

Index Terms—Factors, novice, programming, visualization.

I. INTRODUCTION

Novice students in universities find learning how to

Program difficult due to simultaneous learning of syntax,

semantic of programming as well as how to interpret error

messages. Many studies examined the factors which may

affect the performance of the programming. However,

factors that are considered as powerful predictors of

programming success had not been discovered yet. In

addition, varies tools have been introduced to help novice

programmers improve their performance. This study

conducted an experiment of providing novice programmers

with a pre-lecture Arabic tool to understand the concepts of

programming languages prior to the lecture. This study was

motivated by the poor performance and progression of our

first-year C language course programming students. It was

recognized that the language used in the programming was

affecting our Students’ performance badly, since their level

of English does not allow them to understand the provided

material perfectly.

Therefore, our goal was to provide our students with an

Arabic Tool to introduce C language concepts which should

be used as a pre-lecture tool to help them get the concepts

prior to the lecture.

II. BACKGROUND

Learning and teaching how to program is not an easy task.

Manuscript received January 12, 2017; revised April 1, 2017.

Hala Shaari is with the Department of Software Engineering, Faculty of

Information Technologies, University of Tripoli, Libya (e-mail:

h.shaari@uot.edu.ly).

Nuredin Ahmed is with the Department of Computer Engineering,

Faculty of Engineering, Azzaytuna University, Libya (e-mail:

nuredin@mtit.com.ly).

In recent years multi-national studies showed that students

have problems in writing program codes [1], [2]. These

problems are caused by the lack of correct understanding of

abstract concepts. Which seems to be difficult for many

students [3]-[7]. The factors that can influence success in

programming have been investigated by many studies.

Factors such as expertise in their spoken language, the

number of used and analyzed programming languages,

mathematical ability, previous academic degree, measures of

general intelligence, self-confidence of students and gender

have been extensively researched. According to these

researches not all the listed factors affect the performances of

programming. Factors that show strong positive correlation

of success in programming are the ability to solve problems

in other sciences like physics and mathematics [7]-[12] Prior

knowledge of programming [12]-[14] and students with

viable mental models [15]-[17]. However, other factors such

as gender, experiences and familiarity of programming

language did not show any significant effect on their

performance [12]-[14]. In addition, one of the most

challenging factors in many countries is English as not being

the first language which affects the students’ performance

[14], [18], [19].

To help novices learn programming, several tools were

developed. Narrative tools, visual programming tools,

flow-model tools, specialized output realizations, and tiered

language tools are the categories that the tools were divided

into [20]. Visualization is advantageous for learning many

programming concepts in computer science education, which

is why they have been used for long period of time [21].

Visual programming allows programmers to construct a

program without writing any code through a drag-and-drop

interface (e.g., JPie, Alice, Scratch, Karel Universe). Alice

increase performance rate and motivation programming

according to researches [22]-[24]. Furthermore, Scratch is

found to be an effective tool to introduce students to

programming [25], [26]. We take in our considerations how

the material could be delivered to the students. Few alternate

delivery techniques for novice programmers are available in

literature compared to alternate delivery modes in education.

A research has suggested that students’ comprehensions on

introductory programming subject were improved after

providing them with prerecorded mini-lectures [27].

III. METHODOLOGY

This section illustrates the data collection process and the

learning environment of the study. The study’s goal was to

discover whether or not the proposed tool helped participants

to improve their performance and progression through their

Improving Performance and Progression of Novice

Programmers: Factors Considerations

Hala Shaari and Nuredin Ahmed

International Journal of Information and Education Technology, Vol. 8, No. 1, January 2018

7doi: 10.18178/ijiet.2018.8.1.1003

Abstract—Teaching computer programming is recognized to

be difficult and a real challenge. The biggest problem faced by

novice programmers is their lack of understanding of basic

programming concepts. A visualized learning tool was

developed and used by volunteered first-year students for two

semesters. The purposes of this paper are: Firstly, to emphasize

factors which directly affect the performance of our students

negatively. Secondly, to examine whether the proposed tool

would improve their performance and learning progression or

not. This tool provides many features and enhancement which

were presented to students as pre-lecture material. The results

of adopting this tool were conducted using a pre-survey and

post-survey questionnaire. As a result, students who used the

learning tool showed better performance in their programming

subject.

first programming course. With the assumption that students

had no valuable knowledge, the methodological basis for the

research was designed.

Fig. 1. The learning environment.

