

مجلة جامعة سها للعلوم البحثة والتطبيقية Sebha University Journal of Pure & Applied Sciences

Journal homepage: www.sebhau.edu.ly/journal/index.php/jopas



# Further Remarks On Somewhere Dense Sets

\*Khadiga Ali Arwini<sup>1</sup>, Huda Almqtouf Mira<sup>2</sup>

<sup>1</sup>Mathematics Department, Faculty of Science, Tripoli University, Tripoli-Libya <sup>2</sup>Mathematics Department, Faculty of Education, Zawia University, Zawia-Libya

Keywords: Topological space and generalizations somewhere dense sets subspaces covers cardinality

equavialent relation

#### ABSTRACT

In this article, we prove that a topological space X is strongly hyperconnected if and only if any somewhere dense set in X is open, in addition we investigate some conditions that make sets somewhere dense in subspaces, finally, we show that any topological space defined on infinite set X has SD-cover with no proper subcover.

# ملاحظات اضافية على المجموعات الكثيفة في مكان ما

\*خديجة على الرويني1 و هدى المقطوف ميرة <sup>2</sup>

<sup>1</sup> قسم الرياضيات، كلية العلوم، جامعة طرابلس، طرابلس، ليبيا <sup>2</sup>قسم الرياضيات، كلية التربية، جامعة الزاوية، الزاوية، ليبيا

| الملخص                                                                                                | الكلمات المفتاحية:           |
|-------------------------------------------------------------------------------------------------------|------------------------------|
| في هذه المقالة، نثبت ان الفضاء التبولوجي X يكون strongly hyperconnected إذا وفقط إذا كانت أي          | الفضاء التبولوجي والتعميمات  |
| مجموعة كثيفة في مكان ما تكون مفتوحة، بالإضافة الى ذلك ندرس بعض الشروط التي تجعل المجموعات كثيفة       | المجموعات الكثيفة في مكان ما |
| في مكان ما في الفضاءات الجزئية، وأخيرا نبين بان أي فضاء تبولوجي معرف على مجموعة غير منتهية له غطاء من | الفضاءات الجزئية             |
| النوع SD وليس له غطاء جزئي فعلى.                                                                      | الغطاء                       |
|                                                                                                       | الاعداد الاصلية              |
|                                                                                                       | علاقات التكافؤ               |

### Introduction:

Using the closure and the interior operators in topological space, different types of generalized open sets have been defined as;  $\alpha$ -set, semi-open set, preopen set,  $\beta$ -open set, b-open set and somewhere dense [1,2,3,4,5,6]. The concept of somewhere dense set was due to Pugh [6], where a set A is somewhere dense if the interior of its closure is non-empty, clearly somewhere dense set is a generalization of both open set and dense set. In 2017, Alshami [7] provided the properties of somewhere dense sets, and he introduced the axiom of  $ST_1$ , then with Noiri they defined the notion of SD-cover and use it to introduced compactness and lindelöfness via somewhere dense sets, see [8,9].

A space is hyperconnected [10], if every two non-empty open sets intersect; equivalently if any non-empty open set is dense, while a space is submaximal [11] if any dense set is open, and in 1994 Rose and Mahmoud [12] showed that a space is submaximal if and only if every preopen set is open, for more details see [13,14,15,16,17,18,19,20,21]. Recently, Alshami [7,8] defined strongly hyperconnected space as a hyperconnected submaximal

space, and he charactrized this space using the notion of somewhere dense sets [8].

The main goal of this article, is to continue studying further properties on somewhere dense sets, and imporve some of the results given by Alshami and Noiri [7,8] regarding strongly hyperconnected space. Here we give solutions to the following questions, equiped with some examples:

**Question 1.** Find the necessary and sufficient condition under which every somewhere dense set is open?.

**Question 2.** If  $(X,\tau)$  is a topological space and  $Y \subseteq X$ : find conditions under which set in the subspace Y is somewhere dense in X?.

**Question 3.** If  $(X,\tau)$  is a topological space where X is infinite set: find a cover for X by somewhere dense sets (SD-cover) which has no proper subcover.

