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1.1. Background 

Differential Equation is an equation with unknown function that contains 

one or more derivatives of the unknown function.  

                      The order of the differential equation is the highest 

derivative in the equation, and the Differential equations can be classified 

based on the order: 

  

I- First order: - just the first derivative  appear in the equation.  

For example                       

II- Higher order: - derivatives higher than the first appear in the 

equation. 

For example:                (  )    

 Differential equations can be classified as based on the number of 

functions that are involved. 

(1)-A single differential equation is a single unknown function.  

For example:   
  

  
         

(2)- A system of differential equations -there is more than one 

unknown function.  For example, 
  

  
           together with 

  

  
      , 

 Differential equations can be classified as based on the type of unknown 

function:- 

(a)-Ordinary - unknown function is a function in a single 

variable. For exemple:   
  

  
         , 

   

   
        etc. 
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(b)-Partial - unknown function is a function in more than one 

variable. For example: 

       
  

  
  

  

  
                                

 

         An ordinary differential equation     ( )   (   ( )) is called non-

linear iff the function (t, u)   (   )  is non-linear in the second 

argument. 

 

To see that the solutions of the nonlinear system near the origin resemble 

those of the linearized system. 

1.2. Introduction: [11] 

A nonlinear system refers to a set of nonlinear equations (algebraic, 

difference, differential, integral, functional, or abstract operator 

equations, or a combination of some of these) used to describe a physical 

device or process that otherwise cannot be clearly defined by a set of 

linear equations of any kind. Dynamical system is used as a synonym for 

mathematical or physical system when the describing equations represent 

evolution of a solution with time and, sometimes, with control inputs 

and/or other varying parameters as well. 

The theory of nonlinear dynamical systems, or nonlinear control systems 

if control inputs are involved, has been greatly advanced since the 

nineteenth century. Today, nonlinear control systems are used to describe 

a great variety of scientific and engineering phenomena ranging from 

social, life, and physical sciences to engineering and technology. This 

theory has been applied to a broad spectrum of problems in physics, 

chemistry, mathematics, biology, medicine, economics, and various 

engineering disciplines. 
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Stability theory plays a central role in system engineering, especially in 

the field of control systems and automation, with regard to both dynamics 

and control. Stability of a dynamical system, with or without control and 

disturbance inputs, is a fundamental requirement for its practical value, 

particularly in most real-world applications. Roughly speaking, stability 

means that the system outputs and its internal signals are bounded within 

admissible limits (the so-called bounded-input/bounded-output stability) 

or, sometimes more strictly, the system outputs tend to an equilibrium 

state of interest (the so-called asymptotic stability). Conceptually, there 

are different kinds of stabilities, among which three basic notions are the 

main concerns in nonlinear dynamics and control systems: the stability of 

a system with respect to its equilibria, the orbital stability of a system 

output trajectory, and the structural stability of a system itself. 

Illustrative Example: consider the system  

 

         

                   
  

  
  ,     

  

  
  

 

There is a single equilibrium point at the origin. To picture nearby 

solutions   is small, we note that, when,    is much smaller. Thus, near 

the origin at least, the differential equation           is very close to   

    .      

This suggests that we consider instead the linearized equation 

      

        

 

Derived by simply dropping the higher-order term. We can, of course, 
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solve this system immediately. We have a saddle at the origin with a 

stable line along the y-axis and an unstable line along the x-axis. 

 

We assume new variables   and   via 

     
 

 
   

   , 

 
                                              Figure (1.1) 

                     “Phase plane for                                       

Then, in these new coordinates, the system becomes 

        
 

 
      

 

 
     

                

               That is to say, the nonlinear change of variables F(   )  (  

 

 
    ) converts the original nonlinear system to a linear one, in fact, to 

the preceding linearized system. 

1.2.1. Nonlinear Sinks and Sources  

Solutions of planar nonlinear systems equilibrium points resemble those 

of their linear parts only in the case where the linearized system is 
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hyperbolic; that is, when neither of the eigenvalues near of the system has 

a zero real part. We consider the special case of a sink. For simplicity, we 

will prove the results in the following planar case, although all of the 

results hold in   . 

           Let       ( ) and suppose that F (  )    Let D   
  denote the 

Jacobian matrix of F evaluated at X0. Then, the linear system of 

differential equations 

        
  

             Is called the linearized system near X0. Note that, if X0 =0, the 

linearized system is obtained by simply dropping all of the nonlinear 

terms in F. 

 

           As we know from linear systems , we can say that an equilibrium 

point X0 of a nonlinear system is hyperbolic if all of the eigenvalues of 

D   
  have nonzero real parts. 

Suppose our system is  

     (   ) 

     (   )              has (     ) as an equilibrium point 

With  (     )     (     ).if we make the change of coordinates 

              then the new system has an equilibrium point at 

(   ). 

Thus we may as well assume that         at the outset. 

Let us assume at first that the linearized system  has distinct eigenvalues 

       .Thus, after these changes of coordinates, our system 

becomes: 

          (   ) 

         (   ), 
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           Where   (   ) contains all of the "higher order terms." Each    

contains terms that are quadratic or higher order in   and  . 

The linearized  system is now given by 

         

      . 

           Thus we are justified in calling this type of equilibrium point a 

sink. In similar fashion, nonlinear systems near a hyperbolic source are 

also conjugate to corresponding  linearized system.   

1.2.2. The Linearization Theorem.  

Suppose the n-dimensional system     ( )  has an equilibrium 

point at X0 that is hyperbolic. Then the nonlinear flow is conjugate to the 

flow of the linearized system in a neighborhood of  X0. 

1.2.3. Saddles  

The equilibrium of which the linearized system has a saddle at the origin 

in  R
2
. We may assume that this system is in the form 

 

         (   ) 

         (   ), 

 

Where            and      (   )    tends to 0 as          . As in the 

case of a linear system, we call this type of equilibrium point a saddle. 

 

           For the linearized system, the y-axis serves as the stable line, with 

all solutions on this line tending to 0 as         . Similarly, the x-axis is 

the unstable line. We cannot expect these stable and unstable straight 
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lines to persist in the nonlinear case. However, there does exist a pair of 

curves through the origin that have similar properties. 

 

           Let W
s
(0) denote the set of initial conditions with solutions that 

tend to the origin as       . Let W
u
(0) denote the set of points with 

solutions that tend to the origin as            . W
s
(0) and W

u
(0) are 

called the stable curve and unstable curve, respectively. 

 

1.2.4. The Stable Curve Theorem. 

Suppose the system 

          (   ) 

         (   ), 

 

           Satisfies         and   (   )     as      . Then there is 

an       and a curve        ( )   that is defined for | |     and 

satisfies      ( )     . 

