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ABSTRACT 

This paper is devoted to the information geometry of the family of bivariate gamma exponential 

distributions, which have gamma and Pareto marginals, and discuss some of its applications. We begin 

by considering the parameter bivariate gamma exponential manifold as a Riemannian 3-manifold; by 

following Rao’s idea to use the Fisher information matrix (FIM), and derive the α-geometry as: α-

connections, α-curvature tensor, α-Ricci curvature with its eigenvalues and eigenvectors, and α-scalar 

curvature. Where here the 0-geometry corresponds to the geometry induced by the Levi-Civita 

connection, and we show that this space has a non-constant negative scalar curvature. In addition, we 

consider four submanifolds as special cases, and discuss their geometrical structures, and we prove that 

one of these submanifolds is an isometric isomorph of the univariate gamma manifold. Then we 

introduce log-bivariate gamma exponential distributions, which have log-gamma and log-Pareto 

marginals, and we show that this family of distributions determines a Riemannian 3-manifold which is 

isometric with the origin manifold. We give an analytical solution for the geodesic equations, and obtain 

the explicit expressions for Kullback-Leibler distance, J-divergence and Bhattacharyya distance. 

Finally, we prove that the bivariate gamma exponential manifold can be realized in R4, using information 

theoretic immersions, and we give explicit information geometric tubular neighbourhoods for some 

special cases. 
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1.  INTRODUCTION 

 

Statistical manifolds are representations of families of probability distributions that allow 

differential geometric methods to be applied to problems in stochastic processes, mathematical 

statistics and information theory. The origin work was due to Rao [10], who considered a family 

of probability distributions as a Riemannian manifold using the Fisher information matrix 

(FIM) as a Riemannian metric. In 1975, Efron [6] defined the curvature in statistical manifolds, 

and gave a statistical interpretation for the curvature with application to second order efficiency. 

Then Amari [2] introduced a one-parameter family of affine connections (α-connection), which 

contain the Levi-Civita connection of the Fisher metric when α = 0, and turn out to have 

importance and are part of larger systems of connections for which stability results follow [5]. 

He further proposed a differential-geometrical framework for constructing a higher-order 

asymptotic theory of statistical inference. Amari defining the α-curvature of a submanifold, 

pointed out important roles of the exponential and mixture curvatures and their duality in 

statistical inference. 

Several researchers studied the information geometry and its applications for some 

families of univariate and multivariate distributions. Amari [2] showed that the family of 

univariate Gaussian distributions has a constant negative curvature. Oller [9] studied the 

geometry of the extreme value distributions as, Gumbel, Weibull and Frethet distributions, and 

he showed that all these spaces are with constant negative curvatures, and he obtained the 

geodesic distances in each case. Gamma manifold studied by many researcher eg [2], also 

Arwini and Dodson [3] proved that every neighbourhood of an exponential distribution contains 

a neighbourhood of gamma distributions, using an information theoretic metric topology. 

Abdel-All, Mahmoud and Add-Ellah [1] showed that the Pareto family is a space with constant 

positive curvature and they obtained the geodesics, and they showed the relation between the 

geodesic distance and the J-divergence. 

For bivariate and multivariate distributions [15-18], the Fisher information metrics or the 

geometrical structures for most of these bivariate and multivariate distributions has been found 

to be intractable; the only exceptions have been such families as, the bivariate and multivariate 

Gaussian distributions, the Mckay bivariate gamma distributions, and the Freund bivariate 

exponential distributions. For a summary of bivariate and multivariate distributions see Kotz, 

Balakrishnan and Johnson [7]. Sato, Sugawa and Kawaguchi [12] proved that the 5-dimensional 

space of bivariate Gaussian distributions has a negative constant curvature and if the covariance 

is zero, the space becomes an Einstein space. After that, Skovgaard [13] in 1984, extended this 

work to the family of multivariate Gaussian models, and provided the geodesic distances.  

The geometry for the Mckay 3-manifold where the variables are positively correlated, 

was obtained by Arwini and Dodson [4], who showed that this space can provide a metrization 

of departures from randomness and independence for bivariate processes, also they used the 

geometry of Mckay manifold in some applications concerning tomographic images of soil 

samples in hydrology surveys, see [3]. After that, the geometry for the Freund 4-manifold was 

investigated by Arwini and Dodosn [3], and they showed the importance of this family because 

exponential distributions represent intervals between events for Poisson processes and Freund 

distributions can model bivariate processes with positive and negative covariance. 

In this paper we are interested to study the Becker and Roux’s and Steel and le Roux’s 

bivariate gamma distribution, with gamma marginals, which are based on plausible physical 

models, and they also include the Freund distribution as a special case, see [7], but unfortunately 
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the Fisher information matrix is found to be intractable. However, Steel and Roux in 1989 [14] 

studied compound distributions of this bivariate gamma, and they obtain the bivariate gamma 

exponential distribution with gamma and Pareto marginals, hence we consider this family of 

distribution as a Riemannian 3-manifold and discuss its geometry. 

 

 

2.  BIVARIATE GAMMA EXPONENTIAL DISTRIBUTIONS  
 

The bivariate gamma exponential distribution has event space 𝛺 = ℝ+ × ℝ+and 

probability density function (pdf) given by 

 

   𝑓(𝑥, 𝑦; 𝑎, 𝑏, 𝑐) =
𝑎𝑏 𝑐

𝛤(𝑏)
𝑥𝑏𝑒−(𝑎 𝑥+𝑐 𝑥 𝑦)     for  a, b, c ∈ ℝ+                        (2.1) 

 

where Γ is the gamma function which has the formula 

 

Γ(𝓏) = ∫ t𝒵−1
∞

0

e−tdt . 

 

Figure 1 shows surface and contour plots of bivariate gamma exponential distribution 

f(x,y;a,b,c) for the range x ∈ [0,5] and y ∈ [0,3], with unit parameters a = b = c = 1. 

 

 
                                  0                                                  0        1        2       3        4        5  

 

Figure 1. The bivariate gamma exponential family of densities with parameters a = b = c = 1 

as a surface and as a contour plot, shown for the range x ∈ [0,5] and y ∈ [0,3]. 

 

 

2. 1. Marginals and correlation 

 

         The marginal distributions, of X and Y are gamma distribution and Pareto distribution, 

respectively: 

 

ƒ𝑋(𝑥) =
𝑎𝑏

𝛤(𝑏)
𝑥𝑏−1𝑒−𝑎 𝑥,    𝑥 > 0                                                (2.2) 
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ƒ𝑌(𝑦) =
𝑏 𝑐 𝑎𝑏

(𝑎+𝑐 𝑦)𝑏+1  
,    𝑦 > 0                                                    (2.3) 

 

While the conditional marginal function ƒ𝑌│𝑋  given x is an exponential distribution, with 

density function: 

 

  fY |X(y | x) = (c x) e−(c x) y, y > 0.                                       (2.4) 

 

The covariance and correlation coefficient of X and Y are given by: 

 

𝐶𝑜𝑣(𝑋, 𝑌) =
1

𝑐(𝑏 − 1)
,    𝑏 > 1 

 

𝜌(𝑋, 𝑌) = −
𝛤(𝑏) √𝑏 − 2

√𝛤(𝑏 + 1)√𝛤(𝑏 + 2) − 𝑏 𝛤(𝑏 + 1)
,    𝑏 > 2 

 

Note that the bivariate gamma exponential distribution does not contain the independent 

case, but has negative correlation which depends on only the parameter b. The correlation ρ 

decreases from 0 to −0.35 where 2 < b < 4, and increases from −0.35 to 0 where b > 4. See 

Figure 2. 

