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ABSTRACT

When the optimal solution to a bounded linear programming problem
(BLPP) is reached, we want to answer questions concerning changes in
its formulation, the study is called post-optimality analysis (or sensitivity

analysis).

Obviously when the original bounded linear programming problem BLPP
Is modified (making some changes in its formulation) the new problem
could be solved from scratch, if the change are minor, however, this
means we ignore the valuable information gained in solving the original

problem.

Also, Our study included a graphical method to solve the linear
programming problem in the two variables, where we dealt with several

cases shows that the solution to those problem.

And the study shows haw the new optimal solution for the new BLPP can
be found using the primal dual simplex algorithm and the solution of the

original problem.
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ITRODUCTION

The linear programming with bounded variables have been studied by
many authors (Dantzing, 1963), (Turnves,1968), (Duguay, 1972),
(Hussain, 2000). In 1954, Dantzig, developed the method for solving
linear programming with upper bound restrictions on the variables. In
1972, Duguay et al. studied linear programming with relative bounded
variables (BLPP). Later on, various method like revised simplex
algorithm, modified decomposition algorithm have been developed by
various authors (Murty, 1976), (Ho, 1991). This study concerned with
sensitivity analysis for linear programming with bounded variables.
Sensitivity analysis (also called post optimality analysis) is the study of
the behavior of the optimal solution with respect to changes in input
parameters of the original optimization problem.

Sometimes, when we use sensitivity analysis to resolving modified
problem, we get a solution, which is optimal but not feasible. The dual
simplex algorithm is the method of choice when linear programs have to
be reoptimized when data in problem is perturbed.

Our study contains four chapters. In chapter 1, as an introduction
(Primarily), we defined the linear programming problem and how we can
get the solution by graphical method (for two variables case), we define
convex sets and extreme points, and we study some special cases in
graphical method. In chapter 2, we explain algebra of the simplex method
and the simplex Method in Tableau form . And we explain duality and
sensitivity analysis in linear programming problem. In chapter 3, we
defined the linear programming with bounded variables and discuss the
simplex method for bounded variables. In chapter 4, we defined duality in
linear programming problem with bounded variables and discuss many
cases in sensitivity analysis, numerical illustration is given.
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Chapterl

1.1. Introduction:

In this chapter we defined the linear programming problem and how we

can get the solution by graphical method (for two variables case), we

define convex sets and extreme points, and we study some special cases

in graphical method.

1.2. Linear programming problem LPP [4],[7]

A linear programming problem LPP is an optimization (maximum or

minimum) problem in which the objective function is linear in the

unknowns nonnegative variables (1.1) and the constraints consist of linear

equalities or linear inequalities (1.2 — 1.4). The exact form of these

constraints may differ from one problem to another, that a linear program

may be written in the general form :

maximum
Optimize or Z =cyx1 +Ccx+ .. ey,
minimum
Subject to
1% + ApX+ ... Fagx, {S,=,0r =} by

Ay X, + ApoXp+ ... +aynx, {<,=,0r =} b,

A1 X1 + AaXo+ .. Fapmpx, {<,=,0r =} by,

X1, X2y ey Xpn =0, by, by, ..., by, =0
Or written in the form,

maximum
. on .
Optimize or Z=3%"¢cx; j=1,...,n
minimum

Subject to
;‘lzlaijxj {<,=o0r=}b, ; i=1,....m
xi=z0 ; j=1...,n
b;=0 ; i=1,....m

(1.1)

(1.2)
(1.3)

(1.4)
(1.5)

(1.6)

(1.7)
(1.8)
(1.9)
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Where the b;'s, ¢;'s and a;;'s are fixed real constants, and the x;'s are

real numbers to be determined.

Standard linear programming problem [7],[11]
A linear programing is said to be in standard form if all constraints are

equalities and all variables are nonnegative.

An inequality can be easily transformed into an equation. To illustrate,

consider the constraint given by »7_; a;;jx; = b;. This constraint can be
written in an equation form by subtracting the nonnegative surplus or

slack variable x,,,.; (sometimes denoted by s;) leading to

j=1@ij% —Xnyi = b; and xpy; 2 0. (1.10)
Similarly, the constraint }%_; a;;x; < b; is equivalent to

j=1@ij% + Xpy; = by and x4 2 0. (1.11)

We shall consider the standard form of the objective function to be
maximization. This in no way eliminates the consideration of
minimization-type objective because if a function Z is to be minimized,

we can use the simple equivalence:

Minimize Z = —Maximize (—Z)

Example 1.1:
LPP1: minimize Z = 5x; — 3x,
subject to
X, +2x, =4
X1 +3x, <6

X1, X, =0

We can convert this problem into standard form as follows :
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LPP1: maximize Z = —5x; + 3x, + 0x5 + Ox,
subject to
X1 +2x,—x3=4
X1 +3x,+x, =6
X1, X, X3,X4 =0

Notation and Definitions
We may write the standard linear programming problem in the matrix

form :
LPP: maximize Z = c"x (1.12)
subject to
Ax=b (1.13)
x>0 (1.14)

Where A = m X n matrix of the coefficients of the constraints, that is,

a11 a12 aln
_| @ azy v Gan | _

A=| . . . | =(ay,ay,...,a,),
Am1  Amz -+ %mn
a'lj
azi | . .. i .

where a; =| . [ isthe column jinthe matrix A ; j=1,2,...,n

amj

by
b = m-vector of right-hand sides, that is, b = Ibzl
b,

¢’ = n-vector of objective coefficients, that is, ¢’ = (¢, ¢y, ..., Cp)
and the variables are given by the n-vector :
X1
Xo .
x=].|€R" (Euclidean n-space)

Xn
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Definition 1.1 (Feasible and Infeasible Solution)[7]: A solution is
feasible if it satisfies all the constraints (1.13) and the nonnegativity
conditions (1.14) of the linear programming problem, otherwise it is
called Infeasible Solution. The set of all feasible solution is called

feasible region.

Definition 1.2 (Optimal Solution) [7]: A point x* is an optimal solution

to a maximization linear program if x* is a feasible solution and

cx* > cx for all feasible solutions Xx.

1.3. Graphical Solution of Two-Dimensional (Two variables)
linear programs [7]

Prior to presenting the geometrical concepts that form the foundation of

the simplex method, we present a graphical method for solving simple

problems involving only two variables. We now use the following

example to illustrate how we can graphically solve a linear program with

two decision variables.

Example 1.2:
LPP2 : maximize Z = x; + 2x,
subject to
—x1+x, <1 ... (I
X1 — X2 <3 (I
X1 <3 (II1)

First, we must identify the feasible region of the problem. Labeling one
axis x, and the other x, . Note that the nonnegativity restrictions,
X1 ,%, = 0, require that we only consider points, (x;,x,), in the first
quadrant. Next, the region identified by each constraint is plotted.
Considering the first constraint (—x; + x, < 1) initially, we graph the

corresponding linear equation I. (—x; + x, = 1) and, identify the region
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defined by this constraint in the first quadrant. We repeat this process
with the second and third constraints, as showing in Figure 1.1. The set of
all feasible points or solutions called the Feasible Region ( F.R.) is the
quadrilateral ABCD (including its interior), that is, the set of points that

satisfy all of the constraints.

Z =11
B(0,1) o
A(0,0) : | x;
’ 1 DE,0) T Tz=4 T
Figure 1.1

The final step is to determine the point which yield the maximum value
of the objective function Z = x; + 2x, in the feasible region. Let us
begin by examining the level curves (isoprofit lines, isocost lines) of the
objective function. For example, Z = 4 defines the line x; + 2x, = 4.
That is, any point on this line gives an objective function value of Z = 4.
Similarly, Z = 8 defines the line x; + 2x, = 8. These represent parallel
lines because they have the same slope. Thus, the level curves of the
objective function are family of parallel lines. We simply need to identify
the level curve that contacts the feasible region (that is, contains at least
one feasible point) and corresponds to the greatest objective value. Thus,

once we have defined the slope of the parallel lines, we only need to slide
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this line of fixed slope through the set of feasible points in the direction of
improving Z . the direction of improving Z can be quite easily identified
by examining the gradient of the objective function. Recall that the

gradient of the objective function Z = f(xq,x3) = ¢c1x1 + c3x5 1S

6_Z
0x €1
Vf(xl,xz) = azl = (CZ)

axZ

and for our example,

Vf(x1,x5) = (%)

Recall also that the gradient of function at point is normal to the level
curve of the function and always points in the direction of steepest a
scent, that is, the direction of greatest increase of a two-variable linear
program, we only need to sketch the vector corresponding to the gradient
of the objective function. This is illustrated graphically in Figure 1.1. The
level curves of the objective are then normal to this vector. For a
maximization problem, we would slide the level curves in the direction of
the gradient ( direction of increasing Z )until they reach the boundary of
the solution space. Similarly, for a minimization problem, we would slide
the level curves in the direction opposite the gradient ( direction of

decreasing Z ) until they reach the boundary of the solution space.

By using the foregoing technique, the optimal solution to Example 1.2 is
determined be C(x{,x;) = (3,4), as illustrated in Figure 1.1. The

corresponding optimal objective value is computed as

Z*=1(3) + 2(4) = 11.
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1.4. Convex and Polyhedral Sets [3]

In this section we discusses the geometry of the problem by presenting
several definitions that form the foundation of the development that is to

follow:

Definition 1.3 (Hyperplane): A hyperplane (line in two dimensions,
plane in three dimensions) is the set of points x = (x4, ...,x,)T € R,
that satisfy ax = b, where a = (a,, ...,a,,) E R",a# 0 ,and b€ R!?

(i, e., b isascalar).

Definition 1.4 (Halfspace): A closed halfspace corresponding to the
hyperplan ax = b is either of the sets H* = {x:ax> b} or H™ =
{x: ax < b}. When these halfspaces are defined as {x:ax > b} or

{x: ax < b}, they are called open halfspaces.

Note the vector a is the gradient of linear function f(x) = ax, and
thus is normal to the hyperplane and points in the direction of increasing

ax as depicted in Figure 1.2.

\ a
\Z H* = {x: ax = b}

SN

H™ = {x:ax < b} \

{ax = b}

Figure 1.2

Definition 1.5 (Polyhedral Set): A polyhedral set is the intersection of
a finite number of halfspaces. Thus, the constraint set § = {x: Ax < b,
x > 0} is a polyhedral set because it is the intersection of m halfspace

corresponding to Ax < b and n halfspaces corresponding to x > 0.
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Definition 1.6 (convex set): A set § is convex if, for any two points,
say X;,X, € S, then the line segment joining these two points lies entirely
within S§. Mathematically, this means that if x,,x, € S, then ax; +
(1-a)x, €S forall a € [0,1].

The expression x = ax; + (1 — a)x, € S, a € [0,1] defines the line
segment joining x, and x, and is called the convex combination of x;

and x,.

Figurel.3 depicts some examples of convex and nonconvex sets.

X1
= \
X1
X2

(@) (b) (©)

Figure 1.3: (a) and (b) nonconvex sets, (c) convex set.

Theorem 1.1: [7]

The set § = {x: Ax = b, x > 0} is a convex set.
Proof

Let x,, x, €S and let a € [0,1]. To complete the proof, it is sufficient

toshowthat X =ax; + (1 —a)x, €S.

Because x; €S, then Ax; =b and x; =0 (from the definition).
Similarly, Ax, = b and x, = 0. Also a € [0,1] implies that « = 0 and
1—a)=0.
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Now, combining these results yields

a Ax; = ab (1.15)
ax, =0 (1.16)
(1—-a)Ax, =(1—a)b (1.17)
1-a)x, =0 (1.18)

Summing the expressions in (1.15) and (1.17) yields
aAx; +(1—a)Ax, =ab+ (1 —a)b (1.19)
Similarly, summing (1.16) and (1.18), we obtain
ax; + (1 —a)x, =0 (1.20)
Now, rearranging, (1.19) and (1.20) yield, respectively,

Alax; + (1 —a)x,]=[a+ (1 —-a)]lb=D>b (1.21)

and
ax; +(1—a)x, =20 (1.22)

From (1.21) and (1.22), it is clear that AX = b and X = 0, and thus X
€S. O

Definition 1.7 (Extreme point): A point x is an extreme point of a given
convex set S if it can't be written as a strict convex combination of two
other distinct point of §. Geometrically, this means that x is an extreme
point of S if it does not lie on the interior of the line segment joining two
other distinct points of S. Mathematically there does not exist x,, x, € §,

X; # X, ,and a € (0,1) such that x = ax; + (1 — a)x,.

Note that in polyhedral sets, these extreme points occur only at the
intersection of the hyperplanes that form the boundaries of the polyhedral

set.

10
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Definition 1.8 (Adjacent Extreme points): Two distinct extreme points,
say, x; and x, , are adjacent if the line segment joining them is an edge of

the convex set.

1.5. Some Special Cases

1.5.1. Alternative optimal solution [3]

A linear programming problem may have more than one optimal
solution. In this case it will actually have an infinite number of optimal
solutions.

Example 1.3:
Consider the linear programming problem:

LLP3: maximize Z = %xl + %xz
subject to

A
A4,0)

Figure 1.4

11
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The convex set of all feasible solution ( feasible region ) is ABC as
show in Figure 1.4. The extreme points and corresponding values of the
objective function are given in Tableau 1.1, we see that both (3,1) and
(6,0) are optimal solutions to the problem. The line segment joining these
points is

(x1,x,) = a(3,1) + (1 —a)(6,0)
= Ba,a) + (6 — 6a,0)

=(6—-3a,a) fora € [0,1]
For any point (x;, x,) on this line segment we have

1 3 1 3
Z=5x1 +5x2 =5(6—3a)+5(a)

6 3 3
=-—-a+-a=3.
2 2 2

Any point on this segment is an optimal solution.

Extreme Value of
point Z = %xl + %xz

A(4,0) 2

B(3,1) 3

C(6,0) 3
Tableau 1.1

1.5.2. Unbounded objective value [3]

In some linear programming problems, the values of some of the
variables may be increased indefinitely without violating any of the
constraints, meaning that, the feasible solutions is unbounded in at least
one variable. As a result, the objective value may increase (maximization
case) or decrease (minimization case) infinitely. In this case, both the

feasible region and the optimum objective value are unbounded.

12
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Example 1.4:
Consider the linear programming problem.

LPP4: maximize Z = 2x; + x,

subject to
X1 — 2% <2 i )
X1+ X3 26 i (1)
Xy, X, =20

Figure 1.5

The convex set S of all feasible solutions is shown in Figurel.5. Note that
it is unbounded, and that the value of objective function Z be increases as
x; and as x, increases. On the other hand, a linear programming problem
with an unbounded convex set of feasible solutions may have an optimal

solution.
Example 1.5:

Consider the same set of constraints as in Example 1.4. Suppose that the

problem was instead to

LPP5: minimize Z = 2x; + x,
subject to
X1 —2x, <2
X1+ x, 26
X1, X =20

13
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Note that the minimum value of Z is in the point B(0,6), thus it is optimal

point.
1.5.3. Infeasible Solution [3]

It is possible that the feasible region of linear problem (LP) to be empty,
resulting an infeasible LP. Because the optimal to an LP is the best point

in the feasible region, an infeasible LP has no optimal solution.

Example 1.6:

Consider the linear programming problem

LPP6: maximize Z = 3x; + 2x,
subject to
X1 +x, =26
X1 +x, <4
X1,%X; =0

Which is solved in Figure 1.6 below.

A

X2

0 2 4 6

Figure 1.6

Note that the set of feasible solutions is empty. This situation will arise
when conflicting constraints are put on a problem. The assumptions for

the model must be changed to yield a nonempty set of feasible solutions.

14
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1.6. Basic Feasible Solutions and Extreme Points [7],[11]

In this section we present a method for characterizing extreme points
algebraically, and this will enable us to algebraically describe the simplex
method.

Consider a linear system of equations given by

AXx=Db (1.23)
x>0 (1.24)

Where A isagiven m X n matrix,

b1 xl
. . . bz xz n
b isagiven m-vector,ie., b=| " |,andx=| .| ER
bm Xn

Assume that the rank(4) = m < n. That is, assume that A has full row
rank, or, equivalently, the rows of A are linearly independent. Also
assume that the columns of A can be reordered so that A can be written in

partitioned form as

A =[B N] (1.25)
Where

B = m X m nonsingular matrix. Designated the basis matrix

N = m X (n —m) matrix (the matrix of nonbasic columns)

Based on this partitioning of matrix A, the linear system given in (1.26)

can be recast in the form

Bxp + Nxy =b (1.27)

. X :
Where vector x has been partitioned as x = [Xf] ] to correspond precisely

to the partitioning of matrix A. Because B is nonsingular, the inverse of

15
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B exists (using any method to finding the inverse of a matrix), and we

may premultiply both sides of (1.26) by B~ to obtain
B 'Bx; + B"INxy =B b (1.28)
This simplifies to
Xg = B™'b — B"1Nx, (1.29)

Now setting x, = 0, we see that (1.28) results in xz = B~1bh. The

solution
_[XB1 _[B~ b
=l =1","]
Is called a basic solution, with vector xz called the vector of basic

variables, and x,y is called the vector of nonbasic variables.

1

If, in addition, x; = B~'b > 0, then x = [B_Ob] Is called a basic

feasible solution of the system (1.23) and (1.24).

0

basic feasible solution. Otherwise, if at least one element of x5 is zero,

Finally, if xg =B~'b > 0, then x = [B is called a nondegenerate

then x is called a degenerate basic feasible solution.

Example 1.7:

Consider the polyhedral set defined by the following inequalities (as

illustrated in Figure 1.7).

