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1. Introduction

Let 1 < p < ∞ and X = (X,d,μ) be a complete metric space endowed with a metric d and a positive complete Borel
measure μ which is doubling, i.e. there exists a constant C > 0 such that for all balls B = B(x, r) := {y ∈ X: d(x, y) < r} in X
we have

0 < μ(2B) � Cμ(B) < ∞,

where τ B = B(x, τ r). The doubling property implies that X is complete if and only if X is proper, i.e., closed bounded sets
are compact. We also require the space X to support a p-Poincaré inequality, see Section 2 for the definition.

In a metric space the gradient has no obvious meaning as in domains in Rn . Therefore the concept of an upper gradient
was introduced in Heinonen and Koskela [16] as a substitute for the modulus of the usual gradient. This makes it possible
to define and study Sobolev spaces in metric spaces. There are many notions of Sobolev spaces in metric spaces; see for
example Cheeger [9], Hajłasz [14] and Shanmugalingam [22,23]. We shall follow the definition of Shanmugalingam [22],
where the Sobolev spaces N1,p(X) (called Newtonian spaces) were defined as the collection of p-integrable functions with
p-integrable upper gradients.

Newtonian spaces N1,p(X) enable us to study variational integrals in metric spaces and to build a nonlinear potential
theory for minimizers of the p-Dirichlet integral∫

g p
u dμ, (1)

where gu denotes the minimal p-weak upper gradient of u, whose existence and uniqueness were proved in Shanmu-
galingam [22]. Existence and uniqueness of minimizers of (1) were obtained in Shanmugalingam [23]. It was shown, in
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Kinnunen and Shanmugalingam [19], that under certain conditions on the space X , minimizers of (1) satisfy the Harnack
inequality and the maximum principle, and are locally Hölder continuous.

Potential theory in metric spaces has been studied in the last fifteen years in many papers. The Dirichlet problem for
minimizers was considered e.g. in Björn and Björn [1,2], Björn, Björn and Shanmugalingam [5,6] and Shanmugalingam
[22,23].

Let Ω be a bounded open subset of X whose complement has positive capacity. We minimize the p-Dirichlet integral (1)
on Ω among all functions which have prescribed boundary values f and lie between two given obstacles ψ1 and ψ2.
The minimizer is called a solution of the Kψ1,ψ2, f (Ω)-problem. This generalizes the Euclidean obstacle problem based on
equations of p-Laplace type as e.g. in Kinderlehrer and Stampacchia [17] and Malý and Ziemer [21], see also Section 5.3
in [21] and the references therein. In particular existence and regularity for the solutions were shown. Further results about
the obstacle problem in Rn can be found in Heinonen, Kilpeläinen and Martio [15], which concerns the single obstacle
problem. In Dal Maso, Mosco and Vivaldi [10] the double obstacle problem in Rn was considered for p = 2 and f ≡ 0.

In the general setting of metric measure spaces, the single obstacle problem in metric spaces has been investigated
in Kinnunen and Martio [18], where it was shown that there is a unique solution, up to equivalence in N1,p(X), of the
single obstacle problem which satisfies the weak Harnack inequality and has a lower semicontinuous representative. In Far-
nana [11–13] the double obstacle problem on metric spaces was studied. In particular existence, uniqueness and regularity
of the solutions were shown.

If Ω is not regular, then for some f ∈ C(∂Ω), the solution of the Dirichlet problem for harmonic functions does not
attain the boundary values at some points. This led Wiener [24] to his definition of generalized (Wiener) solutions of the
Dirichlet problem which is based on approximating Ω by regular sets (e.g. polyhedra) and showing that the solutions of
the Dirichlet problem in these sets converge, in some sense, to a unique harmonic function. In metric measure spaces it has
been shown that any open set Ω can be approximated by regular sets and moreover there exists a unique Wiener solution
of the Dirichlet problem for f ∈ C(∂Ω), see Björn and Björn [2], Theorems 1.1 and 4.2.

In this paper we study various convergence properties of the obstacle problem. In particular, we consider an increasing
sequence of open sets Ω j whose union is Ω . We analyze the convergence of the solutions u j of the obstacle problems
corresponding to the sets Ω j . In this work we give several generalizations of Theorem 4.3 in Björn and Björn [2]. Our
purpose here is to give sufficient conditions on the obstacles and the boundary values which imply that the sequence of
solutions u j converges to the solution of the obstacle problem corresponding to the set Ω , in some sense.

In particular we have the following result as a special case of Theorem 4.1.

Theorem 1.1. Let Ω1 ⊂ Ω2 ⊂ · · · ⊂ Ω = ⋃∞
j=1 Ω j be open sets and f ∈ N1,p(Ω). Then

HΩ j f → H f as j → ∞,

locally uniformly in Ω , where HΩ j f is the p-harmonic extension of f to Ω j (the continuous solution of the K−∞,∞, f (Ω j)-problem)
and H f is the p-harmonic extension of f to Ω .

