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ABSTRACT

During the last seventh decades ago, there has been
ongoing interest concering different types of inequalities
integration.

Our aim in this project is to study the important type of
these inequalities, from Riemann-Stieltjes integral, which are
well known in the literature as the Ostrowski and trapezoid
inequalities.

In this study we focused our attention on the results to
find the Riemann-Stieltjes Integral of product integrators and
here applied on some inequalities.

IV



uadla

e Ailide o) il (L jatne alaial @llia S dpalall o gl dapd) JOUA

Al il

DA e el el o) 53l anl Al 0 s Canll 138 & ) Cangll

Aud Al g S yian sl Ailiay Coymy Lo o8y Gailitil-olay ) JalSs
Dailidl- ey JalS alag daa e s Al all s2a 4l 8yl e aal
B 5 el SIS [ [P fd(gh)] lbiial) Gan e Lkl



INTRODUCTION

T. J. Stieltjes (1856-1894) introduced a generalization of the Riemann
integral, Stieltjes himself died before the appearance of his paper, and
the idea at traced almost no attention for the next 15 years, the type of
integration considered here is somewhat more general, and the added
generality makes it very useful in certain applications, especially in
statistics and numerical integration.

We shall consider bounded functions on closed intervals of real
number system, define the integral of one such function with respect to
another, and derive the main properties of this integral,

In this study we shall focus our attention on two integral inequalities
which are well known in the literature as the trapezoid and Ostrowski
inequalities and depended in her proofs on the Riemann-Stieltjes
integral, the trapezoid inequality is deals with the estimation of the
magnitude of the difference,

[P fde—[(x- a)f(@+ (b- x)f )],

and the Ostrowski inequality provides an error analysis for the quantity

[, fdt=(b - a) f).

Since the writing of the classical book by Hardy, Litlewood and Polya
in (1934), the subject of differential and integral inequalities has grown
by about 800%. Ten years on, we can confidently assert that this growth
will increase even more significantly Inequalities have proved to be an
applicable tool for the development of many branches of mathematics.



In 1938 Ostrowski proved the integral inequality which is known in
the literature as Ostrowski’s inequality which is provides an error

analysis for the quantity f(ffdt— (b — a) f(x), by formula

a+b

(x
| f@) - = [l f@de |< [+ ooz [0l Fl,,

In the year 1995 G, A, Anastassion [5] gave a different proof to
Ostrowski’s inequality and using concept of the optimal function to
establish optimal upper bounds on the deviation of a function from its
averages, these lead to sharp inequalities. In 1976, Milovanovic et al.
proved a generalization of the trapezoid and Ostrowski inequalities for
n-time differentiable mappings. In 1998, Dragomir [17] presented a new
results to the classical Ostrowski’s inequality and for the first time
applied it to the estimation of error bounds for some special means and
for some numerical quadrature rules, the monographs {[19], [23], [28],
[29] and [30]} were written from 1999 -2004 to present some selected
results on Ostrowski type inequalities and their applications. In 2000,
Cerone et al. [32], in 2004, Ujevic [57], and in 2011, Alomari [3] were
Presented very useful results by concept of the perturbation. In 2014,
Dragomir [22] proved the results to find the Riemann-Stieltjes Integral
of product integrators and applied on some inequalities.

The basic idea for proofs of main results in this thesis by using the
integration by parts formula for Riemann-Stieltjes Integral with the help
of the Peano kernels theorem, for example

b
[ = 0df(B) = (x = OF(©)] +J; f(Odr.
a

The material of this thesis is organized as follows:



In the first chapter, there will be basic concepts which will be used
throughout the thesis. Among them, the definitions of functions of

bounded variation, Riemann- Stieltjes integral and their fundamental
properties.

In chapter two, we will give a different generalization of the trapezoid
and Ostrowski inequalities.

Chapter three, contains some types and results of the Riemann-Stieltjes
Integral of product integrators and the trapezoid and Ostrowski
inequalities for the Riemann-Stieltjes Integral.



CHAPTERI

Preliminaries



1.1 Some concepts

Let f and g denote real-valued functions defined on a closed interval [a, b] of the
real line. We shall suppose that both f and g are bounded on [a, b], this standing
hypothesis will not be repeated a lot.

Definition 1.1 [51]
A mapping f is said to be bounded function if there is real number M such that
| F(x) |<M forall x € [a,b].

Proposition 1.2 [10]
I. If a, b are real numbers, then

Sup{a,b} == f{a+b +la — bl}, and inf {a,b} =~ {a+ b — |a — b},
ii. If f, g are continuous real-valued functions on [a, b], then

Sup{f,g}= s(f +g+If — gl and inf{f, g} == (f +g - If — gl).

Definition 1.3
A function f is said to be monotonic increasing on [a, b]if f(x2) > f(x,) for

X, > x1, and monotonic decreasing if f(x;) < f(xy) for x, > x;.