 

 
 

Figure 2. The correlation coefficient ρ(X,Y ) between the variables X and Y as a function of 

the parameter b, for the range b ∈ (2,70). Note that the minimum value of ρ is −0.35  

and occurs at b = 4. 

 

 

2. 2. Log-likelihood function and Shannon’s entropy 

The log-likelihood function for the bivariate gamma exponential distribution (2.1) is 
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𝑙(𝑥, 𝑦; 𝑎, 𝑏, 𝑐)  = log(ƒ(𝑥, 𝑦; 𝑎, 𝑏, 𝑐))

= −𝑥(𝑎 + 𝑐𝑦) + log(𝑐) + 𝑏(log(𝑎) + log(𝑥)) − log(𝛤(𝑏)). 
 

By direct calculation Shannon’s information theoretic entropy for the bivariate gamma 

exponential distribution, which is the negative of the expectation of the log-likelihood function, 

is given by 

 

𝑆ƒ(𝑎, 𝑏, 𝑐) = −∫ ∫ 𝑙(𝑥, 𝑦; 𝑎, 𝑏, 𝑐)
∞

0

∞

0

ƒ(𝑥, 𝑦; 𝑎, 𝑏, 𝑐)𝑑𝑥𝑑𝑦, 

 

   = 1 + 𝑏 − log(𝑐)+log(𝛤(𝑏)) − 𝑏 𝜓(𝑏)                               (2.5) 

 

where 𝜓(𝑏) =
𝛤′(𝑏)

𝛤(𝑏)
   is the digamma function. Note that 𝑆ƒ(𝑎, 𝑏, 𝑐)  is independent of the 

parameter a. In the case when b = 1 which is the random case for the marginal function ƒ𝑋 the 

Shannon’s entropy is: 

 

𝑆ƒ(𝑎, 𝑏, 𝑐) = 2 − log(𝑐) + 𝛾 

where 𝛾 is the Euler gamma, in this case Sf  tends to zero when 𝑐 =  𝑒2+𝛾. When c = 1, 

Shannon’s entropy is 

 

𝑆ƒ(𝑎, 𝑏, 𝑐) = 1 + 𝑏 − log(𝛤(𝑏)) − 𝑏 𝜓(𝑏). 

 

In this case 𝑆ƒ tends to zero when b ≈ 126.5. Figure 3 shows a plot of 𝑆ƒ(𝑎, 𝑏, 𝑐) in the 

domain b,c ∈ (0,3), and Figure 4 show plots of 𝑆ƒ(𝑎, 𝑏, 𝑐) for the cases when b = 1 and c = 1. 

 

 

 
                                     0 

 

Figure 3. A surface and a contour plot for the Shannon’s information entropy Sf , for bivariate 

gamma exponential distributions in the domain b,c ∈ (0,3). 
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                                         c                                                                             b 

 

Figure 4. On the left, Shannon’s information entropy Sf for bivariate gamma exponential 

distributions with unit parameter β = 1, in the domain c ∈ (0,20). 

 

Note that Sf  tends to be zero when c = e2+γ. On the right, Shannon’s information entropy Sƒ for 

bivariate gamma exponential distributions with unit parameter c = 1, in the domain b ∈ (0,250). 

Note that 𝑆ƒ   tends to be zero when b ≈ 126.5. 

 

 

2. 3. Natural coordinate system and potential finction 

We can rewrite the bivariate gamma exponential density function (2.1) as: 

 

ƒ(𝑥, 𝑦; 𝑎, 𝑏, 𝑐) =  
𝑎𝑏𝑐

𝛤(𝑏)
𝑥𝑏𝑒−(𝑎𝑥+𝑐𝑥𝑦) 

 

       = 𝑒𝑎(−𝑥)+𝑐(−𝑥𝑦)+𝑏(log(𝑥))−(log(𝛤(𝑏))−𝑏 log(𝑎)−log(𝑐))                   (2.6) 

 

Hence the family of bivariate gamma exponential distributions forms an exponential 

family, with natural coordinate system(Ө) = (Ө1, Ө2, Ө3) = (𝑎, 𝑏, 𝑐), random variable 

(𝑥1, 𝑥2, 𝑥3) = (𝐹1(𝑥), 𝐹2(𝑥), 𝐹3(𝑥)) = (−𝑥,−𝑥 𝑦, log(𝑥)), and potential function 𝜑(𝑎, 𝑏, 𝑐) =

log(𝛤(𝑏)) − 𝑏 log(𝑎) − log(𝑐). 

 

2. 4. Fisher Information Matrix FIM 

The Fisher Information (FIM) is given by the expectation of the covariance of partial 

derivatives of the log-likelihood function. Here the Fisher information metric components of 

the family of bivariate gamma exponential distributions M with coordinate system(Ө) =
(Ө1, Ө2, Ө3) = (𝑎, 𝑏, 𝑐), are given by: 

 

𝑔𝑖𝑗 = ∫ ∫
𝜕2𝑙(𝑥, 𝑦, Ө)

𝜕Ө𝑖𝜕Ө𝑗

∞

0

∞

0

 ƒ(𝑥, 𝑦)𝑑𝑦𝑑𝑥 =
𝜕2𝜑

𝜕Ө𝑖𝜕Ө𝑗
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Hence: 

 

   𝑔 = [𝑔𝑖𝑗] =  

[
 
 
 
 

𝑏

𝑎2

−1

𝑎
0

−1

𝑎
𝜓′(𝑏) 0

0 0
1

𝑐2]
 
 
 
 

                                    (2.7) 

 

and the variance covariance matrix is: 

 

𝑔−1 = [𝑔𝑖𝑗 ] =  

[
 
 
 
 

𝑎2𝜓′(𝑏)

𝑏𝜓′(𝑏)−1

𝑎

𝑏𝜓′(𝑏)−1
0

𝑎

𝑏𝜓′(𝑏)−1

𝑏

𝑏𝜓′(𝑏)−1
0

0 0 𝑐2]
 
 
 
 

                                    (2.8) 

 

 

3.  GEOMETRY OF THE BIVARIATE GAMMA EXPONENTIAL MANIFOLD 

3. 1. Bivariate gamma exponential manifold 

Let M be the family of all bivariate gamma exponential distributions 

 