This extends Theorem 4.3 from Björn and Björn [2] where a similar result was proved for f ∈ C(Ω).
Moreover, we extend the previous result to double obstacle problems i.e. for ψ1 � −∞ and ψ2 � ∞. In order to obtain

convergence of solutions we impose some additional assumptions on the boundary values, the obstacles and the set Ω . In
particular we obtain the following result which is essentially a special case of Theorem 4.2, see also Theorem 4.3.

Theorem 1.2. Let Ω1 ⊂ Ω2 ⊂ · · · ⊂ Ω = ⋃∞
j=1 Ω j be open sets and f ∈ N1,p(Ω) ∩ C(Ω). Let also ψ1 : Ω → [−∞,∞) and ψ2 :

Ω → (−∞,∞] be continuous (as R-valued functions) and such that ψ1 � f � ψ2 in Ω . Then the continuous solutions u j of the
Kψ1,ψ2, f (Ω j)-problems converge q.e. in Ω to the continuous solution u of the Kψ1,ψ2, f (Ω)-problem.

2. Notation and preliminaries

A nonnegative Borel function g is said to be an upper gradient of an extended real-valued function f on X if for all
rectifiable curves γ : [0, lγ ] → X parameterized by arc length ds, we have

∣∣ f
(
γ (0)

) − f
(
γ (lγ )

)∣∣ �
∫
γ

g ds (2)

whenever both f (γ (0)) and f (γ (lγ )) are finite, and
∫
γ g ds = ∞ otherwise. If g is a nonnegative measurable function on X

and if (2) holds for p-almost every curve, then g is a p-weak upper gradient of f .
By saying that (2) holds for p-almost every curve we mean that it fails only for a curve family with zero p-modulus,

see Definition 2.1 in Shanmugalingam [22]. If f has an upper gradient in L p(X), then it has a minimal p-weak upper gradient
g f ∈ L p(X) in the sense that for every p-weak upper gradient g ∈ L p(X) of f , g f � g a.e., see Corollary 3.7 in Shanmu-
galingam [23].
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The operation of taking the upper gradient is not linear. However, we have the following useful property. If a,b ∈ R and
g1 and g2 are upper gradients of u1 and u2 respectively, then |a|g1 + |b|g2 is an upper gradient of au1 + bu2.

In Shanmugalingam [22], upper gradients have been used to define Sobolev type spaces on metric spaces. We will use
the following equivalent definition.

Definition 2.1. Let u ∈ L p(X). Then we define

‖u‖N1,p(X) =
( ∫

X

|u|p dμ +
∫
X

g p
u dμ

)1/p

,

where gu is the minimal p-weak upper gradient of u. The Newtonian space on X is the quotient space

N1,p(X) = {
u: ‖u‖N1,p(X) < ∞}

/ ∼,

where u ∼ v if and only if ‖u − v‖N1,p(X) = 0.

The space N1,p(X) is a Banach space and a lattice, see Theorem 3.7 and p. 249 in Shanmugalingam [22].

Definition 2.2. The capacity of a set E ⊂ X is defined by

C p(E) = inf
u

‖u‖p
N1,p(X)

,

where the infimum is taken over all u ∈ N1,p(X) such that u � 1 on E .

We say that a property holds quasieverywhere (q.e.) in X , if it holds everywhere except on a set of capacity zero. New-
tonian functions are well defined up to sets of capacity zero, i.e. if u, v ∈ N1,p(X) then u ∼ v if and only if u = v q.e.
Moreover, Corollary 3.3 in Shanmugalingam [22] shows that if u, v ∈ N1,p(X) and u = v a.e., then u = v q.e.

We shall need the following result. For a proof see Corollary 3.3 in Björn, Björn and Parviainen [4].

Lemma 2.3. Assume that {u j}∞j=1 is a bounded sequence in N1,p(X) and that u j → u q.e. in X. Then u ∈ N1,p(X) and∫
X

g p
u dμ � lim inf

j→∞

∫
X

g p
u j

dμ.

From now on we assume that X supports a p-Poincaré inequality, i.e. there exist constants C > 0 and λ � 1 such that for
all balls B(z, r) in X , all integrable functions u on X and all upper gradients g of u we have

−
∫

B(z,r)

|u − uB(z,r)|dμ � Cr

(
−
∫

B(z,λr)

g p dμ

)1/p

,

where uB(z,r) := −
∫

B(z,r) u dμ.

Under the above assumptions, every function u ∈ N1,p(X) is quasicontinuous, i.e. for every ε > 0 there is an open set
G ⊂ X such that C p(G) < ε and u|X\G is continuous, see Theorem 1.1 in Björn, Björn and Shanmugalingam [7]. Moreover,
when restricted to Rn the Newtonian space N1,p(Rn) is the refined Sobolev space W 1,p(Rn), as defined in Chapter 4 in
Heinonen, Kilpeläinen and Martio [15].

