Available online at www.worldscientificnews.com

World Scientific News

An International Scientific Journal

WSN 144 (2020) 158-168

EISSN 2392-2192

Separation Axioms Weaker Than T₁

Khadiga Ali Arwini^{1,*}, Mabrouka Mohammed Almrgni²

¹Department of Mathematics, Tripoli University, Tripoli, Libya ²Department of Mathematics, Higher Institute of Science and Technology, Tripoli, Libya *E-mail address: Kalrawini@yahoo.com

ABSTRACT

The purpose of this paper is to introduce a new type of separation axioms via dense sets, called DT_i -spaces (i = 0, $\frac{1}{4}$, $\frac{1}{3}$, $\frac{1}{2}$, $\frac{3}{4}$, 1), where a DT_i -space is a topological space which contains a dense T_i -subspace (i = 0, $\frac{1}{4}$, $\frac{1}{3}$, $\frac{1}{2}$, $\frac{3}{4}$, 1). These new axioms are weaker than the axiom of T_1 . We provide the basic properties of DT_i - spaces (i = 0, $\frac{1}{4}$, $\frac{1}{3}$, $\frac{1}{2}$, $\frac{3}{4}$, 1), and we show that the axioms of $DT_{\frac{1}{4}}$, $DT_{\frac{1}{3}}$, $DT_{\frac{1}{2}}$, $DT_{\frac{3}{4}}$, DT_1 are open hereditary. Moreover, we study the connections between these axioms and the axioms of T_i where (i = 0, $\frac{1}{4}$, $\frac{1}{3}$, $\frac{1}{2}$, $\frac{3}{4}$, 1).

Keywords: Subspaces, product spaces, lower separation axioms

AMS Subject Classification (2000): 54B05, 54B10, 54D10

1. INTRODUCTION

The concepts of different generalization of open (or closed) sets have been defined; as Λ -sets, generalized Λ -sets, λ -sets, β -sets, g-closed sets, regular open sets, preopen sets and semi open sets, etc. Some of these generalizations are stronger forms of open (or closed) sets,

and some are weaker, interrelations between these types of generalized open (or closed) sets were studied in [1-5].

In [6-13] and Arenas, Dontchev, Levine, Dunham and Maki introduced several separation axioms between T₀ and T₁-spaces, in particular, they defined $T_{\frac{1}{4}}$, $T_{\frac{1}{3}}$, $T_{\frac{1}{2}}$ and $T_{\frac{3}{4}}$ -spaces by using the concepts of Λ -sets, generalized Λ -sets, λ -sets, generalized closed sets and regular open sets. The characterization of these spaces found to be useful in the study of computer science and digital topology.

Several separation axioms have been introduced using various forms of generalization open and closed sets, as in 2007 [14] Caldas, Jafari and Navalagi used the notions of λ -open sets and λ -closed sets to define the operators λ -closure and λ -interior and studied their properties, then they used these operators to defined new separation axioms; namely λ -T_i, where (i = 0, $\frac{1}{2}$, 1, 2), and they proved that λ -T₁ is equivalent to T₀. The axioms μ -T_{1/4}, μ -T_{3/8} and μ -T_{1/2} were defined by Sarsak [15] when he used the notions of μ -open sets.

In 2011 [16] the author studied some new separation axioms for topological spaces defined in terms of a new topology, this new idea gave the notion of start- T_i where (i = 1, 2), then he showed that star- T_1 axiom lies between T_0 and T_1 . A year later, Hussain and Abd Alatif [17] used bg-closed sets to introduced a new class of spaces namely $b-T_{\frac{1}{2}}$ space, which is strictly between b- T_0 and b- T_1 , and they showed that $T_{\frac{1}{2}}$ is b- $T_{\frac{1}{2}}$. More separation axioms between T_0 and T_1 spaces are described in [18] as properties of the space at particular point.

In this paper we introduced a new type of separation axioms, namely dense separation axioms and they are denoted by DT_i -spaces (i = $0, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{3}{4}, 1$), where a DT_i -space is a topological space which contains a dense T_i -subspace (i = $0, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{3}{4}, 1$). We provided the properties of these spaces, and proved that every topological space is DT_0 -space, then we show that DT_i -space is weaker than T_i -space for any (i = $\frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{3}{4}, 1$), moreover, we investigate some of their basic properties, as their subspaces and their continuous images.

