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ABSTRACT 

The purpose of this paper is to introduce a new type of separation axioms via dense sets, called 

DTi-spaces (i = 0‚
1

 4
 ‚

1

 3
 ‚

1

 2
‚

3

 4
‚1), where a DTi-space is a topological space which contains a dense Ti-

subspace (i = 0‚
1

 4
 ‚

1

 3
 ‚ 

1

 2
 ‚

3

 4
‚1). These new axioms are weaker than the axiom of T1. We provide the basic 

properties of DTi- spaces (i = 0‚
1

 4
‚

1

 3
 ‚

1

 2
 ‚

3

 4
‚1), and we show that the axioms of DT1 

4
, DT1

3
,  DT1

2
, DT3

4
, DT1 

are open hereditary. Moreover, we study the connections between these axioms and the axioms of Ti 

where (i = 0‚
1

 4
 ‚

1

 3
 ‚

1

 2
 ‚

3

 4
‚1). 
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1.  INTRODUCTION 

 

The concepts of different generalization of open (or closed) sets have been defined; as ᴧ-

sets, generalized ᴧ-sets‚ λ-sets‚ b-sets, β-sets, g-closed sets, regular open sets, preopen sets and 

semi open sets, etc. Some of these generalizations are stronger forms of open (or closed) sets, 
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and some are weaker, interrelations between these types of generalized open (or closed) sets 

were studied in [1-5]. 

In [6-13] and Arenas, Dontchev, Levine, Dunham and Maki introduced several separation 

axioms between Ƭ₀ and T₁-spaces, in particular, they defined T1
4
 , T1

3
 , T1

2
  and T3

4
 -spaces by using 

the concepts of ᴧ-sets, generalized ᴧ-sets‚ λ-sets‚ generalized closed sets and regular open sets. 

The characterization of these spaces found to be useful in the study of computer science and 

digital topology. 

Several separation axioms have been introduced using various forms of generalization 

open and closed sets, as in 2007 [14] Caldas, Jafari and Navalagi used the notions of λ-open 

sets and λ-closed sets to define the operators λ-closure and λ-interior and studied their 

properties, then they used these operators to defined new separation axioms; namely λ-Ti, where 

(i = 0, 
1

 2
, 1, 2), and they proved that λ-T1 is equivalent to T0. The axioms μ-T1

 4
 
, μ-T3

 8
 
 and μ-

T1
 2

 
were defined by Sarsak [15] when he used the notions of μ-open sets.  

In 2011 [16] the author studied some new separation axioms for topological spaces 

defined in terms of a new topology, this new idea gave the notion of start-Ti where (i = 1, 2), 

then he showed that star-T1 axiom lies between T0 and T1. A year later, Hussain and Abd Alatif  

[17] used bg-closed sets to introduced a new class of spaces namely b-T1
 2

 
 space, which is strictly 

between b-T0 and b-T1 , and they showed that T1
 2

 
 is b-T1

 2
 
. More separation axioms between T0  

and T1 spaces are described in [18] as properties of the space at particular point. 

In this paper we introduced a new type of separation axioms, namely dense separation 

axioms and they are denoted by DTi-spaces (i = 0,
1

 4
‚

1

 3
‚

1

 2
,

3

 4
, 1), where a DTi-space is a 

topological space which contains a dense Ti-subspace (i = 0,
1

 4
‚

1

 3
‚

1

 2
,

3

 4
, 1). We provided the 

properties of these spaces, and proved that every topological space is DƬ₀-space, then we show 

that DTi-space is weaker than Ti-space for any (i = 
1

 4
‚

1

 3
‚

1

 2
,

3

 4
, 1), moreover, we investigate some 

of their basic properties, as their subspaces and their continuous images.  

Finally, we provide the inter-relations between DTi-spaces and the classical Ti-spaces; 

where (i = 
1

 4
 ‚

1

 3
 ,

1

 2
‚

3

 4
, 1). 

 

 

2.  DT0 – SPACES 

 

In this section we introduce the axiom of DT₀, then we prove that every topological space 

is DT₀.  

 

Definition 2.1. [19] A topological space (X,Ƭ) is Ƭ₀-space if whenever х and y are distinct 

points in X there is an open set containing one and not the other.  