For Ω ⊂ X open we define the space N1,p(Ω) with respect to the restrictions of the metric d and the measure μ to Ω .
It is well known in the field that the restriction to Ω of a minimal p-weak upper gradient in X remains minimal with
respect to Ω , see Björn and Björn [3].

A function u is said to belong to the local Newtonian space N1,p
loc (Ω) if u ∈ N1,p(G) for every open G � Ω , where by

G � Ω we mean that the closure of G is a compact subset of Ω .
To be able to compare the boundary values of Newtonian functions we need to define a Newtonian space with zero

boundary values outside of Ω as follows

N1,p
0 (Ω) = {

f |Ω : f ∈ N1,p(X) and f = 0 q.e. in X \ Ω
}
.

Under our assumptions, Newtonian functions with compact support are dense in N1,p
0 (Ω), see Shanmugalingam [23].

Moreover the proof of this result in Björn and Björn [3] shows that if 0 � u ∈ N1,p
0 (Ω), then we can choose the Newtonian

approximations to be nonnegative and pointwise smaller than the function u.
We assume throughout the rest of this paper that Ω ⊂ X is a nonempty bounded open set such that C p(X \ Ω) > 0.

Also, the letter C represents various positive constants whose values can change even within the same line of a calculation.
We shall need the following Poincaré type inequality. For a proof see e.g. Kinnunen and Shanmugalingam [19], Lemma 2.1.
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Lemma 2.4. There exists a constant C > 0 such that for all u ∈ N1,p
0 (Ω) we have∫

Ω

|u|p dμ � C

∫
Ω

g p
u dμ.

The following definition is slightly different from the notation used in Kinnunen and Martio [18]. We use q.e. inequalities
rather than a.e. inequalities as in [18], for more discussion see p. 265 in Farnana [11].

Definition 2.5. Let V ⊂ X be a nonempty bounded open set such that C p(X \ V ) > 0, let f ∈ N1,p(V ) and ψi : V → R,
i = 1,2. Then we define the obstacle problem with obstacles ψ1, ψ2 and boundary values f by

Kψ1,ψ2, f (V ) = {
v ∈ N1,p(V ): v − f ∈ N1,p

0 (V ) and ψ1 � v � ψ2 q.e. in V
}
.

Furthermore, a function u ∈ Kψ1,ψ2, f (V ) is a solution of the Kψ1,ψ2, f (V )-problem if∫
V

g p
u dμ �

∫
V

g p
v dμ for all v ∈ Kψ1,ψ2, f (V ).

We also let Kψ1,ψ2, f = Kψ1,ψ2, f (Ω), Kψ, f (V ) = Kψ,∞, f (V ) and Kψ, f = Kψ, f (Ω).

A function u ∈ N1,p
loc (Ω) is a minimizer in Ω if it is a solution of the K−∞,u(Ω ′)-problem for every open Ω ′ � Ω .

Similarly, a function u ∈ N1,p
loc (Ω) is a superminimizer in Ω if it is a solution of the Ku,u(Ω ′)-problem for every open Ω ′ � Ω .

A solution of the Kψ, f -obstacle problem is a superminimizer in Ω , but the converse is not true in general. However, if
u ∈ N1,p(Ω) and u is a superminimizer in Ω , then u is a solution of the Ku,u(Ω)-obstacle problem. We also say that u is
a subminimizer if −u is a superminimizer.

The following result, which we will need later, is a combination of Theorem 4.2 and Remark 4.4 in Kinnunen and
Shanmugalingam [19] and Lemma 4.1, Theorem 4.4 and Remark 4.5 in Kinnunen and Martio [18].

Proposition 2.6. Let u ∈ N1,p
loc (Ω) and B(x, r) ⊂ Ω . Assume that either

(a) u is a solution of the Kψ, f (Ω)-problem and k � ψ q.e. in B(x, r); or
(b) u is a subminimizer in Ω and k ∈ R.

Then for all q > 0 and r > 0,

ess sup
B(x,r/2)

u � k + C

(
−
∫

B(x,r)

(u − k)
q
+ dμ

)1/q

.

We shall need the following results from Farnana [11].

Theorem 2.7. Let f ∈ N1,p(Ω) and ψi : Ω → R, i = 1,2. If Kψ1,ψ2, f is nonempty, then there is a unique solution (up to equivalence
in N1,p(Ω)) of the Kψ1,ψ2, f -problem.

Lemma 2.8. Let ψ,ψ ′,ϕ,ϕ′ : Ω → R and f , f ′ ∈ N1,p(Ω). Let u be a solution of the Kψ,ϕ, f -problem and u′ be a solution of the

Kψ ′,ϕ′, f ′ -problem. Assume that ( f − f ′)+ ∈ N1,p
0 (Ω) and that ψ � ψ ′ and ϕ � ϕ′ q.e. in Ω . Then u � u′ q.e. in Ω .

Moreover if u and u′ are continuous then u � u′ everywhere in Ω .

