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Abstract

We study Sobolev type spaces (called Newtonian spaces) in metric measure spaces equipped
with a doubling measure and supporting a p —Poincaré inequality. The Sobolev spaces are
defined using the minimal upper gradient which is a substitute of the modulus of the usual
gradient. We show that they are the right extension of the usual Sobolev spaces in R™. In
particular Newtonian functions are quasicontinuous and that they are absolutely continues on
almost every curve. Moreover, Newtonian functions are continuous on the complement of
small sets.
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1. Introduction

Letl <p <owand X = (X,d, ) be acomplete metric spaces endowed with a metric
d and a positive complete Borel measure pu which is doubling, i.e. there exists a constant
C > O such that for all balls B = B(x,r) :={y € X: d(x,y) <r} in X we have

0 < u(2B) £ Cu(B) < oo,

where 2B = B(x, 2r).
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In a metric space the gradient has no obvious meaning as in domains in R™. Therefore
the concept of an upper gradient was introduced in Heinonen— Koskela [1] as a substitute
of the usual gradient, based on the following observation: It is well known from the
fundamental theorem of calculus that, for every x,y € R™ and smooth function u on R™,
on the line segment [x, y] we have

uG) — uo)l < fwmm
[x,¥]

In fact, for every rectifiable curve y with end points x and y we have

|mw—uszjWM$ )
Y

Similarly, a nonnegative Borel function g is an upper gradient of w if (1) holds, for all
rectifiable curves y, when Vu is replaced by g. It has many useful properties similar to
those of the usual gradient. This makes the variational approach of the Dirichlet problem
available in metric spaces and Sobolev spaces can then be extended to metric spaces.

There are several notions of Sobolev spaces in metric spaces; see for example Cheeger
[2], Hajtasz [3] and Shanmugalingam [4-5]. The definitions in these references are
different but by [4] they give the same Sobolev spaces, under mild assumption. We shall
follow the definition of Shnmugalingam [4], where the Sobolev space N?(X) (called
Newtonian space) was defined as the collection of p-integrable functions with p—
integrable upper gradients.

This paper is organized as follows. In Section 2, we present the upper gradient as
introduced in Heinonen—Koskela [1], and use an equivalent definition, of Newtonian
spaces, to the one used in Shanmugalingam [4]. Moreover, we give some of the most
useful property of Newtonian functions. In Section 3, we consider the Newtonian spaces
in a subsets of X (with the restrictions of d and p) as a metric spaces in their own right.
We also define the Newtonian space with zero boundary values Ng*p (X) which makes it
possible to compare boundary values of Newtonian functions. Under rather mild
assumptions on X it has been shown that Lipschitz functions with compact support are
dense in Ng?(X) .

In Section 4, we study the Newtonian spaces in the Euclidean setting and show that they
are the right generalization of the usual Sobolev spaces, i.e. both spaces coincide, in the
sense that every u € NYP(R™) belongs to W? (R™and everyu € W ? (R™)has a
representative in the Newtonian space N'?(R™) which is quasicontinuous. This is a
Luzin type phenomenon, which means that a Sobolev function is continuous on the
complement of a small set. In this setting the removed set has small capacity. We also
give a simple example in the plane which shows that the function y, € W *? (R?) and
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xr € NYP(R?). But, as the real line has two-dimensional Lebesgue measure
zero, xg = 0 a.e. in R? and clearly 0 € N 1P(R?).

2. Upper gradients and Newtonian Spaces

The first order Sobolev spaces in R™ are defined as follows: For 1 <p <o and f €
LP (R™) we define

If 1 (RM = | (fIP +|VFIP) dx,
R‘n.
where the V£ is the weak gradient of f. WP (R™) is given by

WP (R™) = {f: Il f I} ., (R™) < o0}

As we see to define the WP (R™) one uses the gradient i.e. the directional derivative.
In metric spaces we can not talk about directions. However we do not really use the vector
Vf ,onlythescalar |Vf|isused. For |Vf]| there is a possible counter part in metric spaces
called upper and has been introduced by Heinnonen—Koskela [1].