X1 + Xy <4 . (I)
Xy <2 i, (1)
X1, Xy = 0.

By introducing the slack variables x5 and x, , we obtain

x1+x2 +X3:4
Xy + x4 =2
X1, X9, X3, X4 =0

16
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X2
BO2| 2.2)
A(0,0) o

] |2 |
Figure 1.7

Note that, the constraint matrix A = [aq, a,, a3, a,s] = [(1) i (1) (1)]

b = [421] and x = xi . Because 4 is a 2 X 4 matrix, each basic solution

will have m = 2, basic variables and n —m = 2 nonbasic variables.
From the foregoing definition, basic feasible solutions correspond to
finding 2 x 2 basis B with nonnegative B~1b. The following are the

possible ways of extracting B out of A.

1 1
1. B=[a1,a2]=[0 1

xo =[] =870 =y T1LI=[] w=[a]=[0
2. B=a;,a,] = (1) (1)]

N B S R
3. B=|a,a;] = 1 (1)]

e BT LA B B B |

7
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4 B=laga)=["

e N e
o Bl [ O

T O [ P

Note that the points corresponding to 1, 2, 3 and 5 are nondegenerate
basic feasible solutions because xz > 0. The point obtained in 4 is a basic
solution, but it not feasible because it violates the nonnegativity

restrictions. In other words, we have four basic feasible solutions,

ol el B ol

X4
These points (basic feasible solutions) belong to R*, projected in R? that

namely:

S o DN
N OO B
oNN O
N A O O

Is, in the (x4, x,) space give rise to the four points:

ol ol L] e o]

These four points are illustrated in Figure (1.7). Note that these points are

precisely the extreme points of the feasible region.

In this example, the possible number of basic feasible solutions is
bounded by number of ways of extracting two columns out of four
columns to form the basis. Therefore the number of basic feasible

solutions is less than or equal to
4\ 4 _
(2) 212

18
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Out of these six possibilities, one point violates the nonnegativity of

B~1b. Furthermore, a, and a5 could not have been used to form a basis,

1 1
0 0

does not qualify as a basis. This leaves four basic feasible solution. In

sincea; = az = [(1)] are linearly dependent, and hence the matrix [

general, the number of basic feasible solutions is less than or equal to

(rrrll) = m!(:im)! '

Theorem 1.2: [3]
The problem determined by

LPP: maximize Z = cx

subject to
Ax=b
x>0

Where 4 is an n X m matrix, ¢ € R", x € R™, and b € R™ has a finite

number of basic feasible solutions.
Poof

The number of basic solutions to the problem is not more than

(rTrlz) - m!(:im)! - (n fm)

Because there are n — m choice for which of the n variables will be set to

zero. The number of basic feasible solutions may be smaller than the
number of basic solutions, since not all basic solutions need to be

feasible.

19
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2.1. Introduction

In this chapter, we present a systematic method for iteratively moving
from one extreme point to an adjacent extreme point in the search for an
optimal solution. The method is first discussed algebraically, the tabular
formats method is next, and we will discuss the problem of finding an
initial basic feasible solution to a linear programming problem, also we
study the duality of LPP and we develop a variant of the simplex method
known as the dual simplex method and discuss how to deal with changes
that are made to a linear program after it has been solved.

2.2. Algebra of The Simplex Method [7],[11],[12]

Consider the standard linear programming problem:
LPP: maximize Z =c"x
subject to
Ax=b

x>0

Where A is an m X n matrix with rank m. Recall that a basic feasible
solution to this problem corresponds to an extreme point of the feasible
region and is characterized mathematically by partitioning matrix A into
a nonsingular basis matrix B and the matrix of nonbasic columns N. That

IS
A=[BN] : x= [;‘5] 2.1)

The linear system Ax = b can be rewritten to yield
Bxp + Nxy=b (2.2)
This simplifies to

Xgp + B"INxy =B~ 1b (2.3)
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and solving for x5 yields
XB == B_lb - B_lNXN (24)
Now setting xy = 0, we see that (2.4) results in x; = B~1b. The solution
_[XB1_[B'b
=l =1""]
Is called a basic solution, with vector x; called the vector of basic

variables, and x, is called the vector of nonbasic variables. If, in
addition, x; = B~'b > 0, then

_[B71b
X= [ 0 ]
is called a basic feasible solution. Otherwise it is called basic solution but

not feasible (infeasible).

Now, consider the objective function Z = ¢Tx . partitioning the cost

vector ¢’ into basic and nonbasic components (i, e. , ¢ = [} c}], the

objective function can be recast as

z=[ch k1]’

Z = chxp + Xy (2.5)
Now, substituting the expression for xz defined in (2.4) into (2.5) yields

Z=cL(B™'b — B 'Nxy) + cixy (2.6)
Which can be rewritten as

Z=cLB'b— (ckB™N — c))xy (2.7)

Now setting x, = 0, we see that (2.7) results in Z = c;B~1b, which is
the objective value corresponding to the current basic feasible solution.
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Therefore, the current extreme point solution can be represented in

canonical form as shown in (2.4) and (2.7) respectively.
Xg = B™'b — B"'Nxy
Z=cLB7 b — (ckB™IN — ch)xy
with the current basic feasible solution given as

Z=cLB b (2.8)

il

= [l= [0 e
Letting / denote the index set of the nonbasic variables, observe that
(2.7) and (2.4) can be rewritten as follows:
Z=cLB'b— (ctB™'N — c)xy
= cpB7'b — (X  cpB™? a; — Y jej )X
= cgB7'b — Y c;(ckB™t aj — ¢j)x; (2.10)
=cgB'b — Y c;(z — ¢)) x;
=Z—Ye(zi — ) x; (2.11)
where z; = ch‘laj for each nonbasic variable.
Xz = B™'b — B"'Nx,
=B7'b - Y c;(B~" a))x;
=b—Yjc; (2.12)

Where b = B~ 1b , and a;j =B 'a;.
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2.2.1. Checking for Optimality [7]

The first question that should be answered is: when will such an
exchange improve the objective function? This can be answered in a
rather straightforward manner by examining the canonical representation
of Z in (2.10). In the current basic feasible solution, x, = 0, that is, the
nonbasic variables are at their lower bound and can only be increased
from their current value of zero. Observe that the coefficient

—(cBB‘laj — ¢;) of x; represents the rate of change of Z with respect to

the non-basic variable X; . That is,

0Z __  Tp-1
a—xj ——(CBB aj — C])

Thus, if 0Z/0x; > 0, then increaseing the nonbasic variable x; will
increase Z. The quantity (cEB‘laj — ¢j) is sometimes referred to as
reduced cost and for convenience is usually denoted by (z; — ¢;). We can

thus state the optimality conditions for a maximization linear

programming problem.

Optimality conditions (maximization problem). The basic feasible

solution represented by (2.9) will be optimal to (LPP) if

0z _ .
a—xj:—(zj — C]) = —(CEB 1aj — C]) < 0, for a"] E]

Or equivalently, if

Zj - Cj = CEB_laj — Cj > O, for all ] E]

Note that, if z; —¢; > 0, forall j € J, then the current basic solution will
be the unique optimal solution. However, if some nonbasic variable x,
has z; — ¢; = 0, then there exist an alternative optimal solutions. For

more detail (see reference [9] ).
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2.2.2. Determining the Entering and Departing Variables

Suppose there exist some nonbasic variable x; with z, — ¢, < 0, then
the objective function can be improved (increased) by increasing x; from
its current value of zero, we choose to increase the nonbasic variable with

the most negative z; — ¢;. The selected variable x; is called the entering

variable. That is x;, enter the basis vector.

Now if there such that nonbasic variable x; which increasing from its
current value of zero, while holding all other nonbasic variables at zero,

then the basic variables will change according to the relationship

Xp = b — a,x, (2.13)
we can write as
xBl _51 Ak
x5, = E-r |« X, (2.14)
_me —Em LA

If a; < 0, then xg,, increases as x; increase, and so xg, continues to be
nonnegative. If a;, > 0, then xp will decreases as x;, increases. In order

to satisfy nonnegative, x, is increased until the first point at which some

basic variable xp_ drops to zero. Examining equation (2.14), we obtain.

.. iy
_ minimum i
Xk = 1<ism {aik. 477 > 0}

This process is termed the minimum ratio test, the basic variable xp_
which drops to zero as the nonbasic variable x;, increasing is called the

departing variable.
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Note that:

1. If there exist more than one index r implies to the same value of
the minimum ratio test, then the new solution is degenerate (see
reference [11]).

2. If there is no any positive component «;;,, that is a;;, < 0 for all i.
In this case, the optimal objective value is unbounded (Explaining

in Example 2.2).

Example 2.1:
LPP7: maximize Z = 4x, + 3x,
subject to
—x1+x, <6
2x1 +x, <20
X1 +2x, <12
X1, %Xy =0

The problem is illustrated Graphically in Figure 2.1. After introducing the

slack variable x5, x, and x5, we get the following system of constraints:

—X1+Xxy,+x3 =06
2x1 +x, + x4, =20
X1+ xy +x5 =12
X1, X3, X3, X4, X5 = 0.

The data for this problem can be summarize as follows.

-1 1 1 0 0 6
A = [a1; a21a3l a4-; aS] = 2 1 0 1 0 ’ b = !20] ) and
1 1 0 0 1 12

¢’ = (4,3,0,0,0).

Iteration 1

Since b > 0, then we can choose an initial basis as
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1 0 0
B=[asa4as]=[0 1 0
0 0 1

. B=I1=B71

-1 1
and N =[aq,a,] = l 2 1].
1 1

Solving the system xz = B™'b — B 1Nx, leadsto

xB1 X3 6 -1 1 X,
XB — sz = |Xg| = [20] — 2 1 [X ]
2

XB; Xs 12 1 1

X 0 . : : :
put xy = [xﬂ = [0] we obtain the basic feasible solution

o = iii]= 2050, 3 =[] =[7
B Xe 12 PN T 0

and the objective value of this solution is zero, where

6
Z = ctxz = (0,0,0) [20] = 0.
12

To see if we can improve the solution, calculate z; — ¢; and z, — ¢, as

follows
1 0 0][-1
Z1—C = c,T;B‘lal —c;=(000)]0 1 0 2] —4=—-4
0 0 1L 1
1 0 0][1
Z, — ¢, = ckB la, —c, = (0,0,00[0 1 0 1] —3=-3
0 0 1fl11

since the most negative z; — ¢; is z; — ¢; = —4, thus x; is the entering
variable. The current solution is not optimal. Determining the departing

variable xg_ by minimum ratio test as follows

minimum {£=@: 10,£=%: 12}: 10 = 2z

az1 2 azq azq
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Therefore, the index r = 2, that is, xg, = x, leaves the basis, obviously

noting that

xBl x3 6 _1
XB; X5 12 1

and x, drops to zero when x; = 10.
Iteration 2

The variable x; enters the basis and x, leaves the basis

1 = 0
1 -1 0 i
B=[a3aqas]=|0 2 o0f B '=|0 > 01,
0O 1 1 [0 1 1J
2
0 1
and N=[a4,a2]= 1 1
0 1

Now, Xz can be determined by solving xz; = B~1b

1

xBl x3
Xp = [szl = |:x1] =10
XB3 X5 0

16
The objective value Z = ckxpz = c¢kb = (0,4,0) llO] = 40.
2

NIRrN|R

Now, calculate z, — c,and z, — c, as follows

Zy —Cy = CgB_laZ —Cy = (0,4‘,0)

N[RN[R DNIW
I
w
Il
I
—_

: (1)] E(z)] ) Fzg] x= [l =|

0
ol
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NIRN]|R

Z,—Cy = 5B la, —c, = (0,4,0)[ L 0=2.
-]
2

Because z, — ¢, < 0, thus x, entering the basis. The current solution is

not optimal.
Determining the departing variable x .

.. b, 16 b, 10  bs 2 b5
minimum {—%+=—", Z2=— 2 =_"1-
a2 3/2 (2%} 1/2 a3 1/2

Therefore, the index r = 3, that is, xg_ = x5 leaves the basis.

Iteration 3

The variable x, enters the basis and x< leaves the basis

1 -1 1 1 2 -3
B=[a3,a1,a2]=[0 2 1y, B‘1=[O 1 —1],
0 1 1 0o -1 2
0 O
and N = [ay,az] = [1 0]
0 1

Now, we find xz = B~1b

B -

v =Ll = [ = Lol
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- 10
The objective value Z = cLb = (0,4,3) [ 8 ] = 44,
4

Now, calculate z, — ¢, and zz — c5 as follows

R

Zy — Cy = CEB_la‘l_ —Cy = (0,4,3) 1 —-0=1
[— 1.
31

Zy — Cg = CEB_las — Cg = (0,4,3) -1 - 0=2.
[ 2|

Since z;— ¢ =20, for all nonbasic variable. Therefore the current basic
feasible solution is optimal. The optimal solution given by

(1, x5,x3,x5,x5) = (8,4,10,0,0), with the objective value 44.

i sz:
Sal |

- 1P E(10.0)

Figure 2.1
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Example 2.2:
(unboundedness)

LPP8: maximize Z = 4x; + x,
subject to
2x; —3x, <12
—4x;+ x, <8
xX1,%X; =0

The problem illustrated Graphically in Figure 2.2, has an unbounded

optimal objective value. After introducing the slack variable x5 and x,,

-3 1 0

1 0 1]. Now, consider the

we get the constraint matrix A = [_i

1 0

0 1) and

basic feasible solution whose basis B=[a3,a4]=[

N =[a;,a,] = [_24 _13] . b= [182]’ B! = [(1) (1) , ¢k =(0,0) ,

ey = (41D
Xp = [iﬂ =B7'b = [é (1)] [182] - [182]’ XN = [i;] - [8]
7 =¢l%, = (0,0) [182] —0
Calculate z, — ¢, and z, — ¢, as follows, noting c5B~* = (0,0);
z,— ¢ =cEBta; — ¢, = —c; = —4,

Zy — Cy = CEB_laZ —Cy = —C = —-1.

So, we increase x;, which has the most negative z; — c;, thus x; enter the

basis. Note that x; = B~'b — [B"'a4]x; , and hence,

% =[] = [g] =[]
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The maximum value of x; is 6, at which instant x5 drops to zero. The
_[2 0 0]
1 1

new basis is B=[a;,a,] = a 1], with the inverse B! = [
and N = [a3,a;] = [(1) _13] ¢l = (4,0),and ¢} = (0,1) so we have
Xp = [iﬂ =B7'b = E (1)] [182] - [362]’ XN = [;cj] = [8] Z =32

Now, we calculate z, — ¢, and z; — c5 as follows:

DN NIR

Zy — Cy = CgB_laz —C = (2, 0) [_f] —1= _7,

Z3 — C3 == ch_lag - C3 = (2, 0) [é] —0=2.

Note that z, — ¢, <0 and a, = B la, = E (1)] [_13] = [__735] < [8]

Therefore, the optimal objective value is unbounded. In this case, if x, is

increased and x5 is kept zero, we get the following solution:

Xg = B7'b — [B7la,]x,

-3 6 + 2
[iﬂ = [362] - [_25] X2 = [32++ 25;22]’

With x, > 0, and x; = 0. Note that this solution is feasible for all

x5 = 0. In particular,
3
2x; — 3%, + X3 = 2(6+5x2) —3x, + x5 = 12,
and

_4x1+x2+X4=_4‘(6+§x2)+x2+(32+5x2)=8
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Furthermore, Z = 24 + 7x, , which approaches oo as x, approaches co.

Thais means the optimal objective value is unbounded.

Figure 2.2

2.3. The Simplex Method in Tableau Form [7],[11]
Consider the canonical form represented in (2.7), and (2.4):
Z=ciB'b— (kBN — c})xy (2.15)
Xz = B™'b — B"INx, (2.16)
Now, rearrange terms as follows:
Z+ (cEB™IN — c¥)xy = ckB~'b (2.17)
X + B"'Nxy =B~ 1b (2.18)

The simplex tableau is simply a table used to store the coefficients of the
algebraic representation in (2.17) and (2.18). the last row of the tableau
consists of the coefficients in the objective equations (2.17), it is called

cost row, and the body of the tableau (rows 1 to m) records the
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coefficient of the constraint equations (2.18). the general form is as show
in Tableau 2.1.

Z Xp Xy RHS
xg | O I BN B~'b | (rows1tom)
Z 1 0 cEBIN — ¢ | cLB~1b | (costrow)
Tableau 2.1

We now summarize the steps of the simplex algorithm as applied to the

simplex tableau. The algorithmic steps follow directly from the preceding

algebraic analysis.

Algorithm 1: ( The simplex method )

STEP1  Check for possible improvement. Examine the z; — ¢; values in the
cost row of the simplex tableau. If z; —c; = 0, then the current
basic feasible solution is optimal; stop. If , however, any z; — ¢; <

0, go to Step 2.

STEP2  Check for unboundedness. If, for any z; —¢; <0, there is no
positive element in the associated a; vector (i.e., a; < 0), then the
problem has an unbounded objective value. Otherwise finite
improvement in the objective is possible and we go to Step 3.

STEP3  Determine the entering variable. Select as the entering variable, the
nonbasic variable with the most negative. Designate this variable as
x). Ties in the selection of x;, may be broken arbitrary. The column
associated with x;, is called the pivot column. Go to Step 4.

STEP4 Determine the departing variable. Use the minimum ratio test to
determine the departing basic variable. That is, let

br _ minimumy bi | g > O).

— 1<ism .
Ark Aik
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Row r is called the pivot row, a, is called the pivot element, and
the basic variable, xz_ ; associated with row r is the departing

variable. Go to Step 5.

