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a b s t r a c t

A split delta shock is a representation of the Dirac delta function. It is made to
provide a way of using it in nonlinear PDEs. We define a notion of a split delta
shock inverse and use it for solving Riemann initial data problem for a special
chromatography model. The obtained solution is unique in distributional sense.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Split delta shocks are introduced in order to solve some systems of conservation laws without classical
solutions (see [1]). The main idea is to split a physical domain Ω ⊂ R×R+ into pieces. In the interior of each
such piece, one has a classical solution to the system while a boundary could support a signed delta measure.
After performing all necessary operations we join these pieces back and use the distributional derivatives
in the original system. Such solution is called the split delta shock. The procedure works well if the system
is linear in one of the variables. Here, we expand the above procedure for systems that involves division by
a split delta shock and use it in calculations. Some models with fluxes of that kind are also given in [2,3]
and [4], for example. Particularly, we are able to easily solve Riemann problem for a simplified model of
chromatography
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using the split delta inverse. Let us note that the full chromatography system is given by((
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Physical domain for solutions is defined by 1 − u + v > 0, or v − u > −1 and A < B. In [5,6] and [7] one can
find all relevant things about that system. Let us note that the real model has determined values for (x, 0),
x > 0 and for (0, t), t > 0 instead of the standard initial data, as we have assumed above. One can also look
in [8] about the model but with A = B = 1.

2. The definition of split delta shocks

Let Ωi ̸= ∅, i = 1, . . . , n be a finite family of disjoint open sets with piecewise smooth boundary curves
Γi, i = 1, . . . , m: Ωi ∩Ωj = ∅,

⋃n
i=1 Ω i = R2

+ where Ω i denotes the closure of Ωi. Denote by C(Ω i) the space
of bounded and continuous real-valued functions on Ω i, equipped with the L∞-norm. Let M(Ω i), be the
space of measures on Ω i.

Define
CΓ =

n∏
i=1

C(Ω i), MΓ =
n∏

i=1
M(Ω i).

The multiplication of G = (G1, . . . , Gn) ∈ CΓ and D = (D1, . . . , Dn) ∈ MΓ is defined to be an element
D · G = (D1G1, . . . , DnGn) ∈ MΓ , where each component is defined as the usual product of a continuous
function and a measure.

Every measure on Ω i can be identified with a measure defined on R2
+ with support in Ω i. Thus one can

define the mapping m in the following way

m : MΓ → M(R2
+), m(D) = D1 + D2 + · · · + Dn.

A typical example is obtained when R2
+ is divided into two regions Ω1, Ω2 by a piecewise smooth curve

x = γ(t). The delta function δ(x − γ(t)) ∈ M(R2
+) along the line x = γ(t) can be split in a non unique way

into a left-hand side D− ∈ M(Ω1) and the right-hand component D+ ∈ M(Ω2) such that

δ(x − γ(t)) = m(α0(t)D− + α1(t)D+)

with α0(t) + α1(t) = 1. The solution concept which allows to incorporate such two sided delta functions as
well as shock wave is modeled along the lines of the classical weak solution concept and proceeds as follows:
Step 1: Perform all nonlinear operations of functions in the space CΓ .
Step 2: Perform multiplications with measures in the space MΓ .
Step 3: Map the space MΓ into M(R2

+) by means of the map m and embed it into the space of distributions.
Step 4: Perform the differentiation in the sense of distributions and require that the equation is satisfied in
this sense.

Let us define an inverse of a split delta function now.

Definition 1. Suppose that

u =
{

u0, x ≤ ct

u1, x ≥ ct
+ α0(t)δ−(x − ct) + α1(t)δ+(x − ct). (2)

We define 1
u ∈ CΓ , Γ = {(x, t) : x = ct}, to be a function satisfying 1

u u = 1 in the MΓ sense.

Using the above definition one gets the condition for the inverse

1
u

·
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u1, x ≥ ct
+ α0(t)δ−(x − ct) + α1(t)δ+(x − ct)

)

=1 + α0(t)
u0

δ−(x − ct) + α1(t)
u1

δ+(x − ct) m↦→ 1 +
(α0(t)

u0
+ α1(t)

u1

)
δ(x − ct).