         𝑀 = {ƒ(𝑥, 𝑦; 𝑎, 𝑏, 𝑐) =  
𝑎𝑏𝑐

𝛤(𝑏)
𝑥𝑏𝑒−(𝑎 𝑥+𝑐 𝑥 𝑦)|𝑎, 𝑏, 𝑐 ∈  ℝ+} , 𝑥, 𝑦 ∈  ℝ+            (3.9)  

 

so the parameter space is ℝ+ × ℝ+ × ℝ+ and the random variables are (𝑥, 𝑦)∈ Ω = ℝ+ × ℝ+. 
We can consider M as a Riemannian 3-manifold with coordinate system (Ө1, Ө2, Ө3) =

(𝑎, 𝑏, 𝑐) and Fisher information metric g (2.7), which is 

 

𝑑𝑠𝑔
2 =

𝑏

𝑎2
𝑑𝑎2 + 𝜓′(𝑏)𝑑𝑏2 +

1

𝑐2
𝑑𝑐2 −

1

𝑎
𝑑𝑎 𝑑𝑏. 

 

3. 2. α-connection 

For each α ∈ R, the 𝛼 (𝑜𝑟 𝛻𝛼)-connection is the torsion-free affine connection with 

components 

 

𝛤𝑖𝑗,𝑘
(𝛼)

= ∫ ∫ (
𝜕2 log ƒ

𝜕Ө𝑖  𝜕Ө𝑗
 
𝜕 log ƒ

 𝜕Ө𝑘
+

1 − 𝛼

2
 
𝜕 𝑙𝑜𝑔 ƒ

 𝜕Ө𝑖
 
𝜕 log ƒ

 𝜕Ө𝑗
 
𝜕 log ƒ

 𝜕Ө𝑘
) ƒ 𝑑𝑦 𝑑𝑥.

∞

0

∞

0

 

 

We have an affine connection 𝛻𝛼  defined by:  

 

〈𝛻𝜕𝑖

(𝛼)
𝜕𝑗 , 𝜕𝑘〉 = 𝛤𝑖𝑗,𝑘

(𝛼)
  

 

where 

 

                                                                      𝜕𝑖 =
𝜕

𝜕Ө𝑖
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So by solving the equations 

 

𝛤𝑖𝑗,𝑘
(𝛼)

= ∑ 𝑔𝑘ℎ 𝛤𝑖𝑗
ℎ(𝛼)

     , (𝑘 = 1,2,3)

3

ℎ=1

 

. 

we obtain the components of 𝛻(𝛼). 

Here we give the analytic expressions for the α-connections with respect to coordinates 

(Ө1, Ө2, Ө3) = (𝑎, 𝑏, 𝑐). 

The nonzero independent components 𝛤𝑖𝑗,𝑘
(𝛼)

 are 

 

𝛤11,1
(𝛼)

=
𝑏(𝛼 − 1)

𝑎3
, 

𝛤11,2
(𝛼)

= 𝛤12,1
(𝛼)

= 𝛤21,1
(𝛼)

=
−(𝛼−1)

2𝑎2
, 

𝛤22,2
(𝛼)

=
−(𝛼−1)𝜓′′(𝑏)

2
, 

   𝛤33.3
(𝛼)

=
(𝛼−1)

𝑐3 ,                                           (3.10) 

 

and the components 𝛤𝑗𝑘
𝑖(𝛼)

  of the 𝛻(𝛼)-connections are given by 

 

𝛤(𝛼)1 = [𝛤𝑖𝑗
(𝛼)1] =

[
 
 
 
 
(𝛼−1)(2𝑏𝜓′(𝑏)−1)

2𝑎(𝑏𝜓′(𝑏)−1)
−

(𝛼−1)𝜓′(𝑏)

2𝑏𝜓′(𝑏)−2
0

−
(𝛼−1)𝜓′(𝑏)

2𝑏𝜓′(𝑏)−2
−

𝑎(𝛼−1)𝜓′′(𝑏)

2𝑏𝜓′(𝑏)−2
0

0 0 0]
 
 
 
 

                        (3.11) 

 

𝛤(𝛼)2 = [𝛤𝑖𝑗
(𝛼)2] =

[
 
 
 

𝑏(𝛼−1)

2𝑎2(𝑏𝜓′(𝑏)−1)

1−𝛼

2𝑎𝑏𝜓′(𝑏)−2𝑎
0

1−𝛼

2𝑎𝑏𝜓′(𝑏)−2𝑎
−

𝑏(𝛼−1)𝜓′′(𝑏)

2𝑏𝜓′(𝑏)−2
0

0 0 0]
 
 
 

                           (3.12) 

 

𝛤(𝛼)3 = [𝛤𝑖𝑗
(𝛼)3] = [

0 0 0
0 0 0

0 0
𝛼−1

𝑐

]                                               (3.13) 

 

3. 3. α-curvatures 

By direct calculation we provide various α-curvature objects of the bivariate gamma 

exponential manifold M, as: the α-curvature tensor, the α-Ricci curvature, the α-scalar 

curvature, the α-sectional curvature, and the α-mean curvature. 

The α-curvature tensor components, which are defined as: 

 



World Scientific News 143 (2020) 181-202 

 

 

-189- 

𝑅𝑖𝑗𝑘𝑙
(𝛼)

= ∑ 𝑔ℎ𝑙 (𝜕𝑖𝛤𝑗𝑘
ℎ(𝛼)

− 𝜕𝑗𝛤𝑖𝑘
ℎ(𝛼)

+ ∑ 𝛤𝑖𝑚
ℎ(𝛼)

𝛤𝑗𝑘
𝑚(𝛼)

− 𝛤𝑗𝑚
ℎ(𝛼)

𝛤𝑖𝑘
𝑚(𝛼)

2

𝑚=1

)

2

ℎ=1

    , (𝑖, 𝑗, 𝑘, 𝑙 = 1,2,3) 

 

are given by 

 

 𝑅1212
(𝛼)

= −𝑅2112
(𝛼)

=
(𝛼2−1)(𝜓′(𝑏)+𝑏𝜓′′(𝑏))

4𝑎2(𝑏𝜓′(𝑏)−1)
                                 (3.14) 

 

While the other independent components are zero. 

