
Reduced Instruction Set Computer Design on FPGA
Mohamed M. Eljhani

Department of Computer Engineering
University of Tripoli

Tripoli, Libya
M.Eljhani@uot.edu.ly

Veton Z. Kepuska
Department of Computer

Engineering and Sciences
Florida Institute of Technology

vkepuska@fit.edu

Abstract—The main purpose of this paper is to design, verify
and implement 16_bit RISC (Reduced Instruction Set Computer)
processor that can be used for many embedded applications.
The basic modules of this processor are programmed and
simulated using Verilog HDL (Hardware Description Language),
and implemented on Cyclone IV FPGA (Field Programmable
Gate Arrays). Compared with general CPU it is not merely
simplified the instruction set system but also make the computer
structure simpler and more rational through simplifying the
instruction system. Thus, the operating speed is highly improved.
RISC adopts hardwire logic instead of micro-program control
to realize its sequential control signals. The speed of control
sequence generated is much faster than using micro-program
control because it has saved the time of fetching microinstruction.
The philosophy of RISC design presented here favors a smaller
and simpler set of instructions. Those instructions take the
same amount of time to execute. The philosophy of our design
architecture was to keep the instruction set very simple. This in
turn implies that addressing modes supported by instruction set
a further streamlined compared to CISC (Complex Instruction
Set Computer) architectures. Avoiding such addressing modes
must be kept to minimum, which leads to the instructions that
can be executed effectively in eight clock cycles.

Index Terms—System-On-Programmable-Chip, RISC CPU,
Processor Design, FPGA Design, Verilog Hardware Description
Language.

I. INTRODUCTION

RISC architectures are now used in many platforms, from
cellular telephones to some of the world’s fastest supercomput-
ers. RISC based architectures have been used in both low level
applications and mobile systems by the beginning of the 21st
century [1]. The low power and low cost embedded market is
dominated by the RISC based ARM [2] architectures. Most
of the android based devices, Apple iPhone an iPad and most
hand-held devices uses the ARM architecture. The MIPS [3]
line can currently be found in games like PlayStation Portable
game consoles, Nintendo 64 and personal residential gateways
like Linksys WRT54G series. SuperH (SH) is another 32-bit
RISC ISA developed by Hitachi. As many of the patents for
SuperH are expiring, SuperH2 is being reimplemented as an
open source hardware under the name J2 [4]. OpenRISC [5]
is aimed at developing an

open source ISA based on RISC principles. OpenRISC im-
plements architecture with 16 or 32 general purpose registers
(32/64-bit) and a fixed 32-bit instruction length. Two mainline
processor core implementations for OpenRSIC are OR1200
and mor1kx. The main idea of design a RISC processor was

inspired by the concept that there are many features that
were included in CISC designs were being ignored by the
programs that were running on them, which these complex
features took several processor cycles to be performed. Also
the performance gap between the processor and main memory
is increasing. This led to design a CPU with less total number
of memory accesses. When a processor talks to the memory
the speed gets slow. So the main advantage of RISC was to
keep the instruction set very simple. Not only the way it works
but also the way it looks. That is the reason there are only
eight instructions in the RISC architecture. To improve the
instruction access speed, addressing modes are avoided. The
instruction can be executed effectively in eight clock cycles.
Another difference between RISC CPU’s and general CPU’s
lies in hardwired logic vs. micro-program implementation
in realization of sequential control signals. Hardwired logic
means that flip-flops and logic gates are linked directly to and
from state machine and combinatorial logic that controls the
whole system. On the other hand, microprogramming logic in
general is slower in execution of command logic due to the
need for additional cycles that are required in implementation
of command logic. The new designed RISC philosophy uses
smaller and simpler set of instructions. Those instructions take
the same amount of time to execute. The goal of our effort is
to design high performance RISC processor and implement it
on FPGA board, that is designed specifically to host and test
the design.

II. METHODOLOGY

The state machine module is the control core of the RISC,
it acts as a brain of the RISC and its main task is to generate a
series of control signals to control and operate other modules.
Also, state machine is responsible of fetching instructions and
read/write from I/O and memory.

A. Top Module View

As shown in Figure 1, the proposed RISC architecture is
consisting of twelve sub-modules.

B. System Sub-modules

• Clock Generator
• Instruction Register
• Accumulator
• Arithmetic Logic Unit

2021 IEEE 1st International Maghreb Meeting of the Conference on Sciences and Techniques of
Automatic Control and Computer Engineering MI-STA, 25-27 May 2021, Tripoli-Libya

978-1-6654-1855-3/21/$31.00 ©2021 IEEE
321

Fig. 1. System Architecture.