Z xg -+ Xg - Xp Xj X RHS
Xg, | 0 | 1 0 0 aqj X1k b,
g, | 0| 0 o 1 .. 0|~ @ T b,
XB,, 0 0 0 1 Amj Fmk _m
Z| 1|0 0 0| 2z —¢ = Zx—Ck | cgh

Tableau 2.2: Before Pivoting

STEP5  Pivot and establish a new tableau .

a) The entering variable x, is the new basic variable in row r.

b) Use elementary row operations on the old tableau so that the
column associated with x;, in the new tableau consist of all zero
elements except for a 1 at the pivot position «a,, (see Tables 2.2
and 2.3.)

¢) Returnto Step 1.

Xg, Xg, Xg,, Xj Xk RHS
_ Qg -
xp, | 1 _aerkk 0 “1k_%“1k - 0 bl_a_rk "
Xp 0 - 0 i) 1 E
‘ trk “rk rk
x5 | O ‘;‘;Zk N amj_ZTTi e 0 Bm—amkl;r
Ark
2 lo Zh—ck 0 (z) ;}_Cj) - 0 Cgb i
Grk o (Zx — ¢x) —(zj — Cj)a_:k

Tableau 2.3: After Pivoting
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To illustrate this algorithm, we solve the LPP7 in example 2.1.

Example 2.3:
LPP7: maximize Z = 4x; + 3x,
subject to
X1 +x, <6
2x1 +x, < 20
X1+ x, <12
X1, %X =0

Introduce the slack variables x5, x, and xg. The problem because the
following
maximize Z = 4x; + 3x, + Ox3 + Ox, + Oxg
subject to
—X1 + X, +x3 =6
2X1+X2 +x4 - 20
x1 + xz + XS - 12

x=0,j=12.,5
We can choose the initial basis as B = [a3,a4,a5] =15, and N =

[ a4, a, ],we indeed have b = B~1b > 0. This gives the following initial

tableau:

Iteration 1

TABLEAU 2.4
P7 | x; X, X3 X, xg | RHS
X3 -1 1 1 0 0 6
X4 2 1 0 1 0 20
Xs 1 1 0 0 1 12
Z -4 -3 0 0 0 0

STEP1 The initial tableau appears in Tableau 2.4. Because there are

zj — ¢; < 0 (both z; — ¢; < 0and z, — ¢, < 0), we go to step 2.
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STEP2

STEP3

STEP4

STEP5S

There are positive elements in a; associated with z; —¢; < 0.

Thus, finite improvement the objective Z is possible and we go to
Step 3.

The most negative z; —c; = —4. Thus k=1 and x; is the
entering variable. Go to Step 4.

We now examine the ratios b; /a;;, where a;; > 0

. b 20 b 12
mmlmum{—2 =—=10,==—= 12} =10
apq 2 0!31 1

Thus, r = 2, and the departing variable is xp, = x,4.

a) Because x; is the entering variable and x, is the departing
variable, x, is replaces x, in x5 as the basic variable in row 2.

b) Row r = 2 of the new tableau is obtained by dividing row r of
the preceding tableau by a,, = 2 (the pivot element at the
intersection of entering variable column and departing variable
row). That is, the new objective row is obtained by multiplying
new pivot row 2 by 4 and adding it to the old objective row.
The new row 1 is obtained by adding the new row 2 to old row
1. Finally, the new row 3 is obtained by multiplying the pivot
row by —1 and adding to old row 3. The completed second

tableau is shown in Tableau 2.5, this corresponding to

1 L o0

1 —1 0 i
B=020,B‘1=050
0o 1 1 0 -1 1
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TABLEAU 2.5
P7 | x; X, X3 X4 x5 | RHS
X3 0O 32 1 12 0 16
X4 1 12 0 12 0 10
Xs o 12 o0 -1/2 1 2
Z 0 -1 0 2 0 40

) Return to Step 1.

Iteration 2
STEP1 Because z, — ¢, < 0, we go to Step 2.
STEP2 There are positive elements in a,. Thus the finite improvement in
the objective is possible and go to Step 3.
STEP3  The most negative (and only negative) z; —¢; is z; —c; = —1.
Thus, k = 2 and x, is the entering variable. Go to Step 4.
STEP4  The ratios b;/a;,, where a;, > 0, are
mimum (Bl =16 B2 _10 B _ 2}, B
mintmum {“12 o 3/2’ (2%} o 1/2’ a32 - 1/2} - 4 o a3p
Thus r = 3, and the departing variable is xg, = x5 .
STEP5

(a) Because x, is the entering variable and xg is the departing
variable, x, replaces xc in x5 as the basic variable in row 3.
(b) Row r = 3 of the new table is obtained by dividing row r of the

proceeding tableau by a,, = % Use elementary row operation

on the new tableau, we obtained the third tableau as shown in

Tableau 2.6. As before, the basis inverse can be identified as

1 -1 1 1 2 =3
B=|0 2 1 ,B‘1=[0 1 —1]
0 -1 1 0 -1 2
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TABLEAU 2.6
P7 | x; X, X3 X4 xs | RHS
X3 0 0 1 2 -3 10
X4 1 0 0 1 -1 8
Xy 0 1 0 -1 2 4
Z 0 0 0 1 2 44

(c) Return to Step 1.

Because all z; — ¢; = 0, the solution given in Tableau 2.6 is optimal. In
fact, because z; — ¢; > 0 for the nonbasic variables x, and xs, then this
tableau represents the unique optimal solution. Thus the optimal solution
IS (x1,x5,x3,%x4,xs; Z*) = (8,4,10,0,0; 44).

2.4. The Big-M Method [6],[7],[11]

Introduction to the Big-M method

In each of the previous examples, a starting basic feasible solution was
quite apparent. For example, if we look at the initial tableau of Example
2.3 (Tableau 2.4) we see that there is an imbedded m x m identity matrix
I, and the starting basic variables are readily identified by letting B = I.
And because the right-hand side (RHS) vector b is nonnegative, the
resulting solution is clearly feasible because xz =B b =Ib=b > 0.
However, such a starting basic feasible solution is not always available.

For example, consider the following problem:

Example 2.4:
LPP8: maximize Z = —2x; + 5x, — x5 (2.19)
subject to

—X;1+x,+x3=5
X1 +x,—x3=1

5x1 +3x, —x3 <9
X1,X2,%X3 =0
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Now, converting the problem to standard equality form by adding the

appropriate slack/surplus variables yields

maximize Z = —2x; + 5x, — x5

subject to
—X1+ X, +X3—Xx4 =5 (2.20)
X1+ x,—x3=1 (2.21)
5x; +3x, —x3 + x5 =9 (2.22)

x; = 0 forall j

Therefore, the coefficient matrix is given by

A= 11 -1 0 0

—111—10]
5 3 -1 01

Observe the matrix A does not contain the identity as a submatrix. In fact,
A contains only the second column of the identity matrix. Thus, in its
present state, we cannot use B =1 as a convenient starting basis.
Artificial variable techniques were developed to find a starting basis
feasible solution in this all-too-common situation when a nice starting
basis is not available. Here , we present one of the artificial-variable

techniques, the Big-M method.

The general approach of the big-M method can be described as follows.
First, we create an identity submatrix by adding the necessary artificial
variables to the original constraints. For example 2.4 it would be
necessary to add two artificial variables, say, x, and x,, to constraints
(2.20) and (2.21), respectively. This would result in the following system
of constraints.

—X1+ X, + X3 =X, +x5=5

X1 +xy—x3+x,=1
5x;1 + 3%, —x3+x5=9

x; =0 forallj
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Thus, the coefficient matrix becomes

-1 1 1 -1 0 1 O
A =lay,a,a3,a4,05,06,a;]=|1 1 -1 0 0 0 1
5 3 -1 0O 1 0 O

Clearly, the identity submatrix is now available with I = [a¢, a5, as].
Note that, the starting basic feasible solution is found by setting the
nonbasic variable x,, x,, x5 and x, equal to zero. That is, x, =5, x;, = 1
and xg = 9.

Now, to prevent an artificial variables from becoming part of an optimal
solution to the original problem, a very large penalty is choosing a
positive constant M so large that the artificial variable is forced to be zero

in any final optimal solution of the original problem. We then add the

terms - Mx, and - Mx-, to the objective function:
Z == _le + 5x2 - X3—MX6— MX7

We now have a new problem, called the modified problem. Where M is

large positive number. This leads to the following sequence of tableaux.

TABLEAU 2.7

P8 |x; x, x3 x4 x5 X Xx; |RHS

X ook
T |or o
O Ok O

Multiply rows 1 and 2 by (- M ) and add to cost row.
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TABLEAU 2.8
P8 |x; x, X3 X4 Xg Xg Xy RHS
X (-1 1 1 -1 0 1 O 5
x> |1 1 -1 0 0 0 1 1
x< |5 3 -1 0 1 0 O 9
Z |(22Mm51 0 0 0 O -6M

Since z, —c, = —2M —5<0. Thus x, entering the basis and x-

departing the basis.

TABLEAU 2.9
P8 | x; X X3 X4 X5 Xg Xy RHS
Xe | 2 0 2 -1 0 1 -1 4
Xy 1 1 -1 0 0 0 1 1
X5 2 0 2 o 1 0 -3 6
Z |[2mM+7 0 -2mMm-4 M O 0 2M+5 | -4M+5

Since z3 —c3 =—2M —4 < 0. Thus x; entering the basis and x,

departing the basis.

TABLEAU 2.10

P8 |x; x, x3 x4 X5 Xxg x; | RHS
x3 |-1 0 1 -1/2 0 12 -12| 2
x, |0 1 0 -1/2 0 1/2 1/2 3
x< |4 0 0 1 1 -1 -2 2
Z |3 0 0 -2 0 mM+2 M+3| 13

Since x4 and x, equals zero, so deleting its columns of Tables. We have

Tableau 2.11.
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TABLEAU 2.11

P8 | x; x, x3 x, x5 | RHS
x3 | -1 0 1 -12 0 2
X5 0O 1 0 -12 0 3
Xs 4 0 0 1 1 2
Z 3 0 0 -2 O 13

Since z, — ¢, = —2 < 0. Thus x, entering the basis and x¢ departing the

basis.

TABLEAU 2.12

P8 | x; x, x3 x4, xg | RHS
O 1 0 12 3
1 0 -1/2 1/2 4
x, | 4 0 0 1 1 2
0O 0 O 2 17

Since z; —c; = 0 for each nonbasic variable, the last tableau is optimal

and the optimal solution is (x7, x5, x3, x5, x; Z*) = (0,4,3,2,0;17).

Remark: The use of the penalty M will not force an artificial variable to
zero level in the final simplex iteration if the LPP does not have a feasible
solution will include at least one artificial variable at a positive level (see

reference [6])

2.5. Duality [7],[11]

Associated with each linear programming problem is another linear

programming problem called the dual.

There are two important forms (definitions) of duality: the canonical

form of duality and the standard form of duality.
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2.5.1. Canonical form of duality [7]
Suppose that the primal linear program is given in the (canonical) form:

LPP: maximize Z = cTx (2.23)
subject to
Ax< b
x=0

where A is an m X n matrix, ¢ and x are n X 1 column vectors, and b is
m X 1 column vector, then the dual linear program is defined by
DLPP: minimize W =bTy (2.24)
subject to

ATy > ¢

y=0
Note that there is exactly one dual variable for each primal constraint
(i.e., y is m x 1 column vector) and exactly one dual constraint for each

primal variable. We shall say more about this later [9].
2.5.2. Stander form of duality [11]

Another definition of duality may be given with primal liner program

stated in the following standard form:

LPP: maximize Z = cTx
subject to

Ax=0D>

x=0

Then the dual linear program is defined by:
DLPP: minimize b’y =W
subject to

ATy < ¢
y unrestricted (free)
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2.5.3. General form of Duality [7]

There are few requirements as to the general form of a linear
programming problem. The objective may be either of maximizing or
minimizing form, variables may be restricted or unrestricted, and the
constraints may be form (<,>,=) and of any mixture of the forms. We
utilizing the relationships in Tableau 2.13, to write the dual problem for a
given linear program without given though the intermediate step of

transforming the problem to canonical form (see reference [7]).

Primal Problem Dual Problem
Maximization problem Minimization problem
Constraints i = Variables y;
< = >0
= = <0

= = unrestricted (free)
Variables x; = Constraints j

>0 = >

<0 = <
unrestricted (free) S =

Tableau 2.13: Primal-Dual Relationships

Theorem 2.1:[3]
Given a primal problem as in (2.23), the dual of its dual problem is again

the primal problem.
Proof

The dual problem as given by (2.24) is

subject to
ATy > ¢
yZO)

minimize by
(2.25)
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We can rewrite (2.25) as

subject to
ATy < —c
y = 0.

maximize W = —pTy
l (2.26)
Now the dual problem to (2.26) is

maximize Z = —cTx
subject to
(—ATx)T = —b
x = 0.

This problem can be rewritten as

maximize Z =cTx
subject to

Ax<b

x>0,

Which is the primal problem.
2.5.4. Primal-Dual Relationships [11]

There is a deep relationship between objective function value,
feasibility and boundedness of the primal problem and the dual problem.

We will explore some these relationships in the following theorems.

Theorem 2.2:[3] (Weak Duality Theorem) . If X is feasible solution to the

primal problem

maximize Z = cTx
subject to
Ax<b
x>0

(2.27)

And if y is a feasible solution to the dual problem

minimize W = bTy
subject to

2.28
ATy > ¢ (228)

y = 0.
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then

c’x <bTy (2.29)
That is, the value of the objective function of the dual problem is always

greater than or equal to the value of the objective function of the primal

problem.

Proof
Since X is feasible to (2.27), we have

AX < b. (2.30)
It follows from (2.30) that

yTAX<yTh =bTy (2.31)

Since y = 0, the equality in (2.31) comes from the fact that y7b is a
1 X 1 matrix and consequently is equal to its transpose.

Since y is a feasible solution to (2.28), we have
ATy > c.
Or, taking transposes,
yTA =T,
Again we can multiply by X , which is nonnegative, without changing the
inequality. We get
yTAX > cTx. (2.32)

Combining inequalities (2.31) and (2.32) gives the desired result.

Notice that each feasible solution to the maximization problem provides
a lower bound for the objective of the minimization problem, and,
likewise, each feasible solution to the minimization problem provides an

upper bound for the objective of the maximization problem.
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Corollary (2.1):[7]

If the primal objective is unbounded, then the dual problem is infeasible.

Example 2.5:

Consider the LPP4 in example 1.4, this problem is unbounded as we

show in Figure 1.5. The dual problem to LPP4 is

DP4: minimize W = 2y, — 6y,

subject to
Y1 = Y222
—2y;1 =y, 21
Y1,Y2 =0

The constraints are in Figure 2.3. There are no feasible solutions to the
problem, since the second constraint can never hold for nonnegative

values of y, and y,.

g\' RN 2]

(-05,0)

> Y1
2 \ 3
_ (0.333, -1.667) |
S \ |

Figure 2.3

—_—
[
=

o

1o -4

Corollary (2.2):[7]
If the dual objective is unbounded, then the primal problem is infeasible.

The converse of corollary (2.1) and (2.2) is not true. Because if one
problem is infeasible, it is also possible for the other to be infeasible. This

is illustrated via the following example.
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Example 2.6: (Infeasible Primal and Dual)

Consider the following canonical primal- dual pair:

LPP10: max Z = x; + 3x, DLPP10: min W = —=3y; — 3y,
subject to subject to
—x1+3x2S—3 _y1+ y221
X1 —3x, < -3 3y: — 3y, =3
i <N N ~
b1 ! _ _ L
(0,1) | | o
T | (.iﬂ)r | Y1 Y1
0| 2 4 5 0 4
Figure 2.4 Figure 2.5

Upon graphing, it is clear from Figures 2.4 and 2.5 that neither the primal

nor the dual possesses a feasible solution.

Corollary (2.3): [3]

If X is feasible to PP(Primal Problem), and y is feasible to DP(Dual
Problem), and ¢x = bTy, then X is an optimal solution to PP and ¥ is an

optimal solution to DP.
Proof

Suppose x; is any feasible solution to the primal problem. Then from the
inequality (2.29).
cTx; < b7y =cTx
Hence, X is an optimal. Similarly, if y, is any feasible solution to the dual
problem, then from the inequality (2.29).
bT}_’ ES CT)_( S bTyl
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and we see that y is an optimal solution to the dual problem.
Theorem 2.3: (strong Duality) [13]

If the PP(2.23) has an optimal solution with basis matrix B. Then

1. y = (B™Y ¢y is feasible solution of dual problem.
2. cTx=bTy.
3. y = (B YHT¢y is an optimal solution of dual problem (2.24).

Proof

1. Let A =[B,N], and since x5 = B~1b is an optimal solution.
Hence
cIB™IN—cL >0 (optimality condition)
Requirement
cIB™IN > ¢}
Now, we shall show that y = CzB~? is feasible solution of dual
problem
ATy = [BTy,N"y] = [cp,cy] = C
and hence
ATy > c;
So that y = (B™1)T¢y is feasible solution of dual problem
(2.24).
2. bTy =bT(B YTy = (cIB71D)T = (chxp)T = ckxp = cTx
3. Since c¢Tx = bTy, it follows from corollary (2.3) that y is an

optimal solution of dual problem.

