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Abstract 
 

We study Sobolev type spaces (called Newtonian spaces) in metric measure spaces equipped 

with a doubling measure and supporting a 𝑝 −Poincaré inequality. The Sobolev spaces are 

defined using the minimal upper gradient which is a substitute of the modulus of the usual 

gradient. We show that they are the right extension of the usual Sobolev spaces in 𝑅𝑛.  In 

particular Newtonian functions are quasicontinuous and that they are absolutely continues on 

almost every curve. Moreover, Newtonian functions are continuous on the complement of 

small sets. 

 

Keywords:  Newtonian functions; doubling measure; metric space; nonlinear; Sobelev spaces; 
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 المستخلص
في هذا البحث نقوم بدراسة فضاءات نيوتن وهي تعميم لفضاءات سوبوليف من الفضاءات الاقليدية الى الفضاءات المترية 
التي تحقق بعض الشروط الاساسية لهذا التعميم. هذه الفضاءات تبنى على استبدال القيمة المطلقة لتدرج الدالة بدالة 

تداد الصحيح حيث تجعل الفضاءات  تتطابق عند الرجوع الى الفضاءات والتي تكون الام upper gradientجديدة تسمى 
 الاقليدية. كذلك نستنتج ان فضاءات نيوتن تحتفظ بمعظم الخواص الاساسية في هذا التعميم.

 

1. Introduction 

 

Let 1  < 𝑝 < ∞ and  X = (𝑋, 𝑑, µ) be a complete metric spaces endowed with a metric 

𝑑 and a positive complete Borel measure µ which is doubling, i.e. there exists a constant 

C > 0 such that for all balls  𝐵 = 𝐵(𝑥, 𝑟) ∶= {𝑦 ∈ 𝑋: 𝑑(𝑥, 𝑦) < 𝑟}  in X we have  

 

0 <  µ(2𝐵)  ≤  𝐶 µ(𝐵)  <  ∞, 
 

where  2𝐵 = 𝐵(𝑥, 2𝑟). 
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In a metric space the gradient has no obvious meaning as in domains in 𝑹𝒏. Therefore 

the concept of an upper gradient was introduced in Heinonen– Koskela [1] as a substitute 

of the usual gradient, based on the following observation: It is well known from the 

fundamental theorem of calculus that, for every 𝑥, 𝑦 ∈  𝐑n and smooth function u on 𝑹𝒏, 

on the line segment [𝑥, 𝑦] we have 

|𝑢(𝑦) −  𝑢(𝑥)| ≤ ∫ |∇𝑢| 𝑑𝑠

[𝑥,𝑦]

 

 

In fact, for every rectifiable curve 𝛾 with end points 𝑥 and 𝑦 we have 

|𝑢(𝑦) −  𝑢(𝑥)| ≤ ∫ |∇𝑢|𝑑𝑠

γ

                                                          (1) 

                                                         

Similarly, a nonnegative Borel function 𝑔 is an upper gradient of 𝑢 if (1) holds, for all 

rectifiable curves 𝛾, when ∇𝑢  is replaced by 𝑔. It has many useful properties similar to 

those of the usual gradient. This makes the variational approach of the Dirichlet problem 

available in metric spaces and Sobolev spaces can then be extended to metric spaces. 

There are several notions of Sobolev spaces in metric spaces; see for example Cheeger 

[2], Hajłasz [3] and Shanmugalingam [4-5]. The definitions in these references are 

different but by [4] they give the same Sobolev spaces, under mild assumption. We shall 

follow the definition of Shnmugalingam [4], where the Sobolev space  𝑁1.𝑝(𝑋)  (called 

Newtonian space) was defined as the collection of 𝑝–integrable functions with 𝑝–

integrable upper gradients. 

This paper is organized as follows. In Section 2, we present the upper gradient as 

introduced in Heinonen–Koskela [1], and use an equivalent definition, of Newtonian 

spaces, to the one used in Shanmugalingam [4].  Moreover, we give some of the most 

useful property of Newtonian functions. In Section 3, we consider the Newtonian spaces 

in a subsets of 𝑋 (with the restrictions of 𝑑 and µ) as a metric spaces in their own right. 

We also define the Newtonian space with zero boundary values 𝑁0
1,𝑝(𝑋) which makes it 

possible to compare boundary values of Newtonian functions. Under rather mild 

assumptions on 𝑋 it has been shown that Lipschitz functions with compact support are 

dense in 𝑁0
1,𝑝(𝑋)  .  