In this section we introduce the upper gradient as a substitute of the usual gradient.

Definition 2.1

A nonnegative Borel function g on X is said to be an upper gradient of an extended real—
valued function f on X if for all rectifiable curve y : [0,ly] — X parametrized by the
arc length ds, we have

F @) - far@NI< [, gds @)

whenever both f (y(0)) and f (y(ly)) are finite, and fy g ds = oo otherwise. If g is a

nonnegative measurable function on X and if (2) holds for p —almost every curve then g
is a p —weak upper gradient of f. The upper gradient in not unique. In particular, from
(2) every Borel function greater than g will be another upper gradient of f. Moreover,
the operation of taking an upper gradient is not linear. However, we have the following
useful property.

Lemma 2.2

Ifa,b € R and g,, g, are upper gradients of u,, u,, respectively. Then |a|g; + |b|g>
is an upper gradient of au; + bu,.

We shall need the following lemma, which gives a nontrivial example of upper gradient,
see Bjorn-Bjorn [6], Corollary 1.15.
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Lemma 2.3
If X =R™ and f € CY(R™), then |Vf]|is an upper gradient of f.

By saying that (2) holds for p—almost every curve we mean that it fails only for a curve
family with zero p—modulus.

Definition 2.4
Let I' be a family of curve on X. Then we define the p —modulus of I" by

Mod,(T) = inf [, p dy, (3)

where the infimum is taken over all nonnegative Borel functions p such that fy p=1
forally er.

If / has an upper gradient in LP (X), then it has a minimal p—weak upper gradient g, €
LP(X) in the sense that for every p—weak upper gradient g € LP(X) of f, we have, g, <
g a.e. see Corollary 3.7 in Shanmugalingam [5].

Proposition 2.5 (Proposition 1.37 in [6])
Mod(T") = 0 if and only if there is a nonnegative Borel function p € L?(X) such that

fy pds = oo,
In Shanmugalingam [4], upper gradients have been used to define Sobolev type spaces
on metric spaces. We will use the following equivalent definition.

Definition 2.6
Let u € LP(X), then we define

1/p
Il ullyipy= (f |ul? du +f gt du> (4)
X X

where the g,, is the minimal p—weak upper gradient of u. The Newtonian space on X is
the quotient space

NP (X) = {u: Il u llyre (xy< ©0}/~,
where u~v ifand only if | u — v llyipx) = 0.

We also have the following lemma about minimal p—weak upper gradients, see Bjorn—
Bjorn [7], Corollary 3.4.

Lemma 2.7

If u,v € NP (X), then g,- g, a.e. on {x € X:u(x) = v(x)}. Moreover, if c €
R is a constant, then g, = 0a.e.on{x € X: u(x) = c}.
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Theorem 2.8 (Theorem 1.56 in [6])
If u e N'P(X),thenu € ACC,(X), i.e. u is absolutely continuous on p-a.e. curvein
the sense that u oy : [0, ly] — R is absolutely continuous for p—a.e. curve in y in X.

Lemma 2.9 (Lemma 2.14 in [6]) Assume that u € ACC,(X) and that g € LP(X) isa p—
weak upper gradient of u then for p—a.e. curve y : [0,1,] — X we have

|(wen)'®I < g(v(®) (5)

fora.e. ¢t €[0,1,]. Conversely, if g > 0 is measurable, u € ACC,(X) and (5) holds for
p—a.e.curve y:[0,ly] = X, then g is a p—weak upper gradient of w.

Theorem 2.10 [6] The space N (X) is a linear normed space.