 

Example. Consider the system 

       

       

          , 

The linearized system at the origin has eigenvalues 1 and -1 (repeated). 

The change of coordinates 

     

     

    
 

 
(     ), 

 

Converts the nonlinear system to the linear system 
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          The plane w = 0 for the linear system is the stable plane. Under the 

change of coordinates this plane is transformed to the surface 

 
Figure (1.2) 

“Phase portrait for                      " 

 

Which is a paraboloid passing through the origin in    and opening 

downward. All solutions tend to the origin on this surface; we call this the 

stable surface for the nonlinear system. See Figure (1.2). 

1.2.5. Stability  

An equilibrium is said to be stable if nearby solutions stay nearby for all 

future time. In applications of dynamical systems one cannot usually 

pinpoint positions exactly, but only approximately, so an equilibrium 

must be stable to be physically meaningful 
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1.3. Basic Concepts [17] 

                     

             

   (  )       

(    )        (      ), 

                        (  )         (         )      . 

      (    )          

  (       )          

          

          (                                      )  

These operations satisfying VS1 and VS2, define the vector space 

structure on    . And for each  = (  ,……,   ) in    .let A be a map 

from:      It is easy to check that this map satisfies,  

for                   

     (       )            

      (   )         

           These are called linearity properties any map        

   satisfying  L1 and L2 is called a linear map . 

The set of all operator's on     is denoted by  (   )  

1.3.1. Review of Matrices:  

A matrix of size       is an array of elements     
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     (

       

   
       

+    (   )                    

We consider only square matrices, i.e. m=n 

(I)- Addition         (   )  (   )   (        ) 

(II)- Scalar multiple:    A = ( .   ) 

(III)- Transpose: A
T 

is witch the     with     .  . (A
T
)= A 

(IV)- Product: for A. B = C, it means    is the inner product of (      

row of A) and (      column of B) 

Example: 

 .
  
  

/  .
  
  

/  (
          
          

* 

 We can express system of linear equation using matrix product  

Example: 

    –            

                   

                      

Can be expressed as: 

 (
    
   
    

+  (
  
  
  

*  (
 
 
 
* 

   
     ( )      ( )       ( ) 

  
     ( )  2   ( )  2   2( )  

→.  
  

/'=(
 ( )  ( )
 ( )  ( )

*  .  
  

/  .  ( )
  ( )

/ 

       Some properties: 

(a)- Identity         = diag (1,1,…..,1) 
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       . 

(b)- Determinant      (t): 

    .
  
  

/          

   (
   
   
   

+                          . 

(c)- Inverse    ( )                      

(d)- The following statements are all equivalent : 

(I)- A is invertible; 

(II)-A is non – singular; 

(III)-     ( )    ;  

(IV)-Row vectors in A are linearly independent; 

(V)-Column vectors in A are linearly independent. 

(VI)-All eigenvalues of A are non – zero. 

1.3.2.  Autonomous:[13]  

A differential equation is called autonomous if the right hand side does 

not explicitly depend upon the time variable:  

 
  

  
  ( )  

1.3.3. The exponential of a matrix:[16] 

We begin with the study of the autonomous linear first order system  

 '
(t) =  ( )   ( )   0 

Where A is an n by n matrix here as usual, we write Ax for the matrix 

product whose components are given by  

 (  )  ∑       
 
    



[12] 
 

Where (   )         n are the entries of A and (  )         the 

components of    . 

We also recall the definition of the scalar product and norm  

     ∑   
 
      

(1)- The inner product of vectors   and   in  R 
n
 is 

 〈    〉              

(2)- The Euclidean norm of    is 

| |  〈    〉1/2
=(  

      
 )1/2

 

Basic properties of the inner product are:- 

(I)- Symmetry:   〈    〉  〈    〉; 

(II)- Bilinearity:〈      〉  〈    〉   〈    〉 

〈      〉   〈    〉,   ; 

(III)- Positive definiteness: 〈    〉        〈    〉    If and only 

if      

An important inequality is Cauchy's inequality:     〈   〉   | || |. 

The basic properties of the norm are: 

1. | |        | |     if and only if    ;  

2. |   |   | |   | | ; 

3. |   |=1 | || |; 

Where | | is the ordinary absolute Value of the scalar    

4. |   |≥ 0 and |   |     if and only if      ; 

5. |   |≤|   | +|   |. 
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1.3.4. Norm on E: [12] 

Let E be a Vector space with addition and multiplication by scalar    in  R 

or C. 

A norm on E is a map‖ ‖: E→R which satisfies the following three 

properties 

N1: ‖ ‖≥ 0 and ‖  ‖=0 if and only if       

N2: ‖  ‖: | |‖ ‖, 

N3: ‖   ‖≤‖ ‖  ‖ ‖      (triangle inequality). 

A vector space E equipped with a norm ‖ ‖ is called a normed vector 

space. 

1.3.5. Euclidean norm:[15] 

If    is a vector in    , then the Euclidean norm of   is defined as  

‖ ‖ =√  
    

      
  . 

1.3.6. Homogeneous function of degree n: [10] 

A function  (   )is called homogeneous of degree n if 

  (     )      (   ) 

For a polynomial homogeneous says that all of the terms have same 

degree 

Example : 

The following are homogeneous function of various degrees: 

              Homogeneous of degree 6. 

              Nonhomogeneous. 
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1.3.7.    order liner differential equation: [10]
 

An     order liner differential equation is an equation of the form  

    

   
   ( )

      

     
   ( )

      

     
     ( )   ( )    ( ) 

An     order linear equation can be written as a linear system as follows 

let. 

    ( )   ( )   ( )  
  

  
     ( )  

    

   
       ( )  

      

     
 

Then  

 
   

  
     

   

  
        

     

  
      

And we have  

   

  
 

   

   
    ( )

      

     
………….-    ( )   ( ) 

                   =     ( )        ( )    ( ) 

Therefore  

 
  

  
  ( )   ( ) 

        

  ( )  

[
 
 
 
 
 

 
 
 

 
 
 

            
            
                  

                 
 

    ( )
          

      ( )
     

      ( )        ( )]
 
 
 
 
 

 

And  
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   ( )  

[
 
 
 

 
  
 

 ( )]
 
 
 

 

Homogeneous linear Equations:- 

In (1) if Q(x) ≡0 called the homogenous case. 