 

Theorem 2.1. [19] A topological space X is T₀-space iff {x}̅̅ ̅̅   {y}̅̅ ̅̅   for every x‚y∊X and x ≠ y. 

 

Definition 2.2. A topological space X is said to be DT₀-Space if X has a T₀-subspace which is 

dense in X. 
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Theorem 2.2. Every topological space is DT₀. 

 

Proof: Let X be any topological space and define a relation ∼ on X by: x∼ y iff {x}̅̅ ̅̅  = {y}̅̅ ̅̅ . Then 

∼ is an equivalence relation on X. Let X / ∼ be the set of all distinct equivalence classes for a 

relation ∼. By the axiom of choice we can choose a set A X such that A∩[x] has exactly one 

element for x in X. If x and y are distinct points in A, then x≁y hence {x}̅̅ ̅̅  ≠ {y}̅̅ ̅̅ . 

So A is a T₀ – subspace by theorem (2.1.). Now suppose V is a non empty open set in X‚ then 

for each  xϵV there is ax ϵA such that  xϵ[ax], hence {x}̅̅ ̅̅  = {ax}̅̅ ̅̅ ̅ and since xϵV‚ then axϵV‚ i.e V 

∩A ≠ Ø‚ hence A is dense in X.  We get X is DT₀-space. 

 

 

3.  DT1/4 – SPACES 

 

Arenas, Dontchev and Ganster [7] introduced the notions of λ-closed sets and λ-open sets 

in topological spaces, and they showed that every ᴧ-set is λ-closed set.  They used the concepts 

of λ-closed sets to introduced the class of T1
4
 spaces in their study of generalized continuity and 

λ-closed sets. More details on λ-sets can be found in [8, 1]. 

 

Definition 3.1. [7] A topological space (X,Ƭ) is called a T1
4
-space if for every finite subset  

F X and every point yF there exist a subset AX such that FA‚ yA and A is open or 

closed. 

 

Theorem 3.1. [7]  

1) -Every T1
4
-space is T₀. 

2) -Every subspace of a T1
4
-space is T1

4
. 

 

Definition 3.2. A topological space X is said to be DT1
4
-space if X has a T1

4
-subspace which is 

dense in X. 

  

Corollary 3.1. Every T1
4
-space is DT1

4
. 

 

Examples 3.1. 

1) Let X = {a‚b‚c‚d} and T = {Ø‚X‚{a‚b}‚{c}‚{a‚b‚c}‚{b‚c}‚{b} }‚ then ℱ = {Ø‚X‚{c‚d}‚ 

{a‚b‚d}‚ {d}‚ {a‚d}‚ {a‚c‚d}}. If A={b‚c‚d}then 𝑇𝐴={Ø‚ A‚ {b}‚ {c}‚ {c‚d}}‚ and ℱA =

{ Ø‚ A‚ {c‚d}‚ {b‚d}‚ {d}}  i. e(X‚T)is DT1
4
 since A  is T1

4
-dense subspace‚ but (X‚T) is not T1

4
-

space‚ since there is not a set F such that {b‚d}F‚ aF and F is open or closed . 

2) Let X = ℕ and T = {Ø‚ℕ‚{2‚3‚4‚…..}‚ {3‚4‚5‚……}‚….}‚ then ℱ = {Ø‚ ℕ ‚{1}‚ {1‚2} 

{1‚2‚3}...}. (X‚T) is not T1
4
–space, since 3{1‚2‚4} but there, is not a set F such that {1‚2‚4}F‚ 

3F and F is open or closed.  Now if A is dense subset in X, then A is infinite set‚ and TA is not 

T1
4
-space. We have (X‚T) is not DT1

4
 . Note that (X‚T) is T₀ but not DT1

4
.  
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3) X = IR, T = { Ø }⋃{U IR : {1‚–1}   U}, then (X‚T) is DT1
4
–space since {1} is dense 

subspace. But (X‚T) is not T₀-space. 

4) Let X be the set of non-negative integers and T = {AX : 0∊A ‚ Aʿ inite} ⋃ { Ø}‚ then 

ℱ = {FX : F finite‚ 0F } ⋃ {X}. (X‚T) is DT1
4
 since A = {0} is T1

4
-dense subspace but (X‚T) 

is not T1
3
-space. 

