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 داءـــإه

 أهدي هذا العمل المتواضع 

 إلى

  الوالدين الكريمين حفظهما الله 
  و إلى كل أفراد أسرتي 
  و إلى صديقتي أسماء الطيب 
  لم يدخر جهداً في مساعدتي من و إلى كل 
  و إلى كل من ساهم في تلقيني و لو بحرف في حياتي الدراسية 

 

 

 

 

 

 

 

 
 



 

  

 
 

 

 شكر و تقدير

 الحمد و الشكر لله أولاً و أخيراً..

أقدم شكري و امتناني إلى جميع من أعانوني و ساعدوني في إخراج هذا 
ث بفضلهم و جهدهم على الآراء القيمة التي أبدوها لي و خصوصاً البح

مشرف البحث الدكتور الفاضل علي محمد إبراهيم و إلى الهيئة 
القسم عموماً, و راجيتاً من الله أن أكون قد أصبت أكثر التدريسية في 

مما أخطأت و أن يستفاد مما بذلت من جهد, آمله أن أكون قد أعطيت 
 الموضوع بعض حقه, و أسأل الله أن يعلمنا ما ينفعنا, و ينفعنا بما علمنا

 . و الله ولي التوفيق

 

 

 

 

 

 

    



 

  

 
 

 

 ملخـــص البــحث

فئن الإجابت عهى  BLPPعىذ حصىل حغيراث عهى صيغت مسأنت انبرمجت انخطيت انمحذودة    

انسؤال انمخعهك بذراست إيجاد انحم الأمثم مه جذيذ نمسأنت انبرمجت انخطيت حسمى ما بعذ الأمثهيّت 

 )أو ححهيم انحساسيت(.

بئجراء بعض انخعذيلاث عهيها, فئن  BLPPبذيهي عىذما يخغير حركيب انمسأنت الأصهيت    

لا يجب أن  , ويمكه دراسخها مه انبذايت إرا كاوج انخغيراث نيسج رئيسيت BLLPانمسأنت انجذيذة 

 وخجاهم انفىائذ انقيمت انىاحجت عه حم انمسأنت الأصهيت.

عذة  حضمه دراسخىا عهى انطريقت انبياويت نحم مسأنت انبرمجت انخطيت في مخغيريه, حيج حىاونىا

 حالاث انخي يظهر بها حم حهك انمسائم.

 BLPPانذراست حبيه انطرق و انخىارزمياث لإيجاد انحهىل انمثهى نهمسأنت انجذيذة  كما أن    

 الأصهيت. بسطت انقريىت و جذول انحم الأمثم نهمسأنتمسخخذميه انطريقت )انخىارزميت( انم

 

 

 

 

 

 

 

 

 

 



 

  

 
 

ABSTRACT  

   When the optimal solution to a bounded linear programming problem 

(BLPP) is reached, we want to answer questions concerning changes in 

its formulation, the study is called post-optimality  analysis (or sensitivity 

analysis). 

Obviously when the original bounded linear programming problem BLPP 

is modified (making some changes in its formulation) the new problem 

could be solved from scratch, if the change are minor, however, this 

means we  ignore the valuable information gained in solving the original 

problem. 

   Also, Our study included a graphical method to solve the linear 

programming problem in the two variables, where we dealt with several 

cases shows that the solution to those problem. 

And the study shows haw the new optimal solution for the new BLPP can 

be found using the primal dual simplex algorithm and the solution of the 

original problem. 
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ITRODUCTION  

   The linear programming with bounded variables have been studied by 

many authors (Dantzing, 1963), (Turnves,1968), (Duguay, 1972), 

(Hussain, 2000). In 1954, Dantzig, developed the method for solving 

linear programming with upper bound restrictions on the variables. In 

1972, Duguay et al. studied linear programming with relative bounded 

variables (BLPP). Later on, various method like revised simplex 

algorithm, modified decomposition algorithm have been developed by 

various authors (Murty, 1976), (Ho, 1991). This study concerned with 

sensitivity analysis for linear programming with bounded variables. 

Sensitivity analysis (also called post optimality analysis) is the study of 

the behavior of the optimal solution with respect to changes in input 

parameters of the original optimization problem. 

   Sometimes, when we use sensitivity analysis to resolving modified 

problem, we get a solution, which is optimal but not feasible. The dual 

simplex algorithm is the method of choice when linear programs have to 

be reoptimized when data in problem is perturbed. 

   Our study contains four chapters. In chapter 1, as an introduction 

(Primarily), we defined the linear programming problem and how we can 

get the solution by graphical method (for two variables case), we define 

convex sets and extreme points, and we study some special cases in 

graphical method. In chapter 2, we explain algebra of the simplex method 

and the simplex Method in Tableau form . And we explain duality and 

sensitivity analysis in linear programming problem. In chapter 3, we 

defined the linear programming with bounded variables and discuss the 

simplex method for bounded variables. In chapter 4, we defined duality in 

linear programming problem with bounded variables and discuss many 

cases in sensitivity analysis, numerical illustration is given. 



 

 

 

 

Chapter (1) 

Foundations of The Simplex Method 

 

1.1. Introduction 

1.2. Linear programming problem 

1.3. Graphical solution of two-dimensional 

1.4. Convex and polyhedral sets 

1.5. Some special cases 
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1.1. Introduction: 

    In this chapter we defined the linear programming problem and how we 

can get the solution by graphical method (for two variables case), we 

define convex sets and extreme points, and we study some special cases 

in graphical method. 

1.2. Linear programming problem LPP [4],[7] 

    A linear programming problem LPP  is an optimization (maximum or 

minimum) problem in which the objective function is linear in the 

unknowns nonnegative variables (1.1) and the constraints consist of linear 

equalities or linear inequalities (1.2 – 1.4). The exact form of these 

constraints may differ from one problem to another, that a linear program 

may be written in the general form : 

     Optimize (
       

  
       

)                                       (1.1) 

     Subject to 

                                            *        +                     (1.2) 

                                            *        +                    (1.3) 

                        

                                            *        +                (1.4) 

                             ,   ,   ,      ,    ,   ,   ,                            (1.5) 

Or written in the form, 

    Optimize (
       

  
       

)    ∑     
 
                                    (1.6) 

    Subject to  

                       ∑       
 
   *       +                                     (1.7)  

                                                                                              (1.8) 

                                                                                             (1.9) 
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Where the    's,   's and     's are fixed real constants, and the    's are 

real numbers to be determined.   

Standard linear programming problem [7],[11]  

A linear programing is said to be in standard form if all constraints are 

equalities and all variables are nonnegative.    

    An inequality can be easily transformed into an equation. To illustrate, 

consider the constraint given by  ∑       
 
      . This constraint can be 

written in an equation form by subtracting the nonnegative surplus or 

slack variable      (sometimes denoted by   ) leading to         

                     ∑       
 
             and         .                       (1.10)       

Similarly, the constraint   ∑       
 
        is equivalent to  

                       ∑       
 
             and         .                        (1.11) 

We shall consider the standard form of the objective function to be 

maximization. This in no way eliminates the consideration of 

minimization-type objective because if a function     is to be minimized, 

we can use the simple equivalence: 

                                      Minimize    Maximize (  ) 

Example 1.1: 

      LPP1:    minimize             

                    subject to   

                                                

                                                

                                                     

We can convert this problem into standard form as follows : 
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  LP ́1:    maximize   ́                   

                   subject to   

                                                    

                                                    

                                                        

Notation and Definitions 

We may write the standard linear programming problem in the matrix 

form : 

       LPP:    maximize                                                                  (1.12) 

                  subject to  

                                                                                                    (1.13) 

                                                                                                      (1.14)                                           

Where        matrix of the coefficients of the constraints, that is, 

                [

      
    

      
    

                 
      

    

]  (          ) ,                       

where     [

   

   

 
   

]  is the column   in the matrix      ;      1, 2,…, n 

      -vector of right-hand sides, that is,   [

  

  

 
  

]                                                        

       -vector of objective coefficients, that is,    (          )                                   

and the variables are given by the  -vector : 

                                                      [

  

  

 
  

]       (Euclidean   -space) 
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Definition 1.1 (Feasible and Infeasible Solution)[7]: A solution is 

feasible if it satisfies all the constraints (1.13) and the nonnegativity 

conditions (1.14) of the linear programming problem, otherwise it is 

called Infeasible Solution. The set of all feasible solution is called 

feasible region. 

Definition 1.2 (Optimal Solution) [7]: A point    is an optimal solution 

to a maximization linear program if      is a feasible solution and  

        for all feasible solutions x. 

1.3. Graphical Solution of Two-Dimensional (Two variables) 

linear programs [7] 

Prior to presenting the geometrical concepts that form the foundation of 

the simplex method, we present a graphical method for solving simple 

problems involving only two variables. We now use the following 

example to illustrate how we can graphically solve a linear program with 

two decision variables. 

Example 1.2: 

       LPP2 :    maximize           

                      subject to 

                                               ………………..     ( ) 

                                                  ………………..    (  ) 

                                                        ………………..   (   ) 

                                                      

First, we must identify the feasible region of the problem. Labeling one 

axis    and the other     . Note that the nonnegativity restrictions,  

        , require that we only consider points, (      ), in the first 

quadrant. Next, the region identified by each constraint is plotted. 

Considering the first constraint (        ) initially, we graph the 

corresponding linear equation  : (        ) and, identify the region 
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defined by this constraint in the first quadrant. We repeat this process 

with the second and third constraints, as showing in Figure 1.1. The set of 

all feasible points or solutions called the Feasible Region ( F.R.) is the 

quadrilateral ABCD (including its interior), that is, the set of points that 

satisfy all of the constraints. 

 

                                                Figure 1.1 

 

The final step is to determine the point which yield the maximum value 

of the objective function            in the feasible region. Let us 

begin by examining the level curves (isoprofit lines, isocost lines) of the 

objective function. For example,    4  defines the line         4. 

That is, any point on this line gives an objective function value of     4. 

Similarly,    8 defines the line          8. These represent parallel 

lines because they have the same slope. Thus, the level curves of the 

objective function are family of parallel lines. We simply need to identify 

the level curve that contacts the feasible region (that is, contains at least 

one feasible point) and corresponds to the greatest objective value. Thus, 

once we have defined the slope of the parallel lines, we only need to slide 

𝑨(𝟎 𝟎) 

𝑨(𝟎 𝟎)

𝑩(𝟎 𝟏) 

𝑪(𝟑 𝟒) 

𝑫(𝟑 𝟎) 

F.R. 

𝒁    

𝒁   

𝒁  8 

𝒁     
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this line of fixed slope through the set of feasible points in the direction of 

improving   . the direction of improving   can be quite easily identified 

by examining the gradient of the objective function. Recall that the 

gradient of the objective function    (     )             is  

                             (     )  (

  

   

  

   

)  .
  

  
/ 

and  for our example, 

                            (     )  .
 
 
/  

Recall also that the gradient of function at point is normal to the level 

curve of the function and always points in the direction of steepest a 

scent, that is, the direction of greatest increase of a two-variable linear 

program, we only need to sketch the vector corresponding to the gradient 

of the objective function. This is illustrated graphically in Figure 1.1. The 

level curves of the objective are then normal to this vector. For a 

maximization problem, we would slide the level curves in the direction of 

the gradient ( direction of increasing   )until they reach the boundary of 

the solution space. Similarly, for a minimization problem, we would slide 

the level curves in the direction opposite the gradient ( direction of 

decreasing   ) until they reach the boundary of the solution space. 

By using the foregoing technique, the optimal solution to Example 1.2 is 

determined be C(  
    

 )  (   ), as illustrated in Figure 1.1. The 

corresponding optimal objective value is computed as 

                                         ( )   ( )    .   

   



Chapter1 

8 
 

1.4. Convex and Polyhedral Sets [3] 

In this section we discusses the geometry of the problem by presenting 

several definitions that form the foundation of the development that is to 

follow: 

Definition 1.3 (Hyperplane): A hyperplane (line in two dimensions, 

plane in three dimensions) is the set of points    (       )     , 

that satisfy      , where   (       )          , and       

(i, e.,   is a scalar). 

Definition 1.4 (Halfspace): A closed halfspace corresponding to the 

hyperplan       is either of the sets    *       + or     

*       +. When these halfspaces are defined as *       +  or  

*       +, they are called open halfspaces. 

   Note the vector    is the gradient of linear function   ( )    , and 

thus is normal to the hyperplane and points in the direction of increasing  

   as depicted in Figure 1.2. 

 

  

        

                     

 

                                                            

                                                       Figure 1.2 

                                 

Definition 1.5  (Polyhedral Set):  A polyhedral set is the intersection of 

a finite number of halfspaces. Thus, the constraint set   *       

   + is a polyhedral  set because it is the intersection of   halfspace 

corresponding to      and    halfspaces corresponding to     . 

𝐻  *𝐱  𝒂𝐱  𝒃+ 

𝐻  *𝐱  𝒂𝐱  𝒃+ 

𝒂 

𝒂

*𝒂𝐱  𝒃+ 

𝒂𝐱  𝒃
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Definition 1.6 (convex set):  A set     is convex if, for any two points, 

say        , then the line segment joining these two points lies entirely 

within   . Mathematically, this means that if          , then     

(   )      for all   ,   -. 

    The expression       (   )    ,   ,   - defines the line 

segment joining    and    and is called the convex combination of     

and   .  

Figure1.3 depicts some examples of convex and nonconvex sets.                                                                                  

 

  

   

 

 

                     (a)                             (b)                                            (c) 

                 Figure 1.3: (a) and (b) nonconvex sets, (c) convex set. 

 

Theorem 1.1: [7] 

The set   *          + is a convex set. 

   Proof 

   Let   ,        and let   ,   -. To complete the proof, it is sufficient 

to show that      ̅      (   )    . 

Because     , then        and      (from the definition). 

Similarly,       and     . Also   ,   - implies that     and 

(   )   . 

   

 

   

𝐱  

𝐱

𝐱  

𝐱

𝐱  

𝐱

𝐱  

𝐱
𝐱  

𝐱

𝐱  

𝐱
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Now, combining these results yields 

                                                                                                (1.15) 

                                                                                                    (1.16) 

                                   (   )     (   )                                  (1.17) 

                                      (   )                                                  (1.18) 

Summing the expressions in (1.15) and (1.17) yields 

                                (   )        (   )                  (1.19)  

Similarly, summing (1.16) and (1.18), we obtain 

                                       (   )                                          (1.20) 

Now, rearranging, (1.19) and (1.20) yield, respectively, 

                        ,    (   )  -  ,  (   )-                 (1.21) 

and  

                                 (   )                                                (1.22) 

   From (1.21) and (1.22), it is clear that    ̅    and    ̅   , and thus   ̅ 

  . □ 

Definition 1.7 (Extreme point): A point   is an extreme point of a given 

convex set   if it can't be written as a strict convex combination of two 

other distinct point of   . Geometrically, this means that   is an extreme 

point of   if it does not lie on the interior of the line segment joining two 

other distinct points of  . Mathematically there does not exist    ,     , 

      , and   (   ) such that        (   )  .    

Note that in polyhedral sets, these extreme points occur only at the 

intersection of the hyperplanes that form the boundaries of the polyhedral 

set. 
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Definition 1.8 (Adjacent Extreme points): Two distinct extreme points, 

say,    and    , are adjacent if the line segment joining them is an edge of 

the convex set. 

1.5. Some Special Cases  

1.5.1. Alternative optimal solution [3] 

   A linear programming problem may have more than one optimal 

solution. In this case it will actually have an infinite number of optimal 

solutions. 

Example 1.3:  

Consider the linear programming problem: 

   LLP3:  maximize    
 

 
   

 

 
   

               subject to     

                                             ………………..    (I)   

                                               ………………..   (II) 

                                                

                                             

                                                Figure 1.4 

 

𝑨(𝟒 𝟎) 

𝑨(𝟒 𝟎)

𝑩(𝟑 𝟏) 

𝑪(𝟔 𝟎) 𝒙𝟏 

𝒙

𝒙𝟐 

F.R. 
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   The convex set of all feasible solution ( feasible region ) is ABC as 

show in Figure 1.4. The extreme points and corresponding values of the 

objective function are given in Tableau 1.1, we see that both (   ) and 

(   ) are optimal solutions to the problem. The line segment joining these 

points is  

                                            (     )   (   )  (   )(   ) 

                                                           (    )  (      ) 

                                                           (      )       for   ,   - 

For any point (     ) on this line segment we have  

                                              
 

 
   

 

 
   

 

 
(    )  

 

 
( ) 

                                                                       
 

 
 

 

 
  

 

 
   . 

Any point on this segment is an optimal solution. 

Extreme 

point 

Value of           

  
 

 
   

 

 
   

A(   ) 2 

B(   ) 3 

C(   ) 3 

                                                   Tableau 1.1 

1.5.2. Unbounded objective value [3] 

    In some linear programming problems, the values of some of the 

variables may be increased indefinitely without violating any of the 

constraints, meaning that, the feasible solutions is unbounded in at least 

one variable. As a result, the objective value may increase (maximization 

case) or decrease (minimization case) infinitely. In this case, both the 

feasible region and the optimum objective value are unbounded. 
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Example 1.4:  

Consider the linear programming problem. 