Proof. That the Nl"’(X) is a vector space follows directly from Lemma 2.2. The only

difficulty is to proof the triangle inequality. To prove this let u,v € N*?(X) and £ > 0 be
arbitrary. Find upper gradients g, g’ € LP (X) of u and v, respectively, so that

1
(I Wyl G Wiy )P I syt €
y (6)
14
(10 Wyt g W) IV eyt €

We know that g + g’ is an upper gradient of u + v. Now, note that the left-hand sides
of (6) are the LP-norms (on R?) of

(g, g lpy) and (v ey Il 9" ),

respectively. Similarly,

1/p
et 0 W < (1240 1+ g+ g W)

< (N Mgy 0 )" + (1 G o+l 8 Nipge) )
which is the LP —norm of

(Il w e+l v e, 1 g g+l g e )-

The triangle inequality of the LP —norm now implies that
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l+0 B < (1 ot 9 W)+ (19 o+ 0 Wayy)
NP = e TG Nppx) r) TG e

<N U WRip oyt & HIV IRap ot e

And letting e - 0 proves the triangle inequality for the II-lly1» x)-
In Shanmugalingam [4], Theorem 3.7 and p. 249 it has been shown that the space
NYP(X) is a Banach space and lattice.

Theorem 2.11
The space N P(X) is a lattice, i.e. if u,v € N'P(X), then max{u, v}, min{u,v} €
NP (X).

Definition 2.12
The Capacity of a set E < X is defined by

C,(E) = igf Il ullyircx
where the infimnm is taken over all u € NP (X) suchthatu > 1 on E.
We say that a property holds quasieverywhere (g.e.) in X, if it holds everywhere except
a set of capacity zero. Newtonian functions are well defined up to sets of capacity zero,
ie. if u, v € NY?(X)thenu ~ v ifand only if u = v g.e. Moreover, Corollary 3.3 in
Shanmugalingam [4] shows that if u,v € N*P(X) and u = v a.e., thenu = v q.e.
The following proposition gives the relation between small set and small curve family.

Proposition 2.13

Let E c X. Then C,(E) = Oifandonly if u(E) = Mod,,(Ig) = 0
Where

g = {y eTX:y (E) # $}.

We also have the following property for Newtonian functions, see Theorem 1.1 in
Bjorn—-Bjorn—Shanmugalingam [10].

Lemma 2.14

Every function u € N P (X) is quasicontinuous, i.e., for every ¢ > 0 there is an open
set G < X such that C,,(G) < € and u|x\¢ is continuous.

3.N'? () and NgP(Q)

For E c X we define the space NP (E) with respect to the restrictions of the metric
d and the measure pto E. A function f € NP (X) clearly has a restriction f| z which
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belongs to the NP (E) and any p —weak upper gradient of it remains a p—weak upper
gradient when restricted. However, the restriction of a minimal p—weak upper gradient
is not always minimal. If E = Q is open then the restriction of a minimal p—weak upper
gradient remains minimal.

Lemma 3.1
Assume that f € NP (X) with a minimal p—weak upper gradient g, (with respect to

X). Then g¢|q is a minimal p-weak upper gradient of f with respect to Q.

From now on we assume that X supports a p—Poincaré inequality, i.e. there exist
constants € > 0and A > 1 such that for all balls B(z, r) in X, all integrable functions u
on X and all upper gradients g of u we have

1
H(B) B(z,r)

1/p
[u —up@Enl du<C r< 97 du) ,

u(B) Jg (z.A7)

where ug(;,y := u dp.

1
@fs(z,r)
To be able to compare the boundary values of Newtonian functions we need to define a
Newtonian space with zero boundary values outside of € as follows.

Definition 3.2

Let Q < X be open, then the Newtonian space with zero boundary values Nol'p(Q) is
defined by

NyP(Q) = {flo: fEX andf =0gq.e. in X\QL

Under our assumptions, Lipschitz functions with compact support are dense in
Nol'p(Q), see Shanmugalingam [5]. Moreover, the proof of this result in [6] shows that

ifo<ue Nol’p (©2), then we can choose the Lipschitz approximation to be nonnegative.
The following Poincaré type inequality is useful, for a proof, see e.g Kinnunen—
Shanmugalingam [9], Lemma 2.1.