 

Theorem 3.2. Every open subspace of DT1
4
-space is DT1

4
 . 

 

Proof: Let A be an open subspace of DT1
4
-space X‚ then X has T1

4
-subspace B which is dense 

in X‚ hence B∩A≠ Ø so B∩A is T1
4
-space by theorem (3.1. (2)). Now suppose W is open set in 

A and since A is open in X, then W is an open in X, hence W∩B  ≠ Ø, i.e W∩(B∩A) ≠ Ø, so 

A∩B is dense subspace of A. Hence A is DT1
4
-space . 

 

Example 3.2. Let X= ℕ and T = { ℕ‚ Ø‚ ℕ/{2}‚ ℕ/{2‚3}‚  ℕ/{2‚3‚4}‚…..}, ℱ = { ℕ‚ Ø‚ {2}‚ 

{2‚3}‚ {2‚3‚4}‚….}‚ then (X‚T) is DT1
4
  Since {1} is T1

4
− dense subspace‚ The set A =

ℕ/{1} (A‚TA) is not DT1
4
‚ since X is not T1

4
 and any dense set in X is infinite . 

 

 

4.  DT1/3 – SPACES 

 

Arenas, Dontchev and Puertas [8] considered the spaces in which compact sets are  

λ-closed, they are placed between T1
2
 and T1

4
 , they call them T1

3
 spaces. 

 

Definition 4.1. [8] A topological space (X‚T) is T1
3
-space if for every compact subset F of X 

and every yF there exists a set Ay containing F and disjoint from {y} such that Ay is either 

open or closed. 

 

Theorem 4.1. [8]  

1) Every T1
3
-space is T1

4
. 

2) Every subspace of T1
3
-space is T1

3
.  

 
Definition 4.2. [8] A topological space (X‚T) is called anti-compact if every compact subset of 

X is finite.  

 

Corollary 4.1. [8] For an anti-compact topological space (X‚T) the following conditions are 

equivalent:  

1) X is T1
3
. 

2) X is T1
4
.  
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Definition 4.3. A topological space X is said to be DT1
3
-space if X has a T1

3
-subspace which is 

dense in X. 

 

Corollary 4.2.  

1) Every T1
3
-space is DT1

3
 

2) Every DT1
3
-space is DT1

4
 

 

Examples 4.1. 

1) Let X be the set of non –negative integers and T = {AX : 0∊A‚ Aʿ finite}⋃{Ø}‚ then  

ℱ = {FX : F finite‚ 0F }⋃ {X}.  X is DT1
3
-space since{0}is T1

3
-dense subspace. But (X‚T) 

not T1
3
-space since ℕ is compact‚ 0ℕ‚ but  there is not exists a set A such that ℕ A and 0A‚ 

A is open or closed. 

2) Let X=ℕ‚ T={ ℕ‚Ø‚{2‚3‚……}‚{3‚4….}‚……..}. Then X is not DT1
3
-space since X is not 

T1
3
 ‚ and any dense subset A is infinite, so TA is not T1

3
-space.  

3) Let X = ℕ‚ T = { ℕ‚Ø‚{1}‚{1‚2},{1‚2‚3}‚…..}, then (X‚T) is DT1
3
-space since{1}is T1

3
 dense 

subspace.   (X‚T) is not T1
4
 , since 2{1‚3‚4 } but there is not a set A such that {1‚3‚4}A‚ 

2A and A is open or closed.  

4) Let X =  ℕ and T = { ℕ‚ Ø‚ ℕ /{2}‚ ℕ /{2‚3}‚ ℕ /{2‚3‚4}‚…..}‚ then  ℱ = { ℕ‚Ø‚{2}‚{2‚3}‚ 

{2‚3‚4}‚.. }. The space (X‚T) is DT1
3
– space since {1} is a T1

3
-dense subspace. (X‚T) is not T1

4
 

since 3{2‚4} but there is not a set A such that {2‚4}A‚ 3A and A is open or closed.  

 

Theorem 4.2.  

Every open subspace of DT1
3
-space is DT1

3
. 