A. Data Collection

The dataset used in this study is gathered from the first

year volunteered students of faculty of information

technology at Tripoli university. The data collections were

conducted in the fall semester in 2015 and the spring

semester 2016. Data were collected using the methods

below:

 A structured questionnaire used to survey students at the

beginning of the semester. We referred to as pre –

experiment survey.

 A proposed standalone learning environment was

applied.

 An end of semester survey of students whom used the

proposed tool, using a structured questionnaire. We

referred to a post-experiment survey.

1) Survey of students

At the beginning of the two semesters a paper-based

questionnaire was handed to registered students in

introduction to programming course. Since this course was

taken by most first year students registered in the IT degrees.

One hundred students have responded to the survey. Most of

the data were gathered during the first weeks of the semester.

Students were informed of the motivations and objectives of

both surveys.

The questionnaire includes closed response style questions.

Many different domains have been considered when the

questionnaire was designed, such as whether the students use

assistance tools to help them understand the concepts, if they

are struggling with the programming instructions since they

are available in a different language and if they can imagine

the execution process easily. In addition, after applying the

proposed tool for participated students, different paper-based

questionnaire was handed to inquire the efficiency ratio of

the learning environment. The questionnaire represented a

number of different domains such as if this tool helped them

to understand the provided concepts, whether the techniques

used in this tool improve their understanding and if the

provided examples and exercises assisted them to improve

their learning progression.

B. The Learning Environment

A proposed learning tool implemented using JavaFX was

introduced and applied for volunteered participants. It is

providing many features and enhancements that can help to

develop rich applications. This learning tool currently

supports C language primary concepts, but in the future we

may support other languages. The dynamic execution

processes of a program are visualized and simulated by this

visualization tool (Fig. 1).

Many concepts were provided by this tool such as

assignment, if statements, loops, switch statement and arrays.

Also, students are able to run the program gradually. This

means that students have the chance to control the speed and

would be able to watch and understand what happens when

one statement is executed. This function is very important to

the visualization tool to help improve the student’s

understanding. In addition, graphical representation and

animation have been used to visualize the dynamic execution

with every statement’s execution. Animation is used to

leverage the benefits of the proposed tool. Animation has

great potential significance to help students to improve their

understanding of programming concepts. Furthermore,

students were able to repeat the program execution as well as

pause, resume and stop it. That gave them the opportunity to

determine and correct their misunderstanding of the

concepts. Meanwhile, Arabic textural explanations also are

provided to explain the execution process of each statement.

To obtain the best results from our experiments, the proposed

tool is provided with another two sections to help participants

to receive better understanding. The first section explained

the primary concepts of the C language in particular order

presented as textual context. However, the concept

explanation is sorted according to a text book which was used

by the course lecturers. Each concept is supported with the

visualized dynamic execution process as explained above as

International Journal of Information and Education Technology, Vol. 8, No. 1, January 2018

8

Fig. 2. NOT operator concept textual explanation.

IV. RESULTS

Descriptive information was provided by analyzing

students’ survey responses. The SPSS software was used to

preform descriptive and statistical analysis of the quantitative

data.

A. Pre-experiment Survey Results

B. The Experiment

After collecting data in the pre–experiment questionnaire

stage, the participants went on to use the visualization tools.

The participants were asked to execute program fragments

which were explained by the proposed tool visually.

Fig. 4. Some pre- experiment survey results.

Simple concepts were explained as well as some relatively

hard concepts (switch case, arrays). These concepts were

explained in many different techniques for instance flowchart

used to visualize the while loop execution process (figure5).

These explanations were provided to participants as

pre-lecture material. However, these concepts were

supported by many different examples and exercises for

better understanding.

Fig.3 visualized dynamic execution process of NOT operator concept.

C. Post-experiment Survey Results

A post-experiment questionnaire was also used to collect

quantitative data along with the experiment. Three significant

attributes have been discovered of the teaching environment

from the survey’s feedback. Firstly, participants pre-existing

understanding of the concept could be changed by the

provided animated execution. Secondly, it was considered

for the animations to be very helpful in increasing the

concepts’ understanding. Finally, the gradual execution was

seen as other useful feature. Moreover, the Arabic

explanation of the concepts provided by the proposed tool

leverage the benefits of using this tool. According to survey

results, there was an improvement of participant’s

understanding, with 70% of participants approving the

benefits of using this tool through their module results.