In Section 4, we study the Newtonian spaces in the Euclidean setting and show that they 

are the right generalization of the usual Sobolev spaces, i.e.  both spaces coincide,  in the 

sense that every 𝑢 ∈ 𝑁1,𝑝(𝑹𝑛) belongs to 𝑊1,𝑝 (𝑹𝑛)and every 𝑢 ∈ 𝑊  1,𝑝 (𝑹𝑛)has a 

representative in the Newtonian space 𝑵1,𝑝(𝑹𝑛)  which is quasicontinuous. This is a 

Luzin type phenomenon, which means that a Sobolev function is continuous on the 

complement of a small set. In this setting the removed set has small capacity. We also 

give a simple example in the plane which shows that the function 𝜒𝑅 ∈ 𝑊 1,𝑝 (𝑹2)   and   
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𝜒𝑅 ∉ 𝑁  1,𝑝(𝑅2).  But,  as  the  real  line  has  two-dimensional  Lebesgue measure 

zero, χR = 0 a.e.  in  𝑹2 and clearly  0 ∈ 𝑁  1,𝑝(𝑹2). 
 

2. Upper gradients and Newtonian Spaces 

 

The first order Sobolev spaces in 𝑹𝑛 are defined as follows:  For 1 < 𝑝 < ∞ and  𝑓 ∈

 𝑳𝑝(𝑹𝑛) we define 

∥ 𝑓 ∥
𝑊1,𝑝
𝑝 (𝑹𝑛) = ∫ (|𝑓|𝑝 + |∇𝑓|𝑝) 𝑑𝑥

𝑹𝑛

, 

where the ∇𝑓  is the weak gradient of 𝑓.  𝑊1,𝑝(𝑹𝑛) is given by 

 

𝑊1,𝑝(𝑹𝑛) = {𝑓: ∥ 𝑓 ∥
𝑊1,𝑝
𝑝 (𝑹𝒏) < ∞} 

 

As we see to define the 𝑊1,𝑝(𝑹𝒏) one uses the gradient i.e. the directional derivative. 

In metric spaces we can not talk about directions. However we do not really use the vector 

∇𝑓 , only the scalar |∇𝑓| is used.  For |∇𝑓|  there is a possible counter part in metric spaces 

called upper and has been introduced by Heinnonen–Koskela [1]. 

In this section we introduce the upper gradient as a substitute of the usual gradient. 

 

Definition 2.1  

A nonnegative Borel function g on 𝑋 is said to be an upper gradient of an extended real–

valued function 𝑓 on 𝑋 if for all rectifiable curve 𝛾 ∶  [0, 𝑙𝛾]  →  𝑋 parametrized by the 

arc length 𝑑𝑠, we have 

 

|𝑓(𝛾(0)) − 𝑓(𝛾(𝑙𝛾))| ≤ ∫ 𝑔 𝑑𝑠
𝛾

                                            (2) 

 

whenever both 𝑓 (𝛾(0)) 𝑎𝑛𝑑 𝑓 (𝛾(𝑙𝛾)) are finite, and ∫ 𝑔
𝛾

𝑑𝑠 = ∞ otherwise. If 𝑔 is a 

nonnegative measurable function on 𝑋 and if (2) holds for 𝑝 −almost every curve then 𝑔 

is a 𝑝 −weak upper gradient of 𝑓.  The upper gradient in not unique. In particular, from 

(2) every Borel function greater than 𝑔 will be another upper gradient of 𝑓.  Moreover, 

the operation of taking an upper gradient is not linear. However, we have the following 

useful property. 

 

Lemma 2.2    

If 𝑎, 𝑏 ∈ 𝑹 and 𝑔1, 𝑔2  are upper gradients of 𝑢1, 𝑢2, respectively. Then |𝑎|𝑔1 + |𝑏|𝑔2 

is an upper gradient of 𝑎𝑢1 + 𝑏𝑢2.  
   We shall need the following lemma, which gives a nontrivial example of upper gradient, 

see Björn–Björn [6], Corollary 1.15. 
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Lemma 2.3    

If  𝑋 = 𝑹𝑛  and  𝑓 ∈  𝐶1(𝑹𝑛),  then  |∇𝑓| is  an  upper  gradient of 𝑓.       
  