The article is divided into four sections: somewhere dense sets in strongly hyperconnected space, somewhere dense sets in subspaces, SD-covers and conclusion. Throughout this article X or  $(X,\tau)$ 

represents topological space and for a subset A of a space  $X, \overline{A}$  and A<sup>o</sup> denote the closure and the interior of A; respectively. Moreoever, X/A (or A<sup>c</sup>), A/B and P(X) denote the complement of the set A in X, the difference of A and B, and the power set of X; respectively, while ~ denotes the equivalence relation, and  $\chi_0, \chi_1$  are the cardinality of the natural numbers  $\mathbb{N}$  and the real numbers  $\mathbb{R}$ ; respectively.

## 2. Somewhere Dense Sets In Strongly Hyperconnected Spaces

This section, consists basic definitions, theorems and some properties regarding somewhere dense sets needed in this work, and then we give a complete answer for question 1, by studying the statament when any somewhere dense set is open.

**Definition 2.1.** [7] A subset B of a topological space  $(X,\tau)$  is called somewhere dense (briefly s-dense) if the interior of its closure is non-

empty, i.e.  $\overline{B}^{o} \neq \phi$ . The complement of s-dense set is called closed somewhere dense (briefly cs-dense), and the collection of all s-dense sets in X is denoted by  $S(\tau)$ .

**Corollary 2.1.** [7] In a topological space  $(X,\tau)$ , we have :

- *i.* any open set is s-dense.
- *ii.* any dense set is s-dense

iii. any set in X that contains a s-dense set is s-dense. **Theorem 2.1.** [7] Every subset of a space  $(X,\tau)$  is s-dense or csdense.

**Theorem 2.2.** For a non-discrete topological space  $(X,\tau)$ , the following are equivalent:

- $S(\tau) = \tau / {\phi}.$ 1)
- $D(\tau) = \tau / {\phi}$ , where  $D(\tau)$  denotes the collection of all dense 2) sets in (X,  $\tau$ ).

## PROOF.

1)  $\Rightarrow$  2) Let (X, $\tau$ ) be a non-discrete space that satisfies S( $\tau$ )= $\tau/{\phi}$ , and suppose that  $D(\tau) \neq \tau/{\phi}$ . From corollary 2.1.(*ii*) any dense set is s-dense, then from assumption any dense set is open so  $D(\tau) \subseteq \tau$ . So suppose that A is a non-empty open set but not dense in X, hence  $\overline{A} \neq X$ , therefor  $\overline{A}^c \neq \phi$ . Now if  $x \in X$ , then  $x \in \overline{A}$  or  $x \in \overline{A}^c$ . In the case when  $x \in \overline{A}$ , we have A is open so it is s-dense, and since  $A \subseteq \overline{A}$  from corollary 2.1.(*iii*) we obtain  $\overline{A}$  is also s-dense, so it is open. Since  $\overline{A}^c$ is open, so it is s-dense, then  $\overline{A}^{c} \cup \{x\}$  is also s-dense, so it is open, and the intersection of two open sets is open, hence  $\{x\}{=}\overline{A}\cap$  $(\overline{A}^{c} \cup \{x\})$  is open. In the second case when  $x \in \overline{A}^{c}$ , and by similar reasons the sets  $\overline{A}^c$  and  $\overline{A} \cup \{x\}$  are both open, then thier intersection is also open, hence  $\{x\} = \overline{A}^c \cap (\overline{A} \cup \{x\})$  is open. Thus  $\{x\}$  is open for any  $x \in X$ , hence  $\tau$  is the discrete topology on X, which contradicts the assumption. Thus complete the prove, and  $D(\tau)=\tau/{\phi}$ .

2)  $\Rightarrow$  1) Let (X, $\tau$ ) be a non-discrete space that satisfies D( $\tau$ )= $\tau/{\phi}$ , and suppose A is a s-dense in X, then  $\overline{A}^{\circ}$  is a non-empty open set in X, therefore  $\overline{A}^{\circ}$  is dense in X, but  $\overline{A}^{c}$  is open and  $\overline{A}^{\circ} \cap \overline{A}^{c} = \phi$ , since  $\overline{A}^{\circ}$  is dense we have  $\overline{A}^{c} = \phi$ , so  $\overline{A} = X$ , thus A is dense, so it is open. Since, any open set is s-dense, we obtain  $S(\tau) = \tau / \{\phi\}$ . **Definition 2.2.** [10,11] A topological space  $(X,\tau)$  is called:

- 1) Submaximal if any dense set in X is open.
- hyperconnected if any non-empty open set in X is dense. 2)

**Corollary 2.2.** If  $(X,\tau)$  is submaximal and hyperconnected, then  $D(\tau)$  $=\tau / \{\phi\}.$ 

**Definition 2.3.** [7] A topological space  $(X,\tau)$  is called strongly hyperconnected if non-empty open sets are coincide with dense sets, equivalently; if  $D(\tau) = \tau / \{\phi\}$ .