Finally, we provide the inter-relations between DT_i -spaces and the classical T_i -spaces; where $(i = \frac{1}{4}, \frac{1}{2}, \frac{1}{2}, \frac{3}{4}, 1)$.

2. DT₀ – SPACES

In this section we introduce the axiom of DT_0 , then we prove that every topological space is DT_0 .

Definition 2.1. [19] A topological space (X,T) is T₀-space if whenever x and y are distinct points in X there is an open set containing one and not the other.

Theorem 2.1. [19] A topological space X is T₀-space iff $\overline{\{x\}} \neq \overline{\{y\}}$ for every x, y \in X and x \neq y.

Definition 2.2. A topological space X is said to be DT₀-Space if X has a T₀-subspace which is dense in X.

Theorem 2.2. Every topological space is DT₀.

Proof: Let X be any topological space and define a relation ~ on X by: $x \sim y$ iff $\overline{\{x\}} = \overline{\{y\}}$. Then ~ is an equivalence relation on X. Let X / ~ be the set of all distinct equivalence classes for a relation ~. By the axiom of choice we can choose a set A \subseteq X such that A \cap [x] has exactly one element for x in X. If x and y are distinct points in A, then $x \nleftrightarrow y$ hence $\overline{\{x\}} \neq \overline{\{y\}}$.

So A is a T₀ – subspace by theorem (2.1.). Now suppose V is a non empty open set in X, then for each $x \in V$ there is $a_x \in A$ such that $x \in [a_x]$, hence $\overline{\{x\}} = \overline{\{a_x\}}$ and since $x \in V$, then $a_x \in V$, i.e V $\cap A \neq \emptyset$, hence A is dense in X. We get X is DT₀-space.

3. DT_{1/4} – SPACES

Arenas, Dontchev and Ganster [7] introduced the notions of λ -closed sets and λ -open sets in topological spaces, and they showed that every Λ -set is λ -closed set. They used the concepts of λ -closed sets to introduced the class of $T_{\frac{1}{4}}$ spaces in their study of generalized continuity and λ -closed sets. More details on λ -sets can be found in [8, 1].

Definition 3.1. [7] A topological space (X,T) is called a $T_{\frac{1}{4}}$ -space if for every finite subset $F \subseteq X$ and every point $y \notin F$ there exist a subset $A \subseteq X$ such that $F \subseteq A$, $y \notin A$ and A is open or closed.

Theorem 3.1. [7]

1) -Every $T_{\frac{1}{4}}$ -space is T₀.

2) -Every subspace of a $T_{\frac{1}{4}}$ -space is $T_{\frac{1}{4}}$.

Definition 3.2. A topological space X is said to be $DT_{\frac{1}{4}}$ -space if X has a $T_{\frac{1}{4}}$ -subspace which is dense in X.

Corollary 3.1. Every $T_{\frac{1}{4}}$ -space is $DT_{\frac{1}{4}}$.

Examples 3.1.

1) Let X = {a,b,c,d} and T = { \emptyset ,X,{a,b},{c},{a,b,c},{b,c},{b}}, then $\mathcal{F} = {\emptyset,X,{c,d}, {a,b,d}, {d}, {a,c,d}}$. If A={b,c,d}then T_A ={ \emptyset , A, {b}, {c}, {c,d}, and \mathcal{F}_A = { \emptyset , A, {c,d}, {b,d}, {d}} i. e(X,T) is DT_{\frac{1}{4}} since A is $T_{\frac{1}{4}}$ -dense subspace, but (X,T) is not $T_{\frac{1}{4}}$ -space, since there is not a set F such that {b,d} \subseteq F, a \notin F and F is open or closed.