Thus, the condition for u in (2) to have an inverse is

α0(t)/u0 + α1(t)/u1 = 0. (3)
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3. Systems given in a general form

Let us consider the following Riemann problem

ut +
(a0 + a1u

v
+ b0 + b1v

u

)
x

= 0, u(x, 0) =
{

u0, x < 0
u1, x > 0

vt +
( ā0 + ā1u

v
+ b̄0 + b̄1v

u

)
x

= 0, v(x, 0) =
{

v0, x < 0
v1, x > 0.

(4)

We assume that (u, v) ∈ Ω , where Ω ⊂ R2 is a physical domain, i.e. a set of all possible values for (u, v).
Let us look for a solution in the form of two component split delta shock

u(x, t) =
{

u0, x ≤ ct

u1, x ≥ ct  
=:û

+(α0δ− + α1δ+)t, v(x, t) =
{

v0, x ≤ ct

v1, x ≥ ct  
=:v̂

+(β0δ− + β1δ+)t, (5)

In the sequel, notation [u] is used for a jump in û. The values (α0 + α1)t and (β0 + β1)t are called strength
of a split delta shock. For a given point (u0, v0) in a physical domain Ω for (4), a set of all (u1, v1) in the
domain such that there exists a split delta shock connecting these states is called split delta locus denoted
by L((u0, v0)).

Theorem 1. There is a split delta shock solution to (4) if there exists c such that ui, vi, i = 0,1 satisfy
a1[u/v]κ1/[u] + b1[v/u]κ2/[v] =cκ1

ā1[u/v]κ1/[u] + b̄1[v/u]κ2/[v] =cκ2, v1 ̸= v0, u1 ̸= u0.
(6)

Here
κ1 := c[u] −

[a0 + a1u

v
+ b0 + b1v

u

]
, κ2 := c[v] −

[ ā0 + ā1u

v
+ b̄0 + b̄1v

u

]
,

are so called Rankine–Hugoniot deficits for the first and second equations.

Proof. Condition (3) implies

α0/u0 + α1/u1 = 0, β0/v0 + β1/v1 = 0. (7)

Using the procedure for split delta shock calculations, from the first equation in (4) one gets

− c[u]δ +
[a0 + a1u

v
+ b0 + b1v

u

]
δ + (α0 + α1)δ

− ct(α0 + α1)δ′ +
(a1

v0
α0 + a1

v1
α1 + b1

u0
β0 + b1

u1
β1

)
tδ′ = 0,

where the support of δ and δ′ is the line x = ct.
The above equality is true if

α0 + α1 = κ1 = c[u] −
[a0 + a1u

v
+ b0 + b1v

u

]
(8)

c(α0 + α1) = a1

v0
α0 + a1

v1
α1 + b1

u0
β0 + b1

u1
β1. (9)

With the same arguments, one gets

β0 + β1 = κ2 = c[v] −
[ ā0 + ā1u

v
+ b̄0 + b̄1v

u

]
(10)

c(β0 + β1) = ā1

v0
α0 + ā1

v1
α1 + b̄1

u0
β0 + b̄1

u1
β1, (11)

from the second equation in (4).
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If u0 ̸= u1 and v0 ̸= v1 then the variables α0, α1, β0, β1 are uniquely determined by

α0 + α1 = κ1 β0 + β1 = κ2
α0/u0 + α1/u1 = 0 β0/v0 + β1/v1 = 0.

(12)

Here, we have used (7), (8) and (10). All possible values for c and a relation between left- and right-hand
initial data are determined by (8), (9), (10) and (11). Particularly, c can be determined by solving the
following system of equations

a1(α0/v0 + α1/v1) + b1(β0/u0 + β1/u1) = cκ1

ā1(α0/v0 + α1/v1) + b̄1(β0/u0 + β1/u1) = cκ2,

that reduces to a quadratic equation. After solving (12) and inserting a solution in the above system one
gets system (6) as a condition. □

In general, we expect that one could get a value(s) for c and a locus L((u0, v0)) being a curve. Of
course, there are a lot of specific situations. For a real model one has to check whether (u1, v1) ∈ Ω and an
admissibility condition for split delta shocks, too. The most usual admissibility condition is that split delta
shocks are required to be overcompressive, i.e. all characteristics should run into the shock curve. Another
admissible solution is delta shock with a constant strength that propagates along characteristics. It is called
a delta contact discontinuity (see [1] or [9]). That is possible for systems having a linearly degenerate field.