The following result shows that we can obtain a continuous solution of the obstacle problem if the obstacles are con-
tinuous. It extends Theorem 3.9 in Farnana [11] to the R-valued continuous obstacles. For a proof see Corollary 3.4 in
Farnana [12] and Theorem 3.10 in [11].

Theorem 2.9. Let ψ1 : Ω → [−∞,∞) and ψ2 : Ω → (−∞,∞] be continuous (as R-valued functions). Let also f ∈ N1,p(Ω) and
assume that Kψ1,ψ2, f (Ω) is nonempty. Then there exists a continuous solution u in Ω of the Kψ1,ψ2, f (Ω)-problem. Moreover, u is a
minimizer in the open set {x ∈ Ω: ψ1(x) < u(x) < ψ2(x)}.

A function v : Ω → R is p-harmonic in Ω if it is a continuous minimizer.
If Ω is bounded and C p(X \ Ω) > 0, then for every f ∈ C(∂Ω) there exists a unique bounded p-harmonic function

HΩ f = H f in Ω such that
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lim
Ω�x→x0

H f (x) = f (x0) for q.e. x0 ∈ ∂Ω, (3)

see Theorem 6.1 and Corollary 6.2 in Björn, Björn and Shanmugalingam [6] together with Theorem 3.9 in Björn, Björn and
Shanmugalingam [5].

Definition 2.10. Let Ω be bounded with C p(X \ Ω) > 0. A point x0 ∈ ∂Ω is regular if

lim
Ω�x→x0

H f (x) = f (x0) for all f ∈ C(∂Ω).

If all x0 ∈ ∂Ω are regular, then Ω is regular. We also say that x0 ∈ ∂Ω is irregular if it is not regular.

Regularity can be characterized in many different ways, see Björn and Björn [1], Theorem 6.1 and Farnana [11], Theo-
rem 4.7.

The following property is called the Kellogg property: If I p denotes the set of all irregular points in ∂Ω , then C p(I p) = 0,
see Björn, Björn and Shanmugalingam [5], Theorem 3.9.

We recall the following result from Farnana [11].

Proposition 2.11. Let ψi : Ω → R, i = 1,2, and f ∈ N1,p(Ω). Let x0 ∈ ∂Ω be a regular boundary point and such that f (x0) :=
limΩ�y→x0 f (y) exists and that

C p- lim sup
Ω�y→x0

ψ1(y) � f (x0) � C p- lim inf
Ω�y→x0

ψ2(y).

If u is a solution of the Kψ1,ψ2, f -problem, then

C p- lim
Ω�y→x0

u(y) = f (x0).

Here C p- lim sup, C p- lim inf and C p- lim stand for essential limits up to sets of capacity zero.
We shall need the following result from Farnana [13].

Proposition 2.12. Let { f j}∞j=1 , {ψ j}∞j=1 and {ϕ j}∞j=1 be q.e. decreasing sequences converging to f , ψ and ϕ , respectively, such that

ψ j → ψ in N1,p(Ω). Assume that { f j}∞j=1 is bounded in N1,p(Ω) and ψ j − f j ∈ N1,p
0 (Ω), j = 1,2, . . . . Let also u j be a solution of

the Kψ j ,ϕ j , f j (Ω)-problem, j = 1,2, . . . , and u be a solution of the Kψ,ϕ, f (Ω)-problem. Then u j decreases to u q.e. in Ω .

3. Auxiliary results

Definition 3.1. Let { fn}n∈N be a family of continuous functions. Then { fn}n∈N is said to be equicontinuous at x0 if for each
ε > 0 there exists a neighborhood U � x0 such that

sup
U

fn − inf
U

fn � ε for all n ∈ N.

The following lemma is Theorem 1.6 in Li and Martio [20]. As the proof therein is for domains in Rn we include the
proof here for completeness.

Lemma 3.2. Let S be a family of continuous solutions of the single obstacle problem in Ω , i.e. for each u ∈ S there are ψu : Ω → R
and fu ∈ N1,p(Ω) such that u is the continuous solution of the Kψu , fu -problem. Let Q = {ψu: u ∈ S}. Suppose that for x0 ∈ Ω there
are M < ∞ and a neighborhood V � x0 such that

sup
V

u − inf
V

u � M for all u ∈ S.

If the family Q is equicontinuous at x0 then the family S is equicontinuous at x0 .