Note that the dual feasibility conditions are precisely the same as primal
optimality conditions. Also observe that Theorem 2.3 provides a method
for computing the values of the dual variables. That is, whereas the

primal solution can be written as
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xy =20
XB == B_lb
the dual solution is given by
yI' =cIB™1 (2.33)
=yTA—cT =B 1A — T (2.34)

Where t is the vector of dual surplus variables. Finally, the objective

value of both problem is (see reference [7])
Z=c"x=clBb=y"h=wW (2.35)
Primal-Dual Tableau Relationships [7]

Consider the initial simplex tableau corresponding to problem (2.23), and
the optimal tableau as shown in Tableau 2.14 and Tableau 2.15

respectively.

TABLEAU 2.14

X X RHS
Xp A I b
Z —-C 0 0
TABLEAU 2.15
X X, RHS
Xp B 14 B 11 B~ 1p

Z | TB1A—c"| B l1-0 | cgB7'b

Note that the tableaux depicted in Tables 2.14 and 2.15 also establish
some relationships between the primal and dual variables. To see more

clearly, let us rewrite Tableau 2.15 utilizing the fact that

)’ = CBB_
T=yTA—cT =B 14— T
This results in Tableau 2.16
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TABLEAU 2.16: Primal Simplex Tableau

X X RHS
Xp B'A B! B'b
Z tT yT cgB~ b

First, note that z; — ¢; values for the primal decision variables x are given
by the dual surplus variables t. Just as B~1 resides in the portion of the
tableau that was occupied by the original identity, y7 = ¢5B~1 is located
in two rows immediately above B~1. However, as we saw in Tableau
2.15, this is only true if the original objective coefficients of the
corresponding slack variables are zero. Thus, the z; — ¢; values for the
zero-cost primal slack variables x; are given by the dual decision

variables y.

Thus, given a simplex tableau, it is possible to read the solution to both
problems directly from the tableau. This idea is demonstrated further via

the following example
Example 2.7:

Consider the problem in Example 2.1.

LPP7: maximize Z = 4x, + 3x, (2.36)
subject to

—x;+x, <6 (2.37)

2x, +x, <20 (2.38)

X1+ %, <12 (2.39)

X1,%5 =0 (2.40)

The optimal solution of this example is in the following final tableau
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TABLEAU 2.17

P7 | x; x, x3 x4 x5 | RHS
x3 | 0 0 1 2 -3 10
x| 1 0 0 1 -1 8
x, | 01 0 -1 2 4
Z |0 0 0 1 2 44

Slack variables x5, x, and xs add to constraint (2.37),(2.38) and (2.39)
respectively. The Tableau 2.17 indicates that the optimal primal solution
Is given by (x1, x5, x3, X3, xs; Z*)=(8, 4, 10, 0, 0; 44)

Now, denote the dual decision variables by y, , y,and y; corresponding
to constraints (2.37), (2.38) and (2.39) respectively. Also, let t; and ¢,
represent the respective surplus variables for the two dual constraints.
Then, by using the tableau relationships established in Tableau 2.16, the

two row of the tableau will be in the following form:

Xy Xp X3 X4 Xxg | RHS

Z |t ty V1 Y2 ys | 44

By comparing this with Tableau 2.17 it immediately follows that the

solution is given by

W*=27" =44

yi =23—¢c3=0
V2 =2Zy—C4=1
Y3 = 25— C5 = 2
ti =2z;,—¢; =0
t;=2,—c, =0
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2.5.5. The Dual Simplex Method

When we use the simplex method to solve a max problem (we will refer
to the max problem as a primal), we begin with a primal feasible solution
(because each constraint in the initial tableau has a nonnegative right-
hand side). It least one variable in objective row of the initial tableau has
a negative coefficient, so our initial primal solution is not dual feasible.
Through a sequence of simplex pivots, we maintain primal feasibility and
obtain an optimal solution when dual feasibility (a nonnegative objective
row) is attained. In many situations, however, it is easier to solve an LP
by beginning with a tableau in which each variable in objective row has
nonnegative coefficient (so the tableau is dual feasible) and at least one
constraint has a negative right-hand said (so the tableau is primal
infeasible). The dual simplex method maintains a nonnegative objective
row (dual feasibility) and eventually obtains a tableau in which each
right-hand said is nonnegative (primal feasibility). At this point, an
optimal tableau has been obtained. Because this technique maintains dual

feasibility, it is called the dual simplex method [13].
Algorithm 2: (Dual Simplex Method for Max Problem) [7]

STEP1 To employ this method, the problem must be dual feasible, that is,
all z; — ¢; = 0. If this condition is met, go to Step2.

STEP2 Determine the departing variable. If b; > 0, for all i , then the
current solution is optimal; stop. Otherwise, select the row
associated with the most negative b;. Denote this row as row r.
The basic variable xg_associated with this row is the departing

variable.
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STEP3

STEP4

STEP5S

Check for primal feasibility. If «,; = 0 for all j, then the primal
problem is infeasible and the dual problem has an unbounded
objective; stop. Otherwise, go to Step4.

Determine the entering variable. Use the following minimum ratio

test to determine the entering basic variable. That is, let

Zr—Ck Zj—¢C

= minimum{~—: «,; < 0}
—Qrk —Ayj

Column k is the pivot column, a,, is the pivot element, and the
nonbasic variable x; associate with column k is the entering
variable. Go to Stepb.
Pivot and establish a new tableau
a) The entering variable x, is the new basic variable in row r.
b) Use elementary row operations on the old tableau so that the
column associated with x; in the new tableau consists of all
zero elements except for a 1 at the pivot position a,.
¢) Return to Step2.

The following example is considered to illustrate the dual simplex

method.
Example 2.8:
LPP10: maximize Z = —2x; — x3 (2.41)
subject to
x1 + x2 - x3 2 5 (242)
X1 — 2Xy +4x3 > 8 (2.43)

X1,Xp,X3 = 0 (244)

Multiply both constraints through by —1. Adding slack variables x, to

constraint (2.42) and x5 to constraint (2.43) yields
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maximize Z = —2x; — X3 (2.45)
subject to

—X1— X3+ X3+x4,=-5 (2.46)

—X1 + 2xy — 4x3 + x5 = —8 (2.47)

xi=0,j=1,.,5 (2.48)

The initial Tableau for the resulting problem is given in Tableau 2.18.
Notice that the initial basis is primal infeasible ( x, = =5 and x5 = —8)

and dual feasible (all z; — ¢; = 0). Thus, the dual simplex method can be

employed.

TABLEAU 2.18

P10 | x; x5, x3 x4, x5 |RHS
x, | -1 -1 1 1 0 -5

xs | -1 2 -4 0 1 | -8
Z| 2 0 1.0 0] 0O

STEP2  The most negative b; is b, = —8. Thus, r = 2 and xg, = x5 is

the departing variable. Go to Step3.

STEP3 Because a,,; and a,5 < 0, the primal infeasibility condition is not
satisfied. Go to Step4.

STEP4 we now examine the ratios (z; — ¢;)/(—a;;), where a;; < 0 are

__ Z3—C3

zZ1—C; 2 zz—Cc3 1 } _

minimum { = =
—Q3q -(-1)" -az; -(-4)

1
4 o —Qa23
Thus, k = 3 and the entering variable is x5.

STEP5 a) Because x5 is the entering variable and x5 is the departing
variable, x5 replaces x¢ in xz as the basic variable in row 2.

b) Pivot as usual on o, 5. This results in Tableau 2.19.

Note that the Tableau 2.19 is still primal optimality (dual feasibility),

but is not primal feasible.
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TABLEAU 2.19

STEP2

STEP3

STEP4

STEPS

P10 | x; Xy, X3 X4 Xg |RHS
x, | -4 -1/2 0 1 1/4 | -7
xs | U4 12 1 0 -1/4 2
Z | 714 112 0 0 14| -2

¢) Return to Step?2.

The only negative b; is b; = —7.

Thus, r = 1 and xg, = x, is the departing variable. Go to Step3.

Because ay; and a,; < 0, the primal infeasibility condition is

not satisfied. Go to Step4.

The ratios (z; — ¢;)/(—a;;), where a;; < 0 are

.. zZ1—C 7/4 Zy—C 1/2 Zy—C
mmlmum{1 N , 22— / }=1=_2 2
—a11 —(-5/4)" -az -(-1/2)

—Qz1
Thus, k = 2 and the entering variable is x,.
a) x, replaces x, in xz as the basic variable in row 1.

b) Pivot as usual on a,; = _?1 to obtain Tableau 2.20.

Tableau 2.20 represents the optimal solution because both primal and dual

feasibility are satisfied.

TABLEAU 2.20

P10 | x, x, x3 x4, x5 |RHS

X2 | 512 1 0 -2 -12 | 14
X3 | 6/4 0 1 -1 -1/2 9
Z |12 0 0 1 12| -9
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2.6. Sensitivity Analysis
2.6.1. Introduction [11]

In this section we shall describe how to make use of the optimality
conditions (Primal—dual relationships) in order to find a new optimal
solution for the modified problem, and here we shall discuss the

following variations in the problem.

Change in the cost vector ¢T .

Change in the right-hand side vector b.
Change in A (change in the coefficient a;;).
Deletion of a variable.

Deletion of a constraint.
2.6.2. Change in the cost vector ¢ [11]
Consider the following linear programming problem

LPP: maximize Z = c'x
subject to
Ax=Db

x = 0.
Suppose we have found an optimal solution to above LPP by using the
simplex algorithm, and suppose that the cost coefficient of one (or more)
of the variables is changed from ¢, to c;. Changing the objective
coefficients will not affect the primal feasibility, but could possibly effect

the dual feasibility. Consider the following two cases:
Case I: x;, Is Nonbasic

Note that c% is effected; thus, the only impact of such a change is on the
single tableau element, z, — c. By letting c;, be the new value of ¢, then

z,, — ¢, Will replace z, — ¢, in the optimal tableau. If z;, — ¢; remains
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nonnegative, then the current basis remains optimal. However, if
z, — ¢, < 0, the dual feasibility (Primal optimality) has been lost and
must be restored by using the primal simplex method. The value of

z,, — ¢, can be computed using the following relationship.
Z, — . = ckB7la;, — ¢,
=clB'a, —c, + ¢, —cp,
= (zr — 1) + (e — 1) (2.49)
Case Il: x; Is Basic, Say xj = xp,

Because x; is a basic variable, a change in cp, results in a change in the

cpg vector. Thus, such a change can affect any or all of the z; —¢;

elements and the value of Z. let cp, be the new value of cg, and let cl

denote the revised c%. The zj — ¢; elements associated with the basic
variables will remain zero, so we only need to update the z; — ¢; for the

nonbasic variables as follows:

,— P — T, _1 - — -
zi —c;j=cgB a; — ¢

=cpa;—¢

—ym ' o

= Xi=1,i#t CB; @ij T Cp,Arj — Cj

= Y i Cp Qi+ Cp, Qi — Cp, Ui + Cp Ay — C;
i=1,i#t “B; “1j By Ytj By Ytj B“Ytj j

= Xi%,Cp, ajj — ¢j + (Cp, — Cp,) Ay;

= (zj — c]-) + (cp, — cp,)ay; forall j. (2.50)
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In addition, the updated of the objective function is given by
7' = cY'(B™'b)

= Y™, neCs, (B7h); + cf (B71b), + c5,(B71b), — cp (B71b),
= cp(B™'b) + (cp, — cg)b, ; by = (B7'b);

=Z + (cp, — cg,)b; (2.51)

If some z{ — ¢; is negative, then dual feasibility (Primal optimality) must

be restored by using the primal simplex method.
Example 2.9:

LPP11: maximize Z = 2x; + 3x, + 5x5
subject to

X1+ 2x,+3x3 <8
x1—2x2+2x3S6
X1,X9,X3 =0

The initial Tableau and optimal Tableau as shown in Tableau 2.21 and
Tableau 2.22 respectively.

TABLEAU 2.21

P11 | x1 Xz Xx3 X, x5 |RHS

=
vl
[HEN
1
N
N
o
[HEN
oo 0

P11 | x» x X3 Xa X5 | RHS
X5 0 1 1/4  1/4 -1/4 1/2
X, 1 0 10/4 1/2 1/2 7
Z 0 0 34 7/4 1/4 | 31/2
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Suppose that c; = 5 is replaced by 6. Since x5 is nonbasic, then z; — ¢ =
(z3 — c3) + (c3 — c3) = —1/4, and all other z; — ¢; unaffected. Hence,

X5 entering and x, departing the basis.

TABLEAU 2.23

P11 x;  x; x3 X4 X5 | RHS
Xy 0 1 14 1/4 -1/4 | 1/2
X1 1 0 10/4 1/2 1/2 7
Z 0 0 -14 7/4 14 |31/2

TABLEAU 2.24

P11 | x4, x, x3 x, x5 |RHS
x3 | 0 4 1 1 -1 2
x |1 -10 0 -2 3 2

Z |0 1 0 2 0 16

The Tableau 2.24 is optimal, and the optimal solution is (x7, x5, x3,
xy, xe; Z%) = (2,0,2,0,0;16).

Next, suppose that cg, = ¢; = 2 is replaced by zero, that is, ¢; =0 =
cp,. Since x; is basic (x; = x3,), then the new cost row, except z; — ¢, is
obtained by using (2.47) and (2.48) or by multiplying the row of x; by
the net change in c,[that is, 0 — 2 = —2 ] and adding to the old cost row.

The new z; — ¢; remains zero and we have the following tableau.

TABLEAU 2.25

P11l | x; x, X3 X, xg | RHS
X5 0 1 14 14 -1/4 1/2

x, | 1 0 104 12 12 | 7
Z | 0 0 -17/4 34 -3/4 | 312
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Note that the new z; — c3 and zs — ¢ are now negative, since the new
Z5 — C3 1S the most negative , and hence x5 entering and x, departing the

basis, we have the following tableau.

TABLEAU 2.26

P11 X, Xy X3 Xy Xs RHS

x| 0 4 1 1 4 2
x, | 1 -10 0 -2 3 2
Z| 0o 17 0 5 -5 | 10

since xg IS negative, then xc entering and x, departing the basis, we

obtain the optimal Tableau 2.27.

TABLEAU 2.27

P11} xy x; x3 x4 X5 | RHS
x; | 113 213 1 13 0| 83

xs | 13 -10/3 0 -2/3 1] 23

Z | 53 13 0 573 0 |40/3

2.6.3. Change in the Right-Hand Side [7],[11]

If a change in a particular b; is made, there is an impact on both the Xz
vector and the value of Z. Recalling that Xz is given by B~'b and
recalling that B~1can be found from the tableau by a proper arrangement

of the a; column vectors, we have

(2.52)

" = new value of the basic variables in the tableau of interest
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B~! = inverse of the present basis matrix
b’ = new set of right-hand side constants

Also

7' =cLlb' = cEB~'b’ (2.53)

The basis inverse B! may contain negative elements, and thus there is
always a possibility that b’ may include some negative elements.
However, because dual feasibility is not effected, this presents no real
problem because the dual simplex algorithm may be used to regain primal

feasibility. This is illustrated in the following Example:
Example 2.10:

Suppose that the right-hand side of Example 2.9 is replaced by 4] Note

=[]

-1

Tl andhence b’ =B~ b’ =

2

that B! =

\CYY [FSNNNGY [
N R

-3
Z' =cgB7'b' = (3 2)[4=E

Then, B~1b’' < 0, and hence the new solution is infeasible (x, = _73) and

dual feasible (all z; — ¢; = 0). Thus, the dual simplex algorithm can be

employed.

TABLEAU 2.28

P1l|x; x; X3 X4 X5 | RHS
x, |0 1 14 14 -1/4 | -3/4
xs |1 0 104 1/2  1/2 52
Z |0 0 34 714 14 | 11/4
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the only negative b; is b; = —3/4. Thus, xz_= x, is departing variable,

and x: is entering variable. We have tableau 2.29

TABLEAU 2.29

Pll| x; x, X3 X4 xs | RHS

Ky
=
N
w
=

oo -
N = W

The Tableau 2.29 is optimal and the optimal solution is (x7, x5, x3,
xy, x5; Z7) = (1,0,0,0,3; 2).

2.6.4. Change in A (change in the coefficients a;;) [7],[11]

We now discuss the effect of changing some of the coefficients a;; of
A. The changes in the coefficients are relatively easy to handle if the a;;
associated with a nonbasic variable. However, a change in a;; associated

with a basic considerably more involved, and thus, for such a case, we

shall resort to simply resolving the problem from the beginning.

Restricting our attention then to changes in the coefficients of nonbasic
variables, we note that any change in the a, column for a nonbasic
variable x; will directly affect the associated «a; vector (and, indirectly,
the value of z;, — ¢;). At any iteration , the a; column vector is given by
B~ la, , so we have

a, = B la, (2.54)

Where
B~! = inverse of the present basis matrix

a;, = new vector of coefficients associated with nonbasic variable x;,
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a, = new updated vector corresponding to x; in the final simplex

tableau.

Now, suppose that the nonbasic column a;, is modified to a;. Then, the

new updated column is

and

z;, — ¢, = ckB7a), — ¢, = chay, — cy. (2.53)

If z;, —c;, =0, then the old solution is still optimal. Otherwise, the
primal optimality (dual feasibility) has been lost and the primal simplex

must be applied.

Example 2.11:

Suppose that in Example 2.9, a5 is changed from B] to [ﬂ Then

|- v

zh—c3 =chay —c3 = (3 2)[2]—5=—3<0.

as; = B la; =

NIR AR

Since z3 — c3 Is negative, we must apply the simplex method to have an
optimal solution. Note that x5 is entering and x; departing the basis, we

obtain the optimal solution in tableau 2.31.