**Corollary 2.3.** For a space  $(X,\tau)$  the following are equivalent:

- X is strongly hyperconnected space.
  X is submaximal and hyperconnected
- 2) X is submaximal and hyperconnected space.
- 3) Any s-dense set in X is open.
- 4)  $D(\tau) = \tau / \{\phi\}.$

5)  $S(\tau) = \tau / \{\phi\}.$ 

Examples 2.1.

If  $(X,\tau)$  is a trivial topological space where X has more i. than one element, then X is not strongly hyperconnected since  $S(\tau)=P(X)/\{\phi\}=D(\tau)$ .

- ii. If  $(\mathbb{R},\tau)$  is a topological space where  $\tau = \{U \subseteq \mathbb{R}:$  $0 \in U \{ \emptyset \}$ , then X is a strongly hyperconnected, since  $S(\tau)=\tau/\{\phi\}=D(\tau).$
- The topological space  $(\mathbb{R}, \tau)$  where  $\tau=\{U\subseteq\mathbb{R}: 0\notin U\}\cup\{\mathbb{R}\}$ iii. is submaximal but not strongly hyperconnected space, since  $S(\tau) = P(\mathbb{R}) / \{\{0\}, \phi\}$ , but  $D(\tau) = \{\mathbb{R}, \mathbb{R} / \{0\}\}$ .

## 3. Somewhere Dense Sets In Subspaces

Here we answer question 2 by investigating some conditions in topological space X that make a set in a subspace somewhere dense in X.

**Corollary 3.1.** [11] Let  $(X,\tau)$  be a topological space, Y be a subspace of X and  $A \subseteq Y$ , then:

- $\overline{A}^{Y} \subseteq \overline{A}$  and  $\overline{A}^{Y} = \overline{A} \cap Y$  (where  $\overline{A}^{Y}$  is the closure of A with respect 1) to the subspace Y).
- $A^{o} \subseteq A^{o^{Y}}$  and  $A^{o} = A^{o^{Y}} \cap Y^{o}$  (where  $A^{o^{Y}}$  is the interior of A with respect to the subspace Y).

**Lemma 3.1.** Let  $(X,\tau)$  be a topological space, and Y be a subspace of X, then:

- If  $A \subseteq Y$  and Y is closed, then  $\overline{A}^Y = \overline{A}$ . If  $A \subseteq Y$  and Y is open, then  $A^{\circ Y} = A^{\circ}$ . 1)
- 2)
- 3) If A  $\subseteq$  Y and Y is clopen, then  $\overline{A}^{Y} = \overline{A}$  and  $A^{oY} = A^{o}$ .

PROOF.

- 1) Since  $A \subseteq Y$  we have  $\overline{A}^Y = \overline{A} \cap Y \subseteq \overline{A}$ . Y and  $\overline{A}$  are closed sets, then  $\overline{A}^{Y}$  is closed set containing A, so  $\overline{A} \subseteq \overline{A}^{Y}$ , we obtain  $\overline{A}^{Y} = \overline{A}$ .
- Since  $A \subseteq Y$  we have  $A^{\circ} \subseteq A^{\circ Y} \subseteq A$ . Y is open, then  $\tau_Y \subseteq$ 2)  $\tau$ , so  $A^{oY}$  is open set contained in A, we obtain  $A^{oY} = A^o$ . Direct from (1) and (2). 3)

**Theorem 3.1.** Let  $(X,\tau)$  be a topological space, Y be a subspace of X,  $A \subseteq Y$  then:

- 1) If Y is closed and A is s-dense in X, then A is s-dense in Y.
- If Y is open and A is s-dense in Y, then A is s-dense in X. 2)

3) If Y is clopen, then A is s-dense in Y iff A is s-dense in X. PROOF.