• Data Controller
• State Machine Controller
• State Machine
• Program Counter
• Address Multiplexer
• Address Decoder
• Memory RAM (16- bytes)
• Memory ROM (256- bytes)

C. Architecture and Implementation

The instruction cycle is made from up to eight clock cycles,
and certain operation should be carried out in each clock cycle:
Zero clock cycle: Set read and load instruction register signals
to 1, the other outputs of the state controller are zeros, so the
higher 8-bits of the instruction located in ROM is stored in
the Instruction Register.
First clock cycle: Compared with the former clock cycle, only
instruction register has been changed from 0 to 1, so program
counter is increased by 1, the lower 8-bits of the instruction
from ROM memory is stored in the Instruction Register.
Second clock cycle: No operation.
Third clock cycle: The Program Counter is increased by 1,
pointing to the next instruction in ROM.
Fourth clock cycle: Check if the instruction is ADD, AND,
XOR or LDA, read data from the corresponding address; if

the instruction is JMP, send the destination address to the
Program Counter; if the instruction is STO, put the data in
the Accumulator.
Fifth clock cycle: Check if the instruction is AND, ADD or
XOR, the Arithmetic Logic Unit will carry out corresponding
operation; if the instruction is LDA, send the data to the
Accumulator through Arithmetic Logic Unit; if the instruction
is SKZ, first judge whether the value of Accumulator is 0, if so,
increase PC by 1, otherwise do not change; if the instruction
is JMP, latch the destination address; if the instruction is STO,
write the data in the RAM with specified address.
Sixth clock cycle: No operation.
Seventh clock cycle: If the instruction is SKZ and the value
of the Accumulator is 0, the value of program counter will
be increased by 1, and an instruction will be jumped over.
Otherwise, the value remains in the same value. External
clock is used as the timing mechanism for the Control and
Datapath units. The input clock is divided into a series of
different clock signals using frequency division operation of
the clock generator module. These clock signals are used as
input clock of the other parts of the RISC, and the operating
sequence is controlled by the main state machine controller.
The frequency of fetch clock is equal 18 of the system clock.
When rising edge of fetch is active the main controller machine
begins to carry out an instruction, in the meantime the fetch

322

Fig. 2. State Machine Control Signals.

Fig. 3. System Clock.

signal controls the Address Multiplexer to point out instruction
and data address. The Instruction Register, Accumulator and
State Controller use clk1 as their clock signal, and Arithmetic
Logic Unit uses alu_clk.

D. Instructions Manipulation

Our main design philosophy is favoring a smaller and
simpler set of instructions. Those instructions take the same
amount of time to execute. The idea of the RISC design
is inspired by the discovery that many of the features that
were included in traditional CPU designs are ignored by
the programs. These features use many clock cycles to be
performed. To avoid the addressing modes, we kept the
minimum instructions, which leads to the instructions that can
be executed effectively in less clock cycles. According to the
different kinds of operation codes received, the Arithmetic
Logic Unit (ALU) carries out the corresponding operation,
as shown in Table I. The RISC processor performs various
instructions here, we’ll briefly detail how it performs its eight
instructions. In these instruction sets; the system uses 3-bit
opcode to provide instructions on how to perform various
operations. Table below shows the instruction sets for RISC
processor.

Each instruction consists of 16-bits. The higher 3-bits is
operation code (opcode), and the lower 13-bits is address.

TABLE I
INSTRUCTION SET FOR RISC PROCESSOR.

The address bus is 13-bits, with addressing space up to 8-
K bytes. The data bus is 8-bits, the system fetches every
instruction twice, first the higher 8-bits and then the lower
8-bits, controlled by the state, when state is 0, the higher 8-
bits of the instruction sent to the responsive register, and the
state is set to 1. For the next operation, the lower 8-bits of the
instruction is sent to the responsive register because the state
is 1.

323

Fig. 4. Instruction register module.

E. System Reset and Read/Write Operations

Reset is triggered by signal rst. When rst is set to 1, the
system will end the current operation and hold on in reset
state as long as rst high, all registers are initialized to 0. The
data bus hold in high-impedance state and the address bus is
set to 0. All control signals are unactive. Once rst is set to
0 again, the system will start up at the rising edge of fetch,
fetching the instruction from 00H address of ROM and then
execute the corresponding operation.

Fig. 5. System Reset.

The first three clock cycles are used to fetch new instruction.
In the fourth to sixth clock cycle, read signal rd becomes
active, and the data are sent to the data bus. In the 7th clock
cycle, rd signal becomes inactive, and Program Counter set
new address, preparing for the next instruction.

Fig. 6. Reading data from memory.

Fig. 7. Writing data to memory.

III. SIMULATION AND RESULTS

The Electronic Design Automation (EDA) design flow typi-
cally follows a path from Verilog/VHDL hardware description
language, [6], or schematic design entry through synthesis and
place and route tools to the programming of the FPGA, as
shown in Figure 8. There are several software tools such as
Altera’s Quartus II and Xilinx’s ISE, which are quite famous,
used in both industry and academic areas.

Schematic
Design

Verilog HDL

Design Function
Simulation

HDL Function
Simulation

Place and Rout
Tools

HDL Synthesis
Implementation
Design Library

Post Routing Simulation

Manufacture File of FPGA

Technical Files Related
with Implemented Chips

If problem

If problem

If problem

Fig. 8. EDA flowchart.