TABLEAU 2.30

P11 | x; x, xj x, x5 | RHS
Xy 0 1 0 1/4 -1/4 1/2
X4 1 0 1 12 1/2 7
Z 0 0 -3 714 1/4 | 31/2

65



Chapter?2

TABLEAU 2.31
Pll| x; x, X3 X4 xs | RHS
X, 0 1 0 14 -1/4 1/2
X3 1 0 1 12 1/2 7
VA 3 0 0 13/4 7/4 | 73/2

The optimal solution is (x1, x5, x3, X3, x5; Z*) = (0,%, 7,0,0;73/2).

2.6.5. Deletion of a variable [5],[10]
There are two cases:

Case (a): Deletion a nonbasic variable x;,

Deletion of nonbasic variable is a totally superfluous operation and
does not affect the feasibility and/or optimality of the current optimal

solution, but the tableau will lose the column of that variable.

Case (b): Deletion of basic variable xg, = xj,

Deletion of a basic variable may affect the optimality and a new

optimum solution may have to be found out. For this, a heavy penalty

-M(M in case of minimization problems) is assigned to the variable
under consideration and the new optimum solution is obtained by
applying regular simplex method to the (modified) current optimum

tableau. Calculate revised values of Z and z; — ¢; as in equations (2.50)

and (2.51), where (cg, = cp, = —M), so we have

7 = ¢ = (7= ) + (=M — )
and

Z_, = Z + (_M - CBt)Et ; Where Et = (B_lb)t
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Example 2.12:

Consider the optimal tableau 2.6 of Example 2.3. let x, = x5, making

changes in z; — ¢; and Z accordingly, we have following tableau 2.32

TABLEAU 2.32

P7 X, Xy, X3 X4 Xc RHS
X3 0 0 1 2 -3 10

X4 1 0 0 1 -1 8

Xy 0 1 0 -1 2 4

Z 0 0 0 M+4 —-2M-—-4 —4M + 32

Since x5 is most negative, then x entering the basis and x, departing it,

thus we have the following tableau.

TABLEAU 2.33

P7 X, Xy X3 X, X5 | RHS
X3 0 32 1 12 0 16
X4 1 12 0O 12 0 10
Xs 0 12 0o -12 1 2
Z 0 mMm+2 O 2 0 40

Now, since x, is nonbasic, so on deleting a,. The solution in above
tableau is optimal, thus the optimal solution of the perturbed problem is
Z" = 40and (x7,x3,x4,x:) = (10,16,0, 2).

2.6.6. Deletion of a constraint [5],[10]
There are two cases:
Case(a): Deletion of inactive constraint

An inactive constraint is one that one which corresponding slack or

surplus variable would be basic and at nonzero level. Suppose we want to
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delete ith constraint which is inactive. Then delete the row and column of
the slack/surplus variable corresponding to ith constraint. There will be

no change in the optimal solution.
Case(b): Deletion of an active constraint

An active constraint is that one which corresponding slack or surplus
variable would be nonbasic and at zero level. let ith constraint is active
and we want to delete it. For this, we make this constraint inactive and
then proceed as in case(a). To make in active its slack/surplus must be
introduce into basis at positive level. So give slake /surplus high positive

cost +M(—M in minimization case) and calculate z; —c; for this

slack/surplus variable and enter slack/surplus variable into basis at next
iteration. This makes the constraint inactive cut the row and column of

corresponding slack/surplus variable.
Example 2.13:
Consider the optimal tableau 2.34 of LPP2 in Example 1.2, is

TABLEAU 2.34

P2 | x; X, X3 X4 xs | RHS
X5 0 1 1 0 1 4
X4 0 0 1 1 0

X4 1 0 0 0 1 3
Z 0 0 2 0 3 11

Note that x, > 0, so the second constraint is inactive. So to find the
optimal solution of the perturbed problem, we delete the column «, and
the second row from tableau 2.34, and there will be no change in xz, Z

and z; — c;, this shown in Figure 2.6.
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TABLEAU 2.35
P2 X, X X3 xs | RHS
X, 0 1 4
X4 3
Z 0 3 11

Example 2.14:

Consider the LPP2 in Example 1.2, with the optimal tableau 2.36.

TABLEAU 2.36

Figure 2.6

P2 | x; X, X3 X4 x5 | RHS
X5 0 1 1 0 1 4
X4 0 0 1 1 0 4
X4 1 0 0 0 1 3
Z 0 0 2 2 3 11

69



Chapter?2

The third constraint is an active. To make it inactive, change cs(= 0) —

cs(= M) and calculate z5 — c< as follows:
1
zs—ce=ckas—ct =2 0 1D|0|-M=3-M,
1

We have the tableau 2.37

TABLEAU 2.37

P2 X1 X, X3 X4 Xsg RHS
Xy 0 1 1 0 1 4
X4 0 0 1 1 0 4
X1 1 0 0 0 1 3
Z 0 0 2 2 3—-M | 11

As zz — ci <0, so x5 undergoes change. Applying simplex algorithm

repeatedly, we have

TABLEAU 2.38

P2 Xq X, X3 Xy  Xg RHS
Xy -1 1 1 0 0 1
X4 0 0 1 1 0 4
X5 1 0 0 0 1 3

Z |-3+M O 0 0 0 2+ 3M

Note that x5 > 0, so the third constraint is now inactive. On deleting as
and the third row in the above tableau and also making changes in Z and

z; — ¢;, we have the following tableau.
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TABLEAU 2.39

P7 X, X, x3 x4 |RHS
x | -1 0 1 0 1
Xy 0O 1 1 1 4
Z | -3 0 2 0 2

Note that the problem is infeasible. Thus the perturbed problem has not

optimal solution, this shown in Figure 2.7.

Figure 2.7
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3.1. Introduction [7],[8]

In most practical problem the variables are usually bounded. A typical
variable x; is bounded from below by [; and from above by u;,
respectively, we get the following linear programming with bounded
variables (BLPP):

BLPP : maximize Z = ¢T x (3.1a)
subject to

Ax= b (3.1b)

I<x<u (3.1¢)

where x, ¢, [,u € R"; b € R™and A isan m X n (m < n) matrix .

We will make the following tow assumptions .

Assumption 1.The coefficient matrix A has full row rank i.e., rank(4) =m
Assumption 2. [ is nonnegative vector .

Of course, it is possible to consider all the bounds as explicit constraint,
however, this would effectively increase the size of the basis matrix from
m X mto (m + 2n)x(m + 2n) Because operations involving the basis
and basis inverse represent the largest part of the computational storage
over-head, this is a very inefficient approach. The basic idea of bounded-
variables simplex method is to handle the simplex bounds on the
variables in an implicit manner (in a manner analogous to the handling of
the nonnegativity restrictions in the standard simplex method). This
allows us to maintain a standard m X m basis matrix, which is generally

referred to as the working basis.

In the standard simplex method, nonbasic variables are those variables
that are fixed at their lower bound value of zero. However, in the

bounded-variables simplex method, a nonbasic variable represents a
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variable that is either fixed at its lower bound or upper bound. That is, the
vector x will be partitioned into the basic variables x5 , the nonbasic

variables at their lower bound x, , and the nonbasic variables at their

upper bound x, [7],[8].

Definition 3.1: (Basic Feasible Solution) [7],[8],[11]

The solution X to the equation (3.1b) is a basic solution of this system if A
can be partitioned into a nonsingular (working) basis matrix B and the

matrices of nonbasic column N,, and N,. That is
A=[B N; Ny
Now, the linear system Ax = b can be rewritten to yield
Bxg + NiXy, + Noxy, = b
This simplifies to
xp = B™'b — B"'N;xy, — B"'N,xy, (3.2)
Now, setting xy, = Iy, and X, = uy,, we see that (3.2) results in

Xg =b=B"'b— B 'N,ly, — B"*Nyuy, (3.3)

Xp b
X = [XNll = lN1 (34)
XN, Un,

is called a basic solution. If, in addition, [z < Xz < ug where lz(ug) is a

The solution

lower (upper) bound vector of basic variables, then the solution is a basic
feasible solution, and if [ < Xz < ug , then X is called a nondegenerate
basic solution, otherwise, it is called a degenerate basic feasible solution

(For more detail see reference [8]).
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Improving a Basic Feasible Solution [7],[9],[11]

Suppose that we have a basis B and suppose that the nonbasic matrix N is
decomposed into N;, N,, that is, A =[B N; N,] . Accordingly, the
vector x is decomposed into [xp Xy, Xy,] and ¢’ is decomposed into
[ch c,T\,1 c%z]. Both the basic variables and the objective function can be

represented in terms of the nonbasic vectors x, and x, as follows:
Xgp = B™'b — B"'N;xy, — B"'N,xy, (3.5)
Z = cpXp + cy Xy, + € Xy,
= c5(B™*b — B™*Nyxy, — BT'N,xy, ) + cf Xy, + €k Xy,
= cpB™'b — (ckB™'N; — ¢}y, )xy, — (cgB7IN, — ¢} )xy,.  (3.6)

Suppose we have current basic feasible solution where xy = Iy

1’

Xy, = Uy,, and lp < Xp < ug, then we have
XB - B B B_lb - B_lNllNl - B_lNZuNZ (37)
Z == CEB_lb - (CEB_lNl - CIT\}l)lNl - (C£3_1N2 - C%Z)ulvz. (38)

Letting /;, /, denote the index sets of the variables that are nonbasic at
their lower bounds, upper bounds, respectively, (3.5) and (3.6) can be

rewritten as follows:

Z = CEB_lb - ZjE]l(Zj - C]) Xj - ZjE]z(Zj — C]) X] (39)
Xg = B_lb - Z]-Eh(aj x]) - Zjejz(aj x]) (310)
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Now, we try to improving the objective by investigating the possibility of
modifying the nonbasic variables. For j € J; if z; — ¢; <0, it would be
to our benefit to increase x; from its current value of [;. Similarly, for
Jj €2, if z;—c¢; >0, it would be to our benefit to decrease x; from its
current value of u; . As in the simplex method, we shall modify the value
of only one nonbasic variable while all other nonbasic variables are fixed.

The index k of this nonbasic variable is determined as follows:
Z —Cx = maximum{ma,xjej1 —(zj — ¢;) ,maxje;,(z; — cj)} (3.11)

If this maximum is positive, then let k be the k € J;, then x; is
increased from its current level of [, , and if j € J,, then x;, is decreased
from its current level of u, . If the maximum is nonpositive, then

zj—c¢; = 0forall j €], and z; — ¢; < 0 for all j € J,. Examining (3.9),

this indicates that the current solution is optimal.
3.2. Optimality condition [7],[11]
Given a basic feasible solution X to BLPP in (3.1)

if z—c¢ >0 forall jej (3.12)
and

if z—¢<0 forall j€], (3.13)
then the current solution is optimal.

The idea of the simplex method for BLPP is to move from basic feasible
solution to basic feasible solution until the optimality conditions (3.12)
and (3.13) are satisfied.
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Increasing a Nonbasic Variable x; From Its Lower Bound [,

Suppose that z, —c, < 0 and xj, is currently nonbasic at its lower
bound [;.Then the solution can be improved by increasing x;. Let A= 0

be the increase in x;, , that is, the new value of x;, will be given by
X = lk + Ak (314)

Because all other nonbasic variables remain fixed at either their lower or

upper bounds, substituting into (3.5) and (3.6) yields
X = B7'b — B7'N,ly, — B"'N,uy, — B a; A
= X5 — ap (3.15)
and
Z = cpB™'b — (cgB™*N; — ¢, )y, — (ckB™'N, — ¢} Juy, —
(z — )y
=Z — (z;, — )y (3.16)

Maintain feasibility

To maintain feasibility, the value of Ay must be chosen to satisfy the

following conditions.
e xS up= U < L + A< uy, (3.17)
lp <X <ug= lp <X —apA<up

=lp, < Xp, — aylbr<ug, foralli=1,..,m. (3.18)
Because A= 0, it is follows from (3.17) that

AkS Uy, — lk (319)

77



Chapter3

Now consider (3.18). If a;, > 0, then the basic variable xp, is decreasing

and it follows that we must enforce
lp, < Xp, — ay Ay ; forall i such that a;, > 0 (3.20)

which yields

A< ; for all i such that a;;, > 0. (3.21)

Xik
on the other hand, if a; <0, then the basic variable xg, is increasing

and we must enforce

Xp, — albx<ug ; foralli=1,..,m. (3.22)
and, thus,
A< ZEEX2 - for all i such that ay, < 0. (3.23)
—Uik

Therefore. To determine the largest value of A, that will result in a

feasible solution, we use

Ak: mln{51 ) 52 yUg — lk} (324)
where
* Jif ag <0
6, = {min {XBi—lBi: i > 0} ,otherwise} (3.25)
Tik
«© Jif ag =0
%27 min {2 0y < 0] otherwise] (3.26)
—Qqijk
Note that :

1. If Ay=6; = (Xp, — )/, then the departing variable is xp_
which becomes nonbasic at its lower bound.
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2. If Ay=6, = (up, —Xp)/(—ayy), then xp departs at its upper
bound.

3. A= uy, — l; , then the entering variable x; blokes itself and x;
moves from nonbasic at its lower bound to nonbasic at its upper
bound. In this case, the basis matrix remains the same; the only
changes are Z and X according to (3.15) and (3.16).

4. If these computation result A,= oo, then x; can be increased

without bound, consequently, no finite optimal solution exists.

Decreasing a Nonbasic Variable x;, From Its Upper Bound u;

Now consider the case when z; — ¢, > 0 and x;, is currently nonbasic at
its upper bound u,,. Then decreasing x; will improve the objective value.
Let A,> 0 be the amount by which x, is decreased, that is, the value of

x Will be given by

X = U — Ak' (327)
Now, as in the previous case, (3.5) and (3.6) yield
)’ZB = B_lb — B_1N11N1 — B_lNluNz + akAk

= )_(B + akAk (328)

and
2 == CEB_lb - (CBB_lNl - c£1)lN1 - (CEB_lNZ - CEZ)uNZ +

(zk — cx) Ag

Z = Z + (Zk — Ck) Ak (329)

79



Chapter3
Maintain Feasibility

To maintain feasibility, the value of A, must be chosen to satisfy the

following conditions:
L xS up= U < up — A< uy, (4.30)
lp <X <ug= lg <Xp +apA< up

= lp, < Xp, + aylby<ug ; foralli=1,..,m. (3.31)

Following the same logic as before, we see that A, is defined as follows:

A= min{6y, 62, ux — b} (3.32)
where
«° Jif ag <0
61 = {min {uBi_XBi Doy > 0} ,otherwise (3.33)
Ajk
oo yJif aye =0
0, = {min {XBi_lBi ap < 0} ,otherwise} (3.34)
Uik
Note that :

1. If A= 6; = (up, —Xp)/ay , then the departing variable is xp_,
which becomes nonbasic at its upper bound.

2. If Ay=6,=(Xp, —lp)/(—ay), then xp departs at its lower
bound.

3. If Ap=u, — I, then the entering variable x; blocs itself and x,
moves from nonbasic at its upper bound to nonbasic at its lower

bound, and Z, X5 being updated according to (3.28) and (3.29).
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4. If these computations result A,= oo, then x; can be decreased

without bound, and, consequently, no finite optimal solution exists.
3.3. The Simplex Algorithm for Bounded Variables
(Maximization Problem) [7],[11]

Initialization step

Find a starting basic feasible solution. Let xz be the basic variables and
let x, and xy, be the nonbasic variables at their lower and upper bounds,

respectively. Form the following tableau 3.1, where
z - ch_lb - (CEB_lNl - Cﬁl)lNl - (C£3_1N2 - CIT\'IZ)U’NZ
and

Xp =b=B"'b— B 'Nyly, — B"*N,uy,

XB le xNZ RHS
xg | | BN, BN, b
Z |0 cpB*Ny—cy, cgB'N,—«c}, | Z
Tableau 3.1

Algorithm 3:( The Simplex Method for Bounded Variables )

STEPL  Check for possible improvement . Example the z; — ¢; value for
the nonbasic variables. If z; — ¢;>0, for all j € J;, and z; — ¢;<0,
for all j € J, , then the current basic feasible solution is optimal;
stop. Otherwise, select the nonbasic variable x;, as the entering

variable with

Z —Cp = maximum{maxjej1 —(zj — ¢;), max;je;, (z; — cj)}.
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If x; is currently at its lower bound (i.e., k € J;), then go Step 2. If

Xy 1s currently at its upper bound (i.e., k € J,), then go Step 3.

STEP2 Increase x; from its current value of [, let x,, = [, + A,

a)

b)

Compute A, using (3.24-3.26). If A, = oo, then the problem
has an unbounded objective value; stop.

If A,=u, —1[; , then x;, becomes nonbasic at its upper
bound. Update the right-hand side of the tableau
relationships defined by (3.15) and (3.16). The basis does
not change and the remainder of the tableau remains the
same. Return to Step 1.

If Ax= 6,, then the departing variable x_ becomes nonbasic
at its lower bound.

If A= &,, then the departing variable xz_becomes nonbasic
at its upper bound.

The entering variable x, is the new basic variable in row r
with value x;, = [, + A,. Update the remainder of right-hand
side using the relationships defined by (3.15) and (3.16).
update the remainder of the tableau by pivoting the usual

manner on «,. Return to Step 1.

STEP3  Decrease x from its current value of u;. Let x;, = u;, — Ay.

a)

b)

Compute A, using (3.32-3.34). If A= oo, then the problem
has an unbounded objective value; stop.

If Ar=u, — I, then x;, becomes nonbasic at its lower
bound. Update the right-hand side of the tableau using the
relationships defined by (3.28) and (3.29), the basis does not
change and the remainder of the tableau remains the same.

Return to Step 1.
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¢) If A= &;, then the departing variable xz becomes nonbasic

at its upper bound.