Proof. Fix ε > 0 and B = B(x0, r) with 20λB = B(x0,20λr) � Ω , such that

sup
B

u − inf
B

u � M (4)

and

sup ψu − inf
20λB

ψu � ε for all u ∈ S. (5)

20λB
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Fix u ∈ S . We consider two cases. First assume that

inf
1
2 B

u > sup
1
2 B

ψu,

this implies that 1
2 B ⊂ {x ∈ Ω: u(x) > ψu(x)} and hence by Theorem 2.9 u is a minimizer in B . Theorem 5.2 in Kinnunen

and Shanmugalingam [19] implies that for 0 < s < r/2 we have

sup
B(x0,s)

u − inf
B(x0,s)

u � 8α

(
s

r

)α(
sup

1
2 B

u − inf
1
2 B

u
)

� 8α

(
s

r

)α

M,

for some α with 0 < α � 1. Choosing s ∈ (0, r/2] with

8α

(
s

r

)α

M < ε

we see that

sup
B(x0,s)

u − inf
B(x0,s)

u � ε. (6)

Next assume that

inf
1
2 B

u � sup
1
2 B

ψu . (7)

Let m = supB ψu and note that m = −∞ is not possible here, since it would imply that

sup
B

u � inf
B

u + M � sup
B

ψu + M = −∞,

i.e. u ≡ −∞ in B which contradicts the fact that u ∈ N1,p(B). Also by (5), m = ∞ is always impossible. Therefore we may
assume that m = 0. Now u is a solution of the Kψu ,u(B)-problem and ψu � m = 0 in B . Proposition 2.6 implies that

sup
1
2 B

u � C

(
−
∫
B

uq
+ dμ

)1/q

for all q > 0, (8)

where u+ = max{u,0}. Next from (5) we have

u + ε � ψu + ε � inf
20λB

ψu + ε � sup
20λB

ψu � 0,

hence u + ε is a nonnegative superminimizer in 20λB . Theorem 9.2 in Björn and Marola [8] provides us with q > 0 and
C > 0, only depending on p, the doubling constant and the constants in the Poincaré inequality, such that

(
−
∫
B

(u + ε)q dμ

)1/q

� C inf
1
2 B

(u + ε). (9)

Now combining (7), (8) and (9) and using that u+ � u + ε, yields

sup
1
2 B

u � C

(
−
∫
B

uq
+ dμ

)1/q

� C

(
−
∫
B

(u + ε)q dμ

)1/q

� C inf
1
2 B

(u + ε) � C sup
1
2 B

(ψu + ε) � Cε. (10)

Using that u � ψu and (5) we see that

inf
1
2 B

u � inf
1
2 B

ψu � inf
20λB

ψu � −ε.

This and (10) yield

sup
1 B

u − inf
1
2 B

u � (C + 1)ε. (11)

2
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Since u ∈ S was arbitrary, inequalities (6) and (11) show that S is equicontinuous at x0. �
Next, we prove the following proposition which we will need later. It shows that it is enough to test a function u ∈

Kψ1,ψ2, f (Ω) locally in order to show that it is a solution of the Kψ1,ψ2, f (Ω)-problem.

Proposition 3.3. Let ψi : Ω → R, i = 1,2, and f ∈ N1,p(Ω). Let also u ∈ Kψ1,ψ2, f (Ω). Then u is a solution of the Kψ1,ψ2, f (Ω)-
problem if and only if u is a solution of the Kψ1,ψ2,u(Ω ′)-problem for all Ω ′ � Ω .

Proof. The only if direction follows directly from Lemma 3.6 in Farnana [11]. For the other direction assume that u ∈
Kψ1,ψ2, f (Ω) is a solution of the Kψ1,ψ2,u(Ω ′)-problem for all Ω ′ � Ω and let ũ be a solution of the Kψ1,ψ2, f (Ω)-problem.
We will show below that u is a solution of the Kψ1,u,u(Ω)-problem and also a solution of the Ku,ψ2,u(Ω)-problem. The
comparison Lemma 2.8 then implies that u � ũ � u q.e. in Ω . Hence u = ũ q.e. in Ω and u is also a solution of the
Kψ1,ψ2, f (Ω)-problem.

To show that u is a solution of the Kψ1,u,u(Ω)-problem, let v ∈ Kψ1,u,u(Ω). Then v � u q.e. in Ω and u − v ∈ N1,p
0 (Ω).

Using that Newtonian functions with compact support are dense in N1,p
0 (Ω) we see that, for every ε > 0 there exists

ϕ ∈ N1,p
0 (Ω ′), for some Ω ′ � Ω , such that 0 � ϕ � u − v q.e. and

(∫
Ω

g p
u−ϕ dμ

)1/p

�
(∫

Ω

g p
v dμ

)1/p

+
(∫

Ω

g p
u−v−ϕ dμ

)1/p

�
(∫

Ω

g p
v dμ

)1/p

+ ε. (12)

Further we have ψ1 � v � u − ϕ � u � ψ2 q.e. in Ω . Hence u − ϕ ∈ Kψ1,ψ2,u(Ω ′). As u is a solution of the Kψ1,ψ2,u(Ω ′)-
problem we get∫

Ω ′
g p

u dμ �
∫
Ω ′

g p
u−ϕ dμ.

This and the fact that gu = gu−ϕ a.e. in Ω \ Ω ′ together with (12) imply that

(∫
Ω

g p
u dμ

)1/p

�
(∫

Ω

g p
u−ϕ dμ

)1/p

�
(∫

Ω

g p
v dμ

)1/p

+ ε.