   LPP4:     maximize            

                  subject to  

                                                 ………………..       (I)   

                                                   ………………..      (II)   

                                                    

 

 

The convex set   of all feasible solutions is shown in Figure1.5. Note that 

it is unbounded, and that the value of objective function    be increases as 

   and as    increases. On the other hand, a linear programming problem 

with an unbounded convex set of feasible solutions may have an optimal 

solution. 

Example 1.5:  

Consider the same set of constraints as in Example 1.4. Suppose that the 

problem was instead to  

   LPP5:   minimize            

                subject to    

                                                  

                                                    

                                               

Figure 1.5 

F.R. 

𝑨(
𝟏𝟒

𝟑
 
𝟒

𝟑
) 

𝟏𝟒 𝟒
𝒙𝟏 

𝒙

𝒙𝟐 

𝒁  𝟏𝟎
𝟐

𝟑
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Note that the minimum value of   is in the point B(   ), thus it is optimal 

point. 

1.5.3. Infeasible Solution [3]    

It is possible that the feasible region of linear problem (LP) to be empty, 

resulting an infeasible LP. Because the optimal to an LP is the best point 

in the feasible region, an infeasible LP has no optimal solution. 

Example 1.6:  

Consider the linear programming problem 

   LPP6:    maximize            

                 subject to  

                                                             

                                                           

                                              

Which is solved in Figure 1.6  below. 

 

                              

                                                   Figure 1.6                                                                                        

Note that the set of feasible solutions is empty. This situation will arise 

when conflicting constraints are put on a problem. The assumptions for 

the model must be changed to yield a nonempty set of feasible solutions. 

𝒙𝟏 

𝒙𝟐 
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1.6.  Basic Feasible Solutions and Extreme Points [7],[11] 

   In this section  we present a method for characterizing extreme points 

algebraically, and this will enable us to algebraically describe the simplex 

method. 

   Consider a linear system of equations given by 

                                                                                                            (1.23) 

                                                                                                      (1.24) 

Where    is a given      matrix,  

  is a given  -vector, i,e. ,     [

  

  

 
  

], and   [

  

  

 
  

]     

Assume that the rank( )     . That is, assume that   has full row 

rank, or, equivalently, the rows of   are linearly independent. Also 

assume that the columns of   can be reordered so that   can be written in 

partitioned form as 

                                                           ,    -                                         (1.25) 

Where 

                nonsingular matrix. Designated the basis matrix 

             (   ) matrix (the matrix of nonbasic columns) 

Based on this partitioning of matrix  , the linear system given in (1.26) 

can be recast in the form 

                                                                                                 (1.27) 

Where vector     has been partitioned as   0
  

  
1 to correspond precisely 

to the partitioning of matrix  . Because   is nonsingular, the inverse of  
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  exists (using any method to finding the inverse of a matrix), and we 

may premultiply both sides of (1.26) by     to obtain 

                                                                               (1.28) 

This simplifies to  

                                                                                    (1.29) 

Now setting      , we see that (1.28) results in         . The 

solution  

                                       0
  

  
1  0 

    
 

1 

is called a basic solution, with vector    called the vector of basic 

variables, and    is called the vector of nonbasic variables. 

    If, in addition,          , then    0 
    
 

1 is called a basic 

feasible solution of the system (1.23) and (1.24).  

Finally, if           , then   0 
    
 

1 is called a nondegenerate 

basic feasible solution. Otherwise, if at least one element of    is zero, 

then    is called a degenerate basic feasible solution. 

Example 1.7:  

Consider the polyhedral set defined by the following inequalities (as 

illustrated in Figure 1.7). 

                                                      ………………..       (I) 

                                                            ………………..      (II) 

                                                        . 

By introducing the slack variables    and    , we obtain 
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                                                        Figure 1.7 

Note that, the constraint matrix    ,           -  0
    
    

1,  

  0
 
 
1 and   *

  

  
  

  

+. Because    is a     matrix, each basic solution 

will have     , basic variables and        nonbasic variables. 

From the foregoing definition, basic feasible solutions correspond to 

finding     basis   with nonnegative     . The following are the 

possible ways of extracting   out of   . 

1.    ,     -  0
  
  

1 

           0
  

  
1       0

   
  

1 0
 
 
1  0

 
 
1  ,       0

  

  
1  0

 
 
1. 

2.   ,     -  0
  
  

1 

          0
  

  
1       0

  
  

1 0
 
 
1  0

 
 
1  ,        0

  

  
1  0

 
 
1. 

3.   ,     -  0
  
  

1 

          0
  

  
1       0

  
   

1 0
 
 
1  0

 
 
1  ,        0

  

  
1  0

 
 
1. 

C(2,2) 

A(0,0) 

B(0,2) 

F.R 
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4.   ,     -  0
  
  

1 

          0
  

  
1       0

  
   

1 0
 
 
1  0

 
  

1  ,     0
  

  
1  0

 
 
1. 

5.   ,     -  0
  
  

1 

          0
  

  
1       0

  
  

1 0
 
 
1  0

 
 
1  ,           0

  

  
1  0

 
 
1. 

Note that the points corresponding to 1, 2, 3 and 5 are nondegenerate 

basic feasible solutions because     . The point obtained in 4 is a basic 

solution, but it not feasible because it violates the nonnegativity 

restrictions. In other words, we have four basic feasible solutions, 

namely: 

                    *

 
 
 
 

+,      *

 
 
 
 

+,      *

 
 
 
 

+,      *

 
 
 
 

+;     *

  

  
  

  

+ 

These points (basic feasible solutions) belong to   , projected in    that 

is, in the (     ) space give rise to the four points: 

                                        0
 
 
1   ,   0

 
 
1   ,   0

 
 
1   ,   and    0

 
 
1  . 

These four points are illustrated in Figure (1.7). Note that these points are 

precisely the extreme points of the feasible region. 

    In this example, the possible number of basic feasible solutions is 

bounded by number of ways of extracting two columns out of four 

columns to form the basis. Therefore the number of basic feasible 

solutions is less than or equal to  

                                                            .
 
 
/   

  

     
 = 6 
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Out of these six possibilities, one point violates the nonnegativity of  

    . Furthermore,    and    could not have been used to form a basis, 

since       0
 
 
1 are linearly dependent, and hence the matrix 0

  
  

1 

does not qualify as a basis. This leaves four basic feasible solution. In 

general, the number of basic feasible solutions is less than or equal to     

                                    .
 
 

/  
  

  (   ) 
 .   

Theorem 1.2: [3] 

The problem determined by  

LPP:     maximize                                                                                     

             subject to 

                                                                                                                      

                                             

Where   is an     matrix,     ,     , and      has a finite 

number of basic feasible solutions. 

Poof 

The number of basic solutions to the problem is not more than 

                                                  .
 
 

/  
  

  (   ) 
 .

 
   

/  

Because there are     choice for which of the   variables will be set to 

zero. The number of basic feasible solutions may be smaller than the 

number of basic solutions, since not all basic solutions need to be 

feasible. 
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2.1.  Introduction 

    In this chapter, we present a systematic method for iteratively moving 

from one extreme point to an adjacent extreme point in the search for an 

optimal solution. The method is first discussed algebraically, the tabular 

formats method is next, and we will discuss the problem of finding an 

initial basic feasible solution to a linear programming problem, also we 

study the duality of LPP and we develop a variant of the simplex method 

known as the dual simplex method and discuss how to deal with changes 

that are made to a linear program after it has been solved. 

2.2.  Algebra of The Simplex Method [7],[11],[12] 

     Consider the standard linear programming problem: 

      LPP:     maximize                                                                                      

                   subject to 

                                                                                                                      

                                             

Where   is an      matrix with rank  . Recall that a basic feasible 

solution to this problem corresponds to an extreme point of the feasible 

region and is characterized mathematically by partitioning matrix    into 

a nonsingular basis matrix   and the matrix of nonbasic columns  . That 

is    

                                                ,    -     ;      0
  

  
1                     (2.1) 

The linear system       can be rewritten to yield  

                                                                                          (2.2) 

This simplifies to  

                                                                                    (2.3) 
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and solving for    yields 

                                                                                    (2.4) 

Now setting     , we see that (2.4) results in        . The solution 

                                                   0
  

  
1  0 

    
 

1 

is called a basic solution, with vector    called the vector of basic 

variables, and    is called the vector of nonbasic variables. If, in 

addition,          , then        

                                                    0 
    
 

1    

 is called a basic feasible solution. Otherwise it is called basic solution but 

not feasible (infeasible). 

Now, consider the objective function         . partitioning the cost 

vector      into basic and nonbasic components (i, e. ,    ,  
    

 -, the 

objective function can be recast as 

                                      ,  
    

 - 0 
  

  
1  

                                              
      

                                              (2.5) 

Now, substituting the expression for    defined in (2.4) into (2.5) yields  

                                         
 (           )    

                  (2.6) 

Which can be rewritten as  

                                         
      (  

        
 )                  (2.7) 

Now setting     , we see that (2.7) results in  ̅    
     , which is 

the objective value corresponding to the current basic feasible solution. 
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Therefore, the current extreme point solution can be represented in 

canonical form as shown in (2.4) and (2.7) respectively. 

                                                   

                                         
      (  

        
 )   

with the current basic feasible solution given as 

                                    ̅    
                                                         (2.8) 

                                     ̅  0
  

  
1  0 

    
 

1                                   (2.9) 

Letting    denote the index set of the nonbasic variables, observe that  

(2.7) and (2.4) can be rewritten as follows: 

                                      
      (  

        
 )    

                                       
      (∑   

    
      ∑      )    

                                       
      ∑ (  

    
        )               (2.10)     

                                       
       ∑ (     )      

                                            ̅  ∑ (     )                                       (2.11) 

where      
       for each nonbasic variable. 

                                               

                                           ∑ (   
     )   

                                       ̅  ∑                                                    (2.12) 

Where  ̅       , and           . 
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2.2.1. Checking for Optimality [7] 

   The first question that should be answered is: when will such an 

exchange improve the objective function?   This can be answered in a 

rather straightforward manner by examining the canonical representation 

of    in (2.10). In the current basic feasible solution,     , that is, the 

nonbasic variables are at their lower bound and can only be increased 

from their current value of zero. Observe that the coefficient 

 (          ) of    represents the rate of change of   with respect to 

the non-basic variable    . That is, 

                               
  

   
 = (  

         )     

Thus, if      ⁄   , then increaseing the nonbasic variable    will 

increase  . The quantity (  
         ) is sometimes referred to as 

reduced cost and for convenience is usually denoted by (     ). We can 

thus state the optimality conditions for a maximization linear 

programming problem.          

  Optimality conditions (maximization problem). The basic feasible 

solution represented by (2.9) will be optimal to (LPP) if  

                            
  

   
 = (     )   (  

         )   ,    for all     

Or equivalently, if  

                                          
           ,      for all      

Note that, if         , for all    , then the current basic solution will 

be the unique optimal solution. However, if some nonbasic variable    

has        , then there exist an alternative optimal solutions. For 

more detail (see reference [9] ).   
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2.2.2. Determining the Entering and Departing Variables     

   Suppose there exist some nonbasic variable    with         , then 

the objective function can be improved (increased) by increasing    from 

its current value of zero, we choose to increase the nonbasic variable with 

the most negative      . The selected variable    is called the entering 

variable. That is    enter the basis vector. 

    Now if there such that nonbasic variable    which increasing from its 

current value of zero, while holding all other nonbasic variables at zero, 

then the basic variables will change according to the relationship  

                                                  ̅                                           (2.13) 

 we can write as  

                                          

[
 
 
 
 
 
   

   

 
   

 
   ]

 
 
 
 
 

 

[
 
 
 
 
 
 ̅ 

 ̅ 

 
 ̅ 

 
 ̅ ]

 
 
 
 
 

 

[
 
 
 
 
 
   

   

 
   

 
   ]

 
 
 
 
 

                           (2.14) 

If      , then    
, increases as     increase, and so    

 continues to be 

nonnegative. If      , then    
 will decreases as    increases. In order 

to satisfy nonnegative,    is increased until the first point at which some 

basic variable    
 drops to zero. Examining equation (2.14), we obtain. 

                                              * 
 ̅ 

   
       +        

         

This process is termed the minimum ratio test, the basic variable    
 

which drops to zero as the nonbasic variable    increasing is called the 

departing variable. 
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Note that:  

1. If there exist more than one index   implies to the same value of 

the minimum ratio test, then the new solution is degenerate (see 

reference [11]). 

2. If there is no any positive component    , that is       for all  . 

In this case, the optimal objective value is unbounded (Explaining 

in Example 2.2). 

Example 2.1:  

   LPP7:    maximize            

                 subject to   

                                                           

                                               

                                                              

                                                 

The problem is illustrated Graphically in Figure 2.1. After introducing the 

slack variable   ,    and   , we get the following system of constraints: 

                                                     

                                                       

                                                                      

                                              ,   ,   ,         . 

The data for this problem can be summarize as follows. 

    ,               -  [
       
           
           

] ,    [
 
  
  

] ,  and  

   (         ).  

Iteration 1 

Since    , then we can choose an initial basis as  
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               ,          -  [
 
 
 

 
 
 

 
 
 
],           ,  

  and       ,     -  [
      
       
       

].  

Solving the system                    leads to 

                           [

   

   

   

]  [

  

  

  

]  [
 
  
  

]  [
      
       
       

] 0
  

  
1  

put     0
  

  
1  0

 
 
1, we obtain the basic feasible solution   

                            [

  

  

  

]  [
 
  
  

]     ,     0
  

  
1  0

 
 
1 

and the objective value of this solution is zero, where  

                                      
    (     ) [

 
  
  

]   .  

To see if we can improve the solution, calculate       and       as 

follows  

                        
          (     ) [

 
 
 

 
 
 

 
 
 
] [

  
   
   

]       

                        
          (     ) [

 
 
 

 
 
 

 
 
 
] [

 
 
 
]        

since the most negative       is         , thus    is the entering 

variable. The current solution is not optimal. Determining the departing 

variable    
 by minimum ratio test as follows 

                       2
 ̅ 

   
 

  

 
    

 ̅ 

   
 

  

 
   3      

 ̅ 
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Therefore, the index    , that is,    
    leaves the basis, obviously 

noting that 

                                  [

   

   

   

]  [

  

  

  

]  [
 
  
  

]  [
   
  
  

]    

and    drops to zero when      .  

Iteration 2 

The variable    enters the basis and    leaves the basis 

         ,          -  [
    
   
   

],        

[
 
 
 
  

 

 
 

 
 

 
 

  
 

 
 ]
 
 
 
 

,     

and                 ,     -  [
     
     
     

] 

Now,    can be determined by solving            

            [

   

   

   

]  [

  

  

  

]  

[
 
 
 
  

 

 
 

 
 

 
 

  
 

 
 ]
 
 
 
 

[
 
  
  

]  [
  
  
 

] ,       0
  

  
1  0

 
 
1. 

The objective value       
      

  ̅  (     ) [
  
  
 

]    . 

Now, calculate       and        as follows 

                      
          (     )

[
 
 
 
 

 

 

 
 

 
 

 

 

]
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          (     )

[
 
 
 
 

 

 
 

 

 
 

 ]
 
 
 
 

     . 

Because        , thus    entering the basis. The current solution is 

not optimal. 

Determining the departing variable    
. 

                     2
 ̅ 

   
 

  

  ⁄
 

 ̅ 

   
 

  

  ⁄
 

 ̅ 

   
 

 

  ⁄
3    

 ̅ 

   
 . 

Therefore, the index    , that is,    
    leaves the basis. 

Iteration 3 

   The variable    enters the basis and    leaves the basis  

       ,          -  [
    
   
   

],      [
       
       
       

],  

and             ,     -  [
     
     
     

] 

Now, we find          

               [

   

   

   

]  [

  

  

  

]  [
       
       
       

] [
 
  
  

]  [
  
8
 

] , and 

                               0
   

   
1  0

  

  
1  0

 
 
1. 
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The objective value       
  ̅  (     ) [

  
8
 

]    . 

Now, calculate       and       as follows 

                 
          (     ) [

 
 

  
]       

                 
          (     ) [

  
  
 

]      . 

Since        , for all nonbasic variable. Therefore the current basic 

feasible solution is optimal. The optimal solution given by 

(  
 ,  

 ,  
 ,  

 ,  
 ) = (8,4,10,0,0), with the objective value 44. 

                                                                                                                        

                                           Figure 2.1 

 

 

B(0,6) 

A(0,0) 

C(3,9) 

D(8,4)  

E(10,0) 

F.R. 