 

Proof: Let A be an open subspace of DT1
3
-space. Then X has a T1

3
-subspace B which is dense‚ 

hence B∩A ≠ Ø‚ and B∩A is T1
3
-space by theorem (4.1. (2)). Now suppose W is an open set in 

A‚ and since A is an open in X, then W is open in X, and W∩B ≠ Ø‚ i.e W∩(B∩A) ≠ Ø, so 

A∩B is dense subspace of A.  Hence A is DT1
3
-space. 

 

Example 4.2. The topological space (ℕ‚T) in (3.2.) is DT1
3
 but the subspace A is not DT1

3
. 

 

Corollary 4.3.  

For an anti-compact topological space (X‚T) the following conditions are equivalent:  

1) X is DT1
3
. 

2) X is DT1
4
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5.  DT1/2 – SPACES 

 

Levine [12] introduced the concepts of generalized closed sets of a topological space, and 

a class of topological spaces called T1
2
-space, when he proved that T1

2
-space is properly placed 

between T0-space and T1-space. After that, the authors in [7] characterized T1
2
-spaces as those 

spaces where every subset is λ-closed.  Dunham [11] showed that a space is T1
2
 if and only if 

each singletons is open or closed.  See [13], [2]. 

 

Definition 5.1. [12] A topological space (X ‚T) is T1
2
-space if every g-closed subset of X is 

closed. 

 

Theorem 5.1. [12]  

1) Every T1
2
-space is  T1

3
. 

2) Every subspace of T1
2
-space is T1

2
. 

  

Definition 5.2. A topological space X is said to be DT1
2
-space if X has a T1

2
-subspace which is 

dense in X. 

 

Corollary 5.1.  

1) Every T1
2
-space is DT1

2
 . 

2) Every DT1
2
-space is DT1

3
 . 

 

Examples 5.1. 

1) Let  X ={a‚b‚c‚d} and T={Ø‚X‚{b}‚{a‚b}‚{b‚c}‚{a‚b‚c}}, then ℱ = {Ø‚X‚{a‚c‚d}‚ {c‚d}‚ 

{a‚d}‚ {d}}. (X‚T) is DT1
2
 -space since A = {b} is T1

2
–dense subspace, but (X‚T) is not T1

2
 since 

{a} is not open and not closed.   

2) Let X be the set of non–negative integers and T = {AX : 0∊A, Aʿ finite}⋃{Ø}, then ℱ = 

{FX : F finite‚ 0F } ⋃ {X}.  (X‚T) is DT1
2
–space since A = {0} is T1

2
-dense subspace‚ but 

(X‚T) is not T1
3
-space. 

 

Theorem 5.2. Every open subspace of DT1
2
-space is DT1

2
  

 

Proof: Let A be an open subspace of DT1
2
-space then X. Then has a T1

2
 subspace B which is 

dense‚ hence B∩A ≠ Ø, and B is T1
2
-space, so B∩A is T1

2
-space by theorem (5.1. (2)). We need 

to prove A∩B is dense. Now suppose W is an open set in A, and since A is an open in X‚ then 

W an open in X, hence W∩B ≠ Ø, i.e W∩(B∩A) ≠ Ø, hence A∩B is dense subspace of A.  

So A is DT1
2
-space. 
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Example 5.2. The topological space (ℕ‚T) in (3.2.) is DT1
2
 but the subspace A is not DT1

2
. 

 

 

6.  DT3/4 – SPACES 

 

Via regular open sets, Levine [12] produced some new separation axiom which lies 

between Ƭ₀ and Ƭ₁, called T3
4
-space. Regular open (or closed) sets in a topological space used as 

a generalizations for algebraic openings and closings in a complete lattice, see [3] and [20]. 

 

Definition 6.1. [12] Atopological space (X‚T) is called T3
4
 -space if every singleton is closed or 

regular open. 

  

Theorem 6.1. [12] Every T3
4
-space is T1

2
. 

 

Definition 6.2. A topological space X is said to be DT3
4
-space if X has a  T3

4
-subspace which 

is dense in X. 

 

Corollary 6.1.  

1) Every T3
4
-space is DT3

4
  

2) Every DT3
4
-space is DT1

2
  

  

Examples 6.1.  