Where 

  ( )     ( ) (   )    ( ) (   )      ( )    

Linear system [9] 

 Linear system of ordinary differential equation: 

            (  ) 

 Where       , A is an n n matrix  

 And 

    
  

  
 [

   

  

 
   

  

] 

It is shown that the solution of linear system (  ) together with the initial 

condition  

 ( )    is given by 

  ( )        

Where       is an n  n matrix function defined by its Taylor series. 
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1.3.8. Matrix exponential  :  

Suppose A is an n n constant matrix .the matrix exponential     is 

defined in terms of the Maclaurin series expansion of the used 

exponential function. 

 That is, 

    ∑
 

  

 
      

Which is a sum involving power of the matrix A. 

Then tA is matrix, so 

     ∑
 

  

 
   (  )   ∑

  

  

 
       

If t=0 →  =1 and if k=0 then       

1.3.9. Characteristic equation: [15] 

Given a square matrix A, the equation     (    )    is called the 

characteristic equation of A .the expression     (    ) is a polynomial 

in the variable   , and is called the characteristic polynomial of A. 

Example: let    *

          

     
 

    
 

           

+ 

Then the characteristic equation      (    )    is simply  

 (     )(     )    (     )    

→                     

And T=∑    
 
    is trace (A). 
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Diagonal matrices:  

 D is an n n diagonal matrix  if it is writhen in  the form (the no diagonal 

terms are all zeros).  

   [

    
    
    

] 

Which we will sometimes denote by         *         + 

1.3.10. Eigenvector and eigenvalues:[11] 

A nonzero vector    is called an eigenvector of A if          for 

some   , λ  is called an eigenvalue. 

Theorem: 

Suppose that    is an eigenvector for the matrix A with associated 

eigenvalue  .then the function 

 ( )             is a solution of the system            

1.3.11. Complex Eigenvalue:[12] 

A class of operators that have no real eigenvalue are the planar operators. 

            Represented by matrix 

     =0
   
  

1              

The characteristic polynomial is  

        (     )        =
   √     (     )

 
 

Where roots are  
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                     √   

We interpret       geometrically as follows .introduce the numbers      

by  

   (     )    

        .
 

 
/       

 

 
   

         

         

In the standard basis, the matrix of     is  

 0
         
        

1 

Then 

0
   
  

1  0
  
  

1 0
         
        

1; 

 1.3.12. ODEs (linear, nonlinear): [15] 

Consider the system    ( ), where              the system of ODEs 

is  linear if the function f satisfies      (    )    ( )   ( ) for all 

vectors         and all scalars      

Otherwise, the system of ODEs is called nonlinear. 

Example The right hand side of the ODE  

  

  
 =    is  ( )      

And (   )  (   )                    ( )   ( ) 

Therefore the ODE, is nonlinear.  
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1.3.13. Derivative of (f at   ) [9] 

The function           is differentiable at         if there is a liner 

transformation     (   )   (  )that satisfies  

    | |  
| (    )  (  )   (  ) |

| |
   

The linear transformation   ( ) is called the derivative of    at   . 

 Theorem: 

If           is differentiable at     ,then the partial derivatives 

   

   
, i,j= 1,…………,n ,all exist  at     and All        

   (  )  ∑
  

   

 
   (  )   

Thus, if     is a differentiable function the derivative    is given by the 

n n Jacobian matrix. 

    0
   

   
1  

1.3.14. Differentiable on E:  

Suppose that           is differentiable on E, then     ( )if the 

derivative  

      (  ) is continuous on E.  

1.3.15. Flow  ( ) : [14]  

   (  ) is the solution  at time t of      ( ) starting at    

When      is called the flow through    at      
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Thun      (  )         (  (  ))      (  )    etc. 

(Continuos semi- group). 

We sometime with      (  )  to identify the particular dynamic system 

leading to this flow. 

1.3.16. Review of Topology in   :[12]  

An operator   on       matrix [     ] by the rule  

    ∑     -           

Where  *          +  is the standard basis of      is defined by 

    (               )           

Equivalently, the      coordinate of         (         )       ∑       
  

If      the    neighborhood of       

 is    ( )  *     |   |   + 

A neighborhood of   is any subset of    containing a     neighborhood 

of   .A set         is open if it is a neighborhood of every    X. 

Explicitly, X is open if and only if for every    X there exists   

  depending on   , such that    ( )      

A sequence*  +                      

Converges to the limit        if              |    |    

A sequence *  +  in      is Cauchy sequence if for every       there 

exists an integer    such that  

|     |     If                    
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The following basic property of    is called metric completeness: 

A sequence converges to a limit if and only if it is a Cauchy sequence  

A subset       is closed if every sequence of point in   that is 

convergent has its   limit in   it is easy to see that this is equivalent to: 

  is closed if the complement     –Y is open  

Let       be any subset, A map          is continuous if it takes 

convergent ,sequence to convergent sequences .this means: for every 

sequence*  + in X with  

                           

It is true that  

        (    )   ( ) 

A subset        is bounded if there exists  

    Such that       ( )  

A subset X is compact if every sequence in X has a subsequence 

converging to a point in X.  

The basic theorem of  Bolzano –Weierstrass  says:  

A subset of     is  compact if and only if it is  both closed  and bounded 

let      be compact and          be  a continuous map . Then f (k) 

is compact. A nonempty compact subset of R has maximal element and a 

minimal element. 
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2.1.Linear Systems 

2.1.1. Equilibrium point:[7] 

An important notion when considering system dynamics is that of 

equilibrium  point. 

           Equilibrium points are considered for autonomous systems (no 

explicit control input). 

           A point    in the state space is an equilibrium point of the 

autonomous system       if when the state   reaches     , it stays at    

for all future time. 

2.1.2. Stability: 

The system       is stable if Re [  ]   for i=1,…,n., where    is 

eigenvalues.   

2.1.3. Theorem (Unique solution of the linear systems):[12] 

Let A be an operator on    having n distinct, real eigenvalues .then 

           ( )       ( )      

Has unique solution  

Proof:-Such that matrix       is diagonal  

            *            +    

Where              are the eigenvalues of A. 

Introducing the new coordinates  

                

            

                     

Then 
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            (2) 

 Since B is diagonal, 

    
                            (   ) 

We know that (   )  has unique solution for every initial condition    ( )  

    ( )    ( )    (   ) 

To solve (1) ,put   ( )     . 

If  ( ) is the corresponding solution of (2) , then the solution of (1) is  

  ( )      ( ) 

               (   ( )              ( )    ).  

            

                

             (     )  

               

           

And     ( )      ( )            

Thus x (t) really dose solve (1). 

To prove that  there are no other solutions to (1), we note that x (t) is 

A solution to (1) if and only if is a solution to  

           ( )        ( )      
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Hence two different solutions to (1) would lead to two different solutions 

to (3), which is impossible since B is diagonal. This proves the theorem. 