Contracting  𝑅𝑖𝑗𝑘𝑙
(𝛼)

  with 𝑔𝑖𝑙 we obtain the components 𝑅𝑗𝑘
(𝛼)

  of the α-Ricci tensor 

 

 𝑅(𝛼) = [𝑅𝑗𝑘
(𝛼)

 ] =

[
 
 
 
 
−𝑏(𝛼2−1)(𝜓′(𝑏)+𝑏𝜓′′(𝑏))

4𝑎2(𝑏𝜓′(𝑏)−1)2

(𝛼2−1)(𝜓′(𝑏)+𝑏𝜓′′(𝑏))

4𝑎(𝑏𝜓′(𝑏)−1)2
0

(𝛼2−1)(𝜓′(𝑏)+𝑏𝜓′′(𝑏))

4𝑎(𝑏𝜓′(𝑏)−1)2

−(𝛼2−1)𝜓′(𝑏)(𝜓′(𝑏)+𝑏𝜓′′(𝑏))

4(𝑏𝜓′(𝑏)−1)2
0

0 0 0]
 
 
 
 

 . (3.15) 

 

The eigenvalues and the eigenvectors of the α-Ricci tensor are given in the case when  

α = 0, by 

 

(

 
 
 

0

(𝑏+𝑎2𝜓′(𝑏))(𝑏𝜓′(𝑏)−1)(𝜓′(𝑏)+𝑏𝜓′′(𝑏))−√(𝑏𝜓′(𝑏)−1)2(4𝑎2+𝑏2−2𝑎2𝑏𝜓′(𝑏)+𝑎4𝜓′(𝑏)2)(𝜓′(𝑏)+𝑏𝜓′′(𝑏))
2

8𝑎2(𝑏𝜓′(𝑏)−1)3

(𝑏+𝑎2𝜓′(𝑏))(𝑏𝜓′(𝑏)−1)(𝜓′(𝑏)+𝑏𝜓′′(𝑏))+√(𝑏𝜓′(𝑏)−1)2(4𝑎2+𝑏2−2𝑎2𝑏𝜓′(𝑏)+𝑎4𝜓′(𝑏)2)(𝜓′(𝑏)+𝑏𝜓′′(𝑏))
2

8𝑎2(𝑏𝜓′(𝑏)−1)3 )

 
 
 

            

(3.16) 

 

(

 
 
 

0 0 1

𝑏

2𝑎
+

𝑎𝜓′(𝑏)

2
−

√(𝑏𝜓′(𝑏)−1)2(4𝑎2+𝑏2−2𝑎2𝑏𝜓′(𝑏)+𝑎4𝜓′(𝑏)2)(𝜓′(𝑏)+𝑏𝜓′′(𝑏))
2

2𝑎(𝑏𝜓′(𝑏)−1)(𝜓′(𝑏)+𝑏𝜓′′(𝑏))
1 0

𝑏

2𝑎
+

𝑎𝜓′(𝑏)

2
+

√(𝑏𝜓′(𝑏)−1)2(4𝑎2+𝑏2−2𝑎2𝑏𝜓′(𝑏)+𝑎4𝜓′(𝑏)2)(𝜓′(𝑏)+𝑏𝜓′′(𝑏))
2

2𝑎(𝑏𝜓′(𝑏)−1)(𝜓′(𝑏)+𝑏𝜓′′(𝑏))
1 0

)

 
 
 

    (3.17) 

 

 

By contracting the Ricci curvature components 𝑅𝑖𝑗
(𝛼)

 with the inverse metric components 

𝑔𝑖𝑗 we obtain the scalar curvature 𝑅(𝛼): 

 

𝑅(𝛼) =
−(𝛼2−1)(𝜓′(𝑏)+𝑏𝜓′′(𝑏))

2(𝑏𝜓′(𝑏)−1)2
                                      (3.18) 

 

Note that the α-scalar curvature 𝑅(𝛼) is a function of only the parameter b, and in the case when 

α = 0 the scalar curvature 𝑅(0) is negative and its increases from −
1

2
  to 0.  
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Figure 5 shows the scalar curvature 𝑅(𝛼) in the range α ∈ [−2,2], b ∈ (0,4), and the 0-

scalar curvature 𝑅(0) in the range b ∈ (0,4). 

 

 
 

Figure 5. The scalar curvature 𝑅(𝛼) for bivariate gamma exponential manifold, in the range α 

∈ [−2,2] and b ∈ (0,4) on the left, and α = 0 and b ∈ (0,4) on the right. 𝑅(0) is negative 

increasing function of the parameter b from −
1

2
 to 0 as b tends to ∞. 

 

 

The α-sectional curvatures 𝜚(𝛼)(𝑖, 𝑗), where   𝜚(𝛼)(𝑖, 𝑗) =
𝑅𝑖𝑗𝑖𝑗 

(𝛼)

𝑔𝑖𝑖 𝑔𝑗𝑗−𝑔𝑖𝑗
2 , (𝑖, 𝑗 = 1,2,3), are 

 

  𝜚(𝛼)(1,2) =
−(𝛼2−1)(𝜓′(𝑏)+𝑏𝜓′′(𝑏))

4(𝑏𝜓′(𝑏)−1)2
.                                 (3.19) 

 

while the other components are zero. 

The α-mean curvatures   𝜚(𝛼)(𝑖)(𝑖 = 1,2,3) where    𝜚(𝛼)(𝑖) = ∑
1

3

3
𝑗=1   𝜚(𝛼)(𝑖, 𝑗), (𝑖 =

1,2,3), are: 

 

  𝜚(𝛼)(1) =   𝜚(𝛼)(2) =
−(𝛼2 − 1)(𝜓′(𝑏) + 𝑏𝜓′′(𝑏))

12(𝑏𝜓′(𝑏) − 1)2
 

 

  𝜚(𝛼)(3) = 0                                                      (3.20) 

 

3. 4. Submanifolds 

3. 4. 1. Submanifolds M1 ⊂ M: b = 1 

In the case when b = 1, the bivariate gamma exponential distribution (2.1) reduces to the 

form: 
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ƒ(𝑥, 𝑦; 𝑎, 𝑐) = 𝑎 𝑐 𝑥 𝑒−(𝑎 𝑥+𝑐 𝑥𝑦),    𝑥 > 0, 𝑦 > 0, 𝑎, 𝑐 > 0  .                 (3.21) 

 

when the 𝑥 and 𝑦 marginals have the exponential distribution and Pareto distribution (with unit 

shape parameter), respectively: 

 

ƒ𝑋(𝑥) = 𝑎𝑒−𝑎 𝑥 , 𝑥 > 0                                                (3.22) 

 

ƒ𝑌(𝑦) =
𝑐 𝑎

(𝑎+𝑐 𝑦)2
, 𝑦 > 0                                                (3.23) 

 

The Fisher metric with respect to the coordinate system (Ө1, Ө2) = (𝑎, 𝑏) is 

 

𝑔 = [

1

𝑎2
 0

0  
1

𝑐2

] .                                                      (3.24) 

 

Here we note that, the submanifold M1 and the family of all independent bivariate 

exponential distributions, which are the direct product of two exponential distributions 

 

𝑎𝑒−𝑎𝑥. 𝑐𝑒−𝑐𝑦 
 

Have the same Fisher metric. Hence the submanifold M1 is an isometric of the manifold 

of independent bivariate exponential distributions. In this manifold all the curvatures are zero, 

while the nonzero independent components 𝛤𝑖𝑗,𝑘
(𝛼)

  and 𝛤𝑗𝑘
𝑖(𝛼)

of the 𝛻(𝛼)-connections are: 

 

𝛤11,1
(𝛼)