Letting ε → 0 shows that u is a solution of the Kψ1,u,u(Ω)-problem. Similarly, we conclude that u is a solution of the
Ku,ψ2,u(Ω)-problem, by using the above argument for the solution −u of the K−ψ2,−ψ1,− f (Ω)-problem. �

We shall need the following lemma which can be proved easily using the comparison Lemma 2.8.

Lemma 3.4. Let ψ,ψ j,ϕ,ϕ j : Ω → R and f , f j ∈ N1,p(Ω), j = 1,2, . . . , be such that ψ j → ψ , ϕ j → ϕ and f j → f q.e. uniformly
in Ω . Let also u j be a solution of the Kψ j ,ϕ j , f j -problem and u be a solution of the Kψ,ϕ, f -problem. Then u j → u q.e. uniformly in Ω .

Here we say that w j → w q.e. uniformly in Ω if there exists a set E ⊂ Ω such that C p(E) = 0 and w j → w uniformly
in Ω \ E .

4. Convergence of the obstacle problems in varying domains

If Ω is not regular, then for some f ∈ C(∂Ω), the solution of the Dirichlet problem for p-harmonic functions does
not attain the prescribed boundary values at some points. This led Wiener [24] to his definition of generalized (Wiener)
solutions of the Dirichlet problem for harmonic functions which is based on approximating Ω by regular sets. In metric
measure spaces it was shown that any open set Ω can be approximated by regular sets and moreover there exists a unique
Wiener solution of the Dirichlet problem for f ∈ C(∂Ω), see Björn and Björn [2], Theorems 1.1, 4.2 and 4.3. In this section
we give several generalizations of Theorem 4.3 in [2].

Theorem 4.1. Let Ω1 ⊂ Ω2 ⊂ · · · ⊂ Ω = ⋃∞
j=1 Ω j be open sets, ψ : Ω → [−∞,∞) be continuous (as an R-valued function) and

f ∈ N1,p(Ω) be such that f � ψ in Ω . Let also u j be the continuous solution of the Kψ, f (Ω j)-problem provided by Theorem 2.9 and
u be the continuous solution of the Kψ, f (Ω)-problem. Then u j → u locally uniformly in Ω , where we define u j = f in Ω \ Ω j .
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Proof. As f ∈ Kψ, f (Ω j) and u j is a solution of the Kψ, f (Ω j)-problem, j = 1,2, . . . , we have
∫
Ω j

g p
u j

dμ �
∫
Ω j

g p
f dμ. (13)

Since u j − f ∈ N1,p
0 (Ω j) it follows from Lemma 2.4 and (13) that

‖u j − f ‖p
N1,p(Ω)

= ‖u j − f ‖p
N1,p(Ω j)

� C

∫
Ω j

g p
u j− f dμ

� C

( ∫
Ω j

g p
u j

dμ +
∫
Ω j

g p
f dμ

)
� C

∫
Ω

g p
f dμ. (14)

Hence {u j}∞j=1 is bounded in N1,p(Ω).
Next, fix k ∈ N. For x ∈ Ωk choose B = B(x, r) � Ωk . As ψ is continuous and B � Ωk we can find M ∈ R such that ψ � M

in B . It follows from Proposition 2.6 and the boundedness of {u j}∞j=1 in N1,p(Ω) that

sup
1
2 B

u j � M + C

(
−
∫
B

|u j − M|p dμ

)1/p

� M + C

μ(B)1/p

(∫
Ω

|u j − M|p dμ

)1/p

� Cx (15)

where Cx is independent of j, since {u j}∞j=1 is bounded in N1,p(Ω). On the other hand we have that −u j is a subminimizer
in B , for j � k, and Proposition 2.6, with k = 0, then implies that

sup
1
2 B

(−u j) � C

(
−
∫
B

| − u j|p dμ

)1/p

� C

μ(B)1/p

(∫
Ω

|u j|p dμ

)1/p

� C ′
x. (16)

Hence we conclude from (15) and (16) that u j , j � k, are locally equibounded in Ωk . Moreover, as ψ is continuous and u j
is the continuous solution of the Kψ,u j (Ωk)-problem, for all j � k, Lemma 3.2 shows that {u j}∞j=k is locally equicontinuous
in Ωk . By the Arzelà–Ascoli theorem we conclude that there is a subsequence {u′

j}∞j=1 of {u j}∞j=1 which converges locally
uniformly in Ω1 and the limit function is a continuous superminimizer, by Remark 6.7 in Kinnunen and Martio [18]. Now
{u′

j}∞j=2 is an equicontinuous and equibounded sequence of superminimizers in Ω2. Another application of the Arzelà–
Ascoli theorem provides us with a subsequence which converges locally uniformly to a continuous superminimizer in Ω2.
Proceeding in this way and taking a diagonal sequence we obtain a subsequence of our original sequence (also denoted
{u j}∞j=1) that converges locally uniformly to a continuous superminimizer in Ω . Let ũ = lim j→∞ u j .