I II 

III 
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Example 2.2: 

(unboundedness) 

   LPP8:    maximize           

                 subject to    

                                                              

                                            8      

                                                                                  

The problem illustrated Graphically in Figure 2.2, has an unbounded 

optimal objective value. After introducing the slack variable    and   , 

we get the constraint matrix    0
   
  

  
   

 
 

 
 
1. Now, consider the 

basic feasible solution whose basis   ,      -  0
  
  

1, and         

  ,      -  0
   

   
1 ,   0

  
8

1,     0
  
  

1 ,   
  (   ) , 

   
  (   ) 

         ̅  0
  

  
1       0

  
  

1 0
  
8

1  0
  
8

1,     0
  

  
1  0

 
 
1 

              
  ̅  (   ) 0

  
8

1     

Calculate        and       as follows, noting    
     (   ); 

                               
                , 

                               
                . 

So, we increase   , which has the most negative       , thus    enter the 

basis. Note that          ,     -   , and hence, 

                                                 0
  

  
1  0

  
8

1  0
  
  

1   .  
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The maximum value of    is 6, at which instant    drops to zero. The 

new basis is  =,      -  0
    
   

1, with the inverse     [
 

 
 

  
],  

and   ,      -  0
   
  

1,   
  (   ), and    

  (   ) so we have 

   ̅  0
  

  
1       [

 

 
 

  
] 0

  
8

1  0
 
  

1,     0
  

  
1  0

 
 
1,       

Now, we calculate        and       as follows: 

                               
          (   ) 0

  
   

1      , 

                               
          (   ) 0

 
 
1     . 

Note that          and           [
 

 
 

  
] 0

  
 

1  [
  

 

  
]  0

 
 
1. 

Therefore, the optimal objective value is unbounded. In this case, if     is 

increased and    is kept zero, we get the following solution: 

                                           ,     -   

i, e., 

                                0
  

  
1  0

 
  

1  [
  

 

  
]    [

      

  
    

      
], 

With     , and     . Note that this solution is feasible for all  

    . In particular,  

                      .  
 

 
  /           , 

 and 

                    .  
 

 
  /     (      )  8  
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Furthermore,          , which approaches   as    approaches  . 

Thais means the optimal objective value is unbounded. 

 

Figure 2.2 

2.3.  The Simplex Method in Tableau Form [7],[11] 

Consider the canonical form represented in (2.7), and (2.4): 

                                    
      (  

        
 )                      (2.15)                                     

                                                                                    (2.16) 

Now, rearrange terms as follows: 

                                        (  
        

 )      
                  (2.17)                                  

                                                                                    (2.18) 

The simplex tableau is simply a table used to store the coefficients of the 

algebraic representation in (2.17) and (2.18). the last row of the tableau 

consists of the coefficients in the objective equations (2.17), it is called 

cost row, and the body of the tableau (rows 1 to  ) records the 

F.R. 

II 

I 
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coefficient of the constraint equations (2.18). the general form is as show 

in Tableau 2.1. 

                                                                    RHS 

              (rows 1 to  )   

             (cost row) 

                                            Tableau 2.1 

   We now summarize the steps of the simplex algorithm as applied to the 

simplex tableau. The algorithmic steps follow directly from the preceding 

algebraic analysis. 

Algorithm 1: ( The simplex method ) 

STEP1 Check for possible improvement. Examine the       values in the 

cost row of the simplex tableau. If        , then the current 

basic feasible solution is optimal; stop. If , however, any       

 , go to Step 2. 

STEP2 Check for unboundedness. If, for any        , there is no 

positive element in the associated    vector (i.e.,     ), then the 

problem has an unbounded objective value. Otherwise finite 

improvement in the objective is possible and we go to Step 3. 

STEP3 Determine the entering variable. Select as the entering variable, the 

nonbasic variable with the most negative. Designate this variable as 

  . Ties in the selection of    may be broken arbitrary. The column 

associated with    is called the pivot column. Go to Step 4. 

STEP4 Determine the departing variable. Use the minimum ratio test to 

determine   the departing basic variable. That is, let  

                                            
 ̅ 

   
 * 

 ̅ 

   
       +        

       . 

0 I           

1 0   
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Row   is called the pivot row,     is called the pivot element, and 

the basic variable,    
 ; associated with row   is the departing 

variable. Go to Step 5. 

                            
        

        
                                RHS    

 

 

 

 

                             

Tableau 2.2: Before Pivoting  

STEP5 Pivot and establish a new tableau . 

a) The entering variable    is the new basic variable in row  . 

b) Use elementary row operations on the old tableau so that the 

column associated with    in the new tableau consist of all zero 

elements except for a 1 at the pivot position     (see Tables 2.2 

and 2.3.) 

c) Return to Step 1. 

     
            

            
                               RHS 

   
 

  

   
 

  

   
 

1         
    

   
         0 

                                  

0          
 

   
          0 

                                  

0         
    

   
        1 

       
   

   
        0     

                              

        
   

   
                 1      

                             

       
   

   
      0      

 ̅  
   

   
 ̅  

  

 ̅ 

   
 

  

 ̅  
   

   
 ̅  

  0         
     

   
        0 

     (     )          0         

 
   

   
(     ) 

   ̅ 

  (     )
 ̅ 

   
   

                                Tableau 2.3: After Pivoting  

   
 

  
   

 

  
   

 

      

      

0 

0 

0 

      

         
        

         
        

    
      

                   
    

      

                   
    

      

 ̅ 

 
 ̅ 

 
 ̅ 

 

  1                                ̅ 
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To illustrate this algorithm, we solve the LPP7 in example 2.1.                   

Example 2.3: 

   LPP7:    maximize            

                 subject to    

                                                            

                                                

                                                               

                                                                                  

Introduce the slack variables   ,    and   . The problem because the 

following  

                 maximize                        

                 subject to    

                                                              

                                                  

                                                                

                                                      

We can choose the initial basis as   ,          -    , and   

,       -,we indeed have  ̅        . This gives the following initial 

tableau: 

Iteration 1 

TABLEAU 2.4  

P7                                         RHS 

   

   

   

   -1         1        1         0        0 

  2          1        0         1        0 

    1         1        0         0        1 

6 

20 

12 

     -4        -3        0         0        0 0 

STEP1 The initial tableau appears in Tableau 2.4. Because there are         

        (both         and        ), we go to step 2. 
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STEP2 There are positive elements in    associated with        . 

Thus, finite improvement the objective   is possible and we go to 

Step 3. 

STEP3 The most negative         . Thus     and    is the 

entering variable. Go to Step 4. 

STEP4 We now examine the ratios  ̅    ⁄ , where        

                        2 
 ̅ 

   
 

  

 
    

 ̅ 

   
 

  

 
   3          

Thus,    , and the departing variable is    
   . 

STEP5  

a) Because    is the entering variable and     is the departing 

variable,    is replaces    in    as the basic variable in row 2. 

b) Row     of  the new tableau is obtained by dividing row   of 

the preceding tableau by       (the pivot element at the 

intersection of entering variable column and departing variable 

row). That is, the new objective row is obtained by multiplying 

new pivot row 2 by 4 and adding it to the old objective row. 

The new row 1 is obtained by adding the new row 2 to old row 

1. Finally, the new row 3 is obtained by multiplying the pivot 

row by    and adding to old row 3. The completed second 

tableau is shown in Tableau 2.5, this corresponding to  

            [
    
   
   

] ,       

[
 
 
 
  

 

 
 

 
 

 
 

  
 

 
 ]
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TABLEAU 2.5  

P7                                        RHS 

   

   

   

0       3/2       1      1/2       0 

1       1/2       0      1/2       0 

   0       1/2       0     -1/2       1 

16 

10 

2 

     0       - 1        0        2        0 40 

                 

    c) Return to Step 1.  

Iteration 2 

STEP1 Because        , we go to Step 2. 

STEP2 There are positive elements in   . Thus the finite improvement in 

the objective is possible and go to Step 3. 

STEP3 The most negative (and only negative)       is         . 

Thus,     and    is the entering variable. Go to Step 4. 

STEP4 The ratios  ̅    ⁄ , where      , are 

                     2
 ̅ 

   
 

  

  ⁄
 

 ̅ 

   
 

  

  ⁄
 

 ̅ 

   
 

 

  ⁄
3    

 ̅ 

   
                 

Thus    , and the departing variable is    
    . 

STEP5  

(a) Because    is the entering variable and    is the departing 

variable,    replaces    in    as the basic variable in row 3. 

(b) Row     of the new table is obtained by dividing row   of the 

proceeding tableau by     
 

 
. Use elementary row operation 

on the new tableau, we obtained the third tableau as shown in 

Tableau 2.6. As before, the basis inverse can be identified as 

                        [
     
      
      

] ,       [
       
       
       

] 
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TABLEAU 2.6                 

P7                                         RHS 

   

   

   

   0         0         1         2         -3 

   1         0         0         1         -1 

   0         1         0        -1          2 

10 

8 

4 

     0         0         0         1          2 44 

 

(c) Return to Step 1. 

Because all        , the solution given in Tableau 2.6 is optimal. In 

fact, because         for the nonbasic variables    and   , then this 

tableau represents the unique optimal solution. Thus the optimal solution 

is (  
    

    
    

    
     )  (8            ). 

2.4. The Big-M Method [6],[7],[11] 

Introduction to the Big-M method 

   In each of the previous examples, a starting basic feasible solution was 

quite apparent. For example, if we look at the initial tableau of Example 

2.3 (Tableau 2.4) we see that there is an imbedded     identity matrix 

 , and the starting basic variables are readily identified by letting    . 

And because the right-hand side (RHS) vector   is nonnegative, the 

resulting solution is clearly feasible because               . 

However, such a starting basic feasible solution is not always available. 

For example, consider the following problem: 

Example 2.4:  

    LPP8:    maximize                                                   (2.19)                                

                  subject to    

                                                                                            

                                                                                           

                                     5                                                     
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Now, converting the problem to standard equality form by adding the 

appropriate slack/surplus variables yields 

                  maximize                

                  subject to    

                                                                                  (2.20)            

                                                                                          (2.21) 

                                         3                                         (2.22) 

                                                for all                                                        

Therefore, the coefficient matrix is given by 

                                                 [
         
           
           

] 

Observe the matrix   does not contain the identity as a submatrix. In fact, 

  contains only the second column of the identity matrix. Thus, in its 

present state, we cannot use     as a convenient starting basis. 

Artificial variable techniques were  developed to find a starting basis 

feasible solution in this all-too-common situation when a nice starting 

basis is not available. Here , we present one of the artificial-variable 

techniques, the Big-M method. 

    The general approach of the big-M method can be described as follows. 

First, we create an identity submatrix by adding the necessary artificial 

variables to the original constraints. For example 2.4 it would be 

necessary to add two artificial variables, say,    and   , to constraints 

(2.20) and (2.21), respectively. This would result in the following system 

of constraints. 

                                                                             

                                                                                     

                                                                                      

                                                  for all                                          
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Thus, the coefficient matrix becomes  

  ,                    -  [
      
    
    

    
     
     

 
 
 
] 

Clearly, the identity submatrix is now available with   ,        -. 

Note that, the starting basic feasible solution is found by setting the 

nonbasic variable   ,   ,    and    equal to zero. That is,     ,      

and     . 

Now, to prevent an artificial variables from becoming part of an optimal 

solution to the original problem, a very large penalty is choosing a 

positive constant   so large that the artificial variable is forced to be zero 

in any final optimal solution of the original problem. We then add the 

terms –    and –    to the objective function: 

              –   –    

We now have a new problem, called the modified problem. Where   is 

large positive number. This leads to the following sequence of tableaux. 

 TABLEAU 2.7 

P8                                            RHS 

   

   

   

-1     1      1     -1       0       1      0 

 1     1     -1      0       0       0      1 

 5     3     -1      0       1       0      0 

5 

1 

9 

   2    -5      1      0       0              0 

 

Multiply rows 1 and 2 by (–  ) and add to cost row.  
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TABLEAU 2.8 

P8                                            RHS 

   

   

   

-1     1      1     -1       0       1      0 

 1     1     -1      0       0       0      1 

 5     3     -1      0       1       0      0 

5 

1 

9 

   2  -2 -5   1      0       0       0      0 -   

 

Since              . Thus    entering the basis and    

departing the basis. 

TABLEAU 2.9 

P8                                                 RHS 

   

   

   

  -2       0      2      -1      0       1      -1 

   1       1     -1       0       0       0       1 

   2       0      2        0      1       0      -3 

4 

1 

6 

  2 +7    0  -2 -4           0       0    2 +5   -4 +5 

  

Since              . Thus    entering the basis and    

departing the basis. 

TABLEAU 2.10 

P8                                            RHS 

   

   

   

-1     0      1   -1/2     0     1/2    -1/2 

 0     1      0   -1/2     0     1/2     1/2 

 4     0      0      1       1      -1      -2 

2 

3 

2 

   3      0      0    -2       0     +2    +3   13 

 

Since    and    equals zero, so deleting its columns of Tables. We have 

Tableau 2.11.  
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TABLEAU 2.11 

P8                             RHS 

   

   

   

-1     0      1   -1/2      0 

   0     1      0   -1/2      0 

 4     0      0      1       1 

2 

3 

2 

   3      0      0     -2       0 13 

 

Since           . Thus    entering the basis and    departing the 

basis. 

TABLEAU 2.12 

P8                             RHS 

   

   

   

  1     0      1      0      1/2 

 2     1      0    -1/2    1/2 

4     0      0      1        1 

3 

4 

2 

   11    0      0      0        2 17 

 

Since           for each nonbasic variable, the last tableau is optimal 

and the optimal solution is (  
    

    
    

    
     )  (            ).  

Remark: The use of the penalty   will not force an artificial variable to 

zero level in the final simplex iteration if the LPP does not have a feasible 

solution will include at least one artificial variable at a positive level (see 

reference [6]) 

2.5.  Duality [7],[11] 

   Associated with each linear programming problem is another linear 

programming problem called the dual.  

   There are two important forms (definitions) of duality: the canonical 

form of duality and the standard form of duality. 
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2.5.1. Canonical form of duality [7]   

Suppose that the primal linear program is given in the (canonical) form: 

           LPP: maximize                                                                 (2.23)                                                       

                    subject to  

                                                                                                     

                                                 

where   is an     matrix,   and   are     column vectors, and   is 

    column vector, then the dual linear program is defined by  

      DLPP: minimize                                                                 (2.24)                                                       

                 subject to 

                                                                                                  

                                            

 Note that there is exactly one dual variable for each primal constraint 

(i.e.,   is     column vector) and exactly one dual constraint for each 

primal variable. We shall say more about this later [9]. 

2.5.2. Stander form of duality [11] 

   Another definition of duality may be given with primal liner program 

stated in the following standard form:   

           LPP: maximize                                                                                                                            

                    subject to  

                                                                                                     

                                               

Then the dual linear program is defined by: 

        DLPP: minimize                                                                                                                            

                   subject to  

                                                                                                     

                                        unrestricted (free) 
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2.5.3. General form of Duality [7]  

   There are few requirements as to the general form of a linear 

programming problem. The objective may be either of maximizing or 

minimizing form, variables may be restricted or unrestricted, and the 

constraints may be form ( , , ) and of any mixture of the forms. We 

utilizing the relationships in Tableau 2.13, to write the dual problem for a 

given linear program without given though the intermediate step of 

transforming the problem to canonical form (see reference [7]). 

                   Primal Problem                                       Dual Problem 

Maximization problem                       Minimization problem 

    Constraints                       ⇔                     Variables    

                                            ⇔                               

                                            ⇔                               

                                            ⇔                unrestricted (free) 

    Variables                         ⇔                     Constraints   

                                          ⇔                              

                                          ⇔                              

   unrestricted  (free)             ⇔                              

                             Tableau 2.13: Primal-Dual Relationships 

Theorem 2.1:[3]  

Given a primal problem as in (2.23), the dual of its dual problem is again 

the primal problem. 

Proof 

The dual problem as given by (2.24) is  

                                                 

              
                   

                      
                              }

 

 
                           (2.25) 
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We can rewrite (2.25) as 

                                      

                 
                                 

                        
                                }

 

 
                              (2.26) 

Now the dual problem to (2.26) is 

                                      maximize                                                                                                                             

                                    subject to  

                                                      (    )                                                              

                                                                      . 

This problem can be rewritten as  

                                      maximize                                                                                                                            

                                    subject to  

                                                                                                                     

                                                             , 

Which is the primal problem. 

2.5.4. Primal-Dual Relationships [11]      

    There is a deep relationship between objective function value,  

feasibility and boundedness of the primal problem and  the dual problem. 

We will explore some these relationships in the following theorems. 

Theorem 2.2:[3] (Weak Duality Theorem) . If  ̅ is feasible solution to the 

primal problem 

                            

                              
                   

                          
                                  

}                                 (2.27) 

And if   ̅ is a feasible solution to the dual problem 

                                  

                
                                    

                       
                                }

 

 
                                (2.28) 
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then      

                                           ̅       ̅                                                 (2.29) 

That is, the value of the objective function of the dual problem is always 

greater than or equal to the value of the objective function of the primal 

problem. 