4. Simplified chromatography model

Theorem 2. There exists a unique solution to Riemann problem for (1) in the region where u, v and
1 − u + v are non-negative. The solution consists of elementary waves, vacuum states and split delta shocks.
Uniqueness holds in the sense of distributions.

Proof. System (1) has the eigenvalues λa = 1
1−u+v and λb = 1

(1−u+v)2 with the appropriate eigenvectors
ra = (1, 1) and rb = (1, v/u). The a–field is linearly degenerate, while b–field is genuinely nonlinear for
v ̸= u. Let us denote by I the region where v ≥ u and by II the one where u > v > u − 1. In I, λ1 = λb,
r1 = rb and λ2 = λa, r2 = ra. The opposite holds in II. Assume the initial data given in (4). If (ui, vi) ∈ I,
i = 0,1. a solution is the following combination S1 + Cd2 or R1 + Cd2. In II it is a combination Cd1 + S2
or Cd1 + R2. If initial data values lie in different region, the situation is more complex. Then one could try
with states when u or v equals zero (“vacuum in u or v”).

Case 1. Suppose that (u0, v0) ∈ I and (u1, v1) ∈ II. Then one could connect (u0, v0) with (0, 0) by S1 with
speed c0 = 1

(1−u0+v0)2 ∈ (0, 1). Then, one can connect the point (0, 0) with some (us, 0) by a rarefaction
wave in u while v = 0: u is a solution to the scalar equation ut +

(
1

1−u

)
x

= 0, λ(0, 0) = 1 > c0 and
λ(us, 0) = 1

1−us
> 1. The value us is chosen such that (us, 0) could be connected by a contact discontinuity

attached to the vacuum rarefaction wave — its speed equals c1 = 1
1−us

= λ(us, 0).

Case 2. Let (u0, v0) ∈ II and (u1, v1) ∈ I. Then, there is no classical solution to the problem. One can try
to connect (u0, v0) to (0, 0) by an S2 with speed c0 = 1

1−u0+v0
> 1. If we want to connect (0, 0) to some

(us, vs) ∈ I (or us = 0), a speed would be cs = 1
1−us+vs

< 1 < c0 that is impossible.
Let us try with a split delta shock solution of the form (5). One can use the definition for inverse since

1 − u + v is again split delta shock function. The inverse condition (3) is now

β0 − α0

1 − u0 + v0
+ β1 − α1

1 − u1 + v1
= 0, (13)
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with α0 + α1 ≥ 0, β0 + β1 ≥ 0. Using a similar calculation as in the proof of Theorem 1 one could see that
the following equations should be satisfied.

α0 + α1 = κ1 := c[u] −
[ u

1 − u + v

]
c(α0 + α1) = α0

1 − u0 + v0
+ α1

1 − u1 + v1

β0 + β1 = κ2 := c[v] −
[ v

1 − u + v

]
c(β0 + β1) = β0

1 − u0 + v0
+ β1

1 − u1 + v1
.

One can find α0 and α1 from the first two, and β0 and β1 from the last two equations since v1−v0−(u1−u0) >

0. Substitution of these values into (13) gives the condition κ1 = κ2. From that condition one can calculate
a speed c,

c = 1
(1 − u0 + v0)(1 − u1 + v1) .

The overcompressibility condition

1
1 − u0 + v0  

=λ1(u0,v0)

≥ 1
(1 − u0 + v0)(1 − u1 + v1)  

=c

≥ 1
(1 − u1 + v1)2  

=λ2(u1,v1)

is satisfied since u0 > v0 and u1 < v1. That completes the proof. □
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