- 1) Since A is s-dense in X, we have  $\overline{A}^{\circ} \neq \phi$ . Y is closed then Since A is sedense in X, we have  $A^{-\varphi} \phi$ . It is closed then  $\overline{A} \subseteq Y$ , so  $\overline{A}^{\circ} \subseteq (\overline{A})^{\circ}$  and from the prevolus lemma (1) we obtain  $\overline{A} = \overline{A}^{Y}$ , then  $\overline{A}^{\circ} \subseteq ((\overline{A}^{Y})^{\circ})^{\circ}$ . Since  $\overline{A}^{\circ} \neq \phi$  we obtain  $((\overline{A}^{Y})^{\circ}) \neq \phi$ , thus A is s-dense in Y. Since A is s-dense in Y, then from the previous lemma (2)
- 2) we have  $(\overline{A}^{Y})^{o} = (\overline{A}^{Y})^{o} \neq \phi$ . Since  $\overline{A}^{Y} \subseteq \overline{A}$  we have  $(\overline{A}^{Y})^{o} \subseteq \overline{A}^{o}$ , then  $(\overline{A}^{Y})^{o} = (\overline{A}^{Y})^{o} \subseteq \overline{A}^{o}$ , but  $(\overline{A}^{Y})^{o} \neq \phi$ , thus  $\overline{A}^{\circ} \neq \phi$ , i.e. A is s-dense in X. 3) Direct from (1) and (2).

**Example 3.1.** In the space  $(\mathbb{R},\tau)$  where  $\tau = \{U \subseteq \mathbb{R}: 0 \in U\} \cup \{\phi\}$ , we

have  $S(\mathbb{R}) = \tau/{\phi}$ , so if  $Y = \mathbb{R}/{0}$  and  $A = {1}$ , then Y is closed and A is s-dense in Y, while A is not s-dense in X since the relative topology on Y is the discrete topology.

Corollary 3.2. Let  $(X,\tau)$  be a topological space, and A be a subset of X with non-empty interior, then A is s-dense.

**PROOF.** Since  $A \subseteq \overline{A}$  we have  $A^{\circ} \subseteq \overline{A}^{\circ}$ , and  $A^{\circ} = A$  implies that  $\overline{A}^{0} \neq \phi$ .

Corollary 3.3. Let  $(X,\tau)$  be a topological space, and A be a subset of X with non-empty interior, then A is s-dense in any subspace Y containing A.

**PROOF.** Suppose Y is a subspace of X, and  $A \subseteq Y$  then  $A \subseteq \overline{A}^Y \subseteq Y$ , so we obtain  $A^o \subseteq (\overline{A}^Y)^o \subseteq (\overline{A}^Y)^{o^Y}$ , therefore  $((\overline{A}^Y)^{o^Y}) \neq \phi$ , thus A is s-dense in Y.

**Definition 3.1.** [22] A subset B of a space  $(X, \tau)$  is called regular closed (briefly r-closed) if  $B=\overline{B^{0}}$ . Note that, any r-closed set is closed.

**Theorem 3.2.** Let  $(X,\tau)$  be a topological space, Y be an r-closed subspace of X,  $A \subseteq Y$ , then A is s-dense in Y iff A is s-dense in X. PROOF.

⇒ Suppose A is s-dense in Y, then  $((\overline{A}^{Y})^{o^{Y}}) \neq \phi$ , and since Y is rclosed so closed we obtain  $\overline{A} = \overline{A}^{Y} \subseteq Y$ , so  $(\overline{A})^{o^{Y}} = ((\overline{A}^{Y})^{o^{Y}}) \neq \phi$ . From corollary (3.1.(2)) we have  $\overline{A}^{o} = (\overline{A})^{o^{Y}} \cap Y^{o}$ . Suppose  $\overline{A}^{o} = \phi$ , then  $(\overline{A})^{o^{Y}} \cap Y^{o} = \phi$ , and since  $(\overline{A})^{o^{Y}} \neq \phi$ , there exists an open set W such that  $W \cap Y^{c} \neq \phi$ ,  $W \cap \overline{A} \neq \phi$  and  $W \cap Y \subseteq \overline{A}$ , therefore  $W \cap$  $Y \subseteq (\overline{A})^{o^{Y}}$ . Now Y is r-closed set, so we have  $Y^{o} \neq \phi$ , and since  $(\overline{A})^{o^{Y}} \cap Y^{o} = \phi$  we obtain  $W \cap Y^{o} = \phi$  (because  $W \subseteq (\overline{A})^{o^{Y}}$ ), so  $Y^{o} \subseteq W^{c}$ , hence  $\overline{Y^{o}} \subseteq \overline{W^{c}} = W^{c}$ , since Y is r-closed we get  $\overline{Y^{o}} =$  $Y \subseteq W^{c}$ , so  $Y \cap W = \phi$ , which is a contradiction since  $W \cap \overline{A} \neq \phi$ and  $\overline{A} \subseteq Y$ . Hence  $\overline{A}^{o} \neq \phi$ , thus A is s-dense in X.