1) Let X = {a‚b‚c} and T = {Ø‚X‚{a}‚{b‚c}}, then X is DT3
4
-space since A = {a‚c} is T3

4
-dense 

subspace, but (X‚T) is not T3
4
-space since {b} is not closed nor regular open. Note that X is not 

T₁ space. 

2) The topological space (ℕ‚T) in (3.2.) is DT3
4
 but the subspace A is not DT3

4
. 

 

 

7.  DT1 – SPACES 

 

In this section we introduce the axiom of DT₁, and we study its properties; as its relations 

with the classical separation axioms, its hereditary property, its continuous images, and its 

product spaces 

 

Definition 7.1. [19] A topological space (X‚T) is T1-space if for any x ‚yϵX‚ x ≠ y there exist 

two open sets U and V such that xϵU, y∉U and yϵV, x∉V. 

 

Theorem 7.1. [19]  

1) Every T1-space is T3
4
 . 

2) Every subspace of T1-space is T1. 
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3) The closed image of T1-space is T1. 

4) A non empty product space is T1-space iff each factor is T1 . 

 

Definition 7.2. [19] A topological space (X‚T) is regular-space if whenever A is closed in X 

and x∉A, then there are two disjoint open sets U and V such that xϵU, AV. A regular T1-space 

is called T3 . 
 

Theorem 7.2. [19]  

1) Every regular T0-space is T3 . 

2) Every subspace of regular-space is regular. 

 

Definition 7.3. A topological space X is said to be DT1-space if X has a T1-subspace which is 

dense in X. 

 

Corollay 7.1. 

1) Every T1-space is DT₁. 

2) Every DT1-space is DT3
4
 . 

 

Examples 7.1. 

1) Let X be the set of positive integers and τ consists all sets V such that V = {n‚ n+1‚…..} for 

some n in X.  Let A be a T₁-subspace of X‚ then A has exactly one element so A is not dense 

in X, hence X can not be DT1. 

2) Let X = IR‚ and T = { Ø‚IR‚{0}}⋃{A IR: 0∊A ‚ Aʿ finite}, then ℱ = { Ø‚IR‚{0}ʿ}⋃ 

{{FIR : 0F‚ F finite}⋃{X}. The space (X‚T) is DT1-space since {0} is a T1-dense subspace, 

but (X‚T) is not T₀ since 0 ≠ 1 and there is not open set contain 1 and not contain 0. 

 

Theorem 7.3. Every regular-space is DT₁. 

 

Proof: Let X be a regular-space, then X is DT₀ by theorem (2.2.), i.e X has a dense T₀-subspace 

A, hence A is a regular T₀ -subspace by (7.2. (2)), then A is rgular T₁-subspace from (7.2. (1)), 

hence X is DT₁. 

   

Example 7.2. The topological space (IR‚T) in (7.1. (2)) is DT1 but not regular. 

 

Theorem 7.4. Every open subspace of DT₁-space is DT₁. 

 

Proof: Let A be an open subspace of DT₁-space, then X has T₁ subspace B which is dense‚ 

hence B∩A ≠ Ø B is T1-space, so B∩A is T1-space by theorem (7.1. (2)). Now suppose W is 

an open set in A, since A is an open in X, then W is an open in X, hence W∩B ≠ Ø‚  

i.e W∩(B∩A) ≠ Ø. Hence A∩B is dense subspace of A.  

So A is DT₁-space. 

 

Example 7.3. The topological space (ℕ‚T) in (3.2.) is DT1 but the subspace A is not DT1. 
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Theorem 7.5. Every finite topological space X has a discrete subspace which is dense subset 

in X. 

 

Proof: Let A be the collection of all nonempty open sets in X, then A is partially ordered set 

by the inclusion (⊆). Let B be the set of all minimal element of A‚ since X is a finite set, hence 

B≠Ø. Choose xv ∊V for each v∊B, and define D = {xv : v∊B}, then D is a nonempty set, and for 

any xv ∊D there is an open set V∊B such that V∩D = { xv }, Then D is a discrete subspace. Now 

let a non empty open set in X then there is an open set V∊B such that VW‚ so xv ∊V W‚ 

then W∩D ≠ Ø‚ hence D is dense set in X. 