By saying that (2) holds for 𝑝–almost every curve we mean that it fails only for a curve 

family with zero 𝑝–modulus. 

 

Definition 2.4   

Let 𝛤 be a family of curve on  𝑋. Then we define the 𝑝 −modulus of 𝛤 by 

 

𝑀𝑜𝑑𝑝(Γ) =  inf ∫ 𝜌
𝑋

 𝑑µ,                                                    (3) 

 

where the infimum is taken over all nonnegative Borel functions ρ such that  ∫ 𝜌
𝛾

≥  1 

for all 𝛾 ∈ 𝛤. 

If 𝑓 has an upper gradient in 𝑳𝑝(𝑋), then it has a minimal 𝑝–weak upper gradient 𝑔𝑓 ∈

𝑳𝑝(𝑋) in the sense that for every 𝑝–weak upper gradient 𝑔 ∈ 𝑳𝑝(𝑋) of 𝑓, we have, 𝑔𝑓 ≤

𝑔 a.e. see Corollary 3.7 in Shanmugalingam [5]. 

Proposition 2.5 (Proposition 1.37 in [6])  
𝑀𝑜𝑑(Γ) = 0 if and only if there is a nonnegative Borel function 𝜌 ∈  𝑳𝑝(𝑋) such that 

∫ 𝜌 𝑑𝑠 = ∞.
𝛾

  

In Shanmugalingam [4], upper gradients have been used to define Sobolev type spaces 

on metric spaces. We will use the following equivalent definition. 

 

Definition 2.6  

Let 𝑢 ∈ 𝑳𝑝(𝑋), then we define 

 

∥ 𝑢 ∥𝑁1,𝑝(𝑋)= (∫ |𝑢|𝑝 𝑑𝜇 + ∫ 𝑔𝑢
𝑝 𝑑𝜇

𝑋𝑋

)

1/𝑝

                                             (4) 

                                           

where the 𝑔𝑢 is the minimal 𝑝—weak upper gradient of 𝑢. The Newtonian space on 𝑋 is 

the quotient space 

𝑁1,𝑝(𝑋) = {𝑢: ∥ 𝑢 ∥𝑁1,𝑝 (𝑋)< ∞}/~, 

where 𝑢~𝑣 if and only if  ∥ 𝑢 − 𝑣 ∥𝑁1,𝑝(𝑋) =  0. 

We also have the following lemma about minimal 𝑝–weak upper gradients, see Björn–

Björn [7], Corollary 3.4. 

 

Lemma 2.7  

If  𝑢, 𝑣 ∈  𝑁1,𝑝 (𝑋),  then 𝑔𝑢= 𝑔𝑣  a.e.   on {𝑥 ∈ 𝑋: 𝑢(𝑥) = 𝑣(𝑥)}.  Moreover, if 𝑐 ∈
𝑹 is a constant, then 𝑔𝑢  =  0 a.e. on {𝑥 ∈ 𝑋: 𝑢(𝑥) = 𝑐}. 
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Theorem 2.8 (Theorem 1.56 in [6])  

If 𝑢 ∈  𝑁  1,𝑝(𝑋), then 𝑢 ∈ 𝐴𝐶𝐶𝑝(𝑋), i.e. 𝑢 is absolutely continuous on 𝑝– 𝑎. 𝑒.  curve in 

the sense that 𝑢 ∘ 𝛾 ∶  [0, 𝑙𝛾] → 𝑹 is absolutely continuous for 𝑝–a.e. curve in 𝛾 in 𝑋. 

 

Lemma 2.9 (Lemma 2.14 in [6]) Assume that 𝑢 ∈  𝐴𝐶𝐶𝑝(𝑋) and that 𝑔 ∈  𝐋p(X) is a 𝑝–

weak upper gradient of 𝑢 then for 𝑝—a.e. curve  𝛾 ∶ [0, lγ] ⟶ X  we have 

 

|(𝑢 ∘ γ)′(t)| ≤ 𝑔(γ(t))                                                            (5)  
 

for a.e.  𝑡 ∈ [0, 𝑙𝛾].  Conversely,  if 𝑔 ≥ 0 is measurable, 𝑢 ∈ 𝐴𝐶𝐶𝑝(𝑋) and (5) holds for 

𝑝–a.e. curve 𝛾: [0, 𝑙𝛾]  →  X, then 𝑔 is a 𝑝–weak upper gradient of 𝑢. 