2) Let $X = \mathbb{N}$ and $T = \{\emptyset, \mathbb{N}, \{2, 3, 4,\}, \{3, 4, 5,\}, \text{then } \mathcal{F} = \{\emptyset, \mathbb{N}, \{1\}, \{1, 2\} \\ \{1, 2, 3\} ... \}. (X, T) \text{ is not } T_{\frac{1}{4}} \text{-space, since } 3 \notin \{1, 2, 4\} \text{ but there, is not a set F such that } \{1, 2, 4\} \subseteq F, 3 \notin F \text{ and F is open or closed. Now if A is dense subset in X, then A is infinite set, and <math>T_A$ is not $T_{\frac{1}{4}}$ -space. We have (X, T) is not $DT_{\frac{1}{4}}$. Note that (X, T) is To but not $DT_{\frac{1}{4}}$.

3) X = IR, $T = \{ \emptyset \} \bigcup \{ \bigcup \subseteq IR : \{1,-1\} \subseteq \bigcup \}$, then (X,T) is $DT_{\frac{1}{4}}$ -space since $\{1\}$ is dense subspace. But (X,T) is not To-space.

4) Let X be the set of non-negative integers and $T = \{A \subseteq X : 0 \in A, A^{\circ} \text{ inite}\} \cup \{\emptyset\}$, then $\mathcal{F} = \{F \subseteq X : F \text{ finite}, 0 \notin F \} \cup \{X\}$. (X,T) is $DT_{\frac{1}{4}}$ since $A = \{0\}$ is $T_{\frac{1}{4}}$ -dense subspace but (X,T) is not $T_{\frac{1}{3}}$ -space.

Theorem 3.2. Every open subspace of $DT_{\frac{1}{4}}$ -space is $DT_{\frac{1}{4}}$.

Proof: Let A be an open subspace of $DT_{\frac{1}{4}}$ -space X, then X has $T_{\frac{1}{4}}$ -subspace B which is dense in X, hence $B \cap A \neq \emptyset$ so $B \cap A$ is $T_{\frac{1}{4}}$ -space by theorem (3.1. (2)). Now suppose W is open set in A and since A is open in X, then W is an open in X, hence $W \cap B \neq \emptyset$, i.e $W \cap (B \cap A) \neq \emptyset$, so $A \cap B$ is dense subspace of A. Hence A is $DT_{\frac{1}{4}}$ -space.

Example 3.2. Let X = N and T = { N, Ø, N/{2}, N/{2,3}, N/{2,3,4},....}, $\mathcal{F} = \{ N, Ø, \{2\}, \{2,3\}, \{2,3,4\},....\}, \text{ then } (X,T) \text{ is } DT_{\frac{1}{4}} \text{ Since } \{1\} \text{ is } T_{\frac{1}{4}} - \text{ dense subspace}, \text{ The set } A = N/\{1\} (A,T_A) \text{ is not } DT_{\frac{1}{4}}, \text{ since } X \text{ is not } T_{\frac{1}{4}} \text{ and any dense set in } X \text{ is infinite }.$

4. $DT_{1/3} - SPACES$

Arenas, Dontchev and Puertas [8] considered the spaces in which compact sets are λ -closed, they are placed between $T_{\frac{1}{2}}$ and $T_{\frac{1}{4}}$, they call them $T_{\frac{1}{3}}$ spaces.

Definition 4.1. [8] A topological space (X,T) is $T_{\frac{1}{3}}$ -space if for every compact subset F of X and every $y \notin F$ there exists a set A_y containing F and disjoint from {y} such that A_y is either open or closed.

Theorem 4.1. [8]

- 1) Every $T_{\frac{1}{2}}$ -space is $T_{\frac{1}{4}}$.
- 2) Every subspace of $T_{\frac{1}{2}}$ -space is $T_{\frac{1}{2}}$.

Definition 4.2. [8] A topological space (X,T) is called anti-compact if every compact subset of X is finite.

Corollary 4.1. [8] For an anti-compact topological space (X,T) the following conditions are equivalent:

1) X is $T_{\frac{1}{3}}$. 2) X is $T_{\frac{1}{4}}$. **Definition 4.3.** A topological space X is said to be $DT_{\frac{1}{3}}$ -space if X has a $T_{\frac{1}{3}}$ -subspace which is dense in X.