Next we show that ũ ∈ Kψ, f (Ω). For this let v j = u j − f extended by zero outside Ω j and

v =
{

ũ − f in Ω,

0 in X \ Ω.

Thus v j → v in X . As {u j}∞j=1 is bounded in N1,p(Ω), we conclude that {v j}∞j=1 is bounded in N1,p(X) and Lemma 2.3

then shows that v ∈ N1,p(X) and hence ũ − f ∈ N1,p
0 (Ω). Since u j � ψ q.e. in Ω , we have ũ � ψ q.e. in Ω and hence

ũ ∈ Kψ, f (Ω).
Now, it remains to show that ũ is a solution of the Kψ, f (Ω)-problem. To this end let Ω ′ � Ω . By compactness we have

Ω ′ � Ωk for some k ∈ N. As u j is a solution of the Kψ,u j (Ω
′)-problem, for all j � k, and u j → ũ uniformly in Ω ′ , Lemma 3.4

implies that ũ is a solution of the Kψ,ũ(Ω ′)-problem. As Ω ′ � Ω was arbitrary it follows from Proposition 3.3 that ũ is a
solution of the Kψ, f (Ω)-problem and hence u = ũ in Ω , by the uniqueness of the solution of the obstacle problem.

We also conclude that the original sequence {u j}∞j=1 converges to u locally uniformly in Ω , since otherwise there would

be an Ω ′ � Ω , ε > 0, a subsequence {u jk }∞k=1 and xk ∈ Ω ′ , k = 1,2, . . . , such that

∣∣u j (xk) − u(xk)
∣∣ > ε. (17)
k
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The compactness of Ω ′ implies that there exists a subsequence of {xk}∞k=1 (also denoted {xk}∞k=1) such that xk → x0 ∈ Ω ′ .
By what we have shown above {u jk }∞k=1 has a subsequence {u′

jk
}∞k=1 which converges locally uniformly to u, i.e. uniformly

in Ω ′ . Thus, for sufficiently large k, we have
∣∣u′

jk
(x0) − u(x0)

∣∣ � ε/4. (18)

Next, as u is continuous in Ω and {u′
jk
}∞k=1 is equicontinuous on Ω ′ we obtain that, for sufficiently large k,

∣∣u′
jk
(xk) − u′

jk
(x0)

∣∣ � ε/4 and
∣∣u(xk) − u(x0)

∣∣ � ε/4. (19)

The triangle inequality together with (17), (18) and (19) then imply that

ε �
∣∣u′

jk
(xk) − u(xk)

∣∣
�

∣∣u′
jk
(xk) − u′

jk
(x0)

∣∣ + ∣∣u′
jk
(x0) − u(x0)

∣∣ + ∣∣u(x0) − u(xk)
∣∣

� 3ε/4,

a contradiction. Hence u j → u locally uniformly in Ω . �
Now we concentrate on double obstacle problems. In order to get convergence of the solutions we impose some addi-

tional assumptions on the obstacles and the boundary values.

Theorem 4.2. Let Ω1 ⊂ Ω2 ⊂ · · · ⊂ Ω = ⋃∞
j=1 Ω j be open sets and f ∈ N1,p(Ω) be bounded and such that f (x0) :=

limΩ�x→x0 f (x) exists for all regular boundary points x0 ∈ ∂Ω . Assume also that ψ j : Ω → R, j = 1,2, are such that ψ1 is bounded
from above and ψ2 is bounded from below in Ω , and

C p- lim sup
Ω�x→x0

ψ1(x) � f (x0) � C p- lim inf
Ω�x→x0

ψ2(x) (20)

for all regular boundary points x0 ∈ ∂Ω . Let u j be a solution of the Kψ1,ψ2, f (Ω j)-problem, j = 1,2, . . . , and u be a solution of the
Kψ1,ψ2, f (Ω)-problem. Then u j → u q.e. in Ω , where we define u j = f q.e. in Ω \ Ω j .

In particular Theorem 4.2 applies if f ∈ N1,p(Ω)∩ C(Ω) and ψ1 � f � ψ2 in Ω . Note that it is possible to have a soluble
obstacle problem without (20), see Example 5.2 in Björn and Björn [1].

Note also that if f ∈ N1,p(Ω) in Theorem 4.1 is bounded and limx→x0 f (x) exists for all regular boundary points x0 ∈ ∂Ω ,
then Theorem 4.1 is a special case of Theorem 4.2, if we only consider q.e.-convergence in Theorem 4.1. Otherwise they are
unrelated.

Proof. As f is bounded and ψ2 is bounded from below in Ω we may assume without loss of generality that 0 � f � 1 and
ψ2 � 0 in Ω .