Proof  

Since   ̅  is feasible to (2.27), we have  

                                       ̅   .                                                           (2.30) 

It follows from (2.30) that  

                                       ̅    ̅   ̅      ̅                                      (2.31) 

Since  ̅   , the equality in (2.31) comes from the fact that  ̅   is a 

    matrix and consequently is equal to its transpose. 

   Since  ̅  is a feasible solution to (2.28), we have  

                                                 ̅   . 

Or, taking transposes,  

                                              ̅     . 

Again we can multiply by  ̅ , which is nonnegative, without changing the 

inequality. We get 

                                            ̅   ̅     ̅ .                                            (2.32) 

Combining inequalities (2.31) and (2.32) gives the desired result.        

   Notice that each feasible solution to the maximization problem provides 

a lower bound for the objective of the minimization problem, and, 

likewise, each feasible solution to the minimization problem provides an 

upper bound for the objective of the maximization problem.  
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Corollary (2.1):[7] 

If the primal objective is unbounded, then the dual problem is infeasible. 

Example 2.5:  

Consider  the LPP4 in example 1.4, this problem is unbounded as we 

show in Figure 1.5. The dual problem to LPP4  is 

          DP4: minimize             

                     subject to  

                                                   

                                                 

                                                    

The constraints are in Figure 2.3. There are no feasible solutions to the 

problem, since the second constraint can never hold for nonnegative 

values of     and   . 

                                                     

                                          Figure 2.3 

 

Corollary (2.2):[7] 

If the dual objective is unbounded, then the primal problem is infeasible. 

The converse of corollary (2.1) and (2.2) is not true. Because if one 

problem is infeasible, it is also possible for the other to be infeasible. This 

is illustrated via the following example. 

𝒚  

𝒚

𝒚𝟐 

𝒚
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Example 2.6: (Infeasible Primal and Dual)  

Consider the following canonical primal- dual pair: 

 LPP10: max                               DLPP10: min                               

              subject to                                                      subject to 

                                                                                      

                                                                                        

                                                                                                                                             

       

                      Figure 2.4                                   Figure 2.5 

Upon graphing, it is clear from Figures 2.4 and 2.5 that neither the primal 

nor the dual possesses a feasible solution. 

Corollary (2.3): [3] 

If   ̅ is feasible to PP(Primal Problem), and  ̅ is feasible to DP(Dual 

Problem), and    ̅     ̅, then  ̅ is an optimal solution to PP and  ̅ is an 

optimal solution to DP. 

Proof 

Suppose    is any feasible solution to the primal problem. Then from the 

inequality (2.29). 

                                             ̅     ̅ 

Hence,  ̅ is an optimal. Similarly, if    is any feasible solution to the dual 

problem, then from the inequality (2.29). 

                                          ̅     ̅       

𝒚𝟏 

𝒚

𝒚𝟏 

𝒚𝟐 𝒚𝟐 



Chapter2 

51 
 

and we see that  ̅ is an optimal solution to the dual problem. 

Theorem 2.3: (strong Duality) [13] 

If the PP(2.23) has an optimal solution with basis matrix  . Then  

1.   (   )    is feasible solution of dual problem. 

2.        . 

3.   (   )    is an optimal solution of dual problem (2.24). 

Proof 

1. Let   ,   -, and since         is an optimal solution. 

Hence  

                               
        

            (optimality condition) 

      Requirement 

                                
        

   

  Now, we shall show that         is feasible solution of dual  

problem 

                          ,       -  ,     -     

and hence 

                                      ;  

      So that   (   )    is feasible solution of dual problem  

(2.24). 

2.       (   )    (  
     )  (  

   )    
        

3. Since         , it follows from corollary (2.3) that   is an 

optimal solution of dual problem. 

Note that the dual feasibility conditions are precisely the same as primal 

optimality conditions. Also observe that Theorem 2.3 provides a method 

for computing the values of the dual variables. That is, whereas the 

primal solution can be written as  
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the dual solution is given by 

                                                 
                                                (2.33) 

                                                         
                     (2.34) 

Where   is the vector of dual surplus variables. Finally, the objective 

value of both problem is                                                  (see reference [7]) 

                       
                                                    (2.35) 

Primal-Dual Tableau Relationships [7]  

Consider the initial simplex tableau corresponding to problem (2.23), and 

the optimal tableau as shown in Tableau 2.14 and Tableau 2.15 

respectively. 

TABLEAU 2.14 

      RHS 

         

      0 0 

 

TABLEAU 2.15 

      RHS 

                  

    
           

          
      

    

Note that the tableaux depicted in Tables 2.14 and 2.15 also establish 

some relationships between the primal and dual variables. To see more 

clearly, let us rewrite Tableau 2.15 utilizing the fact that  

            
      

                   
          

This results in Tableau 2.16 
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TABLEAU 2.16:  Primal Simplex Tableau  

      RHS 

                 

               

 

First, note that       values for the primal decision variables   are given 

by the dual surplus variables  . Just as     resides in the portion of the 

tableau that was occupied by the original identity,      
     is located 

in two rows immediately above    . However, as we saw in Tableau 

2.15, this is only true if the original objective coefficients of the 

corresponding slack variables are zero. Thus, the       values for the 

zero-cost primal slack variables    are given by the dual decision 

variables  .  

   Thus, given a simplex tableau, it is possible to read the solution to both 

problems directly from the tableau. This idea is demonstrated further via 

the following example 

Example 2.7:  

Consider the problem in Example 2.1. 

       LPP7:    maximize                                                        (2.36)                                

                     subject to    

                                                                                              (2.37)                                          

                                                                                             (2.38) 

                                                                                              (2.39)                                                                                   

                                                                                                   (2.40) 

The optimal solution of this example is in the following final tableau 
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TABLEAU 2.17 

P7                            RHS 

   

   

   

  0     0      1      2      -3 

  1     0      0      1      -1 

  0     1      0     -1       2 

10 

8 

4 

    0     0      0      1       2 44 

  

Slack variables   ,    and    add to constraint (2.37),(2.38) and (2.39) 

respectively. The Tableau 2.17 indicates that the optimal primal solution 

is given by (  
 ,   

 ,   
 ,   

 ,   
 ;   ) ( 8,  ,   ,  ,  ;   ) 

   Now, denote the dual decision variables by    ,   and    corresponding 

to constraints (2.37), (2.38) and (2.39) respectively. Also, let    and    

represent the respective surplus variables for the two dual constraints. 

Then, by using the tableau relationships established in Tableau 2.16, the 

two row of the tableau will be in the following form: 

                                    RHS 

                                        44 

 

By comparing this with Tableau 2.17 it immediately follows that the 

solution is given by   
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2.5.5. The Dual Simplex Method  

   When we use the simplex method to solve a max problem (we will refer 

to the max problem as a primal), we begin with a primal feasible solution 

(because each constraint in the initial tableau has a nonnegative right-

hand side). It least one variable in objective row of the initial tableau has 

a negative coefficient, so our initial primal solution is not dual feasible. 

Through a sequence of simplex pivots, we maintain primal feasibility and 

obtain an optimal solution when dual feasibility (a nonnegative objective 

row) is attained. In many situations, however, it is easier to solve an LP 

by beginning with a tableau in which each variable in objective row has 

nonnegative coefficient (so the tableau is dual feasible) and at least one 

constraint has a negative right-hand said (so the tableau is primal 

infeasible). The dual simplex method maintains a nonnegative objective 

row (dual feasibility) and eventually obtains a tableau in which each 

right-hand said is nonnegative (primal feasibility). At this point, an 

optimal tableau has been obtained. Because this technique maintains dual 

feasibility, it is called the dual simplex method [13]. 

Algorithm 2: (Dual Simplex Method for Max Problem) [7] 

STEP1 To employ this method, the problem must be dual feasible, that is, 

all        . If this condition is met, go to Step2.  

STEP2 Determine the departing variable. If      , for all   , then the 

current solution is optimal; stop. Otherwise, select the row 

associated with the most negative   . Denote this row as row  . 

The basic variable    
 associated with this row is the departing 

variable. 
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STEP3 Check for primal feasibility. If       for all  , then the primal 

problem is infeasible and the dual problem has an unbounded 

objective; stop. Otherwise, go to Step4. 

STEP4 Determine the entering variable. Use the following minimum ratio 

test to determine the entering basic variable. That is, let 

                  
     

    
        *

     

    
      +  

Column   is the pivot column,     is the pivot element, and the 

nonbasic variable    associate with column   is the entering 

variable. Go to Step5. 

STEP5 Pivot and establish a new tableau 

a) The entering variable    is the new basic variable in row  . 

b) Use elementary row operations on the old tableau so that the 

column associated with    in the new tableau consists of all 

zero elements except for a 1 at the pivot position    . 

c) Return to Step2. 

The following example is considered to illustrate the dual simplex 

method. 

Example 2.8:  

        LPP10:    maximize                                                    (2.41)                                                   

                        subject to    

                                                                                          (2.42)                                                        

                                                   8                                   (2.43)                                                      

                                                                                                (2.44)        

Multiply both constraints through by   . Adding slack variables    to 

constraint (2.42) and    to constraint (2.43) yields 
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                maximize                                                            (2.45)                                                   

                subject to    

                                                                                 (2.46)                                                        

                                               8                              (2.47)                                                      

                                                                                          (2.48) 

The initial Tableau for the resulting problem is given in Tableau 2.18. 

Notice that the initial basis is primal infeasible (       and     8 ) 

and dual feasible (all        ). Thus, the dual simplex method can be 

employed. 

TABLEAU 2.18 

P10                            RHS 

   

   

 -     -                     

 -           -               

  -  

  -8 

                                      

 

STEP2    The most negative    is     8. Thus,     and    
    is        

the departing variable. Go to Step3. 

STEP3    Because     and      , the primal infeasibility condition is not 

satisfied. Go to Step4. 

STEP4    we now examine the ratios (     ) (    ), where       are 

                         2
     

    
 

 

 (  )
 

     

    
 

 

 (  )
3  

 

 
 

     

    
      

Thus,     and the entering variable is   . 

STEP5  a) Because    is the entering variable and    is the departing  

variable,    replaces    in    as the basic variable in row 2. 

              b) Pivot as usual on    . This results in Tableau 2.19. 

   Note that the Tableau 2.19 is still primal optimality (dual feasibility), 

but is not primal feasible. 
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TABLEAU 2.19 

P10                                        RHS 

   

   

 -1/4     -1/2                      1/4 

  1/4     -1/2                     -1/4 

-7 

  

    7/4      1/2                       1/4 -2 

 

    c) Return to Step2. 

STEP2    The only negative    is      . 

              Thus,     and    
    is the departing variable. Go to Step3. 

STEP3  Because     and      , the primal infeasibility condition is    

not satisfied. Go to Step4. 

STEP4    The ratios (     ) (    ), where       are 

                       2
     

    
 

  ⁄

 (   ⁄ )
    

     

    
 

  ⁄

 (   ⁄ )
3    

     

    
        

              Thus,     and the entering variable is   . 

STEP5    a)    replaces    in    as the basic variable in row 1. 

              b) Pivot as usual on     
  

 
 to obtain Tableau 2.20. 

Tableau 2.20 represents the optimal solution because both primal and dual 

feasibility are satisfied. 

TABLEAU 2.20 

P10                              RHS 

   

   

5/2                  -     -1/2 

6/4                  -     -1/2 

   

  

  1/2                          1/2 -  
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 2.6.  Sensitivity Analysis      

2.6.1. Introduction [11] 

   In this section we shall describe how to make use of the optimality 

conditions (Primal–dual relationships) in order to find a new optimal 

solution for the modified problem, and here we shall discuss the 

following variations in the problem. 

         Change in the cost vector    . 

        Change in the right-hand side vector  . 

        Change in   (change in the coefficient    ). 

        Deletion of a variable. 

        Deletion of a constraint.  

2.6.2. Change in the cost vector   [11] 

Consider the following linear programming problem 

                             LPP:     maximize         

                                  subject to   

                                                           

                                                           . 

Suppose we have found an optimal solution to above LPP by using the 

simplex algorithm, and suppose that the cost coefficient of one (or more) 

of the variables is changed from    to   
 . Changing the objective 

coefficients will not affect the primal feasibility, but could possibly effect 

the dual feasibility. Consider the following two cases: 

Case I:    Is Nonbasic 

Note that   
  is effected; thus, the only impact of such a change is on the 

single tableau element,      . By letting   
  be the new value of   , then 

     
  will replace       in the optimal tableau. If      

  remains 
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nonnegative, then the current basis remains optimal. However, if 

     
   , the dual feasibility (Primal optimality) has been lost and 

must be restored by using the primal simplex method. The value of 

     
  can be computed using the following relationship. 

              
    

         
   

                          
               

  

                        (     )  (     
 )                                             (2.49) 

Case II:    Is Basic, Say       
 

Because    is a basic variable, a change in    
 results in a change in the 

   vector. Thus, such a change can affect any or all of the       

elements and the value of  . let    

  be the new value of    
 and let   

   

denote the revised   
 . The       elements associated with the basic 

variables will remain zero, so we only need to update the       for the 

nonbasic variables as follows: 

        
       

           

                     
        

                   ∑            

       
 
        

                   ∑                            

       
 
        

                   ∑            (   

     
) 

       

                   (     )  (   

     
)       for all   .                          (2.50) 
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In addition, the updated of the objective function is given by 

    ̅    
  (    ) 

       ∑    

 
       (    )     

 (    )     
(    )     

(    )  

         
 (    )  (   

     
) ̅    ;     ̅  (    )  

        ̅  (   

     
) ̅                                                                      (2.51) 

If some   
     is negative, then dual feasibility (Primal optimality) must 

be restored by using the primal simplex method. 

Example 2.9: 

           LPP11:   maximize                

                          subject to  

                                                      8 

                                                        

                                                            

The initial Tableau and optimal Tableau as shown in Tableau 2.21 and 

Tableau 2.22 respectively. 

TABLEAU 2.21 

P11                                  RHS 

   

   

 1       2       3       1        0 

 1      -2       2       0        1 

8 

6 

  -2      -3     -5        0       0 0 

 

TABLEAU 2.22 

P11                                      RHS 

   

   

0        1       1/4     1/4    -1/4 

1        0      10/4    1/2     1/2 

1/2 

7 

  0        0       3/4     7/4     1/4 31/2 
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Suppose that    = 5 is replaced by 6. Since    is nonbasic, then      
  

(     )  (     
 )      , and all other       unaffected. Hence, 

   entering and    departing the basis. 

 TABLEAU 2.23 

P11                                     RHS 

   

   

0        1       1/4     1/4    -1/4 

1        0      10/4    1/2     1/2 

1/2 

7 

  0        0      -1/4     7/4     1/4 31/2 

 

TABLEAU 2.24 

P11                                     RHS 

   

     

 0        4        1        1       -1 

 1      -10       0       -2        3 

   2 

   2 

   0        1        0        2        0   16 

 

The Tableau 2.24 is optimal, and the optimal solution is (  
     

     
  

  
     

     )  (            ). 

Next, suppose that    
      is replaced by zero, that is,   

    

   

 . Since    is basic (      
), then the new cost row, except       is 

obtained by using (2.47) and (2.48) or by multiplying the row of    by 

the net change in   [that is,        ] and adding to the old cost row. 

The new       remains zero and we have the following tableau. 

TABLEAU 2.25 

P11                                      RHS 

   

   

0        1       1/4     1/4    -1/4 

1        0      10/4    1/2     1/2 

1/2 

7 

  0        0     -17/4    3/4    -3/4 3/2 
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Note that the new       and       are now negative, since the new 

      is the most negative , and hence    entering and    departing the 

basis, we have the following tableau. 

TABLEAU 2.26 

 

 

since    is negative, then    entering and    departing the basis, we 

obtain the optimal Tableau 2.27.  

TABLEAU 2.27 

 

 

  

 

2.6.3. Change in the Right-Hand Side  [7],[11]   

If a change in a particular    is made, there is an impact on both the  ̅  

vector and the value of  . Recalling that  ̅  is given by      and 

recalling that    can be found from the tableau by a proper arrangement 

of the    column vectors, we have   

                          ̅ 
    ̅                                                                (2.52) 

Where   

 ̅ 
    ̅   new value of the basic variables in the tableau of interest  

P11                                    RHS 

   

   

0        4        1        1       -1 

1      -10       0       -2        3 

2 

2 

  0       17        0        5      -5 10 

P11                                     RHS 

   

   

1/3     2/3      1       1/3       0 

1/3   -10/3     0      -2/3       1 

8/3 

2/3 

  5/3     1/3      0       5/3       0 40/3 



Chapter2 

63 
 

     inverse of the present basis matrix 

    new set of right-hand side constants 

Also  

                           ̅    
   ̅    

                                                     (2.53) 

The basis inverse     may contain negative elements, and thus there is 

always a possibility that   ̅ may include some negative elements. 

However, because dual feasibility is not effected, this presents no real 

problem because the dual simplex algorithm may be used to regain primal 

feasibility. This is illustrated in the following Example: 

Example 2.10: 

Suppose that the right-hand side of Example 2.9 is replaced by 0
 
 
1. Note 

that       *

 

 

  

 
 

 

 

 

+, and hence     ̅        *

 

 

  

 
 

 

 

 

+ 0
 
 
1  *

  

 
 

 

+ 

    ̅          (  ) *

  

 
 

 

+  
  

 
.  