2.1.4. Theorem  (The solution of the linear system): 

Let A be an operator on     . The solution of the initial value problem. 

            ( )   ( )        

is 

 ( )                ( ) 

And there are no other solutions 

Proof. 

 
 

  
(    )  .

 

  
   /   

         ;  

Since              if follows that (2) is a solution of ( )  

Let  (t) be any solution of ( ) and put  

  ( )        ( )  

Then 

   ( )  .
 

  
    /  ( )        ( ) 

                   ( )        ( ) 

          =0 

     ( ) is a constant, setting t=0  

Shows         ( )    
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This completes the proof of the theorem. 

2.1.5. Theorem (The solution of DE is special form): 

Let the n n matrix A have n distinct real eigenvalues            

Then every solution to the  Differential  equation. 

               ( )    

Is of the form  

   ( )                                   

For unique constants              depending on   

2.2. Linear system in    [9] 

         ( )      Where       and A is a 2  matrix. 

We begin by describing the phase portraits for the linear system  

                ( ) 

Where the matrix          

If B=[
  
  

]    0
  
  

1          0
   
  

1 

With  ( )        is given by  

  ( )   [ 
   
    

]            ( )     0
  
  

1        

      ( )     0
            
           

1     

 



[27] 
 

2.2.1.              [
  
  

]With              , 

 
Figure (2.1) 

"A saddle at origin" 

The system (2) is said to have a saddle at the origin in the  is case.  

If        , the arrows in Figure(2. 1) are reversed. whenever A has 

two real eigenvalues of opposite sign  ,       , the phase portrait for 

the linear system (1) is linearly equivalent to the phase portrait shown in 

figure( 2.1).; i.e, it is obtained from Figure(2.1) by a linear transformation 

of coordinates; and the stable and unstable subspaces of (1) are 

determined by the eigenvectors of A.  

2.2.2. Case II.   [
  
  

]              

   0  
  

1               

The phase portraits for the linear system (2) in these case are given in 

Figure(2. 2). 

The origin is referred to as a stable node  in each of these cases. 

It is called a proper node in the first case with       and an improper 

node in the other two cases. 
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If          or if       in case II, the arrows in Figure(2.2) are 

reversed and the origin is referred to as an unstable node. 

           Whenever  A  has two  negative eigenvalues       , the 

phase portrait of linear system (1) is linearly equivalent to one  of the 

phase  portraits shown in Figure(2.2)  The stability of the  node is 

determined by the sign of the eigenvalues : stable if       and 

unstable if  

     . Note that each trajectory in Figure (2.2) approaches the 

equilibrium point at the origin along a well –defined tangent line 

     , determined by an eigenvector of  A, as     

 
 Figure (2.2)   

"A stable node at the origin" 

2.2.3. Case III.   0
   
  

1 With      . 
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Figure (2. 3)  

“A stable focus at the origin" 

The phase portrait for the linear system (2) in this case is given in Figure 

(2.3) the origin is referred to as a stable focus in these cases. If      , 

the trajectories spiral away from the origin with increasing t and the 

origin is called an unstable focus. 

           Whenever A has a pair of complex conjugate eigenvalues with 

nonzero real part,      with      , the phase portraits for the system 

(1) is linearly equivalent to one of the phase portraits shown in figure 

(2.3). Note that the trajectories in figure (2.3) do not approach the  origin 

along well-defined tangent lines; i.e. ,the angle  ( ) that the vector  ( ) 

makes with the   -axis does not approach a constant    as    , but 

rather | ( )|    as      and | ( )|    as     in this case . 

2.2.4. Case IV.   0
   
  

1 

The phase portrait for the linear systems (2) in this case is given in 

Figure (2.4) the system (2) is said to have a center at the origin in this 

case. 

            Whenever A has a pair of pure imaginary complex conjugate 

eigenvalues,     
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The phase portrait of the linear system (1) is linearly equivalent to one of 

the phase portraits shown in Figure (2. 4)  

Note that the trajectories or solution curves in Figure (2. 4) lie on circles  

| ( )|           . 

            In general, the trajectories of the system (1) will lie on ellipses 

and the solution  ( ) of (1) will satisfy  

   | ( )|                    

The angle  ( ) also satisfies  | ( )|     as      in this case. 

 

 

 

 

Figure (2. 4) 

"A center at the origin" 

If one (or both) of the eigenvalues of A is zero, 

i.e., if det A=0, the origin is called an equilibrium  point of (1). 

2.2.5. A saddle, a node and a focus or center at the origin: 

The linear system (1) is said to have saddle, a node, a focus or a center at 

the origin if the matrix A is similar to one of the matrices B in cases 

I,II,III or IV respectively, 

i.e., if its phase portrait is linearly equivalent to one of the phase portraits 

in figures (2.1),(2.2),(2.3),or(2.4)  respectively . 
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Theorem:  

Let          and T = trace A and consider the linear system  

             ( ) 

(a)- If      then (1) has a saddle at the origin. 

(b)- If     and          then (1) has a node at the origin; 

It is stable if     and unstable if      

(c)-If    ,        , and      then (1) has a focus at the origin ;  

It is stable     and unstable if     . 

(d) If       and T=0 then (1) has a center at the origin. 

Note that in case (b),    | |    

i.e.,    . 

Proof .The eigenvalues of the matrix   

A are given by  

  =
    √     

 
 

Thus (a) if     there are two real eigenvalues of opposite sign. 

(b) If     and         then there are two real eigenvalues of the 

same sign as T;  

(c) If       ;         and     then there are two complex 

conjugate eigenvalues        and, 

A is similar to the matrix B in case III above with    
 ⁄   ;  
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(d) If         and T=0 then there are two pure imaginary complex 

conjugate eigenvalues. Thus case a, b, c, II, III and IV discussed above 

and we have a saddle, node, focus or center respectively. 

2.2.6. Sink and source of the linear system: 

A stable node or focus of (1) is called a sink of the linear system and an 

unstable node or focus of (1) is called a source of the linear system. 

 
Figure (2. 6) 

"A bifurcation diagram for the linear system (1)" 
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Figure (2. 7) "Depending on the sign of the trace T and of the 

determinant   of the Jacobian matrix and on    − 4    , several 

approaches to the steady state can be observed." 

    

 

𝛿 

𝐓𝟐  𝟒𝜹

 𝟎 
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3.1.Nonlinear  System:[9]   

Let          and  E is an open subset of     .  

Then       ( )    ( )  is called nonlinear system of differential 

equations. 