Let I ⊂ ∂Ω be the set of all irregular points. Then C p(I) = 0 by the Kellogg property and hence there is a decreasing
sequence of open sets {V i}∞i=1 such that V i ⊃ I and C p(V i) < 1/2ip . Lemma 5.3 in Björn, Björn and Shanmugalingam [6]
provides us with a decreasing sequence of nonnegative functions {ηi}∞i=1 such that ‖ηi‖N1,p(X) < 1/2i and ηi � 1 in V i+1.

Next, as f � 0 and ψ2 � 0, the comparison Lemma 2.8 implies that u � 0 q.e. in Ω . It then follows that u − f + ηi � 0
q.e. in V i+1 ∩ Ω . On the other hand we have u − f + ηi � 0 q.e. in V i+1 \ Ω , where we extend u − f by zero outside Ω .
Hence we obtain u − f + ηi � 0 q.e. in V i+1. Fix ε > 0, i ∈ N and let V := V i+1. It then follows that

u − f + ηi + ε > u − f + ηi � 0 q.e. in V . (21)

For x ∈ ∂Ω \ I we can find a ball Bx such that

u − f + ηi + ε � u − f + ε > 0 q.e. in Bx, (22)

by Proposition 2.11. The compactness of Ω implies that

Ω ⊂ Ωn ∪ V ∪
m⋃

k=1

Bxk for some n,m ∈ N

and hence Ω \ Ω j ⊂ ⋃m
k=1 Bxk ∪ V for all j � n. It follows from (21) and (22) that u +ηi � f − ε q.e. in Ω \ Ω j for all j � n.

Now, let vi be a solution of the Ku+ηi ,ψ2+ηi ,u+ηi (Ω)-problem and fix j � n. As vi is a solution of the Ku+ηi ,ψ2+ηi ,vi (Ω j)-
problem, u + ηi � ψ1 − ε, ψ2 + ηi � ψ2 − ε q.e. in Ω j and vi � u + ηi � f − ε q.e. on ∂Ω j , the comparison Lemma 2.8 and
the fact that u j − ε is a solution of the Kψ1−ε,ψ2−ε, f −ε(Ω j)-problem imply that vi � u j − ε q.e. in Ω j . On the other hand
we have
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vi � u + ηi � f − ε = u j − ε q.e. in Ω \ Ω j.

Hence vi � u j −ε q.e. in Ω . Letting j → ∞ we obtain vi � lim sup j→∞ u j −ε q.e. in Ω . By Proposition 2.12 we have vi → u
q.e. in Ω . Thus letting i → ∞ and then ε → 0 we conclude that

u � lim sup
j→∞

u j q.e. in Ω.

Applying this to −u, a solution of the K−ψ2,−ψ1,− f (Ω)-problem, we obtain

u = −(−u) � − lim sup
j→∞

(−u j) = lim inf
j→∞

u j � lim sup
j→∞

u j � u q.e. in Ω.

Hence u = lim j→∞ u j q.e. in Ω . �
Proof of Theorem 1.2. This follows directly from Theorem 4.2. �

Finally, when Ω is regular and f is continuous, we show that Theorem 4.1 can be extended to double obstacle problems
by a rather short proof.

Theorem 4.3. Let Ω be regular and Ω1 ⊂ Ω2 ⊂ · · · ⊂ Ω = ⋃∞
j=1 Ω j be open sets. Let also ψ1 : Ω → [−∞,∞) and ψ2 : Ω →

(−∞,∞] be continuous (as R-valued functions) and f ∈ N1,p(Ω) ∩ C(Ω) be such that ψ1 � f � ψ2 in Ω . Then

u j → u, as j → ∞,

locally uniformly in Ω , where u is the continuous solution of the Kψ1,ψ2, f (Ω)-problem and u j is the continuous solution of the
Kψ1,ψ2, f (Ω j)-problem, j = 1,2, . . . .

Proof. Let u = f on ∂Ω . It follows from Proposition 2.11 that u ∈ C(Ω). Let ε > 0 and

G = {
x ∈ Ω: u(x) + ε > f (x)

}
.

Then G is an open set in the relative topology on Ω , by the continuity of u − f . The set G contains ∂Ω by assumption. The
compactness of Ω implies that Ω = G ∪ Ωk , for some k ∈ N, and hence u + ε > f on ∂Ω j for all j � k. Since u + ε is the
continuous solution of the Kψ1+ε,ψ2+ε,u+ε(Ω j)-problem and u j is the continuous solution of the Kψ1,ψ2, f (Ω j)-problem, it
follows from the comparison Lemma 2.8 that, for all j � k,

u j � u + ε in Ω j .

Applying this to −u j the continuous solution of the K−ψ2,−ψ1,− f (Ω j)-problem and −u the continuous solution of the
K−ψ2,−ψ1,− f (Ω)-problem we obtain

−u j � −u + ε in Ω j.

Hence we have |u j − u| � ε in Ω j for all j � k. Letting ε → 0 implies that u j → u locally uniformly in Ω . �
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