V. DISCUSSION AND CONCLUSION

The motivation of this experiment was due to the high

failure in our first-year programming module. Many factors

have been considered to influence programming. Some

factors that might predict success in programming were

usually observed factors such as expertise in their spoken

language, gender, mathematical ability. However, it was

recognized that the language used in the programming affects

our Students’ performance sorely. The abilities of the

proposed tool which includes textual concepts explanation,

visualized dynamic execution and exercises increases the

possibilities of participants’ better understanding. Textual

explanation is used to offer an extra explanation for each

concept. However, participants were able to examine their

understanding of a single concept by using the exercises

which associated every concept.

The positive role that visualization plays is, revealed by

this study, improving students’ performance. While the

visualization tool was useful in improve the participants’

understanding of the covered concept successfully, it is

Detailed explanation of NOT operator.

NOT operator program

Arabic explanation of

the selected line of

code.

Visualize how does

NOT operator work.

International Journal of Information and Education Technology, Vol. 8, No. 1, January 2018

9

well as two to three exercises for each concept (second

section) ,So that participants could test their understanding

for each concept. For instance, the NOT operator concept is

explained as a textual context (Fig. 2). After reading this

explanation, Participants have the choice to move either to

the visualized dynamic execution process of NOT operator

concept (Fig. 3) or to their associated exercises.

The survey results revealed that 69% of participated

students found programming module difficult to understand.

These difficulties are resulted from their failure to imagine

the execution process of programming, 65% claims. Also,

77% of participated are seeking other ways to improve their

performance. Therefore, 98% of them approved utilizing

tools to improve their programming concept understanding.

However, 67% of the students preferred the tools to be

Arabic to improve their understanding. The overall finding

suggested the need of assistance tools to better learning

progression as showed in (Fig. 4).

proved that the accompanied Arabic explanation helped to

improve concepts understanding which leaded them to

enhance their performance and learning progression.

Students who used the tool showed improvement in their

performance according to their course assessments. The

results of this initial study suggest that, using our tool as a

pre-lecture tool helped our participants to better

understanding of programming concepts prior to the lecture.

However, investigating the effectiveness of the proposed tool

in actual pedagogical context would make results even more

accurate.

Fig. 5. Flowchart used to explain while loop execution process.

REFERENCES

[1] M. McCracken, V. Almstrum, D. Diaz, M. Guzdial, D. Hagan, Y.

Kolikant, C. Laxer, L. Thomas, I. Utting, and T. Wilusz “A

multi-national, multi-institutional study of assessment of programming

skills of first-year CS students,” ACM SIGCSE Bulletin, 2001, vol. 33,

no. 4, pp. 125-140.

[2] J. Vegso, “Interest in CS as a major drops among incoming freshmen,”

Computing Research News, vol. 17, no. 3, pp. 126-140, October 14,

2009.

[3] C. Mow,” Issues and difficulties in teaching novice computer

programming,” Innovative Techniques in Instruction Technology,

e-Learning, e-Assessment, and Education, Netherlands, pp. 199-204.

[4] E. Lahtinen, K. Ala-Mutka, and H. Järvinen. “A study of the difficulties

of novice programmers,” in Proc. the 10th Annual SIGCSE Conference

on Innovation and Technology in Computer Science Education, 2005,

Portugal, pp. 14-18.

[5] A. Robins, J. Roundtree, and N. Roundtree, “Learning and teaching

programming: A review and discussion,” Computer Science Education,

vol. 13, no. 2, pp. 137-172, September 14, 2008.

[6] D. Sleeman, “The challenges of teaching computer programming,”

Communications of the ACM, vol. 29, issue 9, Sept. 1986, pp. 840-841.

[7] E. M. Soloway, “Learning to program = Learning to construct

mechanisms and explanations,” Communications of the ACM, vol. 29,

issue 9, Sept. 1986, pp. 850-858.

[8] P. Byrne and G. Lyons, “The effect of student attributes on success in

programming,” ITiCSE 2001, 2001.

[9] G. White and M. Sivitanides, “An empirical investigation of the

relationship between success in mathematics and visual programming

courses,” Journal of Information of Systems Education, vol. 14, no. 1,

pp. 409-416, 2003.

[10] J. Bennedsen and M. Caspersen, “An investigation of potential success

factors for an introductory model-driven programming course,” in Proc.

of the 1st. Intl. Computing Education Research Workshop, ICER 2005,

2005.

[11] N. Pillay and V. R. Jugoo “An investigation into student Characteristics

affecting novice programming performance,” ACM SIGCSE Bulletin,

vol. 37, no. 4, pp. 107-110, December 2005.