Corollary 4.2.

Every T₁/₃-space is DT₁/₃
Every DT₁/₃-space is DT₁/₄

Examples 4.1.

1) Let X be the set of non –negative integers and $T = \{A \subseteq X : 0 \in A, A^{\circ} \text{ finite}\} \cup \{\emptyset\}$, then $\mathcal{F} = \{F \subseteq X : F \text{ finite}, 0 \notin F \} \cup \{X\}$. X is $DT_{\frac{1}{3}}$ -space since $\{0\}$ is $T_{\frac{1}{3}}$ -dense subspace. But (X,T) not $T_{\frac{1}{3}}$ -space since \mathbb{N} is compact, $0 \notin \mathbb{N}$, but there is not exists a set A such that $\mathbb{N} \subseteq A$ and $0 \notin A$, A is open or closed.

2) Let X=N, T={ N,Ø, {2,3,....}, {3,4...}. Then X is not $DT_{\frac{1}{3}}$ -space since X is not $T_{\frac{1}{3}}$, and any dense subset A is infinite, so T_A is not $T_{\frac{1}{3}}$ -space.

3) Let $X = \mathbb{N}$, $T = \{\mathbb{N}, \emptyset, \{1\}, \{1,2\}, \{1,2,3\}, \dots\}$, then (X,T) is $DT_{\frac{1}{3}}$ -space since $\{1\}$ is $T_{\frac{1}{3}}$ dense subspace. (X,T) is not $T_{\frac{1}{4}}$, since $2 \notin \{1,3,4\}$ but there is not a set A such that $\{1,3,4\} \subseteq A$, $2 \notin A$ and A is open or closed.

4) Let X = N and T = { N, \emptyset , N /{2}, N /{2,3}, N /{2,3,4},....}, then $\mathcal{F} = \{ N, \emptyset, \{2\}, \{2,3\}, \{2,3,4\}, ...\}$. The space (X,T) is $DT_{\frac{1}{3}}$ -space since {1} is a $T_{\frac{1}{3}}$ -dense subspace. (X,T) is not $T_{\frac{1}{4}}$ since $3 \notin \{2,4\}$ but there is not a set A such that $\{2,4\} \subseteq A$, $3 \notin A$ and A is open or closed.

Theorem 4.2.

Every open subspace of $DT_{\frac{1}{3}}$ -space is $DT_{\frac{1}{3}}$.

Proof: Let A be an open subspace of $DT_{\frac{1}{3}}$ -space. Then X has a $T_{\frac{1}{3}}$ -subspace B which is dense, hence $B \cap A \neq \emptyset$, and $B \cap A$ is $T_{\frac{1}{3}}$ -space by theorem (4.1. (2)). Now suppose W is an open set in A, and since A is an open in X, then W is open in X, and $W \cap B \neq \emptyset$, i.e $W \cap (B \cap A) \neq \emptyset$, so $A \cap B$ is dense subspace of A. Hence A is $DT_{\frac{1}{2}}$ -space.

Example 4.2. The topological space (\mathbb{N} ,T) in (3.2.) is $DT_{\frac{1}{3}}$ but the subspace A is not $DT_{\frac{1}{3}}$.

Corollary 4.3.

For an anti-compact topological space (X,T) the following conditions are equivalent:

- 1) X is $DT_{\frac{1}{3}}$.
- 2) X is $DT_{\frac{1}{4}}$

5. DT_{1/2} – SPACES

Levine [12] introduced the concepts of generalized closed sets of a topological space, and a class of topological spaces called $T_{\frac{1}{2}}$ -space, when he proved that $T_{\frac{1}{2}}$ -space is properly placed between T_0 -space and T_1 -space. After that, the authors in [7] characterized $T_{\frac{1}{2}}$ -spaces as those spaces where every subset is λ -closed. Dunham [11] showed that a space is $T_{\frac{1}{2}}$ if and only if each singletons is open or closed. See [13], [2].

Definition 5.1. [12] A topological space (X ,T) is $T_{\frac{1}{2}}$ -space if every g-closed subset of X is closed.