  So, in this case, unique solution through each point          defined on 

a maximal interval of existence (   )       

3.1.1. Equilibrium  point :[7],[9] 

We suppose         a point  ̃    is called an equilibrium point of (1) 

if   ( ̃)   .  

  A point        is called an equilibrium point or critical point of (1) if 

none of the eigenvalues of the matrix    (  ) have zero real part. 

The linear system        with the matrix     (  )  is called the 

linearization of (1) at    . If        is an equilibrium point of (1), then 

 ( )     and, by Taylors' Theorem. 

  ( )    ( )  
 

 
   ( )(   )    

Clearly, the constant function   ( )   ̃  is a solution of (1). By 

uniqueness of solution, no other solution curve can pass through  ̃  

If   is the state space of some physical or biological, economic, (or the 

like) system described by (1) then  ̃ is an ''equilibrium state ''; if the 

system is at  ̃ it always will be (and always was) at   ̃. 

If  (   )    for all t ,then      is said to be an equilibrium (or 

critical) state. 
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Let            be the flow associated with (1);          is an open 

set, and for each      the map        (   )     ( ) is the solution 

passing through     when       it is defined for   in some open interval. 

If   ̃ is an equilibrium, then    ( ̃)   ̃  for all     . for this reason,  ̃ is 

also called a stationary point, or fixed point, of the flow. Another name 

for  ̃ is a zero or singular point of the vector field    . 

Suppose   is linear:       and  ( )     where A is a linear operator 

on    . Then the origin      is an equilibrium of (1). 

Then solutions   ( ) approach 0  exponentially: 

 |   ( )|       

For some       

Now suppose   is   
 vector field (not necessarily linear ) with  

equilibrium point 0      we think of the derivative  D ( )    of     at 

0 as a linear vector field which approximates   near 0.  

3.1.2.Sink, source and saddle: [9] 

An equilibrium point    of (1) is called a sink if all of the eigenvalues of 

the matrix    (  ) have negative real part, it is called a source if all of 

the eigenvalues of    (  ) have positive real parts and it is called a 

saddle if it is a hyperbolic equilibrium point and    (  ) has at least one 

eigenvalue with a positive real part and at least one with a negative  real 

part . 

           In general, linear systems have one equilibrium point at the origin. 

Nonlinear systems may have many equilibrium points.[5] 
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3.2. Stability of Equilibria: [12] 

An equilibrium   ̌ is stable if all nearby solutions stay nearby .it is 

asymptotically stable if all nearby solutions not only stay nearby, but also 

tend to  ̃. 

Theorem: 

 Let  ̃      be a sink of equation (1) suppose every eigenvalue of   ( ̃) 

has real part less than          Then there is a neighborhood        

of   ̃  such that 

a)   ( ) is defined and in   for all          

b) There is a Euclidean norm on    such that 

  |  ( )   ̃|      |   ̃| 

For all            

c) For any norm on   , there is constant      such that 

|   ( )   ̃|       |   ̃| 

For all          

In particular,     ( )   ̃                for all      . 

Proof: 

For convenience we assume  ̃    (If not, give    new coordinates  

     ̃ In y-coordinates    has an  equilibrium at 0 etc.) 

Put      ( )   choose     so that the real parts of eigenvalues of A 

are less than  –         

〈    〉     | |  For all       

Since       ( ) and   ( )     , by the definition of derivative. 



[38] 
 

       
| ( )   |

| |
   

Therefore by Cauchy's inequality. 

       
〈 ( )     〉

| | 
   

It follows that there exists     so small that if | |      then     

And  〈 ( )  〉    | |  . 

Put   *    || |   +    let   ( )         

Be a solution curve in U,   ( )          

 
 

  
| |  

 

| |
〈    〉   

Hence, since     ( ) : 

 

  
| |     | |. 

This shows, first, that| ( )|is decreasing; 

Hence| ( )|    for all t  ,    - . 

Since U is compact. 

 | ( )|      | ( )| 

For all t      Thus (a) and (b) are proved and (c) follows from 

equivalence of norms. 

           The phase portrait at a nonlinear sink   ̃  looks like that of the 

linear part of the vector field: in a suitable norm the trajectories point 

inside all sufficiently small spheres about  ̃  Fig.A. (3.1) 
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FIG .A. (3.1) 

"Nonlinear sink" 

3.3. Stability [12]
 

 

3.3.1.Stable equilibrium: suppose  ̃    is an equilibrium of the 

differential equation      ( ) Where          is      map from an 

open set W of the vector space E into E. Then  ̃ is  a stable equilibrium if 

for every neighborhood   of   ̃in    there is a neighborhood    of   ̃in  

 such that every solution  ( ) with  ( ) in     is defined  and in   for all 

      (see Fig .A.(3.2)) 

            
FIG .A. (3.2)  

“Stability" 

3.3.2. Asymptotically stable: if     can be chosen so that in addition 

to properties described in definition 3.3.1.,       ( )   ̃, then   ̃  is  

asymptotically stable .(see Fig B.(3.3)) 
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An asymptotically stable equilibrium is also called an attracting 

equilibrium.[6] 

 
FIG.B. (3.3)  

"Asymptotic stability" 

3.3.3. Equilibrium unstable:  An equilibrium  ̃ that is not stable is 

called unstable. This means there is a neighborhood   of   ̃ such that for 

every neighborhood   of  ̃  in      There is at least one solution  ( ) 

starting at   ( )    , which does not lie entirely in  .(See Fig .C. (3.4)) 

 
FIG.C. (3.4)  

“Instability” 

A sink is asymptotically stable and therefore stable. An example of an  

Equilibrium that is stable but not asymptotically stable is the origin in 
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    for a linear equation 

              ( ) 

Where A has pure imaginary eigenvalues, The orbits are all ellipses (Fig 

.D. (3.5))  

 
FIG.D. (3.5)  

“Stable, but not asymptotically stable" 

Theorem: [12] 

Let        be open and       continuously differentiable suppose   

 ( ̃)     and  ̃ is a stable equilibrium point of the equation  

     ( )  Then no eigenvalue of   ( ̃) has positive real port. 

We say that an equilibrium  ̃ is hyperbolic if the derivative     ( ̃) has 

no eigenvalue with real part zero. 

Corollary:  A hyperbolic   equilibrium point is either unstable or 

asymptotically stable.  

Theorem:[3] 

Let    be a critical point of the autonomous system      ( ). 
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(a)- The critical point    is stable iff     (  )   . 

(b)- The critical point    is unstable iff       (  )   . 

Example:[7] 

Find all the equilibrium points of the nonlinear system 

    (      ), 

    (     ), 

And determine their stability. 

The equilibrium points are determined by solving 

 (   )   (      )   , 

 (   )   (     )   . 