=
𝛼 − 1

𝑎3
 

 𝛤22,2
(𝛼)

=
𝛼 − 1

𝑐3
 

 𝛤11
(𝛼)1 =

𝛼 − 1

𝑎
 

          𝛤22
(𝛼)2 =

𝛼−1

𝑐
                                                        (3.25) 

 

3. 4. 2. Submanifold M2 ⊂ M: c is constant 

In the case when c is constant, the bivariate gamma exponential distribution (2.1) reduces 

to the form: 

 

ƒ(𝑥, 𝑦; 𝑎, 𝑐) =
𝑎𝑏𝑐

𝛤(𝑏)
 𝑥𝑏𝑒−(𝑎𝑥+𝑐𝑥𝑦),    𝑥 > 0, 𝑦 > 0, 𝑎, 𝑏 > 0 .                (3.26) 

 

The 𝑥 and 𝑦 marginals have the exponential and Pareto distributions, respectively: 
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ƒ𝑋(𝑥) =
𝑎𝑏

𝛤(𝑏)
𝑥𝑏−1𝑒−𝑎𝑥,    𝑥 > 0                                        (3.27) 

 

 ƒ𝑌(𝑦) =
𝑏𝑐𝑎𝑏

(𝑎+𝑐𝑦)𝑏+1
,      𝑦 > 0                                            (3.28) 

 

where M2 and M  have the same correlation coefficient (2.1). 

The Fisher metric with respect to the coordinate system (Ө1, Ө2) = (𝑎, 𝑏) is 

 

𝑔 = [

𝑏

𝑎2 −
1

𝑎

−
1

𝑎
 𝜓′(𝑏)

].                                               (3.29) 

 

Note that the submanifold M2 and the gamma manifold, which is the family of all univariate 

gamma probability densities functions 

 

𝑎𝑏

𝛤(𝑏)
𝑥𝑏−1𝑒−𝑎𝑥,    𝑥 > 0, 𝑎, 𝑏 > 0 

 

have the same Fisher metric. Hence, the family of bivariate gamma exponential probability 

density functions with constant parameter c, is an isometric isomorphic of the gamma manifold 

with information theoretical metric topology. 

Here we give the geometrical structures of the submanifold M2. The nonzero independent 

components of the 𝛻(𝛼)-connections are given by:  

 

𝛤11,1
(𝛼)

=
𝑏(𝛼 − 1)

𝑎3
, 

 

𝛤11,2
(𝛼)

= 𝛤12,1
(𝛼)

= 𝛤21,1
(𝛼)

=
−(𝛼−1)

2𝑎2 , 

 

                 𝛤22,2
(𝛼)

=
−(𝛼−1)𝜓′′(𝑏)

2
,                                                 (3.30) 

  

𝛤(𝛼)1 = [

(𝛼−1)(2𝑏𝜓′(𝑏)−1)

2𝑎(𝑏𝜓′(𝑏)−1)
−

(𝛼−1)𝜓′(𝑏)

2𝑏𝜓′(𝑏)−2

−
(𝛼−1)𝜓′(𝑏)

2𝑏𝜓′(𝑏)−2
−

𝑎(𝛼−1)𝜓′′(𝑏)

2𝑏𝜓′(𝑏)−2

].                                (3.31) 

 

𝛤(𝛼)2 = [

𝑏(𝛼−1)

2𝑎2(𝑏𝜓′(𝑏)−1)

1−𝛼

2𝑎𝑏𝜓′(𝑏)−2𝑎

1−𝛼

2𝑎𝑏𝜓′(𝑏)−2𝑎
−

𝑏(𝛼−1)𝜓′′(𝑏)

2𝑏𝜓′(𝑏)−2

]  .                             (3.32) 

 

The α-curvature tensor is given by 

 

𝑅1212
(𝛼)

= −𝑅2112
(𝛼)

=
(𝛼2−1)(𝜓′(𝑏)+𝑏𝜓′′(𝑏))

4𝑎2(𝑏𝜓′(𝑏)−1)
.                               (3.33) 
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while the other independent components are zero. 

The α-Ricci curvature is 

 

𝑅(𝛼) =

[
 
 
 
−𝑏(𝛼2−1)(𝜓′(𝑏)+𝑏𝜓′′(𝑏))

4𝑎2(𝑏𝜓′(𝑏)−1)2

(𝛼2−1)(𝜓′(𝑏)+𝑏𝜓′′(𝑏))

4𝑎(𝑏𝜓′(𝑏)−1)2

(𝛼2−1)(𝜓′(𝑏)+𝑏𝜓′′(𝑏))

4𝑎(𝑏𝜓′(𝑏)−1)2

−(𝛼2−1)𝜓′(𝑏)(𝜓′(𝑏)+𝑏𝜓′′(𝑏))

4(𝑏𝜓′(𝑏)−1)2 ]
 
 
 
.                (3.34) 

 

The α-scalar curvature is 

 

     𝑅(𝛼) =
−(𝛼2−1)(𝜓′(𝑏)+𝑏𝜓′′(𝑏))

2(𝑏𝜓′(𝑏)−1)2
.                                          (3.35) 

 

Note that M2 and M have the same scalar curvature, which is a negative non constant in the case 

when α = 0; and this has limiting value −
1

2
 as b → 0 and 0 as b → ∞. See Figure 5. 

 

3. 4. 3. Submanifold M3 ⊂ M: a = 1 

In the case when a = 1, the bivariate gamma exponential distribution (2.1) reduces to the 

form: 

 

ƒ(𝑥, 𝑦; 𝑎, 𝑐) =
𝑐

𝛤(𝑏)
 𝑥𝑏𝑒−(𝑎 𝑥+𝑐 𝑥𝑦),    𝑥 > 0, 𝑦 > 0, 𝑏, 𝑐 > 0  .                 (3.36) 

 

The 𝑥 and 𝑦 marginals have the gamma distribution (with scalar parameter = 1) and Pareto 

distribution (with scalar parameter = 1), respectively: 

 

ƒ𝑋(𝑥) =
1

𝛤(𝑏)
𝑥𝑏−1𝑒−𝑥,    𝑥 > 0                                         (3.37) 

 

     ƒ𝑌(𝑦) =
𝑏𝑐

(1+𝑐 𝑦)𝑏+1 ,    𝑦 > 0                                            (3.38) 

 

The Fisher metric with respect to the coordinate system (Ө1, Ө2) = (𝑎, 𝑐) is 

 

𝑔 = [
 𝜓′(𝑏) 0

0
1

𝑐2

].                                                  (3.39) 

 

The nonzero independent components of the 𝛻(𝛼)-connections are given by: 

 

𝛤11,1
(𝛼)

=
−((𝛼 − 1)𝜓′′(𝑏))

2
, 

 

𝛤22,2
(𝛼)

=
𝛼−1

𝑐3
, 
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𝛤11
(𝛼)1 =

−((𝛼−1)𝜓′′(𝑏))

2𝜓′(𝑏)
, 

 

       𝛤22
(𝛼)2 =

𝛼−1

𝑐
,                                                     (3.40) 

 

While all the curvatures are zero. 