Then,        , and hence the new solution is infeasible (   
  

 
 ) and 

dual feasible (all        ). Thus, the dual simplex algorithm can be 

employed. 

TABLEAU 2.28 

 

 

 

P11                                       RHS 

   

   

0     1      1/4       1/4       -1/4 

1     0     10/4       1/2       1/2 

-3/4 

5/2 

  0     0      3/4       7/4       1/4 11/4 
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the only negative  ̅  is  ̅      . Thus,    
    is departing variable, 

and    is entering variable. We have tableau 2.29 

TABLEAU 2.29 

P11                                     RHS 

   

   

   0       -4      -1       -1        1 

   1        2        3        1        0 

3 

1 

     1        1        1        2        0 2 

 

The Tableau 2.29 is optimal and the optimal solution is (  
     

     
  

  
     

     )  (           ). 

2.6.4. Change in A (change in the coefficients    ) [7],[11] 

   We now discuss the effect of changing some of the coefficients     of 

 . The changes in the coefficients are relatively easy to handle if the     

associated with a nonbasic variable. However, a change in     associated 

with a basic considerably more involved, and thus, for such a case, we 

shall resort to simply resolving the problem from the beginning. 

    Restricting our attention then to changes in the coefficients of nonbasic 

variables, we note that any change in the    column for a nonbasic 

variable    will directly affect the associated    vector (and, indirectly, 

the value of      ). At any iteration , the    column vector is given by 

      , so we have  

                                                  
       

                                         (2.54) 

Where  

     inverse of the present basis matrix 

  
   new vector of coefficients associated with nonbasic variable    
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   new updated vector corresponding to    in the final simplex 

tableau. 

Now, suppose that the nonbasic column    is modified to   
 . Then, the 

new updated column is  

                                         
       

   

and        

                         
       

      
       

   
    .                     (2.53) 

If   
      , then the old solution is still optimal. Otherwise, the 

primal optimality (dual feasibility) has been lost and the primal simplex 

must be applied. 

Example 2.11:  

Suppose that in Example 2.9,    is changed from 0
 
 
1 to 0

 
 
1. Then  

                             
       

  * 

 

 

  

 
 

 

 

 

 

+ 0
 
 
1  0

 
 
1, and 

                            
       

   
     (  ) 0

 
 
1        . 

Since    
     is negative, we must apply the simplex method to have an 

optimal solution. Note that    is entering and    departing the basis, we 

obtain the optimal solution in tableau 2.31. 

TABLEAU 2.30 

P11                                     RHS 

   

   

0        1        0       1/4    -1/4 

1        0        1       1/2     1/2 

1/2 

7 

  0        0        -3      7/4     1/4 31/2 
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TABLEAU 2.31 

P11                                     RHS 

   

   

0        1        0       1/4    -1/4 

1        0        1       1/2     1/2 

1/2 

7 

  3        0        0     13/4     7/4 73/2 

 

The optimal solution is (  
    

    
    

    
    )  (  

 

 
           ).  

2.6.5. Deletion of a variable [5],[10] 

There are two cases: 

Case (a): Deletion a nonbasic variable    

    Deletion of nonbasic variable is a totally superfluous operation and 

does not affect the feasibility and/or optimality of the current optimal 

solution, but the tableau will lose the column of that variable.  

Case (b): Deletion of basic variable    
    

   Deletion of a basic variable may affect the optimality and a new 

optimum solution may have to be found out. For this, a heavy penalty 

– (  in case of minimization problems) is assigned to the variable 

under consideration and the new optimum solution is obtained by 

applying regular simplex method to the (modified) current optimum 

tableau. Calculate revised values of   and       as in equations (2.50) 

and (2.51), where  (   
    

    ), so we have 

           
     (     )  (      

)     

and 

                  ̅    ̅  (      
) ̅   ;  where   ̅  (    )   
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Example 2.12: 

Consider the optimal tableau 2.6 of Example 2.3. let       
 making 

changes in       and   accordingly, we have following tableau 2.32 

TABLEAU 2.32                 

P7                                            RHS 

   

   

   

  0        0        1          2           -3 

  1        0        0          1           -1 

  0        1        0         -1            2 

10 

8 

4 

    0        0        0                         

 

Since    is most negative, then    entering the basis and    departing it, 

thus we have the following tableau. 

TABLEAU 2.33                 

P7                                          RHS 

   

   

   

   0       3/2        1       1/2       0 

   1       1/2        0       1/2       0 

   0       1/2        0      -1/2       1 

16 

10 

2 

     0              0        2         0 40 

 

Now, since    is nonbasic, so on deleting   . The solution in above 

tableau is optimal, thus the optimal solution of the perturbed problem is 

      and (  
    

    
    

 )  (         ). 

2.6.6. Deletion of a constraint [5],[10] 

There are two cases: 

Case(a): Deletion of inactive constraint 

    An inactive constraint is one that one which corresponding slack or 

surplus variable would be basic and at nonzero level. Suppose we want to 
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delete  th constraint which is inactive. Then delete the row and column of 

the slack/surplus variable corresponding to  th constraint. There will be 

no change in the optimal solution. 

Case(b): Deletion of an active constraint 

    An active constraint is that one which corresponding slack or surplus 

variable would be nonbasic and at zero level. let  th constraint is active 

and we want to delete it. For this, we make this constraint inactive and 

then proceed as in case(a). To make in active its slack/surplus must be 

introduce into basis at positive level. So give slake /surplus high positive 

cost   (   in minimization case) and calculate      
  for this 

slack/surplus variable and enter slack/surplus variable into basis at next 

iteration. This makes the constraint inactive cut the row and column of 

corresponding slack/surplus variable. 

Example 2.13: 

Consider the optimal tableau 2.34 of LPP2 in Example 1.2, is  

TABLEAU 2.34 

P2                                         RHS 

   

   

   

   0         1         1         0         1 

   0         0         1         1         0 

   1         0         0         0         1 

4 

4 

3 

     0         0         2         0         3 11 

 

Note that     , so the second constraint is inactive. So to find the 

optimal solution of the perturbed problem, we delete the column    and 

the second row from tableau 2.34, and there will be no change in   ,   

and      , this shown in Figure 2.6. 
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 TABLEAU 2.35 

P2                                RHS 

   

   

   0         1         1          1 

   1         0         0          1 

4 

3 

     0         0         2          3 11 

 

The solution is optimal (  
    

    
    

    )  (          ). 

 

Figure 2.6 

Example 2.14: 

Consider the LPP2 in Example 1.2, with the optimal tableau 2.36.  

TABLEAU 2.36 

P2                                         RHS 

   

   

   

   0         1         1         0          1 

   0         0         1         1          0 

   1         0         0         0          1 

4 

4 

3 

     0         0         2         2          3 11 

 

F.R. 
𝒙𝟏 

𝒙𝟐 

I 

III 
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The third constraint is an active. To make it inactive, change   (  )  

  
 (  ) and calculate      

  as follows: 

     
    

      
  (       ) [

 
 
 
]        , 

We have the tableau 2.37 

TABLEAU 2.37 

P2                                         RHS 

   

   

   

   0         1         1         0          1 

   0         0         1         1          0 

   1         0         0         0          1 

4 

4 

3 

     0         0         2         2          11 

 

As      
   , so    undergoes change. Applying simplex algorithm 

repeatedly, we have  

TABLEAU 2.38 

P2                                            RHS 

   

   

   

   -1          1         1         0        0 

    0          0         1         1        0 

    1          0         0         0        1 

1 

4 

3 

           0         0         0        0      

 

Note that     , so the third constraint is now inactive. On deleting    

and the third row in the above tableau and also making changes in   and 

     , we have the following tableau. 
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TABLEAU 2.39 

P7                                 RHS 

   

   

  -       0       1        0      

   0      1      1        1 

  

  

                  2         0         

 

Note that the problem is infeasible. Thus the perturbed problem has not 

optimal solution, this shown in Figure 2.7. 

 

 

Figure 2.7 

 

 

 

 

 

 

𝒙𝟏 
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𝒙𝟐 
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3.3.   The simplex algorithm for bounded variables 

3.4.  Finding an initial basic feasible solution to bounded 

variable  
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3.1.  Introduction [7],[8] 

   In most practical problem the variables are usually bounded. A typical 

variable    is bounded from below by    and from above by   , 

respectively, we get the following linear programming with bounded 

variables (BLPP):                                               

                    BLPP : maximize                                                    (3.1a) 

                               subject to 

                                                                                                    (3.1b) 

                                                                                                    (3.1c)  

where  ,   ,  ,       
 ;     

 and   is an     (   ) matrix .  

We will make the following tow assumptions . 

Assumption 1.The coefficient matrix   has full row rank i.e., rank( ) =    

Assumption 2.   is nonnegative vector .   

Of course, it is possible to consider all the bounds as explicit constraint, 

however, this would effectively increase the size of the basis matrix from 

    to (    ) (    ). Because operations   involving the basis 

and basis inverse represent the largest part of the computational storage 

over-head, this is a very inefficient approach. The basic idea of bounded-

variables simplex method is to handle the simplex bounds on the 

variables in an implicit manner (in a manner analogous to the handling of 

the nonnegativity restrictions in the standard simplex method). This 

allows us to maintain a standard     basis matrix, which is generally 

referred to as the working basis.       

    In the standard simplex method, nonbasic variables are those variables 

that are fixed at their lower bound value of zero. However, in the 

bounded-variables simplex method, a nonbasic variable represents a 
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variable that is either fixed at its lower bound or upper bound. That is, the 

vector   will be partitioned into the basic variables    , the nonbasic 

variables at their lower bound    
, and the nonbasic variables at their 

upper bound    
 [7],[8]. 

Definition 3.1: (Basic Feasible Solution) [7],[8],[11]   

The solution  ̅ to the equation (3.1b) is a basic solution of this system if   

can be partitioned into a nonsingular (working) basis matrix   and the 

matrices of nonbasic column   , and   . That is 

                                                        ,         -   

Now, the linear system       can be rewritten to yield  

                                             
      

    

This simplifies to  

                                            
         

                    (3.2) 

Now, setting    
    

and    
    

, we see that (3.2) results in  

                           ̅   ̅               
         

               (3.3) 

The solution        

                             ̅  [ 

  

   

   

]  * 
 ̅
   

   

 +                                                 (3.4) 

is called a basic solution. If, in addition,     ̅     where   (  ) is a 

lower (upper) bound vector of basic variables, then the solution is a basic 

feasible solution, and if     ̅     , then  ̅ is called a nondegenerate 

basic solution, otherwise, it is called a degenerate basic feasible solution 

(For more detail see reference [8]).  
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Improving a Basic Feasible Solution [7],[9],[11]  

Suppose that we have a basis   and suppose that the nonbasic matrix   is 

decomposed into   ,   , that is,   ,         - . Accordingly, the 

vector   is decomposed into ,      
     

- and    is decomposed into 

,  
      

      

 -. Both the basic variables and the objective function can be 

represented in terms of the nonbasic vectors    
 and    

 as follows: 

                
         

                                                (3.5)                                     

      
       

    
    

    
                                                          

        
 (             

         
)     

    
    

    
  

             
      (  

          

 )   
 (  

          

 )   
.         (3.6)                        

Suppose we have current basic feasible solution where    
    

,  

    
    

, and     ̅    , then we have  

   ̅   ̅               
         

                                                  (3.7) 

     ̅    
      (  

          

 )   
 (  

          

 )   
.     (3.8)     

    Letting   ,     denote the index sets of the variables that are nonbasic at 

their lower bounds, upper bounds, respectively, (3.5) and (3.6) can be 

rewritten as follows: 

       
       ∑ (     )       ∑ (     )                              (3.9) 

           ∑ (        )  ∑ (        )                                      (3.10) 

Where              ;                 ;           .                                               
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Now, we try to improving the objective by investigating the possibility of 

modifying the nonbasic variables. For      if        , it would be  

to our benefit to increase    from its current value of   . Similarly, for 

    , if         , it would be to our benefit to decrease    from its 

current value of    . As in the simplex method, we shall modify the value 

of only one nonbasic variable while all other nonbasic variables are fixed. 

The index    of this nonbasic variable is determined as follows: 

            maximum{        (     )         (     )}       (3.11)  

    If this maximum is positive, then let k be the     , then    is 

increased from its current level of    , and if     , then    is decreased  

from its current level of    . If the maximum is nonpositive, then 

        for all      and         for all     . Examining (3.9), 

this indicates that the current solution is optimal. 

3.2. Optimality condition [7],[11] 

 Given a basic feasible solution  ̅  to BLPP in (3.1) 

                              if                   for all                               (3.12) 

and  

                              if                   for all                               (3.13) 

 then the current solution is optimal. 

The idea of the simplex method for BLPP is to move from basic feasible 

solution to basic feasible solution until the optimality conditions (3.12) 

and (3.13) are satisfied. 
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Increasing a Nonbasic Variable    From Its Lower Bound    

Suppose that          and     is currently nonbasic at its lower 

bound    .Then the solution can be improved by increasing   . Let      

be the  increase in    , that is, the new value of    will be given by    

                                                                                                            (3.14)                                                         

Because all other nonbasic variables remain fixed at either their lower or 

upper bounds, substituting into (3.5) and (3.6) yields 

 ̂               
         

          

        ̅                                                                                            (3.15) 

and 

 ̂    
      (  

          

 )   
 (  

          

 )   
  

                 (     )    

             ̅  (     )                                                                     (3.16) 

Maintain feasibility 

To maintain feasibility, the value of ∆k must be chosen to satisfy the 

following conditions. 

                                                                         (3.17) 

     ̂          ̅          

                           
  ̅  

          
,     for all        .      (3.18) 

Because     , it is follows from (3.17) that  

                                                                                                (3.19)  
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Now consider (3.18). If       , then the basic variable    
 is decreasing 

and it follows that we must enforce  

                            
  ̅  

       ; for all   such that                (3.20)                                  

which yields   

                                         
 ̅  

    

   
     ;  for all   such that      .             (3.21)                                

On the other hand, if       , then the basic variable    
 is increasing 

and we must enforce 

                                 ̅  
          

 ;   for all        .                      (3.22)                                

and, thus, 

                                      
   

   ̅  

    
     ;  for all   such that      .              (3.23)                           

Therefore. To determine the largest value of     that will result in a 

feasible solution, we use  

                                            *             +                                   (3.24)                                                  

where 

           {
                                           

   2
 ̅  

    

   
       3           

}                            (3.25) 

            {
                                        

   2
   

   ̅  

    
       3           

}.                (3.26) 

Note that : 

1. If       ( ̅  
    

)    , then the departing variable is    
 

which becomes nonbasic at its lower bound. 
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2. If       (   
  ̅  

) (    ), then    
departs at its upper 

bound. 

3.          , then the entering variable    blokes itself and    

moves from nonbasic at its lower bound to nonbasic at its upper 

bound. In this case, the basis matrix remains the same; the only 

changes are  ̅ and  ̅  according to (3.15) and (3.16). 

4. If these computation result     , then    can be increased 

without bound, consequently, no finite optimal solution exists. 

Decreasing a Nonbasic Variable    From Its Upper Bound         

Now consider the case when       > 0 and    is currently nonbasic at 

its upper bound   . Then decreasing    will improve the objective value. 

Let      be the amount by which    is decreased, that is, the value of 

   will be given by  

                                                        .                                               (3.27) 

Now, as in the previous case, (3.5) and (3.6) yield  

       ̂                
         

      

             ̅                                                                                 (3.28) 

and 

 ̂    
      (           

 )   
 (  

          

 )   
  

              (     )          

          ̂   ̅  (     )                                                                       (3.29) 
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Maintain Feasibility  

To maintain feasibility, the value of    must be chosen to satisfy the 

following conditions: 

                                                                        (4.30) 

     ̂          ̅          

                            
  ̅  

          
 ;    for all        .     (3.31) 

Following the same logic as before, we see that     is defined as follows: 

                                 *             +                                                 (3.32) 

where 

              {
                                        

   2
   

   ̅  

   
       3           

}                      (3.33) 

                 {
                                           

   2
 ̅  

    

    
       3           

}                       (3.34) 

Note that : 

1. If       (   
  ̅  

)     , then the departing variable is    
 , 

which becomes nonbasic at its upper bound. 

2. If       ( ̅  
    

) (    ), then    
 departs at its lower 

bound. 

3. If         , then the entering variable    blocs itself and    

moves from nonbasic at its upper bound to nonbasic at its lower 

bound, and  ̅,  ̅   being updated according to (3.28) and (3.29). 
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4. If these computations result     , then    can be decreased 

without bound, and, consequently, no finite optimal solution exists. 