There are four equilibrium points ( ̃  ̃):(   ) (   ) (   ) and (   ). The 

Jacobian matrix is given by 

(

  

  

  

  

  

  

  

  

)  (
          

        
*. 

Stability of the equilibrium points may be considered in turn. With       

the Jacobian matrix evaluated at the equilibrium point, We have at 

( ̃  ̃)  (   ):   (   )  .
  
  

/. 

The eigenvalues    are           So that the equilibrium point (0,0) is 

unstable node. 

At   ( ̃  ̃)  (   )   (   )  .
   
    

/. 

The eigenvalues of    are             so that the equilibrium point  
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(0, 2) is stable node. 

At   ( ̃  ̃)  (   )    (   )  .
    
   

/. 

The eigenvalues of    are             so that the equilibrium point 

(3,0) is also a stable node. Finally, 

( ̃  ̃)  (   )     (   )  .
    
    

/. 

The eigenvalues of    are          √      √ . 

Since one eigenvalue is negative and the other positive the equilibrium 

point (1,1) is an unstable saddle point. 

 

FIG (3.6):  

"Phase space plot for two-dimensional nonlinear system" 

3.4. Theorem of Lyapunov's second method: [5] 

Very important note: This theorem provides a sufficient condition, not 

a necessary condition  

Consider the system:       ̇   (   )           (   )        

If scalar function is defined such that: 

i.  (   )    
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ii.  (   )Is positive definite. i.e. There exists  a continuous  

Non-decreasing scalar function  ( ) such that  ( )     and 

                 (‖ ‖)   (   ) 

iii.  ̇(   )   is negative definite , that is  ̇(   )    (‖ ‖)     

where   is a continuous non- decreasing scalar function such that  

 ( )    

iv.    (‖ ‖ ) where   is a continuous non-decreasing function and 

 ( )      i.e.  V is decrescent ,i.e. the Lyapunov function  is 

upper bounded  

v. V is radically unbounded, that is  (‖ ‖)    as‖ ‖     . 

Then the equilibrium point is uniformly asymptotically stable in the large 

and   (   ) is called a Lyapunov function. 

3.5. Stability in the sense of  Lyapunov:[5] 

 Assume       

3.5.1. Stable:  

The equilibrium      is stable iff                    

                  ‖ (  )‖    ‖ ( )‖     ,        . 
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FIG.E. (3.7) 

'' that is, if I start within     Stay within      In general, I give you 

an   ,you give me the corresponding     Things remain bounded" 

3.5.2. Asymptotically stable: [5]
 

The equilibrium     is asymptotically stable if:  

i.     is  a stable equilibrium 

ii.            (   )‖ (    )‖             | ( )|    

3.5.3. Uniformly stable: [5]
 

The equilibrium      is uniformly stable if: 

i.      is a stable equilibrium  

ii.  (     )   ( ) 

These conditions refer to stability in the sense of lyapunov. 

3.6. Method of Lyapunov: 

3.6.1. The second method of Lyapunov. [5] 

(a)- Originally proposed by lyapunov(around1890) to investigate stability 

in the small (local stability) 

(b) - Later extended to cover globlal stability  

X2 
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(C) - Stability can be determined without explicitly solving the system 

solution. 

(d)- Generalization of an "energy” argument for non –energetic  

Systems(e.g.forecasting the stock market,etc….) 

(e)- Difficulty is finding the Lyapunov function. 

3.6.2. Positive Definite functions: [5] 

A function   is positive definite if  ( )           and   ( )    

Example: For example, suppose   0
  

  
1    note that   is a vector, while 

 ( ) is a Scalar function. 

Suppose     ( )    
    

   is   positive definite? 

(i)- Does                     

(ii)-Do we have:    ( )    ,   (     )    . 

 (iii)- Suppose    ( )    
   Is     positive definite?  

    Is positive but not definite for example.     And 

           This property is called positive semi definiteness. 

3.6.3. Intuition for Lyapunov's theorem consider a second 

order system,   0
  

  
1:[5] 

Let  (     ) be a positive definite function  
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   FIG.F. (3.8) 

If    (     ) always decreases, then it must reach zero eventually. That 

is.  For a stable system all trajectories must move so that the values of 

  are decreasing. this is similar to the energy argument for stability of 

mechanical systems. 

To relate     to the system dynamics we compute   ̇ . 

   ̇  
  

  
 ∑

  

   
 ̇    

     =
  

  
        

The second term of this expression relates     to the vehicle dynamics. 

In our notation we have assumed: 

  ( )  [
  

  
]  [

  ̇

  ̇
]                      0

  

   
 

  

   
1 

 We need   ̇ to be negative definite for our intuitive condition to be true. 

  ̇ is the rate of change of the scalar field    along the flow of the vector  

Field f. 
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 ̇  
  

  
 
  

  
            Lie derivative of    (if   does not depend on t). 

Example:[1] consider a unit mass suspended  from a fixed support by a 

spring, Z being the displacement  from the equilibrium. If  first the spring 

is assumed to obey Hooke's law, then the equation of  motion is  

               (   ) 

Where k is the spring constant. 

Taking      ,      ,(3.1) becomes 

   
     

  
      , 

Since the system is conservative, the total  energy  

    

 
   

   

 
  

   

Is a lyapunov function and it is easy to see that 

              =0 

So by lyapunov's second Theorem the origin is stable. 

3.7. Poincare-Bendixson Theorem:[14] 

This remarkable result, which only holds in   , is very useful for proving 

the existence of periodic orbits. 

3.7.1. Limit sets:[8] 

 A point  ̌ is called a positive limit point of the orbit  (  ) if there exists 

an increasing sequence    with            such that  

 ̌         (  ). A negative limit point of  (  ) is defined similarly. 
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 We  denote by  ( ) the set of all positive limit points for the orbit  . It 

is called the  -limit set of   . Similarly we denote  ( ) the set of all 

negative limit points for the orbit   (the  -limit set of    ). 

3.7.2. Theorem (Poincare'-Bendixson*).[14] 

Consider the system   =  ( )  ,     , and suppose that   is 

continuously differentiable. If the forward orbit   ( )  remains in a 

compact (closed and bounded)  set  containing no fixed points then  ( ) 

contains a periodic orbit. 

3.7.3Theorem (Bendixson-Dulac**)[8] 

Suppose   and   are defined in a simply connected region R. If the 

expression   
   

  
 

   

  
 is either always positive or always negative on R 

(except perhaps a small set such as on isolated points or curves) then the 

system     (   ) ,     (   ) , Where the functions   and   have 

continuous derivatives. Has no closed trajectory inside R. 