 

3. 4. 4. Submanifold  M4 ⊂ M: a = c  

In the case when a = c, the bivariate gamma exponential distribution (2.1) reduces to the 

form: 

 

   ƒ(𝑥, 𝑦; 𝑎, 𝑐) =
𝑎𝑏+1

𝛤(𝑏)
 𝑥𝑏𝑒−𝑎(𝑥+𝑥𝑦),    𝑥 > 0, 𝑦 > 0, 𝑎, 𝑏 > 0 .                  (3.41) 

 

The 𝑥 and 𝑦 marginals have the gamma and Pareto distributions, respectively: 

 

 ƒ𝑋(𝑥) =
𝑎𝑏

𝛤(𝑏)
𝑥𝑏−1𝑒−𝑎𝑥,    𝑥 > 0                                         (3.42) 

 

ƒ𝑌(𝑦) =
𝑏

(1+𝑦)𝑏+1 ,      𝑦 > 0                                            (3.43) 

 

and the correlation coefficient is given by: 

 

𝜌(𝑋, 𝑌) =
𝛤(𝑏)2 √(𝑏−2)(𝑏−1)2

(𝛤(𝑏)−𝛤(𝑏+1))√𝛤(𝑏+1)(𝛤(𝑏+2)−𝑏𝛤(1+𝑏))
, 𝑏 > 2.                      (3.44) 

 

With respect to the coordinate system (Ө1, Ө2) = (𝑎, 𝑏) the Fisher metric is: 

 

𝑔 = [

𝑏+1

𝑎2 −
1

𝑎

−
1

𝑎
 𝜓′(𝑏)

].                                                    (3.45) 

 

The nonzero independent components of the 𝛻(𝛼)-connections are given by: 

 

𝛤11,1
(𝛼)

=
(𝛼 − 1)(𝑏 + 1)

𝑎3
, 

 

𝛤11,2
(𝛼)

= 𝛤12,1
(𝛼)

= 𝛤21,1
(𝛼)

=
−(𝛼−1)

2𝑎2 , 

 

           𝛤22,2
(𝛼)

=
−(𝛼−1)𝜓′′(𝑏)

2
,                                                 (3.46) 
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𝛤(𝛼)1 = [

(𝛼−1)(2(1+𝑏)𝜓′(𝑏)−1)

2𝑎((1+𝑏)𝜓′(𝑏)−1)
−

(𝛼−1)𝜓′(𝑏)

2(1+𝑏)𝜓′(𝑏)−2

−
(𝛼−1)𝜓′(𝑏)

2(1+𝑏)𝜓′(𝑏)−2
−

𝑎(𝛼−1)𝜓′′(𝑏)

2(1+𝑏)𝜓′(𝑏)−2

].                         (3.47) 

 

       𝛤(𝛼)2 = [

(1+𝑏)(𝛼−1)

2𝑎2((1+𝑏)𝜓′(𝑏)−1)

−(𝛼−1)

2𝑎((1+𝑏)𝜓′(𝑏)−1)

−(𝛼−1)

2𝑎((1+𝑏)𝜓′(𝑏)−1)

−(1+𝑏)(𝛼−1)𝜓′′(𝑏)

2(1+𝑏)𝜓′(𝑏)−2

].                           (3.48) 

 

The α-curvature tensor is given by: 

 

 𝑅1212
(𝛼)

= −𝑅2112
(𝛼)

=
(𝛼2−1)(𝜓′(𝑏)+(1+𝑏)𝜓′′(𝑏))

4𝑎2((1+𝑏)𝜓′(𝑏)−1)
.                             (3.49) 

 

while the other independent components are zero. 

 α-Ricci curvature is: 

 

 

𝑅(𝛼) =

[
 
 
 
 
−(1+𝑏)(𝛼2−1)(𝜓′(𝑏)+(1+𝑏)𝜓′′(𝑏))

4𝑎2((1+𝑏)𝜓′(𝑏)−1)
2

(𝛼2−1)(𝜓′(𝑏)+(1+𝑏)𝜓′′(𝑏))

4𝑎((1+𝑏)𝜓′(𝑏)−1)
2

(𝛼2−1)(𝜓′(𝑏)+(1+𝑏)𝜓′′(𝑏))

4𝑎((1+𝑏)𝜓′(𝑏)−1)
2

−(𝛼2−1)𝜓′(𝑏)(𝜓′(𝑏)+(1+𝑏)𝜓′′(𝑏))

4((1+𝑏)𝜓′(𝑏)−1)
2 ]

 
 
 
 

.              (3.50) 

 

The scalar curvature 𝑅(0)is given by: 

 

𝑅(𝛼) =
−(𝛼2−1)(𝜓′(𝑏)+(1+𝑏)𝜓′′(𝑏))

2((1+𝑏)𝜓′(𝑏)−1)
2 .                                        (3.51) 

 

where the scalar curvature 𝑅(0)  is negative non constant. 

 

3. 5. Log-bivariate gamma exponential manifold 

Here we introduce a log-bivariate gamma exponential distribution, which arises from the 

bivariate gamma exponential distribution (2.1) for non-negative random variables n = e−x and 

m = e−y. So the log-bivariate gamma exponential distribution, has probability density function 

 

𝑔(𝑛,𝑚) =
𝑎𝑏𝑐 𝑛𝑎−1(− log(𝑛))𝑏

𝑚 𝛤(𝑏)
𝑒−𝑐 log(𝑛) log(𝑚), 0 < 𝑛 < 1,0 < 𝑚 < 1.          (3.52) 

 

where a, b, c > 0. Figure 6 shows plots of the log-bivariate gamma exponential family of 

densities with unit parameters a, b and c. 

 

Note that the marginals of N and M are log-gamma distribution and log-Pareto distribution, 

respectively. 
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ƒ𝑁(𝑛) =
𝑎 𝑛𝑎−1(−𝑎 log(𝑛))𝑏−1

𝛤(𝑏)
, 0 < 𝑛 < 1 

 

ƒ𝑀(𝑚) =
(−1)2𝑏𝑎𝑏 𝑏 𝑐

𝑚(𝑎 − 𝑐 log(𝑚))𝑏+1
,    0 < 𝑚 < 1 

 

 

 
                                          0 

 

Figure 6. The log-bivariate gamma exponential family of densities with parameters 

a = b = c = 1 as a surface and as a contour plot, shown for the range n,m ∈ [0,1] 

 

 

The covariance and correlation coefficient of the variables N and M are given by: 

 

𝑐𝑜𝑣(𝑁,𝑀) = 𝑏 𝑒
𝑎
𝑐 (

𝑎

1 + 𝑎
)
𝑏

(𝑒
1
𝑐  𝐸 (1 + 𝑏,

1 + 𝑎

𝑐
) − (−1)2𝑏 𝐸 (1 + 𝑏,

𝑎

𝑐
)) 

 

𝜌(𝑁,𝑀) =

𝑎−𝑏 𝑏 (
𝑎

1 + 𝑎)
𝑏
(𝑒

1
𝑐  𝐸 (1 + 𝑏,

1 + 𝑎
𝑐 ) − (−1)2𝑏 𝐸 (1 + 𝑏,

𝑎
𝑐))

√((2 + 𝑎)−𝑏 −
𝑎𝑏

(1 + 𝑎)2𝑏) 𝑏   √(
−1
𝑐 )

2𝑏

(2𝑏𝑐𝑏𝛤 (−𝑏,
2𝑎
𝑐 ) − (−1)2𝑏𝑎𝑏𝑏 𝛤 (−𝑏,

𝑎
𝑐)

2
)

 . 