 

Theorem 2.10 [6] The space 𝑁1,𝑝(𝑋)  is a linear normed space. 

 

Proof.  That the 𝑁1,𝑝(𝑋) is a vector space follows directly from Lemma 2.2. The only 

diff iculty is to proof the triangle inequality. To prove this let 𝑢, 𝑣 ∈ 𝑁1,𝑝(X) and ε > 0 be 

arbitrary.  Find upper gradients 𝑔, 𝑔′ ∈ 𝐿𝑝(𝑋) of 𝑢 and 𝑣, respectively, so that 

 

(∥ 𝑢 ∥𝐿𝑝(𝑋)
𝑝 +∥ 𝑔 ∥𝐿𝑝(𝑋)

𝑝 )

1
𝑝

≤∥ 𝑢 ∥𝑁1,𝑝(𝑋)+ 𝜀 

   (6) 

(∥ 𝑣 ∥𝐿𝑝(𝑋)
𝑝 +∥ 𝑔′ ∥𝐿𝑝(𝑋)

𝑝 )
1/𝑝

≤∥ 𝑣 ∥𝑁1,𝑝(𝑋)+ 𝜀 

 

We know that 𝑔 + 𝑔′ is an upper gradient of 𝑢 + 𝑣.  Now, note that the left-hand sides 

of (6) are the 𝐿𝑝-norms (on 𝑹2) of 

 

(∥ 𝑢 ∥𝐿𝑝(𝑋), ∥ 𝑔 ∥𝐿𝑝(𝑋))   and   (∥ 𝑣 ∥𝐿𝑝(𝑋), ∥ 𝑔′ ∥𝐿𝑝(𝑋)), 

 

respectively. Similarly, 

∥ 𝑢 + 𝑣 ∥
𝑁1,𝑝(𝑋)

𝑝
≤ (∥ 𝑢 + 𝑣 ∥𝐿𝑝(𝑋)

𝑝 +∥ 𝑔 + 𝑔′ ∥𝐿𝑝(𝑋)
𝑝 )

1/𝑝

 

 

≤ ((∥ 𝑢 ∥𝐿𝑝(𝑋)+∥ 𝑣 ∥𝐿𝑝(𝑋))
𝑝

+ (∥ 𝑔 ∥𝐿𝑝(𝑋)+∥ 𝑔′ ∥𝐿𝑝(𝑋))
𝑝

)
1/𝑝

, 

which is the 𝑳𝑝 −norm of 

 

(∥ 𝑢 ∥𝑳𝑝(𝑋)+∥ 𝑣 ∥𝑳𝑝(𝑋),   ∥ 𝑔 ∥𝑳𝑝(𝑋)+∥ 𝑔′ ∥𝑳𝑝(𝑋) ). 

 

The triangle inequality of the 𝐿𝑝 −norm now implies that 
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∥ 𝑢 + 𝑣 ∥
𝑁1,𝑝(𝑋)

𝑝
≤ (∥ 𝑢 ∥𝐿𝑝(𝑋)

𝑝 +∥ 𝑔 ∥𝐿𝑝(𝑋)
𝑝 )

1/𝑝

+ (∥ 𝑣 ∥𝐿𝑝(𝑋)
𝑝 +∥ 𝑔′ ∥𝐿𝑝(𝑋)

𝑝 )
1/𝑝

 

 

                                               ≤∥ 𝑢 ∥
𝑁1,𝑝(𝑋)

𝑝
+ 𝜀 +∥ 𝑣 ∥

𝑁1,𝑝(𝑋)

𝑝
+ 𝜀 

And letting 𝜀 → 0 proves the triangle inequality for the ∥∙∥𝑁1,𝑝(𝑋). 

In Shanmugalingam [4], Theorem 3.7 and p. 249 it has been shown that the space 

𝑁1,𝑝(𝑋) is a Banach space and lattice. 

 

Theorem 2.11  

The space 𝑁  1,𝑝(𝑋) is a lattice, i.e. if 𝑢, 𝑣 ∈  𝑁1,𝑝(𝑋), then  𝑚𝑎𝑥{𝑢, 𝑣}, 𝑚𝑖𝑛{𝑢, 𝑣}  ∈
 𝑁1,𝑝(𝑋). 