3.3. The Simplex Algorithm for Bounded Variables  

 (Maximization Problem) [7],[11] 

Initialization step  

Find a starting basic feasible solution. Let    be the basic variables and 

let    
 and    

 be the nonbasic variables at their lower and upper bounds, 

respectively. Form the following  tableau 3.1, where 

        ̅    
      (  

          

 )   
 (  

          

 )   
  

and 

       ̅    ̅               
         

 

                          
                                       

 RHS 

       I                                                            ̅ 

      0         
          

 
            

          

 
             ̅ 

                                              Tableau 3.1 

Algorithm 3:( The Simplex Method for Bounded Variables ) 

STEP1 Check for possible improvement . Example the        value for 

the nonbasic variables. If      0, for all     , and      0, 

for all      , then the current basic feasible solution is optimal; 

stop. Otherwise, select the nonbasic variable    as the entering 

variable with 

                      maximum{        (     )         (     )}. 
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If     is currently at its lower bound (i.e.,      ), then go Step 2. If    

   is currently at its upper bound (i.e.,     ), then go Step 3. 

STEP2 Increase    from its current value of   , let          

a) Compute    using (3.24-3.26). If     , then the problem 

has an unbounded objective value; stop. 

b) If          , then    becomes nonbasic at its upper 

bound. Update the right-hand side of the tableau 

relationships defined by (3.15) and (3.16). The basis does 

not change and the remainder of the tableau remains the 

same. Return to Step 1. 

c) If      , then the departing variable    
 becomes nonbasic 

at its lower bound.  

If      , then the departing variable    
 becomes nonbasic 

at its upper bound. 

The entering variable    is the new basic variable in row   

with value         . Update the remainder of right-hand 

side using the relationships defined by (3.15) and (3.16). 

update the remainder of the tableau by pivoting the usual 

manner on    . Return to Step 1. 

STEP3 Decrease    from its current value of   . Let         . 

a) Compute    using (3.32-3.34). If     , then the problem 

has an unbounded objective value; stop. 

b) If         , then    becomes nonbasic at its lower 

bound. Update the right-hand side of the tableau using the 

relationships defined by (3.28) and (3.29), the basis does not 

change and the remainder of the tableau remains the same. 

Return to Step 1. 
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c) If      , then the departing variable    
 becomes nonbasic 

at its upper bound. 

If      , then the departing variable    
 becomes nonbasic 

at its lower bound. 

The entering variable    is the new basic variable in row r 

with value         . Update the remainder of the right-

hand side using the relationships defined by (3.28) and 

(3.29). Update the remainder of the tableau by pivoting in 

the usual manner on    . Return to Step 1.  

We illustrating this Algorithm by the following example. 

Example 3.1: 

         BLPP1:   maximize    2    3   

                        subject to  

                                                2     23 

                                                         2 

                                               0       7 

                                               2        10 

Adding slack variables    and   , the problem can be recast in the 

following form:                          

                        maximize    2    3                                (3.35) 

                        subject to  

                                             2        23 

                                                         2 

                                              0       7 

                                              2        10 

                                              0        

                                              0         

Notice that the coefficient matrix contains an imbedded identity, and thus 

it is possible that a nice starting basis is available. But, first, we fix   and 
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   at either of their bounds and compute  ̅ . Arbitrarily set      (lower 

bound) and      (lower bound). Then 

            ̅  [
 ̅  

 ̅  

]  0
  

  
1   [

      ( )
        ( )  

]  0
  
 

1   .   

Because  ̅   , then    and    form a convenient starting basic 

variables with  

                        ̅  = [
 ̅  

 ̅  

] = 0
  

  
1 = 0

  
 

1  

If   ̅  had not been nonnegative, then it would have been necessary to 

add artificial variables to form a starting basis. The big-M method could 

then be applied in attempt to drive the artificial variables to zero. [For an 

example of getting started under these conditions, (see Example 3.2)]. 

    The current value of the objective can be computed from (3.35): 

                                     ̅   ( )   ( )     

The initial tableau is depicted in tableau 3.2. Note that the nonbasic 

variables have been labeled to identify that they are presently nonbasic at 

their lower bounds. 

TABLEAU 3.2 

                                                

BP1                           RHS 

   

   
1       2       1         0 

1      -1       0         1 

   19 

    4 

     -2      -3       0         0     6 

 

STEP1 The current solution is clearly not optimal because   ,    are 

nonbasic at their lower  bound and         and        . 
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By using (3.11),    is chosen as the entering variable (i.e.,    ). 

Because    is currently at its lower bound, go Step 2. 

STEP2 Let               

a) Compute    using (3.24-3.26). 

   
 ̅      

   
 

    

 
 

  

 
  

   
     ̅  

    
 

   

 
    

           8  

    minimum {
  

 
 ,  , 8} 8   

b)          8; therefore,    goes from nonbasic at its 

lower bound to nonbasic at its upper bound (i.e.,      

8    ). Update the right-hand side using (3.15) and (3.16). 

          ̂    (     )     (  )8      

         ̂  0
  
 

1       0
  
 

1  (8) 0
 

  
1  0

 
  

1  

The updated tableau is shown in Tableau 3.3. Note that the 

basic variables did not change. Return to Step 1. 

TABLEAU 3.3                   

                                       

BP1                          RHS 

   

   

1       2       1        0 

1      -1       0        1 

3 

12 

    -2      -3       0        0 30 

 

STEP1 Select   as the entering variable because         and    is 

nonbasic at its  lower bound. Go to Step 2.  

STEP2 Let            . 

a) Compute    using (3.24-3.26). 
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                           2
 ̅      

   
 

   

 
   

 ̅      

   
 

    

 
   3     

      

             

      { ,  ,  }    

c)        ; therefore, the departing variable is    
   , 

which becomes nonbasic at its lower bound.    becomes the 

basic variable in row 1. 

                              

                       ̂     (     )      (  )       

                    ̂  
    ( )     

The remainder of tableau is update by performing a standard 

pivot operation on      . Tableau 3.4 summarizes the 

results. Return to Step 1. 

TABLEAU 3.4 

                                                  

BP1                          RHS 

   

   

1       2       1         0 

0      -3      -1        1 

3 

9 

  0       1       2         0 36 

 

STEP1 Select    as the entering variable because         and    is 

nonbasic at its upper bound. Go to Step 3. 

STEP3      let                

a) Compute    using (3.32-3.34) 

   
     ̅  

   
 

   

 
    

   
 ̅      
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           8  

      {2,  , 8}    

c)        ; therefore, the departing variable is    
   ,  

which becomes nonbasic at its Upper bound, and    becomes 

basic in row 1. 

                                 8  

                           ̂     ( )   8  

                          ̂  
   (  )     

The remainder of the tableau is updated by performing a 

standard pivot operation on      . Tableau 3.5 

summarizes the results. Return to Step 1. 

TABLEAU 3.5 

                                                      

BP1                             RHS 

   

   

1/2      1      1/2      0 

3/2      0      1/2      1 

8 

3 

    -1/2      0      3/2      0 38 

 

STEP1 Tableau 3.5 represent the optimal solution, which be summarized 

as follows: (  
 ,   

 ,   
 ,   

 ;   )  ( , 8,  ,  ;  8). 

  Figure 3.1 

  𝒙𝟏 

  𝒙

  𝒙𝟐 

F.R. 
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3.4. Finding an Initial Basic Feasible Solution to Bounded  

Variables [2] 

If no basic feasible solution is conveniently available, we may start the 

lower-upper bound simplex method with artificial variables. This is 

accomplished by: 

(1) Setting all of the original variables to one of their bounds; 

(2) Adjusting the RHS values accordingly; 

(3) Multiplying rows, as necessary, by -1 to get  ̅   , 

(4) Adding artificial columns. 

Here we will use the big-M  method to drive the artificial variables out of 

the basis, there is another method is could two-phase method may be 

employed to drive the artificial variables out of the basis.  

Example 3.2: 

        BLPP2:    maximize    7         

                       subject to 

                                                       

                                                       8 

                                                       

                                                        

                                                        

Now, placing the problem in standard form by adding slack variables 

yields 

                               maximize   7                              (3.36) 

                       subject to   

                                                                                         (3.37) 

                                                          8                                 (3.38)       

                                                                                       (3.39)    
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Suppose we set        (nonbasic at lower bound) and        

(nonbasic at upper bound) in (3.37 – 3.39) yield 

                                                            

                                         8         

                                            ( )      

 

Because     and     are negative, we can multiply the first and third 

constraints by    to force     and     to become positive. Note that    is 

negative (and thus infeasible), whereas in the resulting system,    and    

are both positive and provide part of a starting basis. Therefore, we need 

to add an artificial variable    to the constraint (3.37) after multiplying by 

  . These operations result in the following problem. 

                                 maximize    7                                        (3.40) 

                         subject to 

                                                                                    

                                                          8                                  

                                                                                           

                                                        

                                                         

                                                      

Now, letting        (lower bound),       (upper bound), and       

(lower bound) yield 

                          ̅  *

 ̅  

 ̅  

 ̅  

+  [

  

  

  

]  [
        
8          

      ( ) 
]  [

 
 
  

]     

Because  ̅   , then    ,    , and    form a convenient starting basis 

with 

                     ̅  *

 ̅  

 ̅  

 ̅  

+  [

  

  

  

]  [
 
 
  

] 
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The initial objectives can be computed from (3.40).  

                                         ̅   ( )   ( )   ( )  

                                        ( )  

The initial tableau is shown in Tableau 3.6. 

TABLEAU 3.6 

                                                    

BP2                                                 RHS 

   

      

   

 1      -1       -1        0         0         1 

 1       1        0         1         0         0 

 1      -2        0         0         1         0 

2 

1 

10 

   -7     -9        0          0         0            61     

  

Multiply row 1 by (  ) and add to cost row, except  ̅  and  ̅,  we have 

tableau 3.7.  

TABLEAU 3.7 

                                                            

BP2                                                     RHS 

   

   

   

     1           -1          -1        0       0       1 

     1            1           0         1       0       0 

     1           -2           0         0       1       0 

2 

1 

10 

  (    )  (    )           0       0       0        

 

STEP1 Since    is nonbasic at its lower bound and        ,    is 

nonbasic at its upper bound and        . By using (3.11),    is 

the entering variable. Because    is currently at its lower bound, go 

Step 2. 

STEP2 Let               

a) Compute    using (3.24-3.26) 
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      2
 ̅      

   
   

 ̅      

   
   

 ̅      

   
   3     

      

             

   min{ ,  ,  }       

c)        ; therefore the departing variable is    
   , 

which becomes nonbasic at its lower bound.    becomes the 

basic variable in row 2. 

  ̂  [

  

  

  

]  [
 
 
  

]  ( ) [
 
 
 
]  [

 
 
 
] ,        

   ̂  (     )  (    )( )   8     

 

The remainder of tableau is updating by performing a 

standard pivot operation on      . We have Tableau 3.8. 

TABELAU 3.8 

                                                              

BP2                                                  RHS 

   

   

   

0        -2        -1       -1          0         1 

1         1         0         1          0         0 

0        -3         0       -1          1         0 

1 

2 

9 

     0                             0         0          68   

 

STEP1 Select    as the entering variable because        , and    is 

nonbasic at its upper bound, go Step 3. 

 STEP3      let              . 

a) Compute    using (3.32-3.34) 

   
     ̅  
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    min{ 
 ̅      

    
 

   

 
 

 

 
  

 ̅      

    
 

   

 
  } 

 

 
  

             

    min{ , 
 

 
 ,  } 

 

 
 

c)       
 

 
 , therefore, the departing variable is    

    , 

which becomes nonbasic at its lower bound.    becomes the 

basic variable in row 1. 

     ̂  [

  

  

  

]  [
 
 
 
]  .

 

 
/ [

  
 

  
]  [

 
 

 
  

 

] ,      
  

 
  

    ̂  ( 8   )  (     ).
 

 
/     . 

The remainder tableau is updating by performing a standard 

pivot operation on       , we have Tableau 3.9. 

TABLEAU 3.9  

                                                             

BP2                                                  RHS 

   

   

   

  0         1       1/2      1/2         0      -1/2    

  1         0      -1/2      1/2         0       1/2    

  0         0       3/2      1/2         1      -3/2 

11/2 

5/2 

15/2 

    0         0        1          8          0     -1+   67 

  

Since         for each nonbasic variable at its lower bound. The last 

tableau gives an optimal solution, so the optimal solution is (   
     

  

  
     

     
     )  ( 

 

 
 

  

 
     

  

 
    ). 

 

 



Chapter3 

93 
 

                                              

                                      

                  

                                           Figure 3.2 

 

  𝒙𝟏 

  𝒙𝟐 

F.R. 



  

 

 

 

Chapter (4) 

The Dual Simplex Method and Sensitivity Analysis 

4.1.  Duality 

4.2.  Dual Simplex Method 

4.3.  Sensitivity Analysis 
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4.1. Duality [1],[2],[9] 

Consider the primal linear program with bounded variable in the 

(standard) form: 

          BLPP:     maximize                                                          (4.1a) 

                        subject to  

                                                                                                    (4.1b) 

                                             .                                                    (4.1c) 

Then we can treat individual bounds (4.1c) like constraints and introduce 

dual variables        for the constraints (4.1b),       for the lower 

bound constraints and      for the upper bound constraints in (4.1c). 

The constraints (4.1b) can be dualized by using the 

                              Primal Problem             Dual Problem 

Maximization problem Minimization problem 

 Constraints   Variables     

 

 

 

       

       

       

     

     

   free 

 

 

 

 Variables    Constraints    

 

 

 

     

     

   free 

  
      

  
      

  
      

 

 

 

                       

                              Tableau 4.1: Primal-Dual Transformation Rules 

third transformation rule, the lower bounds by using the first and the 

upper bound by using the second rule, where    are the rows vector of  .  
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This leads to the following dual for BLPP : 

DBLPP : minimize                                                      (4.2a) 

               subject to  

                                                                                         (4.2b) 

                                ,        and    free                                     (4.2c) 

or as the form 

DBLPP :   minimize                                                   (4.3a) 

                  subject to  

                                                                                         (4.3b) 

                                  ,        and    free.                                  (4.3c) 

We call    and     dual slack variables. If the upper bound      

(infinite value) in the primal BLLP then the dual problem is in the form 

DBLPP :  minimize           +∑   
 

*       +                         (4.4a) 

                subject to  

                                  
              if       and             (4.4b) 

                                  
                   if       and             (4.4c) 

                                               0             if                                  (4.4d) 

                                               0             if                                (4.4e) 

Example 4.1: 

        BLPP3:     maximize               

                         subject to   

                                                       

                                                      

                                                      

                                                      

                                                    . 

To formulate this problem in standard form, we must introduce the slack 

variables    and   . These are bounded below by zero and bounded 

above by  , we have 
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                         maximize                       

                         subject to   

                                                          

                                                          

                                                      

                                                      

                                                      

                                                                                                                                

                                                      

             DBP3: minimize                              

                                   subject to    

                                                         

                                                          

                                                                                                                  

                                                                          

                                                                              

                               free,     ,     ,  where       ;            . 

Notation: 

1. Any vector (        )        that satisfies the dual 

constraints (4.4b), (4.4c) is called a dual solution. 

2.  If a dual solution additionally satisfies constraints (4.4d), (4.4e), it 

is called a dual feasible solution. 

3. If no dual feasible solution exists, BLPP is said to be a dual 

infeasible. Otherwise feasible. 

4. If for every M   R there is a dual feasible solution (        )  

such that         +∑   
 

*       +    M, then BLPP is dual 

unbounded. 
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4.2. Dual Simplex Method For Bounded Variables: [8] 

The dual simplex method starts with a dual feasible basis but primal 

infeasible and walks to a terminal basis by moving along adjacent dual 

feasible basis. At each pivot step, this method tries to reduce primal 

infeasibility while retaining dual feasibility. 

   Let     be a known dual feasible basis and    = (   
,    

, ….,    
) be 

the associated basic vector. Suppose  th
 
 basic variable    

 is not within 

its boundes, so we depart this basic variable and enter some nonbasic 

variable say      . 

There are two possibilities. Either    
  is below its lower bound or above 

its upper bound. 

Case(I): If  ̅  
 is below its lower bound. While applying dual simplex 

iteration in this case, our aim is to increase    
 till its attains its lower 

bound. Again there are two possibilities 

(i)                         (ii)        . 

(i) Let       , which is currently nonbasic and at its lower bound with  

       , is selected for replacing    , where     (        ). 

    Let    ̂        ; where    is nonnegative and determined by   

 ̂     ̅  
          

 ;    where      is the pivot element. 

Note that       . Since        and for increasing     
 ,     should be 

negative. 

                  ⇒      =  
      ̅  

    
.                                                             (4.5) 
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When     enters and     departs, then 

        ̂     (     )  
   

   
(     ),            .                         (4.6) 

For maintain optimality,  ̂      ,            and   ̂      ,  

          .  

 For       ,  ̂        if  

                                      
        

   
   

       

   
         .                          (4.7) 

Clearly from (4.6), for       ,   ̂      ,   for        .     