 

where 𝐸(𝑛, 𝑧) is the exponential integral function, which is defined by ∫
𝑒−𝑧𝑡

𝑡𝑛 𝑑𝑡.
∞

1
 

This family of densities determines a Riemannian 3-manifold which is isometric with the 

bivariate gamma exponential manifold M. 
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4.  GEODESICS AND DISTANCES  

4. 1. Geodesics 

A curve 𝛾(𝑡)  =  (𝛾𝑖(𝑡)) in a Riemannian manifold (𝑀𝑛, 𝑔) is called geodesic if: 

 

𝑑2𝛾𝑖

𝑑𝑡2
+ ∑ 𝛤𝑗𝑘

𝑖

𝑛

𝑖,𝑘=1

𝑑𝛾𝑗

𝑑𝑡

𝑑𝛾𝑘

𝑑𝑡
= 0 (𝑖 = 1,2, … , 𝑛) 

 

where 𝛤𝑗𝑘
𝑖  are the Christoffel symbols. 

In the 3-manifold of bivariate gamma exponential distributions with Fisher metric g,  

the geodesic equations are given by: 

 

𝑎..(𝑡) =
1 − 2𝑏𝜓′(𝑏)

2𝑎 − 2𝑎𝑏𝜓′(𝑏)
𝑎.(𝑡)2 +

2𝜓′(𝑏)

1 − 𝑏𝜓′(𝑏)
𝑎.(𝑡)𝑏.(𝑡) +

𝑎𝜓′′(𝑏)

2 − 2𝑏𝜓′(𝑏)
𝑏.(𝑡)2, 

 

      𝑏..(𝑡) =
−𝑏

2𝑎2 − 2𝑎2𝑏𝜓′(𝑏)
𝑎.(𝑡)2 +

1

𝑎 − 𝑎𝑏𝜓′(𝑏)
𝑎.(𝑡)𝑏.(𝑡) +

𝑏𝜓′′(𝑏)

2 − 2𝑏𝜓′(𝑏)
𝑏.(𝑡)2, 

 

    𝑐 ..(𝑡) =
1

𝑐
𝑐 .(𝑡)2,                                                     (4.53) 

 

where  = 
𝑑

𝑑𝑡
 

Here we obtain the analytical solutions for the geodesic differential equations in the 

following case: 

 

(1) If b is constant, then the geodesics are: 

𝑎(𝑡)  =  𝑚1 and 𝑐(𝑡)  =  𝑚2  −  𝑐 log(𝑡 +  𝑐 𝑚3), where 𝑚𝑖  is constant (𝑖 =  1,2,3). 

(2) If a is constant, then the geodesics are: 

𝑏(𝑡)  =  𝑚1 and 𝑐(𝑡)  = 𝑚2  −  𝑐 log(𝑡 +  𝑐 𝑚3), where 𝑚𝑖   is constant (𝑖 =  1,2,3). 
 

4. 2. Distances 

Let 𝑀 be the bivariate gamma exponential manifold, and let ƒ1 and ƒ2  be two points in 

𝑀 where: 

 

ƒ(𝑥, 𝑦; 𝑎𝑖, 𝑏𝑖, 𝑐𝑖) =
𝑎𝑖

𝑏𝑖𝑐𝑖

𝛤(𝑏𝑖)
 𝑥𝑏𝑖𝑒−(𝑎𝑖 𝑥+𝑐𝑖 𝑥𝑦),    (𝑖 = 1,2).   

 

Then the Kullback-Leibler distance, the J-divergence and the Battacharyya distance 

between bivariate gamma exponential distributions ƒ1 and ƒ2, are given by: 

• Kullback-Leibler distance: 
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The KullbackLeibler distance or relative entropy is a non-symmetric measure of the 

difference between two probability distributions.  

From ƒ1  to ƒ2 the Kullbback-distance 𝐾𝐿(ƒ1, ƒ2) is given by 

 

   𝐾𝐿(ƒ1, ƒ2) = ∫ ∫ ƒ1 log (
ƒ1

ƒ2
)𝑑𝑥 𝑑𝑦,

∞

0

∞

0
 

 

              = log (
𝛤(𝑏2)𝑐1

𝛤(𝑏1)𝑐2
) − (log (

𝑎2

𝑎1
) + 𝜓(𝑏1)) 𝑏2 + (𝜓(𝑏1) +

𝑎2

𝑎1
− 1) 𝑏1 + 

𝑐2

𝑐1
− 1.       (4.54) 

 

• J-divergence: 

 

The J-divergence is a summarization of the Kullback-Leibler distance. Its given by this 

formula 

 

𝐽(ƒ1, ƒ2) = ∫ ∫ (ƒ1 − ƒ2) log (
ƒ1
ƒ2

) 𝑑𝑥 𝑑𝑦,
∞

0

∞

0

=  𝐾𝐿(ƒ1, ƒ2) + 𝐾𝐿(ƒ2, ƒ1), 

 

 =  (log (
𝑎2

𝑎1
) + 𝜓(𝑏1) − 𝜓(𝑏2) +

𝑎2

𝑎1
− 1)𝑏1 + (log (

𝑎1

𝑎2
) − 𝜓(𝑏1) + 𝜓(𝑏2) +

𝑎1

𝑎2
− 1)𝑏2 

                      +   
𝑐1

𝑐2
+

𝑐2

𝑐1
− 2.                                                                    (4.55) 

 

• Bhattacharyya distance: 

 

The Bhattacharyya distance measures the similarity of two probability distributions. 