 
Definition 2.12  

The Capacity of a set 𝐸 ⊂ 𝑋 is defined by 

 

𝐶𝑝(𝐸) = inf
𝑢

∥ 𝑢 ∥𝑁1,𝑝(𝑋) 

where the infimnm is taken over all 𝑢 ∈ 𝑁1,𝑝(𝑋) such that 𝑢 ≥ 1 on 𝐸. 
We say that a property holds quasieverywhere (q.e.) in 𝑋, if it holds everywhere except 

a set of capacity zero.  Newtonian functions are well defined up to sets of capacity zero,  

i.e.  if   𝑢, 𝑣 ∈ 𝑁1,𝑝(𝑋) then 𝑢 ~ 𝑣  if and only if  𝑢 = 𝑣 q.e.  Moreover, Corollary 3.3 in 

Shanmugalingam [4] shows that if 𝑢, 𝑣 ∈ 𝑁1,𝑝(𝑋) and 𝑢 = 𝑣 a.e., then 𝑢 = 𝑣 q.e. 

 The following proposition gives the relation between small set and small curve family. 

 

Proposition 2.13  

Let 𝐸 ⊂ X.  Then 𝐶𝑝(𝐸) = 0 if and only if µ(𝐸) = Mod𝑝(ΓE) =  0 

Where 

 

ΓE  =  {γ ∈ Γ(X): γ−1(E) ≠ ϕ}. 
 

We also have the following property for Newtonian functions, see Theorem 1.1 in 

Björn–Björn–Shanmugalingam [10]. 
 

Lemma 2.14   

Every function 𝑢 ∈ 𝑁  1,𝑝(𝑋) is quasicontinuous, i.e., for every 𝜀 > 0 there is an open 

set 𝐺 ⊂ 𝑋 such that 𝐶𝑝(𝐺) < 𝜀 and 𝑢|𝑋 ∖𝐺   is continuous. 

 

𝟑. 𝑵𝟏,𝒑 (Ω) and 𝑵𝟎
𝟏,𝒑

(Ω)  

 

For  𝐸 ⊂ 𝑋  we define the space 𝑁1,𝑝 (𝐸) with respect to the restrictions of the metric 

𝑑 and the measure µ to 𝐸.  A  function  𝑓 ∈ 𝑁1,𝑝(𝑋) clearly has a restriction 𝑓| 𝐸 which  
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belongs to the 𝑁1,𝑝(𝐸) and any 𝑝 −weak upper gradient of it remains a 𝑝–weak upper 

gradient when restricted.  However, the restriction of a minimal 𝑝–weak upper gradient 

is not always minimal.  If 𝐸 = Ω  is open then the restriction of a minimal 𝑝–weak upper 

gradient remains minimal. 
 

Lemma 3.1  

Assume that 𝑓 ∈ 𝑁1,𝑝(𝑋) with a minimal 𝑝–weak upper gradient 𝑔𝑓 (with respect to 

𝑋). Then 𝑔𝑓|Ω  is a minimal 𝑝–weak upper gradient of 𝑓 with respect to Ω. 

From now on we assume that X supports a 𝑝–Poincaré inequality, i.e. there exist 

constants  𝐶 >  0 and 𝜆 ≥ 1 such that for all balls 𝐵(𝑧, 𝑟) in 𝑋, all integrable functions 𝑢 

on 𝑋 and all upper gradients 𝑔 of 𝑢 we have 

 

1

µ(B)
∫ |𝑢 − 𝑢B(z,r)|

𝐵(𝑧,𝑟)

 𝑑𝜇 ≤ 𝐶 𝑟 (
1

𝜇(𝐵)
∫ 𝑔𝑝 𝑑𝜇

𝐵(𝑧,𝜆𝑟)

)

1/𝑝

, 

 

 

where 𝑢𝐵(𝑧,𝑟) ∶=  
1

𝜇(𝐵)
∫ 𝑢

𝐵(𝑧,𝑟)
 𝑑µ. 

To be able  to compare the boundary values of Newtonian functions we need to define a 

Newtonian space with zero boundary values outside of Ω as follows. 

 

Definition 3.2  

Let Ω ⊂ 𝑋 be open, then the Newtonian space with zero boundary values 𝑁0
1,𝑝(Ω) is 

defined by 

 

𝑁0
1,𝑝(Ω) =  {𝑓|Ω ∶  𝑓 ∈ 𝑋  𝑎𝑛𝑑 𝑓 = 0 𝑞. 𝑒.    𝑖𝑛   𝑋 \ Ω}.  