For        ,   ̂        if                         

                                         
        

   
   

       

   
          .                      (4.8) 

Relations (4.7) and (4.8) imply that  

        

   
    {

       

   
              

       

   
             }   (4.9) 

(ii)  Let       , which is currently nonbasic and at its upper bound  

with  (     )     is selected for replacing    .  

Let  ̂        , where      is nonnegative and determined by    

 ̂  
  ̅  

        =    
 , where     is the pivot element. 

Note that       . Since         and for increasing     
,      should be 

positive. 

                             ⇒       
      ̅  

   
                                                           (4.10)  

For maintaining optimality,  ̂      ,           and    ̂      ,  

         . 
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Form (4.6), for       ,  ̂      , for        . 

 For       ,  ̂        if  

                         
        

   
   

       

   
          .                                       (4.11) 

Form (4.6), for        ,  ̂      ,  for      . 

 For      ,  ̂        if 

                        
        

   
   

       

   
          .                                        (4.12) 

Relations (4.11) and (4.12) imply that            

 
        

   
 =    {

       

   
             

       

   
             } (4.13) 

Which is same as (4.9). 

Case(II): if  ̅  
 is above its upper bound. While applying dual simplex 

iteration in this case, our aim is to decrease  ̅  
 till it attains its upper 

bound. Again there are two possibilities  

(i)                  (ii)       . 

(i) Let      , which is currently nonbasic and at its lower bound with 

       , is selected for replacing     , where   (        ). 

     Let  ̂        , where    is nonnegative and determined by     

 ̂  
  ̅  

           
 , where      is the pivot element. 

Note that       . Since        and for decreasing    
,      should be 

positive. 

                     ⇒      =  
 ̅        

   
                                                          (4.14) 
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As in case(I), for maintaining optimality,  ̂       ,        and 

 ̂      ,          .  

Form (4.6),  for      ,   ̂      ,   for      .  

 For       ,  ̂        if  

                                        
        

   
  

       

   
          .                         (4.15) 

Form (4.6),  for       ,  ̂      ,  for      .  

For       ,  ̂         if  

                                       
        

   
   

       

   
           .                        (4.16) 

Relations (4.15) and (4.16) imply that  

        

   
    {

       

   
              

       

   
             } (4.17) 

(ii) Let      , which is currently nonbasic and at its upper bound whit   

(     )     is selected for replacing    . 

Let  ̂        , where     is nonnegative and determined by  

 ̂  
    ̅  

        =    
 , where     is the pivot element.  

Note that       . Since       and for decreasing     
 ,     should be 

negative. 

                              ⇒      =  
 ̅        

    
                                                 (4.18) 

For maintaining optimality,  ̂      ,         and  ̂      , 

         .  

Form (4.6), for       ,  ̂       , for       .  
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For       ,  ̂        if 

                                        
        

   
   

       

   
            .                      (4.19) 

Form (4.6), for         ,  ̂      , for        .  

For        ,  ̂        if 

                                           
        

   
   

       

   
            .                   (4.20) 

Relations (4.19) and (4.20) imply that 

 
        

   
    {

       

   
             

       

   
             } (4.21) 

which is same as (4.17). 

Result 1 (Primal infeasibility criterion) : The original BLPP  is infeasible 

if corresponding to a dual feasible basis  , there exists an   such that 

either 

(I)    
  ̅     

  and                  and                ,   

or  

(II)    
  ̅     

 and                  and                . 

Result 2 (Dual simplex entering criterion) : If some    
 (    

) is chosen 

to leave the basis then the variable     enters the basis if  

        
        

   
    {

       

   
             

       

   
             }, 

and if some    
 (    

) is chosen to leave the basis then the variable    

enters the basis if  

        
        

   
    {

       

   
             

       

   
             }.  
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If any of the criterion is not applicable, then there exists no feasible 

solution to the BLPP (by Result 1). 

Algorithm 4: (The Dual Simplex Method For bounded Variables)  

STEP1 Convert the minimization problem into maximization if it is 

minimization form. Convert the     type inequalities, representing the 

constraints of the given linear programming, if any, into those of    

type. Call this problem as (BLPP). 

STEP2 Introduce slack variables in the constraints of the given problem and 

obtain an initial basic dual feasible solution and consider the 

corresponding starting dual simplex table. 

STEP3 Test the nature of (     ) in the starting simplex table. 

a) If                  j = 1, 2,…, n   and                       

and                       , then an optimal basis feasible 

solution of  ( BLPP ) has been obtained. 

b) If                        and                        and at 

least one basic variable say    
 is not within its bounds, then go to 

step 4(a) or 4(b) accordingly as     
    

 or     
    

. 

STEP4     a)  Select  that  basic variable     
 for  which  |   

    
|  is maximum.  

                     Let    
    be such that |     | is maximum so that    leaves 

the  basis. Go step 5(a). 

b)  Select  that  basic variable     
 for which |   

    
|  is maximum.  

     Let    
    be such that |     | is maximum so that    leaves 

the basis. Go to step 5(b). 
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STEP5      a) Test the nature of      ,          . 

(I) If                       and                      , 

there does not exist any Feasible solution to the given 

problem (by Result 1). 

(II) If at least one     is negative for some       or     is  

positive for some       , compute the replacement 

ratios  

                                {(
       

   
             )  (

       

   
             )} 

                            And choose the maximum of these. The corresponding 

column   vector, say    , then enter the basis.  

      b) Test the nature of     ,          . 

(I) If                 and                  ,there 

does not exist any feasible solution to the given problem 

(by Result 1). 

(II) If at least one    is positive for some      or    is  

negative for some      , compute the replacement 

ratios  

                         {(
       

   
             )  (

       

   
             )} 

and choose the minimum of these.  The corresponding 

column vector,  say   , enter the basis. 

STEP6    Test the new iterated dual simplex table for dual optimality. Repeat the 

method until either an optimum feasible solution has been obtained (in  

a finite number of steps) or there is an indication of nonexistence of a 

primal feasible solution.    
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Remark 1: If upper bounds of all the decision variables are finite then 

primal problem is bounded. If not so, then the dual problem is known 

to be feasible, the primal problem cannot be unbounded, by weak 

duality theorem. The algorithm discussed here will terminate with a 

basis that satisfies either the optimality criterion or primal infeasibility 

criterion.[13]  

4.3. Sensitivity Analysis 

Consider the following problem:  

                     BLPP:      maximize                                                      

                                 subject to  

                                                                                                                

                                                    .                                             

Suppose that the Algorithm3 produces an optimal basis B. we shall 

describe how to make use of the optimality conditions to find a new 

optimal solution, if some of problem data change. In particular, the 

following variations in the problem will be considered.  

       Change in the cost vector    . 

      Change in the right-hand-side vector  . 

      Change in the bounded of the variables. 

      Change in   (change in the coefficient matrix    ). 

      Deletion of a variable. 

      Deletion of a constraint. 

4.3.1. Change in the Cost Vector     

Given an optimal basic feasible solution, suppose that the cost coefficient 

of one (or more) of the variables is changed from     to   ̀. The effect of 

this change on the final tableau will occur in the cost row; that is, 
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optimality (dual feasibility) might be lost. Consider the following two 

cases: 

Case(I):    Is Nonbasic 

In this case,   
  is not affected, and hence,      

    is not changed for 

any j .Thus,       is replaced by       
  . Now we have two 

possibilities: Either        
 or        

. 

Case (a): If        
 , then 

                                           
  (     )  (     

 )                 (4.22) 

and   

  ̅    
 (    )  ∑ ,(     )  (     

 )-       ∑ (     )       

         
 (    )  ∑ (     )   (     

 )           ∑ (     )       

         
 (    )  ∑ (     )   (     

 )       ∑ (     )        

        ̅  (     
 )   .                                                                          (4.23) 

Note that, if       
   , then     must be introduced into the basis and 

the Algorithm3 is continued as usual. Otherwise, the old solution is still 

optimal. 

Case(b): if        
 , then, 

                              
  (     )  (     

 )                                (4.24) 

and 

                             ̅    ̅  (     
 )   .                                               (4.25) 

If       
   , then     must be introduced into the basis. Otherwise, 

the old solution is still optimal with respect to the new problem. 
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Case(II):    Is Basic, Say       
 

Here,    
 is replaced by     

 . Let the new values of     be   
   and    ̅  be   

 ̅ . Then   
     and   ̅  are calculated as follows: 

  
       

        

                         ∑            

       
 
         

                         ∑                            

       
 
         

                        ∑            (   

     
) 

        

                    (     )  (   

     
)      for all j .                          (4.26) 

In particular, for  j = k,         , and      , and hence,   
     

  
    , so  

                      
    

    
          

   

                                  (  
    )  (  

    )  

                                  (  
    )  (  

    )   .                           (4.27) 

That is mean   
    

  is still equal to zero. Therefore, the cost row can be 

updated by adding the net change in the cost of     
     times the 

current  t  row of the final tableau, to the original cost row. Then,   
     

is updated to    
    

   . 

  ̅    
  (    )  ∑ (  

    )       ∑ (  
    )       

     ∑     
 (    )       

 (    )    ∑  (     )       
 
          

        ∑ (   

     
)          ∑ (     )       ∑ (   

     
)           

               
(    )     

(    )      

         ̅  (   

     
)  ̅                                                                      (4.28) 
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Where        ̅  (    )  ∑           ∑          .  

Example 4.2: 

           BLLP4:  maximize   =                   

                          subject to  

                                                              

                                                                  

                                                                                  .  

The initial and optimal tableau are showing in Tableau 4.1 and Tableau 

4.2 respectively. 

TABLEAU 4.1 

                                                                           

BP4                                                   RHS 

   

   

 -1      -2        1        2     -1       1       0 

  1       1         1        1      2        0      1 

3 

4 

    -4       2       -1       -2     -1       0      0 0 

 

TABLEAU 4.2 

                                                                                     

BP4                                                     RHS 

   

   

-1/2    -3/2    3/2     5/2     0       1      1/2    

 1/2     1/2    1/2     1/2      1       0      1/2    

  3/2 

  1/2 

    -7/2    5/2   -1/2    -3/2      0       0      1/2   15/2 

 

Suppose that     -2 is replaced by 1. Since     is nonbasic at its lower 

bound, the      
  (     )  (     

 )  
 

 
    

 

 
 , and all other 

      are unaffected. The new objective value 

                                           ̅    ̅  (     
 )   

  

 
 . 
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we have Tableau 4.3 . 

TABLEAU 4.3 

                                                                              

BP4                                                      RHS 

   

   

-1/2    -3/2    3/2     5/2     0       1      1/2     

 1/2     1/2    1/2     1/2      1       0      1/2    

  3/2 

  1/2 

  -7/2   -1/2   -1/2    -3/2      0       0      1/2   15/2 

 

Since     is nonbasic at its lower bound and  (     )   ,    must be 

entering the basis.    Let            . Compute    by using (3.24-

3.26), we have        , therefore, the departing variable is    
=    , 

which becomes nonbasic at its lower bound.    becomes basic variable in 

row 2. 

 ̂  0
  

  
1  *

 

 
 

 

+  ( ) *
 

 

 
 

 

+  0
 
 
1   ̂  

  

 
 . 

 

 
/  

  

 
 8      .   

The remainder of the tableau is updating by performing a standard pivot 

operation on      
 

 
 . we obtained the Tableau 4.4. 

TABLEAU 4.4 

                                                                          

BP4                                                RHS 

   

   

1      0        3        4       3        1      2 

1      1        1        1       2        0      1 

3 

1 

  -3      0        0       -1       1        0      1 8 

 

The Tableau 4.4 is optimal, and the optimal solution is (  
    

    
    

     
  

  
     

    )  (              8) 
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   Next, suppose that      is replaced by   . Since     is basic ( in 

tableau 4.2), then the new cost row, except       , is obtained by 

multiplying the row of     by the net change in     [that is,      

  ] and adding to the old cost row. The new        remains zero, and 

the new objective value         ̅    ̅  (  
    )    

 
  

 
 (  ) .

 

 
/  

 . Note that the new       is now positive and     nonbasic at its lower 

bound, so    entering the basic. 

TABLEAU 4.5 

                                                                             

BP4                                                   RHS 

   

   

-1/2   -3/2    3/2     5/2      0       1     1/2 

1/2    1/2     1/2     1/2      1       0     1/2 

3/2 

1/2 

    -5       1       -2       -3      0        0      -1 6 

 

    Let                 . 

 Compute     using (3.24-3.26), we have        , so    
    

departing the basis at its lower bound. 

     ̂  0
  

  
1  *

 

 
 

 

+  ( ) *

 

 
 

 

+  0
 
 
1,      = 1, and     ̂     (  )     

The reminder of the Tableau is updating by performing a standard pivot 

operation on     
 

 
. We have optimal Tableau. 
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TABLEAU 4.6 

                                                                         

BP4                                                   RHS 

   

   

 -1      -2        1        2     -1       1       0 

  1       1         1        1      2        0      1 

1 

1 

    -4       2       -1       -2       2       0      0 7 

 

The optimal solution is (  
    

    
    

     
    

    
    )  (               ) 

4.3.2. Change in the Right-Hand Side [8],[11] 

If the right-hand side vector     is replaced by    , then   ̅       

∑           ∑          will be replaced by  

                              ̅ 
        ∑           ∑          .              (4.29) 

The new right-hand side can be calculated without explicitly evaluating 

     . This is evident by noting that               (    ) .  

 Hence  

                            ̅ 
   ̅     (    )                                  (4.30) 

 Since          for all nonbasic variables at its lower bound, and  

         for all nonbasic variables at its upper bound, the only 

possible violation of optimality is that the new vector   ̅ 
  my have some 

entries are not within them bounds. If      ̅ 
     , then the same 

basis remains optimal. Otherwise, the Algoritm4 can be used to find  a 

new optimal solution by restoring primal feasibility. The new value of the 

objective function is 

                                     ̅    ̅    
    (    ).                             (4.31) 
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Example 4.3: 

Suppose that the right-hand-side of  Example 4.2 is replaced by  0
 
 
1. 

Note that,     (    )  *
 

 

 

 
 

 

+ .0
 
 
1  0

 
 
1/  *

 
 

 

 
 

 

+ 0
 

  
1  0

 
  

1 

and hence  ̅ 
   *

 

 
 

 

+  0
 

  
1  *

 

 
  

 

+,  also   ̅  
  

 
 (  ) 0

 
  

1  
  

 
.  

We obtain Tableau 4.7. 

TABLEAU 4.7 

                                                                              

BP4                                                     RHS 

   

   

-1/2    -3/2    3/2     5/2     0       1      1/2    

 1/2     1/2    1/2     1/2      1       0      1/2    

  7/2 

 -1/2 

    -7/2    5/2   -1/2    -3/2      0       0      1/2   13/2 

 

Note that      
 

 
     , this means the new solution is not feasible, 

   departing the basis. Applying Algorithm4, first compute the 

replacement ratios by using the relation (4.9). 

               2
     

   
    

     

   
    

     

   
   3     

     

   
  

and hence     enters the basis, since     nonbasic at its upper bound. 

 Let               , and computing    as follows: 

                               
      ̅  

   
 

  . 
 

 
/
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 Hence               ,  ̂  0
  

  
1  *

 

 

 
 

 

+  ( ) *

 

 
 

 

+  0
 
 
1,  

And                  ̂  
  

 
  . 

 

 
/   . 

We obtain the optimal Tableau 4.8. 

TABLEAU 4.8 

                                                                                

BP4                                                      RHS 

   

   

  -2      -3       0        1      -3       1       -1    

 1/2    1/2     1/2     1/2     1       0       1/2    

    5 

    0 

     -3       3        0       -1       1       0        1       6 

 

The optimal solution is (  
    

    
    

     
    

    
    )  (               ). 

4.3.3. Change in the bounded of variables  

   Given an optimal basic feasible solution, suppose that the lower(upper) 

bound or both of one ( or more ) of the variable is changed where 

    
    

 . In this case the optimality is maintained but feasibility may 

be hampered. Consider the following two cases: 

Case(a):    Is Nonbasic  

In this case there are two possibilities  

(i)       

(ii)       

(i) let       and the lower bound    was changed into   
  , then the new 

values of     and    can be calculate as follows 

           ̅ 
   ̅  (     

 )                                                              (4.32) 
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and 

            ̅   ̅  (     )(     
 )                                                    (4.33) 

If  ̅ 
  feasible, then the new solution is optimal. Otherwise apply 

Algorithm4 and proceed. 

(ii)      , parallel to (i). 

Case (b):    Is Basic say       
  

If the lower bound    of    is replaced by   
  and/or upper bound    of    

is replaced by   
  and if      

          
  , then the solution is 

still feasible and it is optimal. Otherwise applying Algorithm4 and 

proceed. 

Example 4.4:  

Consider the BLPP4 in Example 4.2 with the optimal Tableau 4.9. 