3.7.4. Dulac's Criteria[15] 

Consider the autonomous planar system     (   ),    (   ) and a 

continuously differentiable function   defind on  an annular region R 

contained in some open set. If   
   

  
 

   

  
  does not  change sign in R, 

then there is at most one limit cycle contained entirely in R.  

*(Ivav Otto Bendixson(1861-1935) was a Swedish mathematician). 

**(Henri  Dulac(1870-1955)was a French mathematician). 
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3.7.5. Direction field and nullclines [13] 

The direction field of the differential equation is the function  

(   )       that associates a two trajectory to know if the vectors of 

the direction field point up or down, and to the left or to the right. 

In order to see this the nullclines  

   *      ( )   +,    *      ( )   + can help. 

The nullcline     divides the phase plane into two parts (these are not 

necessarily connected sets).In one of these, in which    , trajectories 

move to the right (since      there), in the other part, in which    , 

trajectories move to the left (since      there). Similarly, the nullcline 

   divides the phase plane into two parts (these are not necessarily 

connected sets). In one of these, in which    , trajectories move up 

(since      there), in the other part, in which    , trajectories move 

down (since      there). 

Thus the nullclines    and    divide the phase plane into four parts, in 

each of them it can be decided if the trajectories move up or down, and to 

the left or to the right. (We use the terminology that "the trajectory 

moves" , in fact the point  (   )  moves along the trajectory as   is 

varied.) The intersection points of the nullclines are the equilibria where 

both   and   are equal to zero.  

Example: - we have a system of linear differential equation 

           

          , 

To find the curves of this system let           such that 
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      , 

By substitutions by the value of   (     ) in the second Differential 

equation we have. 

   (     )  (     )                      

  (                )    

  (                           )    

at     ,                       -     

             (   )                           

The eight degree polynomial has no real roots and the origin is the only 

equilibrium point of the system 

 Now to find the Jacobian[The matrix of partial dirvitri] 

 

  [
       

        ]     (   )    (   )  0
   
    

1 

Now we have to find the eigenvalue of        (   ) 

   ,    -    0
     

      
1  (    ) +1=0  

          

  
   √     

 
 

     

 
      

All the eigenvalues have negative real parts 
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i.e       *  +                        *  +             

This case is a sink. 

To find graphs of                      

Let choose same points of    and    

Hence. 

                    

1 0 1 0 

2 -6 2 6 

3 -24 3 24 

4 -60 4 60 

5 -120 5 120 

0 0 0 0 

-1 0 -1 0 

-2 +6 -2 -6 

-3 24 -3 -24 

-4 60 -4 -60 

-5 120 -5 -120 

At the graph "next page”(   )       the origin is a stable spiral 

point for the system that any solution(closed enough)  in the phase plane  

will spiral toward the origin ,since the critical point is an unique point . 

Now to find out if all the solution of the system have trajectories with 

spiral towards the origin?  

Now we consider the autonomous system. 

 
  

  
   (   )         

  

  
    (   ) 
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                                               FIG.G. (3.9) 

By the theorem : let F,G have continuous is first  partial derivative in a 

simply connected domain D  in    plane .If       has the same sign 

through D     no particles solutions in D lying entirely in D. 

Of       changes sign in D no conclusion is possible. 

          ,           

                     

                        (    )        ((                        )) 

Let                                     

                

              

           = (       )   (       ) 

           =           (   )        

             (     )  (     ) 

           =     (                ) 
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               +  (           ) 

Let       (      ) 

  

  
               

            
  

  
 

 
  

  
             (   ) 

By applying Poincare –Bendixson theorem:-since the system has the 

origin as a critical point. It must be excluded 

Now for           
  

  
        (   )       (   )    

   (   )                   

                      

For          
  

  
              (   )    

                                       √  .  

For      in this case  
  

  
           increasing and the solution spiral 

out, in case   √        decreasing by Poincare –Bendixson theorem 

any solution of this system starting in the origin    √    must stay in 

the origin       by the same theorem there is a periodic solution of the 

system whose trajectory is closed curve in the region     √   

Now we have the following equation. 

       (           )=0 

To show that the fulol pointed in an     and point out on     √  
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Since                   

At               ( )                     

                                            

In at     √      =    (           ) 

                                    (    (           )) 

                                    (   (           )) 

To show                   
 

 
 

  At the term ,   (           )- 

                   (        )  

                                  
 

 
       

 

 
 

      
 

 
                          

 
 

   
       

     
Substitute by                 we have  

    
 

  
, (       )   (       )- 

      
 

  
,                    - 

     
 

  [ (     )     ,     -] 

     
 

  
,              (           )- 

     0      

 
     1 

Suppose           
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|     |   

 

 
 

Contradiction          

Then at     √    the fulod pointed out 

“Because         (   (           ))    ''  

By Poinear –Bendexson     at least one, limit cycle in the annulus 

Now we will show that the limit cycle in unique 

     ( )                   (     ) 

At 

     ( )          (     )    

       
 

 
     

 

 
    An the                      ( )    

  At must one limit cycle.  

 
                                                FIG.H. (3.10) 

,0) 



[57] 
 

 

FIG.I. (3.11) 
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Chapter four 
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4.1. Application: [4] 

One variable system: syntheses and degradation of one compound 

consider one compound, X, synthetized with a rate constant    and 

degraded at rate    : 

 
  
  

  
→  

Evolution equation: the evolution equation of the concentration   is: 

 
  

  
  ( )               (  ) 

Note that this is a linear system steady state: 

  

  
      

  
  

⁄       (  ) 

Linear stability analysis: the evolution of the perturbation   is given by: 

 
  

  
 (

  

  
)  

           (  ) 

The solution of this differential equation is: 

              (  ) 

This means that the perturbation will be damped, in an exponential way, 

with respect to time. The steady state is therefore stable. 

Analytical solution: note that this system is relatively simple and the 

solution of equation (  ) can be found analytically 
(2)

: 

           
  

  
(       )        (  ) 

Where     ( )  
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We can check that  

        ( )  
  

  
    

(2)Recall that: ∫
 

    
     

 

 
  (    )+c 

4.2. one-variable system: logistic synthesis and linear 

degradation: 

Consider now one compound, X, synthetised with a logistic synthesis rate 

and linearly  

Degraded:    
  

  
  ( )     .  

 

 
/           (  ) 

Steady states:  

   
          (  ) 

    
  

     

  
(               )          (  ) 

Linear stability analysis: 

       
  

 
                   (   ) 

         
  

 
                   (   ) 

   (   
)                       (   ) 

   (   
)                       (   ) 
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The following table summarizes the stability conditions for each steady 

state: 

             

    Stable  Unstable  

      Stable  

 

Graphical analysis: 

 
Figure (4.1) 

“Graphical analysis and bifurcation diagram (transcrtical bifurcation)" 

Analytical solution: note that Eq. (  ) can be rewritten as a standard 

logistic equation and can be solved analytically. 