If A= &, then the departing variable xz_becomes nonbasic

at its lower bound.

The entering variable x; is the new basic variable in row r
with value x; = u;, — A. Update the remainder of the right-
hand side using the relationships defined by (3.28) and
(3.29). Update the remainder of the tableau by pivoting in

the usual manner on a,. Return to Step 1.
We illustrating this Algorithm by the following example.
Example 3.1:

BLPP1: maximize Z = 2x; + 3x,

subject to
X, +2x, <23
x1 - x2 S 2

0< x, <7
2< x, <10

Adding slack variables x; and x,, the problem can be recast in the

following form:

maximize Z = 2x; +3x, + 0x3 + 0x, (3.35)
subject to
X1+ 2x,+x3 =23
X, — Xyp+x4=2
0< x;, <7
2< x, <10
0< x3<
0< x, < o

Notice that the coefficient matrix contains an imbedded identity, and thus

it is possible that a nice starting basis is available. But, first, we fix x;and
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X, at either of their bounds and compute X. Arbitrarily set x; = 0 (lower

bound) and x, = 2 (lower bound). Then

=[] B[220 2D [

Because Xz >0, then x3 and x, form a convenient starting basic

variables with

XB, _[19

w=[o]=[0]= (4]
If Xz had not been nonnegative, then it would have been necessary to
add artificial variables to form a starting basis. The big-M method could

then be applied in attempt to drive the artificial variables to zero. [For an

example of getting started under these conditions, (see Example 3.2)].
The current value of the objective can be computed from (3.35):
Z=20)+3(2)=6

The initial tableau is depicted in tableau 3.2. Note that the nonbasic
variables have been labeled to identify that they are presently nonbasic at

their lower bounds.

TABLEAU 3.2
L L
BP1| x; x, x3 x4 RHS
X3 1 2 1 0 19
X4 1 -1 0 1 4
Z | -2 -3 0 0 6

STEP1 The current solution is clearly not optimal because x;,x, are

nonbasic at their lower bound and z; —c¢; < 0 and z, — ¢, < 0.
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By using (3.11), x, is chosen as the entering variable (i.e., k = 2).
Because x, is currently at its lower bound, go Step 2.
STEP2 Letx, =1, +A,=2+A,
a) Compute A, using (3.24-3.26).

%p.—lg 19-0 19
51 = 1 1 — = —

aAq2 2 2

ug,—Xp 0 —4
—Qy2 1

u,z_l2=10_2=8

A= minimum {% ,,8}=8
b) A,= u, — [, = 8; therefore, x, goes from nonbasic at its
lower bound to nonbasic at its upper bound (i.e., x, = 2 +
8 = 10). Update the right-hand side using (3.15) and (3.16).
Z=6-(z,—c)A,=6—(—3)8=30

Xp = [149] ~ 428 = [149] - ®) [—21] - [132]
The updated tableau is shown in Tableau 3.3. Note that the

basic variables did not change. Return to Step 1.

TABLEAU 3.3
L u,
BP1 X1 X, X3 X4 RHS
X3 1 2 1 0 3
X4 1 -1 0 1 12
Z -2 -3 0 0 30

STEP1 Select x;as the entering variable because z; —c; < 0 and x4 is
nonbasic at its lower bound. Go to Step 2.
STEP2 Letx; =1, + A=A,
a) Compute A; using (3.24-3.26).

85



Chapter3

ul_ll =7—-0=7
A= min{3, o, 7}= 3

¢) A= &, = 3; therefore, the departing variable is xp = x3,
which becomes nonbasic at its lower bound. x; becomes the
basic variable in row 1.
x; =A0=3
Z=30—(z —c))A=30—-(-2)3=36
£p,=12-(3)1=9

The remainder of tableau is update by performing a standard
pivot operation on a;; = 1. Tableau 3.4 summarizes the

results. Return to Step 1.

TABLEAU 3.4
u; I
BP1 X1 Xy X3 @ Xa RHS
X1 1 2 1 0 3
Xy 0O -3 -1 1 9
VA o 1 2 0 36

STEP1 Select x, as the entering variable because z, —c, > 0 and x, is

nonbasic at its upper bound. Go to Step 3.
STEP3 Iet xz == uz - A2= 10 - Az

a) Compute A, using (3.32-3.34)

ugp,—Xp 7-3
a1z 2
.fB _lB 9—-0
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u,—1,=10-2=8
A,= min{2, 3,8}= 2
¢) A,= 6, = 2; therefore, the departing variable is x5, = x4,

which becomes nonbasic at its Upper bound, and x, becomes
basic in row 1.

x,=10—2=18

Z =36+ (1)2 =38

Zp, =9+ (-3)2=3

The remainder of the tableau is updated by performing a
standard pivot operation on a;, =2. Tableau 3.5

summarizes the results. Return to Step 1.

TABLEAU 3.5

BP1| x;, x, x3 x4, |RHS
x, | U2 1 12 0 8
x, | 32 0 172 1 3
Z | -12 0 32 0 | 38

STEP1 Tableau 3.5 represent the optimal solution, which be summarized
as follows: (x7, x5, x3, x4; Z*) = (7, 8, 0, 3; 38).

Figure 3.1
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3.4. Finding an Initial Basic Feasible Solution to Bounded
Variables [2]

If no basic feasible solution is conveniently available, we may start the
lower-upper bound simplex method with artificial variables. This is

accomplished by:

(1) Setting all of the original variables to one of their bounds;
(2) Adjusting the RHS values accordingly;
(3) Multiplying rows, as necessary, by -1 to get Xz > 0,

(4) Adding artificial columns.

Here we will use the big-M method to drive the artificial variables out of
the basis, there is another method is could two-phase method may be

employed to drive the artificial variables out of the basis.

Example 3.2:

BLPP2: maximize Z =7x; + 9x,
subject to
-x; +x, <3
x, +x, <8
—x; +2x, =21
1< x; <4
2 <x,<6

Now, placing the problem in standard form by adding slack variables

yields
maximize Z =7x; + 9x, + O0x3 + Ox, + Oxs (3.36)
subject to

—x; +x; +x3 =3 (3.37)
X, +x, +x, =28 (3.38)
—x; +2x, —xg =1 (3.39)

1< x; <4

2 <x, <6

0<x3,x4,xXg <0

88



Chapter3

Suppose we set x; =1 (nonbasic at lower bound) and x, =6
(nonbasic at upper bound) in (3.37 — 3.39) yield
X3 =34+1—-6=-2
x, =8-1-6=1
—xs =1+1-2(6) = —

Because x; and xg are negative, we can multiply the first and third
constraints by —1 to force x; and x to become positive. Note that x5 is
negative (and thus infeasible), whereas in the resulting system, x, and xs
are both positive and provide part of a starting basis. Therefore, we need
to add an artificial variable x, to the constraint (3.37) after multiplying by

—1. These operations result in the following problem.

maximize Z =7x; + 9x, — Mx, (3.40)
subject to

X1 — Xy —X3+xg=—3

Xy +x, +x, =28

X, — 2%y + x5 =-—1

1< x; <4

2 <x,<6

0<x3,X4,X5,Xq < 00

Now, letting x; = 1 (lower bound), x, = 6 (upper bound), and x3 =0

(lower bound) yield

Xg, 3—1+6+0 2
)_(B = fBz lx4] —[ _1_ - 1 20
Xp 1—1+2(6) 10

3

Because Xz = 0, then x4, x,, and xg form a convenient starting basis

with
XB, X6 2
)_(Bz fBZ [X4]=[1]
fBg X5 10
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The initial objectives can be computed from (3.40).
Z=7(1)+9(6) — M(2)
=61 —2(M)
The initial tableau is shown in Tableau 3.6.

TABLEAU 3.6

BP2| x; x, x3 X4 Xs Xg RHS
X 1 -1 -1 0 0 1 2
X4 1 1 0 1 0 0 1
Xe 1 -2 0 1 0 10
zZ | -7 -9 0 0 0 M |61-2M

Multiply row 1 by (—M) and add to cost row, except Xz and Z, we have
tableau 3.7.

TABLEAU 3.7
ly Uy l5
BP2 X1 Xy X3 Xy X5 @ Xg RHS
Yo | 1 1 -1 0 0 1 2
X4 1 1 0 1 0 0 1
Xs 1 -2 0 0O 1 0 10
Z |(-7-Mm)(=9+Mm) M O 0 O 61—2M

STEP1 Since x; is nonbasic at its lower bound and z; —c¢; <0, xS
nonbasic at its upper bound and z, — ¢, > 0. By using (3.11), x; is
the entering variable. Because x; is currently at its lower bound, go
Step 2.

STEP2 Letx; =1, +A=1+A,;

a) Compute A; using (3.24-3.26)
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S =min{M=2m=1M=10}=1
1 ai1 " oan " oas
ul_11:4‘_1:3

A;=min{1, o0, 3}=1=6;

¢) A;=6; = 1; therefore the departing variable is xp, = x4,
which becomes nonbasic at its lower bound. x; becomes the
basic variable in row 2.

X6 2 1 1

o [i]-o ] -
Xs 10 1 9

Z=(61-2M)—-(-7-M)(1)=68—-M

The remainder of tableau is updating by performing a

standard pivot operation on a,; = 1. We have Tableau 3.8.

TABELAU 3.8
Uz l3 Ly
BP2| x; «x, X3 X4 Xs X, | RHS
Xg 0 -2 -1 -1 0 1
X1 1 1 0 1 0 0
Xs 0 -3 0o -1 1 0
Z 0 242 M 7+M O 0 |68-M

STEP1 Select x, as the entering variable because z, — c, > 0, and x, is
nonbasic at its upper bound, go Step 3.
STEP3 Iet x2 == uz - A2= 6 - Az.
a) Compute A, using (3.32-3.34)
51 — Up,~Xp, _ 4-2 _

= =2

[2%¥) 1
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. Xp,—l 1-0 1 - 1
52=m|n{ B1 Bl: =E’ = =3}=E

—Q12 2

uz_l2:6_2=4‘

. 1 1
A,= mln{2,5,4}—5

c) A,=6, = % , therefore, the departing variable is x5 = x¢ ,

which becomes nonbasic at its lower bound. x, becomes the

basic variable in row 1.

Xg .
% = x| = 2| + ()
X5

7=(68—M)+(—2+2M)G)=67.

1
2
9

5 0

- 5

1(=1]2 ) XZZE

3] | i
2

The remainder tableau is updating by performing a standard

pivot operation on a,, = —2, we have Tableau 3.9.

TABLEAU 3.9
b L
BP2| x; x, X3 X4 Xs X | RHS
x, | O 1 12 1/2 0 -1/2 | 11/2
x; | 1 0 -12 172 0 12 5/2
xs | O 0 32 12 1 -3/2 | 15/2
Z 0 0 1 8 0 -1+M 67

Since zi—¢ =0 for each nonbasic variable at its lower bound. The last
tableau gives an optimal solution, so the optimal solution is (x{, x,

% .5 11 15
X3, X4, Xz, Z*) = (E, 7,0,0, 7,67)
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Figure 3.2
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4.1. Duality [1],[2],[9]

Consider the primal linear program with bounded variable in the

(standard) form:

BLPP: maximize Z = ¢'x (4.1a)
subject to

Ax=b (4.1b)

I<x<u (4.1c)

Then we can treat individual bounds (4.1c) like constraints and introduce
dual variables y € R™ for the constraints (4.1b), v € R™ for the lower
bound constraints and h € R™ for the upper bound constraints in (4.1c).

The constraints (4.1b) can be dualized by using the

Primal Problem Dual Problem
Maximization problem | Minimization problem
Constraints i Variables y;
alx < b y; =0
alx > b; y; <0
alx = b; y; free
Variables x; Constraints j
x; =0 aly = ¢
x; <0 ajy < ¢
x; free ajy = ¢

Tableau 4.1: Primal-Dual Transformation Rules

third transformation rule, the lower bounds by using the first and the

upper bound by using the second rule, where a* are the rows vector of A.
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This leads to the following dual for BLPP:

DBLPP: minimize W = bTy + Tv +uTh
subject to
ATy+v+h=c

v<0, h>0 and y free

or as the form

DBLPP : minimize W = bTy — Tv + uTh
subject to
ATy—-v+h=c

v=0, h=>0 and y free.

(4.2a)

(4.2b)
(4.2¢)

(4.33)

(4.3b)
(4.3c)

We call v; and h; dual slack variables. If the upper bound u; = o

(infinite value) in the primal BLLP then the dual problem is in the form

DBLPP: minimize W = b"y + I"v +¥ ;. <oy U by

subject to
ajy+vi+hi=c¢ if [=0and u <oo
ajy +v; = ¢ if ;>0and u; = o
Example 4.1:

BLPP3: maximize Z = 2x; + 4x, + x3
subject to
2x1 +x, —x3 < 10
X1 +x,—x35 4
1<x;, <4
0<x,<6
1<x3 <4

(4.4a)

(4.4b)
(4.4c)

(4.4d)
(4.4e)

To formulate this problem in standard form, we must introduce the slack

variables x, and xs. These are bounded below by zero and bounded

above by oo, we have
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maximize Z = 2x; + 4x, + x5 + 0x, + Oxg
subject to
2x1 +x, —x3+x, =10
X1 +xXy—x3+x5 =4
1<x;<4
0<x,<6
1<x3<4
0<x, <
0<xy <

DBP3: minimize W = 10y, + 4y, + v; + v3 + 4h; + 6h, + 4h4
subject to
2y, +y, +vy+hy =2
yi+y, +v,+h, =4
— Y —Y.2+tvst+h3=1
V1 + v, =0
Vo + vg =0

y; free,v; <0,h; =0, wherei =1,2;j=1,2,3,4,5.
Notation:

1. Any vector (yT,vT,hT)T € R™*2" that satisfies the dual
constraints (4.4b), (4.4c) is called a dual solution.

2. If a dual solution additionally satisfies constraints (4.4d), (4.4e), it
is called a dual feasible solution.

3. If no dual feasible solution exists, BLPP is said to be a dual
infeasible. Otherwise feasible.

4. If for every M € R there is a dual feasible solution (y?,vT, hT)T

such that b7y + Tv +Z{j;uj<oo}u]T h; >M, then BLPP is dual

unbounded.
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4.2. Dual Simplex Method For Bounded Variables: [8]

The dual simplex method starts with a dual feasible basis but primal
infeasible and walks to a terminal basis by moving along adjacent dual
feasible basis. At each pivot step, this method tries to reduce primal

infeasibility while retaining dual feasibility.

Let B be a known dual feasible basis and x5 = (xg,, xg,, ...., Xg ) be
the associated basic vector. Suppose rth basic variable xp_ is not within

its boundes, so we depart this basic variable and enter some nonbasic

variable say a;¢B .

There are two possibilities. Either xp_ is below its lower bound or above

its upper bound.

Case(l): If xp_is below its lower bound. While applying dual simplex
iteration in this case, our aim is to increase xp_till its attains its lower

bound. Again there are two possibilities
(i) a, €N, (i) ai € N,.

(i) Let a, € N;, which is currently nonbasic and at its lower bound with

z, — ¢, = 0, is selected for replacing B,, where B = (B, B, ... By,).

Let X, =1, + A, ; where A, is nonnegative and determined by

Xp, = Xp — ar D= 1lg ; where a, isthe pivot element.

Note that a,, < 0. Since A,> 0 and for increasing xp_, a;,, should be

negative.

> A= B (4.5)

—Qrg
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When a;, enters and B, departs, then
n Arj
Zj—Cj = (Zj—Cj)—a—Ti(Zk_Ck)’ \4 (lj%B. (46)

For maintain optimality, Zz; —¢; =0, V a;€N; and Z —¢; <0,

V a; EN,.

For C(rj<0,ZAj—Cj20 if

Zj, —C Zj—Cj
L X>J Jvyaen,. (4.7)
Ark Arj

Clearly from (4.6), for a,; <0, 2; —c; <0, for a; € N,.

For aTj>01 ZA]—C]SO if

Zk—Ck _Zj "€
= V a; €EN,. 4.8
Ak arj j 2 ( )
Relations (4.7) and (4.8) imply that
Zg —Cr __ zZj—¢j zj—cj
a—rk = max{ ]“rjj ‘a; € Nl,arj < O,J—rj’.aj € Nz,arj > 0} (4.9)

(i) Let a; € N, , which is currently nonbasic and at its upper bound

with (z, — c,) < 0 is selected for replacing B, .

Let X, =u, — A, , where A, is nonnegative and determined by

Xp. = Xp. + ap Ay = lg_, Where a, is the pivot element.

Note that a,, = 0. Since A, > 0 and for increasing xjp_, @, should be

positive.

= A, = 2B (4.10)

Ark
For maintaining optimality, 2j—¢; =20,V a; €N, and 2 —¢; <0,
V a; €N,.
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Form (4.6), for a; € Ny, 2, —¢; 2 0, for a,; 2 0.
For a?‘j <0,2]—C] >0 if

Zk —Ck < Z%j

e
>%"9 va;eN,. (4.11)

Ark Ay j

Form (4.6), for a; € N;, Z; —¢; < 0, fora,; < 0.

Fora’rj<0,ZAj—CjS0 if

Ak U9y g€ N, (4.12)

Ork Arj

Relations (4.11) and (4.12) imply that

Zkg — Ck

Ark

= max {Zf‘cf La; € Ny, ay; < 0,9 a; € Ny ayy > o} (4.13)
arj CZT]

Which is same as (4.9).

Case(ll): if xp_ is above its upper bound. While applying dual simplex
iteration in this case, our aim is to decrease xp_ till it attains its upper

bound. Again there are two possibilities
(i) a, € N; (i) ay €N, .