[12] N. Bubica and I. Boliat, “Predictors of novices programmers'

performance,” in Proc. the ICERI2014 Conference, November 2014,

Seville, Spain.

[13] K. Paivi and S. Beth, “My program is OK - am I? Computing

freshman's experience of doing programming assignments,” Computer

Science Education, vol. 22, no. 1, pp. 1-28, March, 2014.

[14] J. Sheard, A. Carbone, S. Markham, A. J. Hurst, D. Casey, and C.

Avram, “Performance and progression of first year ICT students,” in

Proc. 10th Australian Computing Education Conference-ACE 2008,

Wollongong, Australia.

[15] L. Ma, “Investigating and improving novice programmers' mental

models of programming concepts,” University of Strathclyde,

Department of Computer & Information Science, 2007.

[16] L. Ma et al., “Improving the mental models held by novice

programmers using cognitive conflict and jeliot visualisations,”

presented at ITiCSE’09, Paris, France, 2009.

[17] R. Bornat, S. Dehnadi, and Simon, “Mental models, consistency and

programming aptitude,” in Proc. the Tenth Australasian Computing

Education Conference (ACE2008), Wollongong, Australia, January

2008.

[18] D. W. Edsger, “How do we tell truths that might hurt?” Computing: A

Personal Perspective, Springer-Verlag, pp. 129–131, 1982.

[19] M. Elisapeta and T. Edna, “Exploratory study on factors that impact /

influence success and failure of students in the foundation computer

studies course at the National University of Samoa,” Journal of

Emerging Trends in Computing and Information Sciences CIS Journal,

vol. 3, no. 5, May 2012.

[20] K. Powers, P. Gross, S. Cooper, M. McNally, K. J. Goldman, and V.

Proulx, “Tools for teaching introductory programming: What works?”

in Proc. the 37th SIGCSE Technical Symposium on Computer Science

Education, USA, pp. 560-561, 2006.

[21] C. Yehezkel, M. Ben-Ari, and T. Dreyfus, “Computer architecture and

mental models,” ACM SIGCSE Bulletin, 2005, vol. 37, no. 1, pp.

101–105.

[22] C. Bishop-Clark, J. Courte, D. Evans, and E. Howard “A quantitative

and qualitative investigation of using Alice programming to improve

confidence, enjoyment, and achievement among non-majors,” Journal

of Educational Computing Research, 2007, vol. 37, no. 2, pp. 193-207.

[23] S. Cooper, W. Dann, and R. Pausch “Teaching objects-first in

introductory computer science,” in Proc. the 34th SIGCSE Technical

Symposium on Computer Science Education, USA, pp. 191-195, 2003.

[24] J. Courte, E. Howard, and C. Bishop-Clark, “Using alice in a computer

science survey course,” Information Systems Education Journal, vol. 4,

no. 87, pp. 1-7, 2006.

[25] D. J. Malan and H. H. Leitner, “Scratch for budding computer

scientists,” ACM SIGCSE Bulletin, 2007, vol. 39, no. 1), pp. 223-227.

[26] P. A. Sivilotti and S. A. Laugel, “Scratching the surface of advanced

topics in software engineering: a workshop module for middle school

students,” in Proc. the 39th SIGCSE Technical Symposium on

Computer Science Education, 2008, USA, pp. 291-295.

[27] G. Smith and C. Fidge, “On the efficacy of prerecorded lectures for

teaching introductory programming,” Tenth Australasian Computing

Education Conference (ACE2008), vol. 78, Simon and Margaret

Hamilton, Ed, Australian.

H. Shaari was born in Alen, Germany in July 1976. She

studied the BSc. in computer science at University of

Tripoli in 1997, Libya; the MSc. in computers and

interment technologies from University of Strathclyde,

UK in 2009.

She is currently lecturer at Faculty of IT at Uni. Of

Tripoli. Her current research interest includes learning

technologies and e-learning. She has extensive

experience in design, programming of mobile system related apps.

N. Ahmed was born in Trhona in May 1971, Libya. He

studied the BSc. in computer engineering at University

of Tripoli in 1995, Libya; the MSc. in technical

informatics from TU Clausthal, Germany in 2002; the

PhD in electronics and electrical engineering from

Glasgow University UK in 2011. He is currently an

assistant professor of Computer Engineering Dept.

At Azzaytuna University, Libya. His research interest includes embedded

systems and modeling of communication networks using SystemC/C/C++

and Opnet.

International Journal of Information and Education Technology, Vol. 8, No. 1, January 2018

10