Lemma 3.3
Assume thatQ < X is anonempty bounded open set with C, (X \ Q) > 0. There exists

a constant C > 0 such that for all u € N,"P () we have

f |u|Pduscf 9 du
n Q
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The following lemma is useful for proving that a function belongs to the N&'”(Q), see
Lemma 5.3 in Bjorn-Bjorn [8].

Lemma 3.4
Let u € NP (Q) be such that v<u <w qge. in Q for some v,w € N,”*(Q).
Thenu € N, (Q).

Proposition 3.5 (Proposition 2.38 in [6])
For Ny () we have
Il f ”Nl'p(X) = f ”N 1P Q)

Proof. We may assume that f = 0 out side of Q. Let gf be a minimal p—weak upper
gradient of f with respect to X. By Lemma 3.1, g¢|o is a minimal p—weak upper gradient
of f with respect to Q. On the other hand by Lemma 2.7 g, = 0 a.e. outside of Q. Hence

Lf W oy = I F Moy +1 g Moy

=1 f I eyt 95 1oy =1 f W3am gy

4. The Newtonian space N () in the Euclidean spaces

In this section we see that, when restricted to R™, the Newtonian space is the refined
Sobolev space WP (R™), as defined in Chapter 4 in Heinonen— Kilpelainen—Martio [11].

Lemma 4.1
Let T be a collection of curves in R". If Mod,I' = 0, then a.e. (with respect to the
(n — 1) —dimensional Lebesgue measure) line parallel to the x;-axis contains no curve

from .
The following Theorem was obtained by Shanmugalingam [4], we use the proof in [6].

Theorem 4.2

If Q c R™, then N1?P(Q) = WP (Q), as a Banach spaces, with equivalent norms.
More precisely, if u € N'?(Q), then u € WP(Q) and conversely, for every u €
WlP(Q) then there exists # € N'?(Q)such that & = u a.e., in Q. Moreover, if u €
WP (Q) is quasicontinuous, then u € NP (Q).
Proof. Letu € NP(Q) with a p —weak upper gradient g € L¥(Q). By Lemma 2.9 and
Proposition 2.5, u € ACC, () and fy g ds < oo for p-a.e.curve yin Q. Lemma28
and Lemma 4.1 now imply that u is absolutely continuous on a.e. (with respect to the (n —
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1)—dimensional Lebesgue measure) linesegment [ in Q parallel to the x; axis and for a.e. x € [,

|6u(x) < g(0).

d0xq

The Fubini theorem then shows that |du/dx;| < g ae.in Q and hence du/dx; €
LP(Q) c Li,.(Q). The absolute continuity of u at [ implies that du/dx, is the one—
dimensional distributional of w in L.

Another application of the Fubini theorem to the integrals

f a('D(x)u(x) dx = —f o(x) ou(x) dx
Q Q

dxq dx,

with ¢ € C5° (), shows that du/dx, is the distributional derivative of u in . The other

partial derivative are handled similarly. Hence u € W,27 () and

” u ”WLP(Q)S n " u "Nl,p(Q).

Conversely, letu € WP (Q). By e.g. Theorem 2.3.2 in Ziemer [12] there exist u; €
C®(Q) suchthatu; - u in WHP(Q), as j — c. Lemma 2.3 shows that |Vu;| are
upper gradients of u;. Hence u; € N*P(Q) and Il u; llyieqy<Il 4 lly1p(qy, j = 1,2, ...
Proposition 2.3 in [6] provides us with a function # € N*?(Q) such that i = u a..
and [Vu| is a p—weak upper gradient of . Moreover, || & lly1p@y<Il u lly1p(q). Thus
u € NP(Q).

If u e WP (Q) is quasicontinuous, then @ = u g.e., by Proposition 5.23 in [6], and
hence u € N*?P(Q).

Proposition 4.3
Let Q < R™ and let u be locally Lipschitz in Q. Then g, = [Vu] a.e., in Q.

Corollary 4.4
For every u € NP (Q), we have

I 2 llyaw oy = sy
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