 

Under our assumptions, Lipschitz functions with compact support are dense in 

𝑁0
1,𝑝(Ω), see Shanmugalingam [5].   Moreover, the proof of this result in [6] shows that 

if 0 ≤ 𝑢 ∈ 𝑁0
1,𝑝(Ω),  then we can choose the Lipschitz approximation to be nonnegative. 

The following Poincaré type inequality is useful, for a proof, see e.g Kinnunen–

Shanmugalingam [9], Lemma 2.1. 

 

Lemma 3.3   

Assume that Ω ⊂  𝑋 is a nonempty bounded open set with Cp(X \ Ω) >  0.  There exists 

a constant C > 0 such that for all 𝑢 ∈  𝑁0
 1,𝑝(Ω) we have 

 

∫ |𝑢|𝑝 𝑑𝜇 ≤ 𝐶 ∫ 𝑔𝑢
𝑝

Ω𝛺

 𝑑𝜇 
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The following lemma is useful for proving that a function belongs to the  𝑁0
1,𝑝(Ω),  see 

Lemma 5.3 in Björn–Björn [8]. 
 

Lemma 3.4   

Let 𝑢 ∈  𝑁1,𝑝 
(Ω) be such that 𝑣 ≤ 𝑢 ≤ 𝑤 q.e.  in Ω for some 𝑣, 𝑤 ∈  𝑁0

1,𝑝(Ω).   

Then 𝑢 ∈  𝑁0
1,𝑝(Ω). 

 

Proposition 3.5 (Proposition 2.38 in [6])   

For 𝑁0
1,𝑝(Ω)  we have 

∥ 𝑓 ∥𝑁1,𝑝(𝑋) = ∥ 𝑓 ∥𝑁 1,𝑝(Ω). 

 

Proof.  We may assume that 𝑓 =  0 out side of Ω. Let gf be a minimal 𝑝–weak upper 

gradient of 𝑓 with respect to 𝑋.  By Lemma 3.1, 𝑔𝑓|Ω  is a minimal 𝑝–weak upper gradient 

of f with respect to Ω. On the other hand by Lemma 2.7 𝑔𝑓 = 0 a.e. outside of Ω.  Hence 

 

∥ 𝑓 ∥
𝑁1,𝑝 (𝑋)

𝑝
= ∥ 𝑓 ∥𝐿𝑝(𝑋)

𝑝 +∥ 𝑔𝑓 ∥𝐿𝑝(𝑋)
𝑝   

 

                                               =∥ 𝑓 ∥𝐿𝑝(Ω)
𝑝 +∥ 𝑔𝑓 ∥𝐿𝑝(Ω)

𝑝 =∥ 𝑓 ∥
𝑁1,𝑝 (Ω)

𝑝
. 

 

 

4. The Newtonian space 𝑵 𝟏,𝒑(Ω) in the Euclidean spaces 

 

In this section we see that, when restricted to  𝑹𝑛, the Newtonian space is the refined 

Sobolev space 𝑊1,𝑝(𝑹𝑛),  as defined in Chapter 4 in Heinonen– Kilpeläinen–Martio [11].  

Lemma 4.1   

Let Γ be a collection of curves in 𝑹𝑛.  If 𝑀𝑜𝑑𝑝Γ = 0,  then a.e. (with respect to the 

 (𝑛 − 1) −dimensional Lebesgue measure) line parallel to the 𝑥1-axis contains no curve 

from Γ. 
The following Theorem was obtained by Shanmugalingam [4], we use the proof in [6]. 
 

Theorem 4.2  

If  Ω ⊂  𝑅𝑛,  then 𝑁  1,𝑝(Ω) = 𝑊1,𝑝 (Ω),  as a Banach spaces, with equivalent norms.  

More precisely, if 𝑢 ∈ 𝑁1,𝑝(Ω),  then 𝑢 ∈ 𝑊1,𝑝(Ω) and conversely, for every 𝑢 ∈

 𝑊1,𝑝(Ω) then there exists �̅� ∈ 𝑁1,𝑝(Ω)such that �̅� = 𝑢 a.e., in Ω.  Moreover, if 𝑢 ∈

𝑊1,𝑝(Ω) is quasicontinuous, then  𝑢 ∈ 𝑁1,𝑝(Ω).  