Between f1 to f2 the Bhattacharyya distance 𝐵(ƒ1, ƒ2)is given by 

 

𝐵(ƒ1, ƒ2) = − log ∫ ∫ √ƒ1 ƒ2 𝑑𝑥 𝑑𝑦,
∞

0

∞

0
= − log

(

 
 2

(
2+𝑏1+𝑏2

2
)
 𝛤(

𝑏1+𝑏2
2

)   √
𝑎1

𝑏1𝑎2
𝑏2𝑐1𝑐2

𝜓(𝑏1)𝜓(𝑏2)

(𝑎1+𝑎2)
𝑏1+𝑏2

2 (𝑐1+𝑐2)

)

 
 

.   (4.56) 

 

 

5.  AFFINE IMMERSIONS 
 

If 𝑀 is the 3-manifold of the bivariate gamma exponential distributions with the Fisher 

metric 𝑔 and the exponential connection 𝛻(1). Then bivariate gamma exponential 3-manifold 

𝑀 with the Fisher metric 𝑔 and exponential connection 𝛻(1), can be realized in ℝ4 by the graph 

of a potential function, the affine immersion {ℎ𝑀, 𝜉}: 
 

ℎ𝑀 ∶ 𝑀 → ℝ4 ∶ (𝜃𝑖) ⟼ (
𝜃𝑖

𝜑(𝜃)
) , 𝜉 = (

0
0
0
1

)                             (5.57) 
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where 𝜃 is the natural coordinate system (2.7), and 𝜙(𝜃) is the potential function 𝜙(𝜃)  =
 log(𝛤(𝑏)) − 𝑏 log(𝑎) − log(𝑐). This is a typical example of affine immersion, and called a 

graph immersion. More details can be found in [2, 11]. 

In the following two sections we are interested on the graph immersions for the subspaces 

𝑀1 and 𝑀2. 

 

5. 1. Agraph immersion for the space M1  

Here we provide an affine immersion in Euclidean R3 for the space 𝑀1, which consists 

bivariate gamma exponential distributions with parameter 𝑐 =  1. The coordinates (𝜃1, 𝜃2)  =
 (𝑎, 𝑏) form a natural coordinate system for the manifold 𝑀1, with potential function 𝜙(𝜃)  =
 log (𝛤(𝑏)) − 𝑏 log (𝑎). Then 𝑀1can be realized in Euclidean ℝ3 by the graph of the affine 

immersion {ℎ𝑀1
, 𝜉} where 𝜉 is the transversal vector field along ℎ𝑀1

: 

 

ℎ𝑀1
∶ 𝑀1 → ℝ3 ∶ (

𝑎
𝑏
) ⟼ (

𝑎
𝑏

log(𝛤(𝑏)) − 𝑏 log(𝑎)
) , 𝜉 = (

0
0
1
), 

. 

The submanifold of bivariate gamma exponential distributions where the marginal of 𝑋 

is exponential distributions is represented by the curve (𝑏 =  1): 
 

(0,∞) → ℝ3: 𝑎 ⟼ {𝑎, 1, − log 𝑎} 
 

and a tubular neighbourhood of this curve will represents bivariate gamma exponential 

distributions having exponential and Pareto marginals, where Pareto has a unit shape parameter. 

Moreover, in section 3.4.1 we showed that the space 𝑀1 is isometric with the 3-manifold of 

univariate gamma distributions, so the tubular neighbourhood of the curve b = 1 in the surface 

ℎ𝑀1  also will contain all exponential distributions, which represents departures from 

randomness. Details on gamma manifold affine immersion can be found in chapter 5 in [3]. 

 

 
 

Figure 7. An affine embedding  ℎ𝑀1  for the space 𝑀1 as a surface in ℝ3 in the range 𝑎, 𝑏 ∈

 (0,4), and an ℝ3-tubular neighbourhood of the curve 𝑏 =  1 which represents bivariate gamma 

exponential distributions having exponential and Pareto marginals. An affine embedding ℎ𝑀2  
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of the bivariate gamma exponential distributions with unit parameter b as a surface in ℝ3 in the 

range a, c ∈ (0,4), and an ℝ3-tubular neighbourhoods of the curves c = 1 (in the middle) and c 

= a (in the right) in the surface. These curves represent bivariate gamma exponential 

distributions having exponential and Pareto marginals. 

 

 

Figure 7 shows an affine embedding ℎ𝑀1  of the bivariate gamma exponential distributions 

with unit parameter c as a surface in R3 in the range 𝑎, 𝑏 ∈  (0,4), and an ℝ3-tubular 

neighbourhood of the curve b = 1 in the surface. This curve represents bivariate gamma 

exponential distributions having exponential and Pareto marginals. 

 

5. 2. Agraph immersion for the space M2  

Here we provide an affine immersion in Euclidean R3 for the space 𝑀2 , which consists 

bivariate gamma exponential distributions with parameter b = 1. The coordinates (𝜃1, 𝜃2)   =
 (𝑎, 𝑐) form a natural coordinate system for the manifold 𝑀2, with potential function 𝜑(𝜃)  =
 −log (𝑎) − log (𝑐). Then 𝑀2 can be realized in Euclidean ℝ3 by the graph of the affine 

immersion {ℎ𝑀2
, 𝜉}   where ξ is the transversal vector field along ℎ𝑀2

: 

 

ℎ𝑀2
∶ 𝑀2 → ℝ3 ∶ (

𝑎
𝑐
) ⟼ (

𝑎
𝑐

−log( 𝑎) − log( 𝑐)
) , 𝜉 = (

0
0
1
), 

 

This surface consists all bivariate gamma exponential distributions where the marginals 

are gamma and Pareto (with unit shape parameters).  

The case when the marginal of 𝑋 is exponential distribution is represented by the 

curve (𝑐 =  1): 

 

(0,∞) → ℝ3: 𝑎 ⟼ {𝑎, 1, − log(𝑎)} 
 

and a tubular neighbourhood of this curve will represents bivariate gamma exponential 

distributions having exponential and Pareto marginals. Moreover, this tubular neighbourhood 

will contains the direct product of two exponential distributions. 

While the curve (𝑐 =  𝑎): 
 

(0,∞) → ℝ3: 𝑎 ⟼ {𝑎, 1, −2 log(𝑎)} 
 

will represents bivariate gamma exponential distributions having exponential and Pareto 

marginals, where Pareto has a unit shape parameter. This curve will also represent the direct 

product of two identical exponential distributions.  

In figure 7 we show an affine embedding ℎ𝑀2  of the bivariate gamma exponential 

distributions with unit parameter b as a surface in R3 in the range 𝑎, 𝑐 ∈  (0,4), and an ℝ3-

tubular neighbourhoods of the curves c = 1 and c = a in the surface.  

These curves represent bivariate gamma exponential distributions having exponential and 

Pareto marginals. 
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6.  CONCLUSIONS 
 

The central discussion for this paper is to derive the geometrical structures for the 

Riemannian 3-manifold of the bivariate gamma exponential distributions, equipped with the 

Fisher information matrix. The αconnections and α-curvatures are obtained including those on 

four submanifolds. The geodesic differential equations are given, and solved analytically in 

some cases. Moreover, we obtained explicit expressions for geodesic distance, Kullback-

Leibler distance, J-divergence and Bhattacharyya distance. Finally, this work proved that the 

bivariate gamma exponential manifold can be realized in ℝ4, using information theoretical 

immersions, and illustrations for tubular neighbourhoods are shown in some special cases of 

practical interest, which provided a metrization of departures from randomness for bivariate 

processes. 
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