#### 4. SD-Covers

In the present section, we answer question 3 by proving that any topological space defined on infinite set X has a cover by somewhere dense sets with no proper subcover.

**Definition 4.1.** [9] If  $(X,\tau)$  is a topological space, then a cover for X by s-dense subsets is called SD-cover for X.

**Remark 4.1.** Any cover for a space X is SD-cover, but the converse is not true.

Examples 4.1.

- *i*. If  $(X,\tau)$  is a trivial topological space, then  $S(\tau)=P(X)/{\{\phi\}}$ , so when X is uncountable then the collection of all singletons is SD-cover for X with no countable subcover.
- *ii.* If  $(X,\tau)$  is the cofinite topological space, then  $S(\tau)=\{U\subseteq X: U \text{ is infinite}\}$ , so if  $X = A \cup B$  where A is countable, B is uncountable and  $A \cap B = \phi$ , then  $\{A \cup \{x\}\}_{x \in B}$  is an SD-cover for X with no countable subcover.

**Lemma 4.1.** For any infinite set Z there exists a subset A of Z such that  $|Z|=|A|=|A^{c}|$ .

**PROOF.** By the mathematical indiction, we have:

- 1) In the case when  $|Z|=\chi_0$ , then  $Z \sim \mathbb{N} \sim E \sim E^c$ ; where  $\mathbb{N}$ , and E are the natural numbers and the even numbers, then there exists a bijection function F: $\mathbb{N}\rightarrow Z$ . Now set A=F(E), then  $Z \sim \mathbb{N} \sim E \sim F(E)=A$ , so  $|Z|=|A|=\chi_0$ , now since  $\mathbb{N}$  $\sim E^c \sim F(E^c) = A^c$ , then  $|A^c|=\chi_0$ .
- 2) In the case when  $|Z| = \chi_1$ , then  $Z \sim \mathbb{R} \sim \mathbb{R}^+ \sim (\mathbb{R}^+)^c$ ; where  $\mathbb{R}$  and  $\mathbb{R}^+$  are the real numbers and the positive real numbers, then there exists a bijection function  $F: \mathbb{R} \to Z$ . Now set  $A=F(\mathbb{R}^+)$ , then  $Z \sim \mathbb{R} \sim \mathbb{R}^+ \sim F(\mathbb{R}^+)=A$ , so  $|Z|=|A|=\chi_1$ , now since  $\mathbb{R} \sim (\mathbb{R}^+)^c \sim F((\mathbb{R}^+)^c) = A^c$ , then  $|A^c|=\chi_1$ .
- 3) Suppose  $|Z| = \chi_n$  and A is a subset of Z such that  $|Z| = |A| = |A^c| = \chi_n$ . Let Y be a set with cardinal number  $\chi_{n+1}$ , then  $P(Z) \sim Y$ , and  $Y \sim P(Z) \sim P(A) \sim P(A^c)$ . Let F be a bijection function F:  $P(Z) \rightarrow Y$ , and set B = F(P(A)). Then  $B \sim P(A) \sim Y$ . Now since  $P(A^c)/\{\phi\} \subseteq (P(A))^c$  so  $F(P(A^c)/\{\phi\}) \subseteq B^c$  and  $F(P(A^c)/\{\phi\}) \sim F(P(A^c)) \sim P(A^c) \sim P(Z) \sim Y$ . We get  $F(P(A^c)) \subseteq B^c \subseteq Y$ , then  $B^c \sim Y$ . Thus  $|Y| = |B| = |B^c| = \chi_{n+1}$ .

This complete the prove.

**Theorem 4.1.** If  $(X,\tau)$  is a topological space where X is infinite, then  $(X,\tau)$  has a SD-cover with no proper subcover.

**PROOF.** From lemma (4.1) there exists a subset A of X such that  $|X|=|A|=|A^{c}|$ . So A and A<sup>c</sup>are infinite, and form theorem (2.1) at least A or A<sup>c</sup> is s-dense. Suppose A is s-dense, then from corollary (2.1.(*iii*)) AU{x} is also s-dense for any  $x \in A^{c}$ , hence  $\{AU\{x\}\}_{x \in A^{c}}$  is SD-cover for X with no proper subcover. Similarly in the case when A<sup>c</sup> is s-dense, we have  $\{A^{c}U\{x\}\}_{x \in A}$  is SD-cover for X with no proper subcover.