Proof.  Let 𝑢 ∈ 𝑁1,𝑝(Ω)  with a 𝑝 −weak upper gradient 𝑔 ∈ 𝐿𝑃(Ω). By Lemma 2.9 and 

Proposition 2.5, 𝑢 ∈ 𝐴𝐶𝐶𝑝(Ω) and ∫ 𝑔 𝑑𝑠
𝛾

< ∞ for  𝑝– 𝑎. 𝑒. curve 𝛾 in   Ω.   Lemma 2.8  

and Lemma  4.1 now imply that  𝑢  is absolutely continuous on a.e. (with respect to the (𝑛 −  



09 
 

Sobolev Spaces in Metric  Spaces 

 

1)−dimensional Lebesgue measure)  line segment  𝑙  in  Ω  parallel to the 𝑥1 axis and for a.e. 𝑥 ∈ 𝑙, 

 

|
𝜕𝑢(𝑥)

𝜕𝑥1
| ≤ 𝑔(𝑥). 

 

The Fubini theorem then shows that |𝜕𝑢/𝜕𝑥1| ≤ 𝑔  a.e. in  Ω  and hence 𝜕𝑢/𝜕𝑥1 ∈
𝑳𝑝(Ω) ⊂ 𝑳𝑙𝑜𝑐

1 (Ω). The absolute continuity of 𝑢  at 𝑙 implies that 𝜕𝑢/𝜕𝑥1 is the one—

dimensional distributional of  𝑢 in 𝑙. 
   

Another application of the Fubini theorem to the integrals 

 

∫
𝜕𝜑(𝑥)

𝜕𝑥1Ω

𝑢(𝑥)  𝑑𝑥 = − ∫ 𝜑(𝑥)
Ω

𝜕𝑢(𝑥)

𝜕𝑥1
  𝑑𝑥 

 

with 𝜑 ∈ 𝐶0
∞(Ω),  shows that 𝜕𝑢/𝜕𝑥1 is the distributional derivative of 𝑢 in Ω.  The other 

partial derivative are handled similarly. Hence 𝑢 ∈ 𝑊𝑙𝑜𝑐
1,𝑝(Ω)  and 

 

∥ 𝑢 ∥𝑊1,𝑝(Ω)≤ 𝑛 ∥ 𝑢 ∥𝑁1,𝑝(Ω). 

 

Conversely,  let 𝑢 ∈ 𝑊1,𝑝(Ω).  By e.g. Theorem 2.3.2 in Ziemer [12] there  exist 𝑢𝑗 ∈

𝐶∞(Ω)  such that 𝑢𝑗 → 𝑢  in 𝑊1,𝑝(Ω),  as  𝑗 → ∞.   Lemma 2.3 shows that |∇𝑢𝑗|  are 

upper gradients of 𝑢𝑗 .  Hence 𝑢𝑗 ∈ 𝑁1,𝑝(Ω)  and  ∥ 𝑢𝑗 ∥𝑁1,𝑝(Ω)≤∥ 𝑢𝑗 ∥𝑊1,𝑝(Ω),  𝑗 = 1,2, ….  

Proposition 2.3 in [6]  provides us with a function  �̅� ∈ 𝑁1,𝑝(Ω)  such that �̅� = 𝑢  a.e.  

and |∇𝑢| is a 𝑝—weak upper gradient of �̅�.  Moreover, ∥ �̅� ∥𝑁1,𝑝(Ω)≤∥ 𝑢 ∥𝑊1,𝑝(Ω).    Thus 

𝑢 ∈ 𝑁1,𝑝(Ω). 
If 𝑢 ∈ 𝑊1,𝑝(Ω) is quasicontinuous, then �̅� = 𝑢  q.e., by Proposition 5.23 in [6],  and 

hence   𝑢 ∈ 𝑁1,𝑝(Ω).  
 

Proposition 4.3  

Let Ω ⊂ 𝑹𝑛 and let 𝑢 be locally Lipschitz in Ω.  Then 𝑔𝑢 = |∇𝑢| a.e., in  Ω. 
 

Corollary 4.4  

For every 𝑢 ∈ 𝑁1,𝑝(Ω),  we have  

 

∥ 𝑢 ∥𝑁1,𝑝(Ω)=∥ 𝑢 ∥𝑊1,𝑝(Ω). 
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