Theorem 5.1. [12]

- 1) Every $T_{\frac{1}{2}}$ -space is $T_{\frac{1}{3}}$.
- 2) Every subspace of $T_{\frac{1}{2}}$ -space is $T_{\frac{1}{2}}$.

Definition 5.2. A topological space X is said to be $DT_{\frac{1}{2}}$ -space if X has a $T_{\frac{1}{2}}$ -subspace which is dense in X.

Corollary 5.1.

Every T¹/₂-space is DT¹/₂.
Every DT¹/₂-space is DT¹/₃.

Examples 5.1.

1) Let $X = \{a,b,c,d\}$ and $T = \{\emptyset, X, \{b\}, \{a,b\}, \{b,c\}, \{a,b,c\}\}$, then $\mathcal{F} = \{\emptyset, X, \{a,c,d\}, \{c,d\}, \{a,d\}, \{d\}\}$. (X,T) is $DT_{\frac{1}{2}}$ -space since $A = \{b\}$ is $T_{\frac{1}{2}}$ -dense subspace, but (X,T) is not $T_{\frac{1}{2}}$ since $\{a\}$ is not open and not closed.

2) Let X be the set of non-negative integers and $T = \{A \subseteq X : 0 \in A, A^{\circ} \text{ finite}\} \cup \{\emptyset\}$, then $\mathcal{F} = \{F \subseteq X : F \text{ finite}, 0 \notin F \} \cup \{X\}$. (X,T) is $DT_{\frac{1}{2}}$ -space since $A = \{0\}$ is $T_{\frac{1}{2}}$ -dense subspace, but (X,T) is not $T_{\frac{1}{2}}$ -space.

Theorem 5.2. Every open subspace of $DT_{\frac{1}{2}}$ -space is $DT_{\frac{1}{2}}$

Proof: Let A be an open subspace of $DT_{\frac{1}{2}}$ -space then X. Then has a $T_{\frac{1}{2}}$ subspace B which is dense, hence $B \cap A \neq \emptyset$, and B is $T_{\frac{1}{2}}$ -space, so $B \cap A$ is $T_{\frac{1}{2}}$ -space by theorem (5.1. (2)). We need to prove $A \cap B$ is dense. Now suppose W is an open set in A, and since A is an open in X, then W an open in X, hence $W \cap B \neq \emptyset$, i.e $W \cap (B \cap A) \neq \emptyset$, hence $A \cap B$ is dense subspace of A. So A is $DT_{\frac{1}{2}}$ -space.

World Scientific News 144 (2020) 158-168

Example 5.2. The topological space (\mathbb{N} ,T) in (3.2.) is $DT_{\frac{1}{2}}$ but the subspace A is not $DT_{\frac{1}{2}}$.

6. DT_{3/4} – SPACES

Via regular open sets, Levine [12] produced some new separation axiom which lies between T₀ and T₁, called T₃-space. Regular open (or closed) sets in a topological space used as a generalizations for algebraic openings and closings in a complete lattice, see [3] and [20].

Definition 6.1. [12] Atopological space (X,T) is called $T_{\frac{3}{4}}$ -space if every singleton is closed or regular open.

Theorem 6.1. [12] Every $T_{\frac{3}{4}}$ -space is $T_{\frac{1}{2}}$.

Definition 6.2. A topological space X is said to be $DT_{\frac{3}{4}}$ -space if X has a $T_{\frac{3}{4}}$ -subspace which is dense in X.

Corollary 6.1.

Every T³/₄-space is DT³/₄
Every DT³/₄-space is DT¹/₁₂

Examples 6.1.

1) Let X = {a,b,c} and T = { \emptyset ,X,{a},{b,c}}, then X is $DT_{\frac{3}{4}}$ -space since A = {a,c} is $T_{\frac{3}{4}}$ -dense subspace, but (X,T) is not $T_{\frac{3}{4}}$ -space since {b} is not closed nor regular open. Note that X is not T₁ space.

2) The topological space (\mathbb{N} ,T) in (3.2.) is $DT_{\frac{3}{4}}$ but the subspace A is not $DT_{\frac{3}{4}}$.