A. Top Module Instantiation and Simulation

After verifying RISC sub-modules individually, the sub-
modules are instantiated, simulated and verified the RISC as
top-level module. The system was implemented and tested
using Cyclone EP1C6Q240C8 FPGA evaluation platform,
that designed specially to test the functionality of the RISC
processor in hardware.

324

Fig. 9. Top module waveforms.

B. Machine Code Assembley Language

Test.pro File :

 @00

 101_11111 // 00 BEGIN: LDA DATA_2

 0000_0001

 011_11111 // 02 AND DATA_3

 0000_0010

 100_11111 // 04 XOR DATA_2

 0000_0001

 001_00000 // 06 SKZ

 0000_0000

 000_00000 // 08 HLT

 0000_0000

 010_11111 // 0A ADD DATA_1

 0000_0000

 001_00000 // 0C SKZ

 0000_0000

 111_00000 // 0E JMP

 0001_0010

 000_00000 // 10 HLT

 0000_0000

 100_11111 // 12 XOR DATA_3

 0000_0010

 010_11111 // 14 ADD DATA_1

 0000_0000

 110_11111 // 16 STO TEMP

 0000_0011

Test.dat File :

 @00

 00000001 // 1F00 DATA_1: // 01 Hex

 10101010 // 1F01 DATA_2: // AA Hex

 11111111 // 1F02 DATA_3: // FF Hex

 00000000 // 1F03 TEMP:

Test.pro File :

 @00

 101_11111 // 00 BEGIN: LDA DATA_2

 0000_0001

 011_11111 // 02 AND DATA_3

 0000_0010

 100_11111 // 04 XOR DATA_2

 0000_0001

 001_00000 // 06 SKZ

 0000_0000

 000_00000 // 08 HLT

 0000_0000

 010_11111 // 0A ADD DATA_1

 0000_0000

 001_00000 // 0C SKZ

 0000_0000

 111_00000 // 0E JMP

 0001_0010

 000_00000 // 10 HLT

 0000_0000

 100_11111 // 12 XOR DATA_3

 0000_0010

 010_11111 // 14 ADD DATA_1

 0000_0000

 110_11111 // 16 STO TEMP

 0000_0011

Test.dat File :

 @00

 00000001 // 1F00 DATA_1: // 01 Hex

 10101010 // 1F01 DATA_2: // AA Hex

 11111111 // 1F02 DATA_3: // FF Hex

 00000000 // 1F03 TEMP:

C. RISC Debugging

Run

ROM loaded successfully!

RAM loaded successfully!

*** RUNNING RISC - RISC Diagnostic Program ***

TIME PC INSTR ADDR DATA

---------- ---------- -------------- ------------- ----------

16200.0 ns 0000 LDA 1F01 AA

17000.0 ns 0002 AND 1F02 FF

17800.0 ns 0004 XOR 1F01 AA

18600.0 ns 0006 SKZ 0000 ZZ

19400.0 ns 000A ADD 1F00 01

20200.0 ns 000C SKZ 0000 ZZ

21000.0 ns 000E JMP 0012 ZZ

21800.0 ns 0012 XOR 1F02 FF

22600.0 ns 0014 ADD 1F00 01

23400.0 ns 0016 STO 1F03 FF

**

325

Fig. 10. Synthesis Register-Transfer-level.

Fig. 11. PCB with Cyclone FPGA.

D. Hardware Test Environment

For further advanced FPGA development tools, a complete
EDA Printed Circuit Board system is designed to test and
verify the RISC in hardware, see Figure 11.

IV. CONCLUSION

The 16-bit RISC Processor with 8 instructions set has been
designed and implemented on Cyclone FPGA. The design
is simulated and verified using ModelSim 10.1 and Quartus
II 12.1 Altera 10.1b simulator, and programmed by Verilog
Hardware Description Language. ALU is analyzed and an
exhaustive set of debugging and testing assembly language
code patterns is developed with several instructions to verify
the operation of the RISC. Future work will be added by
increasing the number of instructions with less clock cycles
per instruction and more improvement can be added in the
future work.

REFERENCES

[1] S. P. Dandamudi, Guide to RISC Processors: For Programmers and
Engineers. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2005.

[2] Wikipedia, “Arm architecture — wikipedia, the free encyclope-
dia,” 2017, [Online; accessed 26 February-2017]. [Online]. Avail-
able: https://en.wikipedia.org/w/index.php?title=ARM Architecture &
oldid=766746198

[3] Primefac, “Reduced instruction set computing wikipedia, the free ency-
clopedia,” 2017, [Online; accessed 26-February- 2017]. [Online]. Avail-
able: https://en.wikipedia.org/w/index.php?title= Reduced instruction set
computing&oldid=765887154

[4] J. core Organisation, “J2 open processor,” 2014, [Online; accessed 28-
February-2017]. [Online]. Available: http://j-core.org/

[5] J. Tandon, “The openrisc processor: Open hardware and linux,”
Linux J., vol. 2011, no. 212, Dec. 2011. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2123870.2123876

[6] The IEEE Standard Hardware Description Language based on the
Verilog Hardware Description Language (IEEE Std 1364-2001).

326