(i) Let a; € N, which is currently nonbasic and at its lower bound with

Zy — ¢ = 0, is selected for replacing B, , where B = (B B, ... Bp,).

Let X, =, + A, , where A, is nonnegative and determined by

Xp. = Xp_— Qi A= up_, Where a, is the pivot element.

T

Note that a,, = 0. Since A, > 0 and for decreasing xp_, a, should be

positive.

> A= e (4.14)

Ark
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As in case(l), for maintaining optimality, Zz; —¢; =0,v a; € N; and

AN

Zj—CjSO, A a]-ENZ.
Form (4.6), fora; € Ny, Z; —¢; =0, fora,; <0.

Forarj>0,z“j—cj20 if

Zg — Ck

— Va;eN,. (4.15)

Ark Arj
Form (4.6), fora; € N, , Z; —¢; < 0, fora,; = 0.

Forarj<0,2j—ch0 if

Lk <U9 yai €N, (4.16)

Ark Ay j
Relations (4.15) and (4.16) imply that

Zk — Ck Zj—Cj

(2
=mm{1 J:ajENl,arj>O,
arj arj

:aj € NZ’ ocrj < 0} (417)

Ark

(ii) Let a;, € N,, which is currently nonbasic and at its upper bound whit

(z;, — cx) < 0 is selected for replacing B,.
Let X, = u, — A, , where A, is nonnegative and determined by
Xp. = Xp + apx Ax =up_, Where a, is the pivot element.

Note that a,, < 0. Since A, > 0 and for decreasing xp_, a,, should be

negative.

> A, = Zr-Us (4.18)

For maintaining optimality, Z; —¢; =0, Va; €N, and Z; —¢; <0,

Va€eN,.
Form (4.6), for a; € Ny, Z; — ¢; =0, for a,; < 0.
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For Ay j >0,ZA]—C]20 if

Ak <I-T Y a; €N (4.19)

Urk Arj

Form (4.6), for a; € N, ,Z; —¢; <0, for a,; = 0.

For a’rj<0,ZAj—CjS0 if

Lk <UT Y g €N, (4.20)

Ark Arj
Relations (4.19) and (4.20) imply that

Zkg — Ck

= min{zj_cj ‘a; € Ny, apj > 0,25, a; €Ny, a,; < 0} (4.21)
Ark

Qrj Ay j
which is same as (4.17).

Result 1 (Primal infeasibility criterion) : The original BLPP is infeasible
iIf corresponding to a dual feasible basis B, there exists an i such that

either

(l) xBl':Bi<lBi and ocijZO VajENl and C(USO VajENZ,
or

(II)xBi=5i>uBiand ay <0V a;eNanda;; =0 Va;EN,.

Result 2 (Dual simplex entering criterion) : If some xp_ (< [ ) is chosen

to leave the basis then the variable x; enters the basis if

Zg — Ck

Arj Arj

Zj—Cj Zj—Cj
- =max{%:ajEN1,arj<O, ~—L:a; € Ny, a,; >0},

and if some xp (> up ) is chosen to leave the basis then the variable x;

enters the basis if

Zg — Ck

_ o Zic, zj—¢j, _
—mm{ a ‘a; € Ny,arj >0, - 1@ € Ny, <0}.

Ark rj
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If any of the criterion is not applicable, then there exists no feasible

solution to the BLPP (by Result 1).

Algorithm 4: (The Dual Simplex Method For bounded Variables)

STEP1

STEP2

STEP3

STEP4

Convert the minimization problem into maximization if it is
minimization form. Convert the > type inequalities, representing the
constraints of the given linear programming, if any, into those of <
type. Call this problem as (BLPP).

Introduce slack variables in the constraints of the given problem and
obtain an initial basic dual feasible solution and consider the

corresponding starting dual simplex table.

Test the nature of (z; — ;) in the starting simplex table.

) If [<xj<wu; vV j=1,2,..,n and z;—¢; =0 V a; €N,
and zj—¢ <0 V a; €N, , then an optimal basis feasible
solution of ( BLPP ) has been obtained.

b) If zi—¢ =0 Va €N and zj—¢;<0 V a; EN, and at
least one basic variable say xp, is not within its bounds, then go to
step 4(a) or 4(b) accordingly as xp, < lg Or xp, > ug..

a) Select that basic variable xp, for which |xp, — I5,| is maximum.
Let x5 = x be such that [x;, — [;| is maximum so that a, leaves
the basis. Go step 5(a).

b) Select that basic variable x, for which |xp, — up,| is maximum.
Let xp_ = x; be such that |x; — | is maximum so that a;, leaves

the basis. Go to step 5(b).
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STEP5  a) Test the nature of ay;,j = 1,2,..,n.

(I)If akao VajENl and akjSO VajENZ,
there does not exist any Feasible solution to the given
problem (by Result 1).

(I1) If at least one «y; is negative for some a; € N; or ay; is
positive for some a; € N, , compute the replacement

ratios

{(Zj_cj : a]- ENl,akj < 0),(Zj_Cj:aj ENZlakj > 0)}

Ak j Ak j

And choose the maximum of these. The corresponding
column vector, say «a,. , then enter the basis.

b) Test the nature of ay; ,j = 1,2, ..., n.

M If a,; <0V aeN and ay; =0 V a; €N, ,there
does not exist any feasible solution to the given problem
(by Result 1).

(I1) If at least one ay;is positive for some a; € Nyor ay;is
negative for some a; € N,, compute the replacement

ratios

{(ﬂa] ENl,akj > 0),(Zj_Cj:aj ENz,akj < 0)}

Olkj akj

and choose the minimum of these. The corresponding

column vector, say ay, enter the basis.

STEP6 Test the new iterated dual simplex table for dual optimality. Repeat the
method until either an optimum feasible solution has been obtained (in
a finite number of steps) or there is an indication of nonexistence of a

primal feasible solution.
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Remark 1: If upper bounds of all the decision variables are finite then
primal problem is bounded. If not so, then the dual problem is known
to be feasible, the primal problem cannot be unbounded, by weak
duality theorem. The algorithm discussed here will terminate with a
basis that satisfies either the optimality criterion or primal infeasibility
criterion.[13]

4.3. Sensitivity Analysis
Consider the following problem:

BLPP: maximize Z =c"x
subject to
Ax=»>b
[<x <.
Suppose that the Algorithm3 produces an optimal basis B. we shall
describe how to make use of the optimality conditions to find a new
optimal solution, if some of problem data change. In particular, the

following variations in the problem will be considered.

Change in the cost vector ¢7 .

Change in the right-hand-side vector b.

Change in the bounded of the variables.

Change in A (change in the coefficient matrix a;;).
Deletion of a variable.

Deletion of a constraint.
4.3.1. Change in the Cost Vector ¢

Given an optimal basic feasible solution, suppose that the cost coefficient
of one (or more) of the variables is changed from ¢, to ¢,. The effect of

this change on the final tableau will occur in the cost row; that is,
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optimality (dual feasibility) might be lost. Consider the following two

cases:
Case(l): x Is Nonbasic

In this case, c§ is not affected, and hence, zj = cga,- IS not changed for
any j .Thus, z, —c, is replaced by z, —c, . Now we have two
possibilities: Either ¢, € cy, Or ¢ € cy,.
Case (a): If ¢, € cy, , then
Zr — ¢, = (z — ) + (e — 1) (4.22)
and
Z' = cp(B7'b) — Yje; (2 — ) + (2 — i)l | — Zjey, (2 — )y
= cg(B7'b) — Zje]l,j;tk(zj - Cj)lj — (Zk — 1) b — Xjey, (77 — )y
= cg(B™'b) — Zjeh(zj - Cj)lj — (ck — ) b — Xjey, (77 — ¢y
=7Z— (¢, — i)l . (4.23)

Note that, if z, —c; < 0, then x; must be introduced into the basis and
the Algorithm3 is continued as usual. Otherwise, the old solution is still

optimal.
Case(b): if ¢, € cy, , then,

zx — ¢ = (Zx — ) + (e — ¢x) (4.24)
and

Z' =7 — (cx — cp)uy . (4.25)
If z, —c;, >0, then x;, must be introduced into the basis. Otherwise,

the old solution is still optimal with respect to the new problem.
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Case(ll): x; Is Basic, Say x;, = xp,

Here, cg, is replaced by cp,. Let the new values of z; be z; and Z be

Z'. Then zj’ —¢j and Z' are calculated as follows:

7!

— P — T, - — -
i—Cc =cgaj—c

j 6
—_ m !
= Zi:Liit Cp; Ajj + Cp, Arj — Cj
— m 14
= Xi=1,i#t CB; ®jj + Cp, A¢j — Cp, A¢j + Cp Arj — Cj
— m !
= XYiz1Cp, a;j — ¢ + (cp, — Cp,) Ay
—_— ! 1
= (z; — ¢;) + (cp, — cp)ay; forallj. (4.26)
In particular, for j =Kk, z, — ¢, =0, and a;, = 1, and hence, z, — ¢, =
Cr, — Ck, SO
Zy —Cp = Z) — Ci + € — Cp,
= (z, — cx) — (cx — k)

= (¢, —¢c) — (¢ —¢) = 0. (4.27)

That is mean z;, — ¢, is still equal to zero. Therefore, the cost row can be

updated by adding the net change in the cost of xp = x; times the

current t row of the final tableau, to the original cost row. Then, z;, — ¢,

is updated to z, —c;, = 0.
Z' = cy (B7'b) = Yje;,(z) — ¢l = Xjep, (2 — ¢y
= Y1 ixt Cg; (B7'D); + ¢, (B™'h); — Yjey, (Zj - Cj) i —
Yjen (s, = c8,) @il — Tjer, (5 — )y — Xjey, (b, — c8,) Ay
+ cg,(B™*b); — cp,(B~'b),

=Z + (cp, —cg,)by; (4.28)
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Where b, = (B7'b); — Xjej, @ij L — Xjey, ij Uj-
Example 4.2:

BLLP4: maximize Z = 4x; — 2x, + x5 + 2x, + xc
subject to
—X1 — 2%y + X3 +2x4 — x5 < 3
X1 + Xy +Xx3+x4 +2x5 <4
0<x <1 v j=1,2,3,4,5.

The initial and optimal tableau are showing in Tableau 4.1 and Tableau
4.2 respectively.

TABLEAU 4.1

BP4| x;, x, x3 x4 x5 x4 x; | RHS

u, L uz  uy [,
BP4| x; x, x3 x4 X5 Xg Xy RHS
xe |12 -3/2 3/2 52 0 1 1/2 3/2
xs |12 12 12 12 1 0 12 | 1/2

Z |-72 5/2 -1/2 -3)2 0 0 1/2 |15/2

Suppose that ¢, = -2 is replaced by 1. Since x, is nonbasic at its lower
bound, the z, — ¢} = (2 — ¢;) + (¢, — c4) == —3 = ==, and all other

z; — ¢; are unaffected. The new objective value

4 7 l 15
Z =Z_(C2_C2)l2=?.
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we have Tableau 4.3 .

TABLEAU 4.3

u L, us uy [,
BP4| x; x, x3 x4 x5 x4 x; | RHS
xe |12 -3/2 32 52 0 1 12 | 3/2
xs |12 12 12 172 1 0 12 | 1/2

zZ |-72 -1/2 -1/2 -3)2 0 0 1/2 |15/2

Since x, is nonbasic at its lower bound and (z, —c¢,) < 0, x, must be
entering the basis. Let x, = [, + A,= A,. Compute A, by using (3.24-
3.26), we have A,= §; = 1, therefore, the departing variable is xg,= x5 ,
which becomes nonbasic at its lower bound. x, becomes basic variable in

row 2.

O
™
Il
| — |
=
(o)
—
Il
NlR,rN|W
[
N\
—
—/
=
N
Il
—
w
| S
N)
Il
|H
Ul
[
VN
|
| —
N—
Il
|r—\
[e)}
Il
fee)
=
N
Il
—_

The remainder of the tableau is updating by performing a standard pivot

operationon a,, = % . we obtained the Tableau 4.4.

TABLEAU 4.4

BP4|x, x, x3 x4, x5 x5 x;, |RHS

The Tableau 4.4 is optimal, and the optimal solution is (x7, x5, x3, xz, x=,
x%, x5 Z) = (1,1,1,1,0,3,0; 8)
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Next, suppose that cc = 1 is replaced by —2. Since xg is basic ( in
tableau 4.2), then the new cost row, except zz — cg , IS obtained by
multiplying the row of xg by the net change in ¢ [thatis, —2 —1 =
—3] and adding to the old cost row. The new zg — c¢5 remains zero, and
the new objective value Z'=7 + (c; —cs5) xp, = 175 + (=3) G) =

6. Note that the new z, — c, is now positive and x-, nonbasic at its lower

bound, so x- entering the basic.

TABLEAU 4.5

BP4| x;, x, x3 x4 x5 x¢ x; | RHS
xe | -1/2 -3/2 3/2 572 0 1 1/2| 3/2
xs |12 12 12 12 1 0 12| 12

Z |5 1 -2 -3 0 0o -1 6

Let X7 = l7 + A7= A7.

Compute A, using (3.24-3.26), we have A,=6; =1, SO x5, = X5

departing the basis at its lower bound.

- (1)

~ X6
Rp = [xs] _

NIk, N|W
N|RN]|R

}[é], x,=1and Z =6—1(=1) =7

The reminder of the Tableau is updating by performing a standard pivot

. 1 .
operation on a; = -. We have optimal Tableau.
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TABLEAU 4.6

BP4| x;, x, x3 x4 x5 x4 x; | RHS

The optimal solution is (x7, x5, x3, x5, x=,x¢,x7; Z*) = (1,0,1,1,0,1,1; 7)
4.3.2. Change in the Right-Hand Side [8],[11]

If the right-hand side vector b is replaced by b’, then Xz = B~ 1b —

Yjes, Xjli — Xjey, aju; will be replaced by
Xp = B7'b' = Yje;, ajli — Yjep, @y (4.29)

The new right-hand side can be calculated without explicitly evaluating
B~1b’. This is evident by noting that B-1b’ = B~'b + B~1(b’ — b) .

Hence

Xy =Xg + B1(b' — b). (4.30)

Since z; —¢; = 0 for all nonbasic variables at its lower bound, and
zj—c; <0 for all nonbasic variables at its upper bound, the only
possible violation of optimality is that the new vector Xz my have some
entries are not within them bounds. If Iz < Xp < ug , then the same
basis remains optimal. Otherwise, the Algoritm4 can be used to find a
new optimal solution by restoring primal feasibility. The new value of the

objective function is

Z' =Z7Z +ckB71(b' — b). (4.31)
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Example 4.3:
Suppose that the right-hand-side of Example 4.2 is replaced by g]

(9)-E) - ][_3214_21_

1
Note that, B~1(b’ — b) =
0

N[RrN]|PFR
N[RN[R

N

1

and hence xg = || + [_21] = l_l , also Z' = 175 +(0 1) [_21] = ?3

NIRN|W

2

We obtain Tableau 4.7.

TABLEAU 4.7

BP4| x;, x, x3 x4, x5 x4 x; | RHS
xe |-U2 -3/2 3/2 52 0 1 12 | 72
xs | U2 12 12 12 1 0 12| -1/2
Z |-712 5/2 -1/2 -3)2 0 0 1/2 |13/2

Note that x; = —% < l; = 0, this means the new solution is not feasible,

xs departing the basis. Applying Algorithm4, first compute the

replacement ratios by using the relation (4.9).

Z{—C Z3—C Zs—C
max{1 1=_7,3 3=_1’4 4=_3}:_1_
Azq Az3 A4

and hence x5 enters the basis, since x5 nonbasic at its upper bound.

Let x; = us —A;= 1 — A3, and computing A5 as follows:

39,

>
w
o
N}
=
o]
N}
o
|
N Rl
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X 7
Hence x;3=0,%p = [xz] =| 2|+ @
T2

NIk, N|W
—
I
—
o vl
—

And Z=§+1(—§)=6.

We obtain the optimal Tableau 4.8.

TABLEAU 4.8

BP4| x; x, x3 x4 x5 X4 x; | RHS

x; | U2 12 12 12 1 0 12
Z | -3 3 o -1 1 O 1 6

The optimal solution is (x7, x5, x3, x5, Xz, x¢,x7; Z*) = (1,0,0,1,0,5,0; 6).
4.3.3. Change in the bounded of variables

Given an optimal basic feasible solution, suppose that the lower(upper)
bound or both of one ( or more ) of the variable is changed where

0 < [; <wuj. In this case the optimality is maintained but feasibility may

be hampered. Consider the following two cases:
Case(a): x; Is Nonbasic

In this case there are two possibilities

(i) Xk = Iy

(i) xp = wy

(i) let x;, = [, and the lower bound [, was changed into [;, , then the new

values of xgz and Z can be calculate as follows

Xp =Xg + (Ix — L)ag (4.32)
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and
7 =7+ )l — L) (4.33)

If Xy feasible, then the new solution is optimal. Otherwise apply

Algorithm4 and proceed.
(i) x;, = uy, parallel to (i).
Case (b): x Is Basic say x = xp_

If the lower bound [,, of x,, is replaced by [, and/or upper bound w; of x;
is replaced by w;, and if [ <[ < x, < u, <uy , then the solution is
still feasible and it is optimal. Otherwise applying Algorithm4 and

proceed.
Example 4.4:

Consider the BLPP4 in Example 4.2 with the optimal Tableau 4.9.

