.

Future work can be done by using other compression methods and

comparing them with the methods used in this paper, and to study

the possibility of using data compression methods as data

encryption methods.

157

 - ISSN 202153 2021 -المجلة الليبية لعلوم التعليم العدد الرابع أغسطس

6.REFERENCE

1. Luluk , Tito and Anggunmeka, “ A Review of Data Compression

Techniques” International Journal of Applied Engineering Research ISSN

0973-4562 Volume 12, Number 19 (2017) pp. 8956-8963

2. Mohammad Hjouj Btoush, Ziad E. Dawahdeh, “A Complexity Analysis

and Entropy for Different Data Compression Algorithms on Text

FilesJournal of Computer and Communications, 2018, 6, 301-315

3. Luthfi Firmansah and Erwin Budi Setiawan, “Data Audio Compression

Lossless FLAC Format to

Lossy Audio MP3 format with Huffman Shift Coding

Algorithm2016 Fourth International Conference on Information and

Communication Technologies (ICoICT)

4. Sanjay Kumar Gupta, “ AN ALGORITHM FOR IMAGE

COMPRESSION USING HUFFMAN CODING TECHNIQUES”

International Journal of Advanced Research in Science and Engineering

Vol. No. 5 Issue No.07, July 2016

5. M R Hasan, M I Ibrahimy, S M A Motakabber, M M Ferdaus and M N H

Khan, “Comparative data compression techniques and multicompression

results” 5th International Conference on Mechatronics (ICOM’13) IOP

Conf. Series: Materials Science and Engineering 53 (2013) 012081

6. Gaurav Sethi , Sweta Shaw ,Vinutha K , Chandrani Chakravorty, “Data

Compression Techniques” Gaurav Sethi et al, / (IJCSIT) International

Journal of Computer Science and Information Technologies, Vol. 5 (4) ,

2014, 5584-5586

7. Himadri Parikh1, Jay Amin2, “ Data Compression and Steganography

Using Shift LSB Algorithm” IJARIIE-ISSN(O)-2395-4396 Vol-2 Issue-3

2016

8. Jyotika Doshi and Savita Gandhi, “ Computing Number of Bits to be

Processed using Shift and Log in Arithmetic Coding”

 International Journal of Computer Applications (0975 – 8887) Volume 62–

No.15, January 2013