#### 5. Conclusion

In this article, we investigate some further topological properties on somewhere dense sets, and we have obtained few results; as follows: If  $(X,\tau)$  is a topological space; then any somewhere dense set in X is open if and only if X is strongly hyperconnected, and if X is infinite set, then there exists a cover for X by somewhere dense sets with no proper subcover. Moreover, if Y is a subspace and  $A \subseteq Y \subseteq X$ ; then:

In the case when the subspace Y is open (closed) in X, if A is somewhere dense in Y (X), then A is somewhere dense in X (Y), while in the case when the subspace Y is regular closed in X, A is somewhere dense in Y if and only if A is somewhere dense in X.

#### References

- [1]- M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, Beta-Open Sets and Beta-Continuous Mappings. *Bull. Fac. Sci. Assiut Univ.*, 12 (1983) 77-90
- [2]- H. H. Corson and E. Michael, Metrizability of Certain Countable Unions. *Illinois J. Math.*, 8 (2) (1964) 351-360.
- [3]- D. Andrijevic, On b-Open Setss. *Matematicki Vesnik*, 48 (1996) 59-64.
- [4]- A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On Precontinuous and Weak Precontinuous Mappings. *Proc. Math. Phys. Soc. Egypt*, 53 (1982) 47-53.
- [5]- O. Njastad, On Some Classes of Nearly Open Sets. *Pacific Journal of Mathematics*, 15 (1965) 961-970.
- [6]- C. C. Pugh, Real Mathematical Analysis. *Springer Science and Business Media*, 2003.
- [7]- T. M. Al-shami, Somewhere Dense Sets and ST<sub>1</sub>-Spaces. *Punjab University, Journal of Mathematics*, 49 (2) (2017) 101-111.
- [8]- T. M. Al-shami and T. Noiri, Compactness and Lindelöfness Using Somewhere Dense and cs-dense Sets. Accepted in Novi SAD J. Math. (2021).
- [9]- T. M. Al-shami and T. Noiri, More Notions and Mappings via Somewhere Dense Sets. *Afrika Matematika*, 30 (2019) 1011-1024.
- [10]-T. Noiri, A Note on Hyperconnected Sets. *Mat. Vesnik*, 3 (16) (1979) 53-60.
- [11]-N. Bourbaki, General Topology. *Addison-Wesley, Mass* (1966).
- [12]-D. A. Rose and R. A. Mahmoud, On Spaces via Dense Sets and SMPC Functions. *Kyungpook mathematical Journal*, 34 (1) (1994) 109-116.
- [13]-P. M. Mathew, On Hyperconnected Spaces. Indian J. Pure and Applied Math, 19 (12) (1998) 1180-1184.
- [14]-Vinod Kumar and Devender Kumar Kamboj, On Hyperconnected Toplogical Spaces. An. Stiint. Univ. Al. I. Cuza Iasi Mat. (N.S.), Toml LXII, 2 (1) (2016) 275-283.
- [15]-T. Noiri, Properties of Hyperconnected Spaces. Acta Mathematica Hungarica, 66 (1995) 147-154.
- [16]-N. Ajmal and J. K. Kohli, Properties of Hyperconnected Spaces, Their Mappings into Hausdorff Spaces and embeddings into Hyperconnected Spaces. *Acta Math. Hungar*, 60 (1992) 41-49.
- [17]-T. Noiri, Functions Which Preserve Hyperconnected Spaces. *Rev.Roumaine Math. Pures Appl.*, 25 (1980)1091-1094.
- [18]-T. Noiri, Hyperconnected and Preopen Sets. *Rev.Roumaine math. pures Appl.*, 29 (1984) 329-334.
- [19]-J. Dontchev, On Submaximal Spaces. Tankang Journal of mathematics, 26 (3) (1995) 243-250.
- [20]-A. V. Arhangel skil and P. J. Collins, On Submaximal Spaces. *Topology and its Applicatios*, 64 (1995) 219-241.
- [21]-Jiling Cao, Maximilian Ganster and Ivan Reilly, Submaximality, Extremal Disconnectedness and Generalized closed sets. *Huston Journal of Mathematics*, 24 (4) (1998) 618-688.
- [22]-M. H. Stone, Applications Of The Theory Of Boolean Rings To General Topology. *Trans. Am. Math. Soc.*, 41(1937) 375-481.