TABLEAU 4.9

BP4| x; x, X3 X4 X5 Xg @ Xg RHS
xe |12 -3/2 3/2 52 0 1 1/2 3/2
xs |12 12 12 172 1 0 1/2 1/2
Z |-72 52 -1/2 -3)2 0 0 1/2 |15/2

Suppose that the lower bound [, = 0 of x, is replaced by [, = 2, and the

upper bound u, =1 is replaced by u;, = 4. The new value of basic

e )HH

Nl=,N W

variables is Xp = [
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and the new objective value of objective function is
7y _ 1_5 E _ — E
Z'= 2+(2)( 2) = 2

we obtain new Tableau 4.10.

TABLEAU 4.10

Uq l;  us Uy l;

BP4| x;, x, x3 x4 X5 X¢ Xy RHS
X |12 -3/2 32 52 0 1 1/2 | 9/2
xs |12 12 172 12 1 0 1/2 | -1/2
Z |-712 5/2 -1/2 -32 0 0 1/2 | 52

As x5 = _71 < l; = 0, this means the new solution is not feasible, xs

departing the basis. Applying Algorithm4, first compute the replacement
ratios by using the relation (4.9).

Z1—C Z3—C Zyp—C Z3—C
max {—1 =7 ==-1="= —3} =-1===
a21 az3 A24

and hence x5 enters the basis, since x5 is nonbasic at its upper bound.,
Let x3 = u; — A;=1— Az, compute A;.

-1
0-(5)

lp,—X
A= 22 —Fz = =1, hence x5 = 0.

Az3

N

we[el=flrof] =[] 2= 0@)-2

We obtain the optimal Tableau 4.10.
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TABLEAU 4.11

u b u, s L7

BP4| x;, x, x3 x4 x5 x4 x; | RHS
Xe | 2 -3 0 1 -3 -1
X3 1 1 1 1 2 0 1
Z 3 3 0 -1 1 0 1

The optimal solution is (x5, x5, x3, x4, X<, x¢,x7; Z*) = (1,0,0,1,0,6,0; 2)
4.3.4. Change in the Coefficient Matrix 4 [3]

The changes in the coefficients are relatively easy to handle if the a; to
be changed are associated with a nonbasic variable. However, a change
in an associated with a basic variable is considerably more involved, and

thus, for such a case, we shall resolving the problem for the beginning.

Let B be the optimal feasible basis for the original problem and A =
l[a; a, a; ...a, ] and a; undergoes change, and let a,¢ B. There are

two cases:
Casel: a; € Ny, Casell:a; €N, .

If ag € Nl, then X = lk'

A1k A1k A1k 0
(¢53% Ay A 0
Let a;, =| - > a,=| o+ | = + )
k Ark k Arg Ark (ark - ark)
: 0
Amk Amk Amk :

This means a;, = a; + e, (a4 — ari),

SO a;, =B 'a; = a; +Ek (Ark — Arg),
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— — ~— .

where  B™'=(B B .. Br .. Bp)
and
Xp = B7'b — Y ), =k (i) — ol — X je), aju;
= B7'b — ¥je, je(ayl) — [ar +Bi (are — ar)lle — jeg, @y

= B7'b — ¥ e, (1) — Xjej, @jut; —Bi (@rp — ari) i

Xp = Xp ~Bi (@ — A (4.34)
Alsozi —ci=zj—c¢; VjeE(UJ);j*k
and
z, — ¢, = Chat), — ¢
= chlay +B (@l — an)] — cx
= chay — i + ¢k B (aly — ane)
= (2 = ¢ + € B (@ — ap) (4.35)
Z' = cp(B7'b) — i), (7 — ¢) i — Tjep, (7 — ¢
= cp(B7'b) — Yjej, j=k(2j — ) |j — Xjep, (2 — ) uy —
[(zi — ci) + €& Br (i — ar)]li
=Z — cg B (ap = aplic. (4.36)

So change in a; € N, affects both optimality as well as feasibility,

similarly, if a;, € N, undergoes change parallel results will be obtained

by replacing [, by uy .
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Remark 2:(Solution of the problem when some a; € N; undergoes

change)

If only optimality is hampered, apply Algorithm3 and solve. If
only feasibility is hampered, applying Algorithm4 and solve. If
both optimality as well as feasibility are hampered, then x;
which is currently at lower bound, set at its upper bound

X, = uy; and calculate
A =/ !
Xp = Xp — O U,

and

~

Z =7 — (z — c)uy

All other relative cost coefficients, basis and a; remain

unaltered during this change. Now x; is at its upper bound and
Zx — ¢ < 0. So this solution is optimal but need not be feasible.
If Xp is feasible, then it is optimal basic feasible solution,
otherwise apply Algorithm4 and solve. Similarly we can solve

for a; € N,.

Example 4.5:

Suppose that in Example 4.2, a, is changed from [_11] to [ﬂ Then,

|

N|lRr N0

1
a; = a, +[§1(a£1 —aqy) = 12 + [(1)] 3) = [
2

zy—¢ =(zy—cy) + Cg f1 (a1 — aiq)

=(-9+© v[g]=-
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)_(23 =Xp —f1 (a1; — ay1)ugs =

N[, N|W
e
I
—
S
e
\

w
-/
\

p—

—/

I
[\S]

N |-

We obtained Tableau 4.12.

TABLEAU 4.12

BP4 | x,; X, X3 X4 Xs Xg X7 | RHS
Xe | 512 -3/2 3/2 52 0 1 1/2 | -3/2
xs | U2 12 12 12 1 0 1/2] 1/2
Z |-7/2 5/2 -1/2 -3)2 0 0 1/2] 15/2

Note that this solution is optimal (dual feasible), but not feasible, since
Xg = —% < lg = 0. Apply Algorithm4, compute the replacement ratios

by using the relation (4.9).

Z1—Cq1 —7/2 Z3—C3 —1/2 Zp—Cy —3/2 -1 Z3—C3
max{ = = , = —Tl_27G

a1 5/2 7 a3 3/2 ais  5/2 3 Q3

That is mean x5 entering the basis, and x, departing the basis at its

lower bound.

% o—(-3
Let x3 =u; —A;=1—A;, where A; = ‘51~ XBy _ (-2) -1

3
a z
13 2

X
0=[id-| -

o (1)=[(1)], X=1-1=0

N, N]W

and Z =175+(—%) (D) =7.

We obtained the optimal Tableau 4.13.
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TABLEAU 4.13

BP4| x; x, x3 x4 x5 XxX¢ x; | RHS
x3 |53 -1 1 53 0 23 1/3 0
xs [-1/3 1 0 -1/3 1 -1/3 1/3
Z |83 2 0 -32 0 12 2/3 7

The optimal solution is (x5, x5, x3, x4, X<, x¢,x7; Z*) = (1,0,0,1,1,0,0; 7)
4.3.5. Deletion of a Variable [5],[13]

There are two cases:

Case (a): Deletion a nonbasic variable x;,

When a nonbasic variable say x, is dropped, then basis and z; — ¢; will

not change, only xg and Z will undergo change, a; will be taken away.

Let a, is not belong to B and it is dropped. There are two possibilities:

() a €N,

(i) a; €N,
(i) If a;, € Ny, then we calculate the new value of xg and Z as follows:
Xp = B7'b — Yjej, ajl; — Xjey, ajuy + @l
= Xp + al, (4.37)
Z' = cpgB7'b — Y e, (zj — )l = Xjep, (27 — ¢)uj + (21 — i)l

=Z+ (z — c)ly (4.38)
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In this case optimality is maintained but feasibility may be hampered. If
lg < Xp < ug, then new solution is optimal as well as feasible. If Xp is

not feasible then we apply Algorithm4 and proceed.
(i) a; € N,, parallel to (i).

Example 4.6:

Consider the following problem.

BLPP5: maximize Z = 2x; + 3x,
subject to
X, +2x, <23
Xp — Xy <2

0< x; <7
2< x, <10

the initial and the optimal Tableaus are shown in tableaus 4.14 and 4.15

respectively .

TABLEAU 4.14

BPS5| x; x, x3 x4, |RHS
X3 1 2 1 O 19

Uyq I3
BPS5| x; x, x3 x, |RHS
X5 1/2 12 0 8
x, | 312 1/2 3
Z |-1/2 0 32 0 38
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Suppose that x; = u, be dropped, then

— _ 8
Xp =Xp T+ aju; = [3] + 13D =51

N|WN|R

and Z_,=Z+(Z1_C1)u1=38+(_71)(7)=%

. . 23 . .
Here feasibility is hampered as x, = - > U As x; is nonbasic so on

deleting the column a4 in Tableau 4.15, we have Tableau 4.16.

TABLEAU 4.16

BP5| x, X3 X4 RHS
Xy 1 1/2 0 23/2
Xy 0 1/2 1 27/2
Z 0 3/2 0 69/2

As x, = ? > u,. S0 it departs at its upper bound and x5 enters the basis.

Applying Algorithm4 repeatedly optimality solution of perturbed

problem is given by

g, — B_10
Let X3 = l3 + A3= A3’ where A3 _ XB,~UB4 — 2 — 3’

1
a =
13 2

then x; =3, %, =2 —2(3) =12 and Z' =§—(§) (3) = 30.

2 2

We have the optimal Tableau 4.17.
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TABLEAU 4.17

Uz
BP5| x, X3 x, | RHS
X3 2 1 0 3
X4 -1 0 1 12
Z -3 0 0 30

The optimal solution is ( x3, x3, x3;Z*) = (10,3,12; 30)

Case (b): Deletion of basic variable xg, = xj,

Deletion of basic variable may affect the optimality as well as feasibility.

For deletion of x5 , we make xp, a nonbasic, give it a high negative cost

—M(+M in minimization case) in optimal Tableau of BLPP and also

change its bounds Iz, = 0, ug, = . The resaved value of Z and z; — ¢;

can be calculate by using (4.26) and (4.28), where c5, = —M, we have
zj—¢ = (z - cj) + (=M — cp,)a;; forall j (4.39)
and
Z'=Z+ (—M — cp,)b; (4.40)

Also, the cost row can be updated by the net change in the cost of

xp, = X times the current ¢ row of the final tableau, to the original cost

row. then, z; — ¢, is updated to z;, — ¢;, = 0.

Now, xg, serves as an artificial variable, while making these changes,

only optimality can hamper. If optimality is hampered, then we applying
Algorithm3 and find optimal solution. In the optimal tableau check,

whether xg_ is basic or nonbasic.
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If xp, is nonbasic then it will be at its lower bound and now delete its
column, no change in objective function value and basic variables. If xp,

Is basic and not replaceable the problem will be infeasible (Result 2),

otherwise replace it and proceed as discussed above.

Example 4.7:

Consider the BLPP4 in example 4.2 with the optimal Tableau 4.18.

TABLEAU 4.18
u, L ous;  uy [,

BP4| x; x, X3 X4 X5 Xg Xy RHS
xe |-U2 -3/2 3/2 5/2 0 1 1/2 3/2
xs |12 12 12 172 1 0 1/2 1/2
Z |-712 52 -1/2 -3)2 0 0 1/2 |15/2

let ag € B be deleted. Here we consider that xs > 0, so it serves as an
artificial variable. Also c¢5 = 1 is replaced by —M. From Tableau 4.18,
making changes in z; —c; and Z accordingly, we have following
Tableau 4.19.

TABLEAU 4.19

BP4| x; X, X3 X4 Xg X¢ x7 | RHS
xe | -2 -3/2 32 52 0 1 1/2 312
X5 12 12 1/2 12 1 0 1/2 1/2

By using the relation (3.11), x, undergoes change, applying Algorithm3
as follows:

Let X7 = l7 + A7= A71
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compute A, by using (3.24-3.26)

)_(Bl_lBl _ 3/2 _ )_(BZ_IBZ _ 1/2 _ } _ 1
— — ) I —— — | —— — —

0, = min{ =
1 ay, 1/2 Az 1/2
52 = 00

U; —l; =0

A,= min{d, 6,,u;, — l,} = 6; =1, then the departing variable is

xp, = x5 Which becomes nonbasic at its lower bound.

Xp, = Xp, — Q1744

RO

Z = Z_ (Z7 - C7)A7
-M -M
=(5+7)-(5F)w=7.
The remainder of the Tableau 4.19 is updating by performing a standard

pivot operation on a,, = % . We obtained the Tableau 4.20.

TABLEAU 4.20

BP4 | x; x, x3 Xy X5 Xg Xy RHS

The solution in above Tableau is optimal and xg is nonbasic at its lower
bound, so on deleting as, the optimal solution of the perturbed problem is
x*=(1,0,1,1)and Z* = 7.
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4.3.6. Deletion of a constraint [5],[13]
There are two cases:

Case(a): Deletion of inactive constraint

An inactive constraint is that one which is satisfied as strict inequality. So
its corresponding slack or surplus variable would be basic and at nonzero
level. Suppose we want to delete the row ith constraint which is inactive.
Then delete the row and column of the slack/surplus variable
corresponding to ith constraint. There will be no change in xg, Z and

Zj —Cj.

Example 4.8:

Consider the BLPP4 in Example 4.2 with the optimal Tableau 4.21.

TABLEAU 4.21

Uq [ Us Uy l;

BP4| x; x, x3 x4 X5 X Xy RHS
xe |-U2 -3/2 32 52 0 1 1/2 32
xs |12 12 12 172 1 0 1/2 1/2
Z |-72 52 -1/2 -3)2 0 0 1/2 |15/2

As x4 = % > 0, so the first constraint is inactive. So to find the optimal

solution of the perturbed problem, we delete the column ag and first row

from Tableau 4.21 and there will be no change in xg, Z and z; — ¢;.

TABLEAU 4.22

BP4| x; x, x3 x4 x5 x; |RHS

X5 12 12 12 12 1 1/2 1/2
VA -715 5/2 -1/2 -3/2 0 1/2 |15/2
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H H H * * * * * k * 1 15
The optimal solution is (x;, x5, x3, X3, x&, x7; Z%) = (1,0,1,1,5,0;7)

Case(b): Deletion of an active constraint

A constraint, which is satisfied as an equation, is called an active
constraint. Let ith constraint is active and we want to delete it. For this,
we make this constraint inactive and then proceed as in case(a). To make
it inactive its slack/surplus must be introduce into basis at positive level

S0 give
slack/surplus high positive cost +M(—M in minimization case) and
calculate z; — ¢; for this slack/surplus variable and enter slack/surplus
variable into basis at next iteration. This makes the constraint inactive,

cut the row and column of corresponding slack/surplus variable.

Note:

let x,,,; be the slack variable in ith constraint, which is active in
optimal Tableau. As x,,,; = 0 and has no finite upper bound. So, if
Xn,+; 1S nonbasic, then it will be at its lower bound only and when
Cnti @ M, Zyyi —Chii = chay ;i — M <0, so it will always enter

the basis and make constraint inactive.
Example 4.9:

Consider the BLPP4 in example 4.2, with the optimal Tableau 4.23.

TABLEAU 4.23

BP4| x; x, x3 X4 X5 X Xg RHS
xe |-U2 -3/2 3/2 52 0 1 1/2 32
xs |12 12 12 12 1 0 1/2 1/2
Z |-72 52 -1/2 -3)2 0 0 1/2 |15/2

127



Chapter4

The second constraint is active. To make it inactive, change c; = 0 into

c; = M and calculate z, — c; as follows

1
z;—ch=cpa;—cj=0 D|i[-M=:-M<0
2
We have the Tableau 4.24
TABLEAU 4.24
Uq [, Us Uy l;

BP4| x; x, X3 X4 X5 Xg Xy RHS
xe |12 -3/2 3/2 52 0 1 1/2 32
xs |12 12 12 12 1 0 1/2 1/2
Z |-712 52 -1/2 -3)2 0 0 2-m |15/2

As z,—c; <0, so x, undergoes change. Applying Algorithm3
repeatedly.

Let X7 = l7 + A7: A71
Compute A, by using (3.24-3.26),

)

— i Xp,—lp; _ (3/2)-0 _ ., Xp,~lp, _ (1/2)-0 _ _
51—mm{ a;,  1/2 =3 a, | 1/2 _1}_1

62200

u7_l7:OO

A,= min{8;,8,,u; —l,} = 6; =1, then the departing variable is

xp, = x5 Which becomes nonbasic at its lower bound.
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TABLEAU 4.25

Uyq L, Uz Uy s
BP4| x; X, X3 X4 Xs Xe¢ X7 | RHS
Xe | -1 -2 1 2 -1 1 0 1
X7 1 1 1 1 2 0 1 1
Z |M-4 M+2 M-1 M-2 2M—-1 0 O M+7

Note that x, > 0, so second constraint is inactive. On deleting a, and
second row in the above Tableau and also making changes in Z and

z; — c;, we have the following Tableau.

TABLEAU 4.26

BP4| x; x, x3 x4 x5 x¢ |RHS

s | -1 2 1 2 -1 1 |1
Z| 4 2 1 2 1 o0 |7

This Tableau is feasible but not optimal. So applying Algorithm3
repeatedly.

Let Xg = l5 + A5= A51
Compute Ac by using (3.24-3.26)

61200
52=OO
u5—15=1

A,= min{6;, 8,,us — ls} = us — ls = 1, then xs moves from nonbasic at
its lower bound to nonbasic at its upper bound and Tableau 4.26 remains
the same, but Z and X are changes.

)2131 = Xp, — asAs=1—(—1)(1) =2
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Z=17— (25— c5)As
=7—-(-1() =8.

TABLEAU 4.27

BP4 X1 Xy X3 X4 Xs Xxg |RHS

Xe -1 -2 1 2 -1 1 2
Z -4 2 -1 -2 -1 0 8

The Tableau 4.27 is optimal, and the optimal solution is (xj, x3;, x3,
X4, Xs, Xe; Z%) = (1,0,1,1,1,2; 8).
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