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Abstract - Colon cancer detection is a great significant task in medical diagnosis. the detection of 

colorectal cancer in an early stage can significantly facilitate clinicians' decision-making and reduce 

mortality. The accurate detection results help to explore symptomatic treatment promptly; this can be 

achieved by using automatic systems with histopathological images. The combination of convolutional 

neural networks and supervised machine learning methods are used to achieve better classification 

results than using individual pre-trained deep networks. Therefore, this study is aimed to get a high 

performance and accuracy of CNN combined them with supervised machine learning methods. Support 

Vector Machine (SVM), decision tree (DT) and k-nearest neighbour (KNN) as the classification of 

colon cancer to get the best accuracy. 

 

Keywords: Colon Disease Diagnose, CNN, Machine Learning, SVM, Decision Tree, K-Nearest 

Neighbour. 

 

INTRODUCTION  

Colon disease diagnosis is usually done by image processing methods, and careful learning is 

needed to analyze these images. The image denoising in the image pre-processing steps can 

reduce the features effectiveness and the classifier methods can make a mistake and the results 

will not be good. Also in image processing some filters cannot give us the optimum results 

because of losing the features. In this work, an attempt has been made to combine machine 

learning skills such as learning in the neural network with learning and training in humans to 

reveal the areas of colon disease. In the first, the convolutional neural network with SqueezeNet 

is used to extract the features from the colon disease images. Finally, the machine learning, 

support vector machine (SVM), decision tree (DT), and k-nearest neighbor (KNN) methods 

are used to the classification step [1-10]. 

 
ARTIFICIAL NEURAL NETWORK  

A subset of artificial intelligence known as an artificial neural network (ANN) is capable of 

learning intricate nonlinear patterns from a set of data. Parallel computing units called ANNs 

have recently emerged as effective classification tools. They were first inspired by the concept 

of modeling mathematics and engineering to simulate the decision-making and parallel 

processing capabilities of the human brain. Even though ANNs still share many of the same 

fundamental traits as the human brain, they function much differently than biological neural 

networks today in terms of how they make decisions. Two primary criteria can be used to 

classify various ANN types [11]. The network's encoding—or, more specifically, how it stores 

knowledge gleaned from the data—is the first requirement. ANNs are divided into supervised 

and unsupervised categories using this metric. The second criterion is how the networks are 

decoded, or how the network handles new data after learning something from the previous 

input. Using this criterion, feedforward and feedback ANNs are distinguished.  
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Figure 4. Flowchart of the proposed method for colon disease classification 

 
RESULTS AND DISCUSSION 

a) Dataset 

In this paper, the famous dataset entitled “Lung and Colon Cancer Histopathological Images”, 

obtained from the open-access dataset library will be used. The dataset was obtained from: 
(https://www.kaggle.com/datasets/andrewmvd/lung-and-colon-cancer-histopathological-images) 

This dataset contains 25,000 histopathological images with 5 classes. All images are 768 x 768 

pixels in size and are in JPEG file format. In this paper, the last two datasets will use, Colon 

adenocarcinoma and the Colon benign tissue. These datasets depend on the colon 

histopathological images. In this paper, a total of 10,000 images will be used. 5000 images for 

cancer and 5000 images for non-cancer images. Visual examples of six histopathological 

images from the used dataset (where colon_n_refers to normal image and colon_ca_refers to 

an image with colon cancer). 

 

 
 

Figure 5. Some samples images from the dataset 

Start 

Import the colon disease images from the dataset 

Use squeezenet for feature extraction 

Use the machine learning methods (SVM, DT, KNN) for classification  

Evaluate the results for confusion matrix, accuracy 

Finish 

https://www.kaggle.com/datasets/andrewmvd/lung-and-colon-cancer-histopathological-images
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To evaluate our results, we will use the most used measurements like Accuracy which based 

on confusion matrix is shown in Table 1.  

 

Table 2: Confusion matrix 

P
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es
 

                      Actual Values 

 Positive (1) Negative (0) 

Positive (1) TP FP 

Negative (0) FN TN 

 

Support vector machines, decision trees and k-nearest neighbour have been utilized in this 

study to categorize colon illnesses. The suggested approach has been applied to squeezenet 

combined with these supervised machine learning methods as the classification of colon cancer 

to get the best accuracy. 

 

 

Figure 6. Mean of the accuracy index of SVM, decision tree and KNN methods based on 

squeezenet 

 

The Analysis and evaluation reveal that the SqueezeNet combined by SVM approach performs 

quite well in terms of classification of image accuracy as it has been shown in the figure 3. In 

this experiment, the SVM based on SqueezeNet’s accuracy is 98.80%. When the Decision-

tree’ experiment resulted average is 79.30% while the KNN method achieve 90.60% accuracy 

based on our CNN method. 
 

CONCLUSION  

In this study, a free-access database set was used for our necessary data. Using Matlab-2022a 

program for simulation, using different methods to reach a good accuracy in this work, we have 

combined machine learning based on the neural network. The machine learning algorithms 

SVM, decision tree and KNN have been applied to detect a colon cancer with a high accuracy. 

The best performance is obtained from SVM machine learning method based on the 

SqueezeNet pertaining neural network for colon cancer classification. 
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