7. DT₁ – SPACES

In this section we introduce the axiom of DT_1 , and we study its properties; as its relations with the classical separation axioms, its hereditary property, its continuous images, and its product spaces

Definition 7.1. [19] A topological space (X,T) is T₁-space if for any x , $y \in X$, $x \neq y$ there exist two open sets U and V such that $x \in U$, $y \notin U$ and $y \in V$, $x \notin V$.

Theorem 7.1. [19]

1) Every T₁-space is $T_{\frac{3}{4}}$.

2) Every subspace of T_1 -space is T_1 .

World Scientific News 144 (2020) 158-168

3) The closed image of T_1 -space is T_1 .

4) A non empty product space is T_1 -space iff each factor is T_1 .

Definition 7.2. [19] A topological space (X,T) is regular-space if whenever A is closed in X and $x \notin A$, then there are two disjoint open sets U and V such that $x \in U$, $A \subseteq V$. A regular T₁-space is called T₃.

Theorem 7.2. [19]

- 1) Every regular T_0 -space is T_3 .
- 2) Every subspace of regular-space is regular.

Definition 7.3. A topological space X is said to be DT_1 -space if X has a T_1 -subspace which is dense in X.

Corollay 7.1.

- 1) Every T₁-space is DT₁.
- 2) Every DT₁-space is $DT_{\frac{3}{4}}$.

Examples 7.1.

1) Let X be the set of positive integers and τ consists all sets V such that $V = \{n, n+1,\}$ for some n in X. Let A be a T₁-subspace of X, then A has exactly one element so A is not dense in X, hence X can not be DT₁.

2) Let X = IR, and $T = \{ \emptyset, IR, \{0\} \} \bigcup \{A \subseteq IR: 0 \in A, A^{\circ} \text{ finite} \}$, then $\mathcal{F} = \{ \emptyset, IR, \{0\}^{\circ} \} \bigcup \{\{F \subseteq IR: 0 \notin F, F \text{ finite} \} \bigcup \{X\}$. The space (X, T) is DT_1 -space since $\{0\}$ is a T_1 -dense subspace, but (X, T) is not T_0 since $0 \neq 1$ and there is not open set contain 1 and not contain 0.

Theorem 7.3. Every regular-space is DT₁.

Proof: Let X be a regular-space, then X is DT_0 by theorem (2.2.), i.e X has a dense T_0 -subspace A, hence A is a regular T_0 -subspace by (7.2. (2)), then A is rgular T_1 -subspace from (7.2. (1)), hence X is DT_1 .

Example 7.2. The topological space (IR,T) in (7.1. (2)) is DT₁ but not regular.

Theorem 7.4. Every open subspace of DT₁-space is DT₁.

Proof: Let A be an open subspace of DT₁-space, then X has T₁ subspace B which is dense, hence $B \cap A \neq \emptyset$ B is T₁-space, so $B \cap A$ is T₁-space by theorem (7.1. (2)). Now suppose W is an open set in A, since A is an open in X, then W is an open in X, hence $W \cap B \neq \emptyset$, i.e $W \cap (B \cap A) \neq \emptyset$. Hence $A \cap B$ is dense subspace of A. So A is DT₁-space.

Example 7.3. The topological space (\mathbb{N}, \mathbb{T}) in (3.2.) is DT_1 but the subspace A is not DT_1 .

Theorem 7.5. Every finite topological space X has a discrete subspace which is dense subset in X.

Proof: Let A be the collection of all nonempty open sets in X, then A is partially ordered set by the inclusion (\subseteq). Let B be the set of all minimal element of A, since X is a finite set, hence $B\neq\emptyset$. Choose $x_v \in V$ for each $v\in B$, and define $D = \{x_v : v\in B\}$, then D is a nonempty set, and for any $x_v \in D$ there is an open set $V\in B$ such that $V\cap D = \{x_v\}$, Then D is a discrete subspace. Now let a non empty open set in X then there is an open set $V\in B$ such that $V\subseteq W$, so $x_v \in V \subseteq W$, then $W\cap D \neq \emptyset$, hence D is dense set in X.