 

Corollary 7.2. Every finite topological space is DT₁-space. 

 

Proof: By the theorem above‚ any finite topological space has a discrete subspace which is 

dense‚ and since every discrete space is T₁. 

 

Theorem 7.6. If a space X has a DT₁-subspace which is dense subspace in X, then it is DT₁. 

 

Proof: Let A be a DT₁ subspace which is dense subset in X‚ then A has a subspace B which is 

dense in A, hence B is a T₁-subspace which is dense in X‚ so X is DT₁. 

Note that: The above theorem is correct for any DTi -spaces, where (i = 
1

 4
 ‚

1

 3
 ,

1

 2
 ‚

3

 4
).  

 

Theorem 7.7. The closed continuous image of a DT₁-space is DT₁. 

 

Proof: Suppose X is DT₁-space and f is a closed continuous map of X onto a space Y. Then X 

has a dense T₁-subspace A, since f is closed continuous map, f(A) is dense T₁-subspace of Y, 

hence Y is DT₁ from (7.1. (3)). 

 

 

Theorem 7.8. If a space Xα is DT₁-space for each α∊I, then the product space ᴨXα is DT₁. 

 

Proof: Since Xα is DT₁-space, then for each α∊I, Xα has a dense T₁-subspace Aα, and form (7.1. 

(4)) we get ᴨAα is a dense T₁-subspace of the product space ᴨXα . 
 

Example 7.5. Let X= ℕ, and τ₁ be topology on ℕ in example (7.1. (1)), and let τ2 be the cofinite 

topology on ℕ. Then the diagonal Δ = {(n, n): n ∊ ℕ} is a dense T₁-subspace of the product 

space, hence τ₁× τ2 is DT₁-space, but τ₁ can not be DT₁. 

 

 

8.  CONCLUSIONS 

 

We used the concepts of dense sets to define a new class of separation axioms, called DTi 

(i = 0, 
1

 4
‚ 

1

 3
, 

1

 2
, 

3

 4
‚ 1), where a DTi-space is a topological space which contains a dense 

 Ti-subspace, (i = 0‚ 
1

 4
‚ 

1

 3
, 

1

 2
, 

3

 4
‚ 1). 
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The implications of these axioms among themselves and with the known axioms Ti are 

investigated.  

Here we give a brief summary of the main results of this paper: 

 Every topological space is DƬ₀-space. 

 Every Ti-space is DTi-space (i = 0‚ 
1

 4
‚ 

1

 3
,  

1

 2
, 

3

 4
‚ 1), but not conversely. 

 All the spaces DTi  (i = 
1

 4
 ‚

1

 3
 ‚ 

1

 2
 ‚ 

3

 4
‚ 1) are weaker than the space T1 , and they are 

weakly ordered as: DT1
4
 , DT1

3
 , DT1

2
 , DT3

4
 , DT1.  

 No general relations between Ƭ₀ space and DTi-spaces, (i = 
1

 4
‚ 

1

 3
‚ 

1

 2
‚ 

3

 4
‚1).   

 DTi–spaces (i = 
1

 4
 ‚

1

 3
 ‚ 

1

 2
 ‚ 

3

 4
‚ 1) do not satisfy the hereditary property, but any open 

subspace of DTi-space is DTi , where (i =
1

 4
‚ 

1

 3
‚ 

1

 2
 ‚ 1). 

 Every finite topological space X has a discrete subspace which is dense subset in X.   

 Every finite topological space is DT₁-space 

 A space that contains a dense DTi -subspace is DTi, (i = 
1

 4
‚ 

1

 3
 ‚ 

1

 2
‚ 

3

 4
‚ 1). 

 Every regular-space is DT₁. 

 The image of DT₁-space under a closed continuous mapping is DT₁. 

 The product space of DT₁-spaces is DT₁, but not conversely. 

 

This diagram shows the relations between Ti-spaces and DTi-spaces, where (i = 0‚ 
1

 4
‚ 

1

 3
, 

1

 2
‚ 

3

 4
‚ 1): 

 

                    T₁        T3
4
        T1

2
      T1

3
     T1

4
    T0 

                                                                        

Regular   DT₁    DT3
4
     DT1 

2
   DT1

3
   DT1

4
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