4.3. Two- variable system:  

two mutually activated compound (bestiality) 

Consider a system involving two compounds which activates each other 

according a Hilltypekinetics : 

  + 

X…………………Y 
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{

  

  
   

  

     
    

  

  
   

  

     
     

   (   ) 

Evolution equation 

To simplify, we assume that        and       . 

The equation become: 

 ,

  

  
  

  

     
  

  

  
 

  

     
  

    (   ) 

Steady state: 

Let’s        . We can check that        
 

 
is a steady state .we also 

see that          is also a steady state. 

Note that those two state may not be the only solutions. 

Representation in the phase plane: 

We can represent the nullclines in the phase space .the unllclines are 

defined by: 

 
  

  
   

  

     
        (   ) 

  

  
   

  

     
          (   ) 

Linear stability analysis: 

The jacobian matrix for the steady state .
 

 
 
 

 
/ is:  
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   (

   

  

   

  

   

  

   

  

)        (   ) 

Recall that: 

 
 .

  

     /

  
  

(  ) (     ) (  )(     ) 

(     ) 
 

                  
       

(     ) 
          (   ) 
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Figure (4.2) 

"Phase space and nullclines corresponding to the system (   ) for n=1 

(upper panel) and n=4 (bottom panel)." 
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If         : 

 
 .

  

     /

  
 

 
 

      

.
 

     /
         (   ) 

At the steady state,         : 

 
 .

  

     /

  
 

 
 

  
 

    

.
 

   
 

  /
  

 

 
       (   ) 

The trace T and the determinant   of the Jacobian matrix are: 

       And         

 ⁄ and           (    

 ⁄ )     

We can see that trace T is always negative and that       is always 

positive .the sign of   depends on n: 

(I)- If    , we have      the steady state (1/2 ,1/2) is thus  a stable 

node . 

(II)- If      we have      the steady state (1/2, 1/2) is thus an 

(unstable) saddle point. 

4.4Two–variable system: Brusselator (limit–cycle oscillations) 

Consider the following system of 4 chemical reactions: 

  
  
   

B+X
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Evolution equations 

The concentration of A and B are supposed to be constant and noted a and 

b, respectively. 

                                                            

{

  

  
                 

  

  
                               

         (   ) 

To simplify, we will consider that  

               The system then reduced to: 

{

  

  
           

  

  
                        

           (   ) 

Steady state: 

The steady state of the system is: 

{
         

             
                 (   ) 

Linear stability analysis: 

The Jacobian matrix is: 

  (

   

  

   

  
   

  

   

  

,  .          

        /     (   ) 

At the steady state         and        = b/a and thus: 
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   .     

     /          (   ) 

The trace T and the determinant    of the Jacobian matrix are: 

        And        

The characteristic equation is: 

                 (   ) 

We have to study the sign of        

       (      )      

                (         )(         ) 

                (  (   ) )(  (   ) )   (  ) 

The determinant   is always positive. 

The trace T is positive if        and negative otherwise. 

      is negative if (   )    (   )  and positive otherwise. 

The following table summarizes the different possible behaviors as a 

Function of the parameters a and b: 

B (   )                       (   )   

T - - - 0 + + + 

  + + + + + + + 

      + 0 - -     - 0 + 

Type of 

steady state 

Stable 

node 

 Stable 

focus 

 Unstable 

focus 

 Unstable 

node 
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When parameter b increases, the steady state turns from a stable node to a 

stable focus, then, it lost its stability (the system then evolves towards a 

limit cycle) and the steady state turns from an n unstable focus to an 

unstable node). 

These be haviours are shown in figure (4.3) (results obtained by 

numerical integration of the differential equations): 

(I)- For a=2 and b=0.5: the system evolves towards a steady state 

(stable node) 

(II)- For a=2 and b=4: the system evolves towards a steady state 

(stable focus) 

(III)- For a=2 and b=6: the system leaves its steady state (unstable 

focus) to reach a limit cycle (sustained oscillations) 

(IV)- For a=2 and b=12: the system leaves its steady state (unstable 

node) to reach a limit cycle (sustained oscillations) 

The stability diagram showing the stable and unstable regions as a 

function of a and b is give in figure (4.4). The solid curve, satisfying 

       delimits the stability region. 

The dotted curve corresponding to   (   )        (   )  

Separate the node from the focus in the stable and unstable regions 

respectively. 

Figure (4.5) is bifurcation diagram: 

It shows how the steady state of X changes as a function of the 

parameter b(for a fixed to 2). 

Figure (4.6) shows how the period varies in the oscillatory domain 

.These diagrams have been obtained numerically. 
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(Figure 4.3) 

"Different kind of behavior obtained for the brusselator model with 

different parameter (a and b) values. Left panels: time evolution.” 

Right panels: phase space. 

Note that the period at the bifurcation can be calculated. We know that 

the frequency is given by the imaginary part of the eigenvalues .at the 

Bifurcation point, T=0 and the eigenvalues are       √      
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The period is therefore equal to  
  

 
 for a=2, as illustrated here, the period 

is thus egal to         . 

 
                                           Figure (4.4) 

                    "Stability diagram for the Brusselator." 

 
Figure (4.5) 

“Bifurcation diagram for the Brussdator as a function of parameter b 

(with a=2)” 
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Figure (4.6) 

“Period for the Brusseator as  function of parameter b (with a=2).” 

Nullclines and direction field: 

The nullclines, defined by: 

 
  

  
     

(   )

 
 

 

  
(            ) 

 
  

  
      

 ⁄ (             )                 (   ) 

Are shown in (figure (4.7)). They delimit regions in the phase space 

where the vector field has a particular direction (figure (4.8)). 
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                            Figure (4.7) 

“Brusselator: unllclines (for a=2 and b=6)" 

 
Figure (4.8) 

"Brusselator: direction field (for a=2 and b=6)" 
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Conclusion 

It is often impossible to find explicit solutions of nonlinear systems of 

differential equations. The one exception to this occurs when we have 

equilibrium solutions. Provided we can solve the algebraic equations, we 

can get the equilibria explicitly. Often, these are the most important 

solutions of a particular nonlinear system. More important, given our 

extended work on linear systems, we can usually use the technique of 

linearization to determine the behavior of solutions near equilibrium 

points. 

 

 

 

 

 

 

 

 

 

 

 

 

 