Corollary 7.2. Every finite topological space is DT₁-space.

Proof: By the theorem above, any finite topological space has a discrete subspace which is dense, and since every discrete space is T_1 .

Theorem 7.6. If a space X has a DT₁-subspace which is dense subspace in X, then it is DT₁.

Proof: Let A be a DT_1 subspace which is dense subset in X, then A has a subspace B which is dense in A, hence B is a T_1 -subspace which is dense in X, so X is DT_1 .

Note that: The above theorem is correct for any DT_i -spaces, where $(i = \frac{1}{4}, \frac{1}{2}, \frac{1}{2}, \frac{3}{4})$.

Theorem 7.7. The closed continuous image of a DT₁-space is DT₁.

Proof: Suppose X is DT_1 -space and f is a closed continuous map of X onto a space Y. Then X has a dense T_1 -subspace A, since f is closed continuous map, f(A) is dense T_1 -subspace of Y, hence Y is DT_1 from (7.1. (3)).

Theorem 7.8. If a space X_{α} is DT₁-space for each $\alpha \in I$, then the product space πX_{α} is DT₁.

Proof: Since X_{α} is DT₁-space, then for each $\alpha \in I$, X_{α} has a dense T₁-subspace A_{α} , and form (7.1. (4)) we get πA_{α} is a dense T₁-subspace of the product space πX_{α} .

Example 7.5. Let $X = \mathbb{N}$, and τ_1 be topology on \mathbb{N} in example (7.1. (1)), and let τ_2 be the cofinite topology on \mathbb{N} . Then the diagonal $\Delta = \{(n, n): n \in \mathbb{N}\}$ is a dense T₁-subspace of the product space, hence $\tau_1 \times \tau_2$ is DT₁-space, but τ_1 can not be DT₁.

8. CONCLUSIONS

We used the concepts of dense sets to define a new class of separation axioms, called DT_i (i = 0, $\frac{1}{4}$, $\frac{1}{3}$, $\frac{1}{2}$, $\frac{3}{4}$, 1), where a DT_i -space is a topological space which contains a dense T_i -subspace, (i = 0, $\frac{1}{4}$, $\frac{1}{3}$, $\frac{1}{2}$, $\frac{3}{4}$, 1). The implications of these axioms among themselves and with the known axioms $T_{\rm i}$ are investigated.

Here we give a brief summary of the main results of this paper:

- ✓ Every topological space is DT₀-space.
- ✓ Every T_i-space is DT_i-space (i = 0, $\frac{1}{4}$, $\frac{1}{3}$, $\frac{1}{2}$, $\frac{3}{4}$, 1), but not conversely.
- ✓ All the spaces DT_i (i = $\frac{1}{4}$, $\frac{1}{3}$, $\frac{1}{2}$, $\frac{3}{4}$, 1) are weaker than the space T_1 , and they are weakly ordered as: $DT_{\frac{1}{4}}$, $DT_{\frac{1}{3}}$, $DT_{\frac{1}{2}}$, $DT_{\frac{3}{4}}$, DT_1 .
- ✓ No general relations between T₀ space and DT_i-spaces, (i = $\frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{3}{4}, 1$).
- ✓ DT_i -spaces $(i = \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{3}{4}, 1)$ do not satisfy the hereditary property, but any open subspace of DT_i -space is DT_i , where $(i = \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, 1)$.
- \checkmark Every finite topological space X has a discrete subspace which is dense subset in X.
- ✓ Every finite topological space is DT₁-space
- ✓ A space that contains a dense DT_i -subspace is DT_i , $(i = \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{3}{4}, 1)$.
- ✓ Every regular-space is DT₁.
- \checkmark The image of DT₁-space under a closed continuous mapping is DT₁.
- ✓ The product space of DT_1 -spaces is DT_1 , but not conversely.