TABLEAU 4.9 

                                                                              

BP4                                                     RHS 

   

   

-1/2    -3/2    3/2     5/2     0       1      1/2    

 1/2     1/2    1/2     1/2      1       0      1/2    

  3/2 

  1/2 

    -7/2    5/2   -1/2    -3/2      0       0      1/2   15/2 

 

Suppose that the lower bound      of    is replaced by   
   , and the 

upper bound      is replaced by   
   . The new value of basic 

variables is    ̅ 
  [ 

 

 
 

 

 ]  (   ) [ 

  

 
 

 

 ]  [ 

 

 
  

 

 ],  
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and the new objective  value of objective function is  

                                  ̅  
  

 
 . 

 

 
 / (  )   

 

 
  

 we obtain new Tableau 4.10.  

TABLEAU 4.10 

                                    
                                           

BP4                                                     RHS 

   

   

-1/2    -3/2    3/2     5/2     0       1      1/2    

 1/2     1/2    1/2     1/2      1       0      1/2    

  9/2 

 -1/2 

  -7/2    5/2   -1/2    -3/2      0       0      1/2     5/2 

   

As    
  

 
     , this means the new solution is not feasible,    

departing the basis. Applying Algorithm4, first compute the replacement 

ratios by using the relation (4.9). 

               2
     

   
    

     

   
    

     

   
   3     

     

   
  

and hence    enters the basis, since    is nonbasic at its upper bound. 

     Let              , compute   . 

        
     ̅  

   
 = 

  (
  

 
)

 

 

 =  , hence     . 

      ̂  0
  

  
1  [

 

 
  

 

]  ( ) [
 

 
 

 

]  0
 

 
1,     ̂  

 

 
 ( ) .

  

 
/   . 

We obtain the optimal Tableau 4.10. 
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TABLEAU 4.11 

                                                                              

BP4                                                    RHS 

   

   

  -2      -3       0        1      -3       1      -1    

   1       1        1        1       2       0       1    

   6 

   0 

      -3       3       0       -1       1        0      1      2 

 

The optimal solution is (  
    

    
    

     
    

    
    )  (               ) 

4.3.4.   Change in the Coefficient Matrix   [3] 

The changes in the coefficients are relatively easy to handle if the     to 

be changed  are associated with a nonbasic variable. However, a change 

in an associated with a basic variable is considerably more involved, and 

thus, for such a case, we shall resolving the problem for the beginning. 

    Let     be the optimal feasible basis for the original problem and  A = 

,               - and     undergoes change, and let       . There are 

two cases: 

Case I :       ,                 Case II :        . 

If        , then       .  

Let      

(

  
 

   

   

 
   

 
   )

  
 

  ⇒    
  

(

  
 

   

   

 
   

 

 
   )

  
 

 

(

  
 

   

   

 
   

 
   )

  
 

 

(

  
 

 
 
 

(   
     )

 
 )

  
 

. 

This means    
        (   

     ),  

so                   
       

      ⃐ (   
     ),  
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where            ( ⃐  ⃐   ⃐   ⃐ 
).  

and   

 ̅ 
         ∑ (    )    

            ∑            

            ∑ (    )  ,    ⃐ (   
     )-           ∑           

            ∑ (    )     ∑       ⃐ (   
     )        

 ̅ 
   ̅   ⃐ (   

     )  .                                                             (4.34) 

 Also   
                     (     )        

and  

  
       

   
      

                
 ,    ⃐ (   

     )-     

                
         

  ⃐ (   
     )  

              (     )    
  ⃐ (   

     )                                          (4.35) 

  ̅    
 (    )  ∑ (  

    )       ∑ (  
    )        

         
 (    )  ∑ (     )           ∑ (     )         

          ,(     )     
  ⃐ (   

     )-    

         ̅    
  ⃐ (   

     )  .                                                        (4.36) 

So change in        affects both optimality as well as feasibility, 

similarly, if        undergoes change parallel results will be obtained   

by replacing    by     . 
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Remark 2:(Solution of the problem when some       undergoes 

change)  

If only optimality is hampered, apply Algorithm3 and solve. If 

only feasibility is hampered, applying Algorithm4 and solve. If 

both optimality as well as feasibility are hampered, then    

which is currently at lower bound, set at its upper bound 

      and calculate 

             ̂     ̅ 
    

   , 

and  

         ̂   ̅  (  
    

 )    

All other relative cost coefficients, basis and     remain 

unaltered during this change. Now    is at its upper bound and 

       . So this solution is optimal but need not be feasible. 

If   ̅  is feasible, then it is optimal basic feasible solution, 

otherwise apply Algorithm4 and solve. Similarly we can solve 

for      . 

Example 4.5: 

Suppose that in Example 4.2,    is changed from 0
  
 

1 to 0
 
 
1. Then, 

      
      ⃐ (   

     )  *
 

 

 
 

 

+  0
 
 
1 ( )  *

 

 
 

 

+    

     
     (     )    

  ⃐ (   
     ) 

                 . 
 

 
/  (  ) 0

 
 
1   
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      ̅ 
   ̅   ⃐ (   

     )   *

 

 
 

 

+  0
 
 
1 ( )( )  *

 
 

 
 

 

+. 

We obtained Tableau 4.12. 

TABLEAU 4.12 

                                                                           

BP4                                                    RHS 

   

   

 5/2    -3/2    3/2     5/2     0       1     1/2    

 1/2     1/2    1/2     1/2      1       0     1/2    

 -3/2 

  1/2 

    -7/2    5/2   -1/2    -3/2      0       0     1/2    15/2 

 

Note that this solution is optimal  (dual feasible), but not feasible, since   

    
 

 
      = 0. Apply Algorithm4, compute the replacement ratios 

by using the relation (4.9). 

         2
     

   
 

   ⁄

  ⁄
 

     

   
 

   ⁄

  ⁄
 

     

   
 

   ⁄

  ⁄
3  

  

 
 

     

   
  . 

That is mean     entering  the basis, and     departing the basis at its 

lower bound. 

 Let               ,    where      
      ̅  

   
 

  . 
 

 
/

 

 

   

          ̅   0
  

  
1  *

 
 

 
 

 

+  *

 

 
 

 

+ ( )  0
 
 
1,                    

 and    ̅  
  

 
 . 

 

 
/ ( )   . 

We obtained the optimal Tableau 4.13.  
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TABLEAU 4.13 

                                                                               

BP4                                                      RHS 

   

   

5/3     -1       1       5/3     0       2/3    1/3 

-1/3      1      0      -1/3      1     -1/3    1/3  

0 

1 

  -8/3     2       0      -3/2      0      1/2    2/3 7 

 

The optimal solution is (  
    

    
    

     
    

    
    )  (               ) 

4.3.5. Deletion of a Variable [5],[13] 

There are two cases: 

Case (a): Deletion a nonbasic variable    

When a nonbasic variable say    is dropped, then basis and       will 

not change, only    and   will undergo change,    will be taken away. 

Let    is not belong to   and it is dropped. There are two possibilities:       

(i)        

(ii)        

(i) If       , then we calculate the new value of    and   as follows: 

    ̅ 
       ∑          ∑                

           ̅                                                                                    (4.37) 

     ̅    
      ∑ (     )       ∑ (     )   (     )         

            (     )                                                                       (4.38) 
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In this case optimality is maintained but feasibility may be hampered. If 

    ̅ 
    , then new solution is optimal as well as feasible. If   ̅ 

  is 

not feasible then we apply Algorithm4 and proceed. 

(i)       , parallel to (i). 

Example 4.6: 

Consider the following problem. 

         BLPP5:  maximize    2    3   

                        subject to  

                                              2     23 

                                                       2 

                                            0       7 

                                            2        10 

the initial and the optimal Tableaus are shown in tableaus 4.14 and 4.15 

respectively . 

TABLEAU 4.14 

                                        

BP5                             RHS 

   

   

    1        2       1       0 

    1       -1       0       1 

19 

4 

     -2       -3       0      0 6 

 

TABLEAU 4.15 

                                               

BP5                             RHS 

   

   

1/2      1      1/2      0 

3/2      0      1/2      1 

8 

3 

   -1/2      0      3/2      0 38 
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Suppose that       be dropped, then 

                    ̅ 
   ̅       0

8
 
1  *

 

 
 

 

+ ( )  *

  

 
  

 

+,  

and                ̅    ̅  (     )    8  .
  

 
/ ( )  

  

 
 . 

Here feasibility is hampered as    
  

 
   . As    is nonbasic so on 

deleting the column    in Tableau 4.15, we have Tableau 4.16. 

TABLEAU 4.16 

                                                        

BP5                              RHS 

   

   

    1        1/2           0       

    0        1/2           1       

23/2 

27/2 

      0        3/2           0       69/2 

 

As    
  

 
   . So it departs at its upper bound and    enters the basis. 

Applying Algorithm4 repeatedly optimality solution of perturbed 

problem is given by 

    Let              ;        where       
 ̅      

   
 

  

 
   

 

 

  ,  

then      ,    
  

 
 

 

 
( )      and     ̅  

  

 
 .

 

 
/ ( )    . 

We have the optimal Tableau 4.17. 
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TABLEAU 4.17 

                                            

BP5                              RHS 

   

   

    2          1           0       

   -1          0           1       

3 

12 

     -3          0           0       30 

 

The optimal solution is (    
    

    
    )  (          ) 

 

Case (b): Deletion of basic variable    
    

Deletion of basic variable may affect the optimality as well as feasibility. 

For deletion of    
, we make    

 a nonbasic, give it a high negative cost 

  (   in minimization case) in optimal Tableau of BLPP and also 

change its bounds    
  ,    

  . The resaved value of   and       

can be calculate by using (4.26) and (4.28), where    

    , we have  

              
     (     )  (      

)     for all                        (4.39) 

and  

                     ̅   ̅  (      
) ̅                                                   (4.40) 

Also, the cost row can be updated by the net change in the cost of 

   
    times the current   row of the final tableau, to the original cost 

row. then,   
     is updated to   

    
   .  

Now,    
 serves as an artificial variable, while making these changes, 

only optimality can hamper. If optimality is hampered, then we applying 

Algorithm3 and find optimal solution. In the optimal tableau check, 

whether    
 is basic or nonbasic. 
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If     
 is nonbasic then it will be at its lower bound and now delete its 

column, no change in objective function value and basic variables. If     
 

is basic and not replaceable the problem will be infeasible (Result 2), 

otherwise replace it and proceed as discussed above. 

Example 4.7: 

Consider the BLPP4 in example 4.2 with the optimal Tableau 4.18. 

TABLEAU 4.18 

                                                                              

BP4                                                      RHS 

   

   

-1/2    -3/2    3/2     5/2     0       1      1/2    

 1/2     1/2    1/2     1/2      1       0      1/2    

  3/2 

  1/2 

    -7/2    5/2   -1/2    -3/2      0       0      1/2   15/2 

 

let      be deleted. Here we consider that     , so it serves as an 

artificial variable. Also      is replaced by   . From Tableau 4.18, 

making changes in       and    accordingly, we have following 

Tableau 4.19. 

TABLEAU 4.19 

                                                                                     

BP4                                                                RHS 

   

   

  -1/2      -3/2       3/2       5/2       0       1     1/2    

   1/2       1/2       1/2        1/2       1       0     1/2    

  3/2 

  1/2 

    
  

 
      

  

 
      

  

 
      

  

 
      0       0     

  

 
  

  

 
   

 

By using the relation (3.11),    undergoes change, applying Algorithm3 

as follows: 

             Let            ,  
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    compute    by using (3.24-3.26)  

          2
 ̅      

   
 

  ⁄

  ⁄
   

 ̅      

   
 

  ⁄

  ⁄
  3     

          

             

      *           +      , then the departing variable is 

   
    which becomes nonbasic at its lower bound. 

         ̂  
  ̅  

        

                
 

 
 .

 

 
/ ( )     

            ̂   ̅  (     )    

                .
  

 
  /  .

  

 
/ ( )   .  

The remainder of the Tableau 4.19 is updating by performing a standard 

pivot operation on     
 

 
 . We obtained the Tableau 4.20. 

TABLEAU 4.20 

                                                           

BP4                                                     RHS 

   

   

  -1      -2       1        2      -1       1       0    

   1       1        1        1       2       0       1    

   1 

   1 

      -4       2      -1       -2              0       0      7 

 

The solution in above Tableau is optimal and    is nonbasic at its lower 

bound, so on deleting   , the optimal solution of the perturbed problem is 

   (       ) and     . 
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4.3.6. Deletion of a constraint [5],[13] 

There are two cases: 

Case(a): Deletion of inactive constraint 

An inactive constraint is that one which is satisfied as strict inequality. So 

its corresponding slack or surplus variable would be basic and at nonzero 

level. Suppose we want to delete the row  th constraint which is inactive. 

Then delete the row and column of the slack/surplus variable 

corresponding to  th constraint. There will be no change in   ,   and 

     . 

Example 4.8: 

Consider the BLPP4 in Example 4.2 with the optimal Tableau 4.21. 

TABLEAU 4.21 

                                                                              

BP4                                                      RHS 

   

   

-1/2    -3/2    3/2     5/2     0       1      1/2    

 1/2     1/2    1/2     1/2      1       0      1/2    

  3/2 

  1/2 

    -7/2    5/2   -1/2    -3/2      0       0      1/2   15/2 

 

As    
 

 
  , so the first constraint is inactive. So to find the optimal 

solution of the perturbed problem, we delete the column    and first row 

from Tableau 4.21 and there will be no change in   ,   and      . 

TABLEAU 4.22 

                                                                      

BP4                                                    RHS 

      1/2     1/2    1/2     1/2     1     1/2  1/2 

    -7/5     5/2   -1/2    -3/2    0     1/2 15/2 
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The optimal solution is (  
    

    
    

     
     

    )  (        
 

 
   

  

 
) 

Case(b): Deletion of an active constraint 

A constraint, which is satisfied as an equation, is called an active 

constraint. Let  th constraint is active and we want to delete it. For this, 

we make this constraint inactive and then proceed as in case(a). To make 

it inactive its slack/surplus must be introduce into basis at positive level

 . so give 

slack/surplus high positive cost   (   in minimization case) and 

calculate      
  for this slack/surplus variable and enter slack/surplus 

variable into basis at next iteration. This makes the constraint inactive, 

cut the row and column of corresponding slack/surplus variable. 

Note:  

let      be the slack variable in  th constraint, which is active in 

optimal Tableau. As        and has no finite upper bound. So, if 

     is nonbasic, then it will be at its lower bound only and when 

      ,          
    

         , so it will always enter 

the basis and make constraint inactive. 

Example 4.9: 

Consider the BLPP4 in example 4.2, with the optimal Tableau 4.23. 

TABLEAU 4.23 

                                                                              

BP4                                                      RHS 

   

   

-1/2    -3/2    3/2     5/2     0       1      1/2    

 1/2     1/2     1/2     1/2     1       0      1/2    

  3/2 

  1/2 

    -7/2    5/2   -1/2    -3/2      0       0      1/2 15/2 
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The second constraint is active. To make it inactive, change      into 

  
    and calculate       

  as follows 

                          
         

  (  ) * 

 

 
 

 

 +    
 

 
      

We have the Tableau 4.24 

TABLEAU 4.24 

                                                                              

BP4                                                      RHS 

   

   

-1/2    -3/2    3/2     5/2     0       1      1/2    

 1/2     1/2     1/2     1/2     1       0      1/2    

  3/2 

  1/2 

    -7/2    5/2   -1/2    -3/2      0       0     
 

 
   15/2 

 

As      
   , so    undergoes change. Applying Algorithm3 

repeatedly. 

    Let            ,  

    Compute     by using (3.24-3.26), 

           2  
 ̅      

   
 

(  )⁄   

  ⁄
   

 ̅      

   
 

(  )  ⁄

  ⁄
   3      

         

            

      *           +      , then the departing variable is 

   
    which becomes nonbasic at its lower bound. 

     ̂  
  ̅  

        

          
 

 
 .

 

 
/ ( )     

     ̂   ̅  (     
 )    

  

 
 .

 

 
  / ( )        
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    TABLEAU 4.25 

                                                                  

BP4                                                                RHS 

   

   

  -1         -2         1          2         -1         1      0    

   1          1          1          1          2         0      1    

   1 

   1 

                                       0      0       

 

Note that     , so second constraint is inactive. On deleting    and 

second row in the above Tableau and also making changes in   and 

     , we have the following Tableau. 

TABLEAU 4.26 

                                                             

BP4                                                    RHS 

      -1       -2       1        2     -1       1    1 

     -4        2      -1       -2     -1       0    7 

 

This Tableau is feasible but not optimal. So applying Algorithm3 

repeatedly. 

    Let            , 

    Compute    by using (3.24-3.26) 

         

         

            

      *           +         , then    moves from nonbasic at 

its lower bound to nonbasic at its upper bound and Tableau 4.26 remains 

the same, but  ̅ and  ̅  are changes. 

    ̂  
  ̅  

        (  )( )       
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     ̂   ̅  (     )    

           (  )( )  8. 

TABLEAU 4.27 

                                                             

BP4                                                    RHS 

      -1       -2       1        2     -1       1    2 

     -4        2      -1       -2     -1       0    8 

 

The Tableau 4.27 is optimal, and the optimal solution is (  
    

    
  

  
     

     
    )  (            8). 
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