This diagram shows the relations between T_i-spaces and DT_i-spaces, where (i = 0, $\frac{1}{4}$, $\frac{1}{3}$, $\frac{1}{2}$, $\frac{3}{4}$, 1):

 $\begin{array}{cccc} T_1 \ \Rightarrow \ T_{\frac{3}{4}} \ \Rightarrow \ T_{\frac{1}{2}} \ \Rightarrow \ T_{\frac{1}{3}} \ \Rightarrow \ T_{\frac{1}{4}} \ \Rightarrow \ T_{0} \\ \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ Regular \Rightarrow DT_1 \Rightarrow \ DT_{\frac{3}{4}} \ \Rightarrow \ DT_{\frac{1}{2}} \ \Rightarrow DT_{\frac{1}{3}} \ \Rightarrow DT_{\frac{1}{4}} \end{array}$

References

- M. Caldas, S. Jafari and G. Navalagi. More on λ-closed sets in topological spaces. *Revista Columbiana de Mathematical* 41 (2) (2007) 355-369
- [2] K. Kannan. On Levine's Generalized closed sets. A survey, Research Journal of Applied Sciences, Engineering and Technology 4 (11) (2012) 1612-1615
- [3] C. Ronse. Regular open or closed sets. *Philips Research Laboratory Brussels, A v. E van* Becelaere 2 B (1990) 1170
- [4] M. P. Chaudhary, Vinesh Kumar. On g-closed sets in a topological space. *Global Journal of Science Frontier Research* 10 (2) (2010) 10-12
- [5] Zanyar A. Ameen. On types of generalized closed sets. *Journal of Taibah University for Science* 12 (3) (2018) 290-293

- [6] N. Araki, M. Ganster, H. Maki and A. Nishi. Properties of T_{1/4} spaces. *Questions and Answers in General Topology* 24 (2) (2006) 143-148
- [7] Francisco G. Arenas, Julian Dontchev and Maximilian Ganster. On λ -sets and the dual of generalized continuity. *Questions Answers in Gen Topology* 15 (1) (1997) 3-13
- [8] F.G. Arenas, J. Dontchev and M.L. Puertas. Unification approach to the separation axioms between T_0 and completely hausdorff. *Acta Math. Hungar* 86 (2000) 75-82
- [9] Francisco G. Arenas, Julian Dontchev and Maria Luz Puertas. Idealization of some weak separation axioms. *Acta Mathematica Hungarica Source* 89 (2000) 47-53
- [10] J. Dontchev and M. Ganster. On minimal door, minimal anti compact and minimal $T_{\frac{3}{4}}$ -spaces. *Mathematical Proceedings of the Royal Irish Academy* 98 A (2) (1998) 209-215
- [11] W. Dunham. $T_{\frac{1}{2}}$ -space. *Kyungpook Math J* (17) (1977) 161-169
- [12] N. Levine. Generalized closed sets in topology. *Rend. Circ. Mat. Palermo* 19 (2) (1970) 89-96
- [13] H. Maki, J. Umehara and K.Yamamura. Characterizations of T₁-spaces using generalized V-sets. *Indian J. Pure Appl. Math* 19 (7) (1988) 634-640
- [14] Miguel Caldas, Saeid Jafari, Govindappa Navalagi. More on λ-closed sets in topological spaces. *Revista Colombiana de Matematicas* 41 (2) (2007) 355-369
- [15] M. S. Sarsak. New separation axioms in generalized topological spaces. Acta Math. Hungar 132 (3) (2011) 244-252
- [16] Chandan Chattopadhyay. Some new separation axioms a different approach. *Global Journal of Mathematical Sciences: Theory and Practical* 3 (3) (2011) 289-297
- [17] Adea Khaleafa Hussain, Ali Saadi Abd Alatif. Characterizations and properties of b- $T_{\underline{1}}$ spaces. *Iraqi Journal of Science* 53 (4) (2012) 861-865
- [18] Raghu Gompa, Vijaya L. Gompa. Local separation axioms between Kolmogorov and Frechet spaces. *Missouri J. Math. Sci* 29 (1) (2017) 33-42
- [19] S. Willard, General Topology. Addison-Wesley Publishing Company, United States of American (1970).
- [20] T. Shyla isac mary and P. Thangavelu. On Regular Pre-Semiclosed Sets in Topological Spaces. *KBM Journal of Mathematical sciences and Computer Applications* 1(1) (2010) 9-17