Definition 1.4
A real-valued function f is continuous at x, € [a, b] if given € > o, there

exists § > 0, suchthat |x -x,|<8 and x, € [a, b] implies that

| f) - fxo) | <e.

Definition 1.5 [55]
A real-valued function f is absolutely continuous on [a, b] if given € > o, there
exists 6 > 0, such that

Lo FBy-f(a) |<e
5



Whenever {(a; bi) } is a finite collection of disjoint intervals with

?:1 |bi—ai|<8.

Mean Value Theorem 1.6 [10]
Suppose that f is continuous on a closed interval [a, b] and that f has
a derivative interval (a, b). Then there exists at least one point c in (a, b), such that

f)-fl@) = f'(c) (b — a).

Theorem 1.7 [36]

If £ is continuous on [a, b] and £’ exists and is bounded on (a, b), then f is
absolutely continuous on [a, b].

proof:
Suppose that |f'(x)|< M for x € (a, b), M is real number

let &> 0, consider

| Fd)-f(e) | when {(di ci): 1<i <n}is afinite collection of
disjoint intervals in [a, b], suchthat YL, |di -ci |< &/

Now, observe that

| Fd) = fCe) |
|d; —¢; |

|di—Ci|

?:1 | f(dl) - f( Cl) | = ?:1
The mean value theorem tells us that for 1 <i < n there exists x; € [c;, d;]
such that,

| fd) = f(c) |
|di —C; |

= If' (x| M.

Therefore



| fd) —fCe) |
ld; —¢; |

n
i=1

|di—Ci| < M), |di-Ci|<M (S/M) = E&.
Hence f is absolutely continuous on[a, b].

Definition 1.8 [11]
The mapping f :[a, b] = R is said to be L—Lipschitzian on [a, b] if

[ fG)—f I = Llx —y| Forxy € [a, b].

Proposition 1.9 [36]
Let f:[a, b] = R be afunction that is L — Lipschitzian for some constant L > 0.
Then f is absolutely continuous on [a, b].

Proof

~lm

let £ >0, and choose § =

now, if {(di,ci): 1<i <n}is afinite collection of disjoint intervals in [a, b],
suchthat Y, |di -¢ |<8,

So by using the Lipschitz condition for (d; c;), we obtain
| f(d)-f(e)|< Lldi— ¢l forallo<i<n

Therefor

Eo | F@) = f(eh |< LEL 1di— ol <Ly =e

(Sequence of Taylor) 1.10 [38]
The Taylor formula for continuous function f on/ c Rand a € |,

(x-a)* _, (x—a)¥
o @t =

f)=fla)+&x—-a)f(a)+ f*(a.

our point the Taylor formula with an integral remainder term,



(x-a)? ., (x—a)k
2! frl@+-+ k!

fx)=f(a)+ (x—a)f (a) + f®(a)

+ = [0 — O FED (0. 1.1

(It can be verified by integration by parts).
Suppose that we are given an approximant (e. g. of a function, a derivative
and an integral). Whose error vanishes for f € Pg[x], where

Px[x] = co + c1x + cx% + -+ + cpx®.

Notation 1.11 [38]
The Taylor formula produces an expression for the error that depends on f*+1,

This is the basis for the Peano kernel theorem,
Formally, let L(f) be an error of an approximant, thus L maps from C[a, b] to R,

And L is linear, so L(af + fg) = aL(f) + BL(g) fora, B € R, and that L(f) = 0
for f € Pg[x],

Thus, from (1.1) we have
L(f) = %L{f;(x — ) FED(6)dE}, a<x < b.

To make the range of integration independent of x, we introduce the notation

. (x — t)¥ if x>t
x—0t)% =10 if x<t,

Whence L(f) = %L{f;(x — )k FEHD () dt}.
Now, let K(t) = L{ (x —t)%X }, forx € [a,b], then K is independent of .

Suppose that it is allowed to exchange the order of action of [ and L,

So  L(f) = % [FK @) FOD (@), 2.1
8



Theorem 1.12 [8] (the Peano Kernel)

Let L be a linear functional from a space of functions to R such that L(f) = 0
forf € Pk [x], provided that f € C**[a, b] and the above exchange of L with
integration sign is valid, the formula (2.1) is true.

Example 1.13
We approximate a derivative by a linear combination of function values,

f0)= —2£(0)+2f(1) - 2f(2).
Therefore, L(f) = f'(0) = [~5£(0) +2f(1) = /(D]

And it is easy to check that L(f) =0 for f € P,[x], [Verify by trying

f(x) =1, x, x?and using linearity of L]. Thus, for f € C3[0,2] we have,

L(F) = < [ K(®) fO(t)at.

To evaluate the Peano kernel K, we fix t. Letting g(x) = (x — t)3
We have,  K(t) = L(g)=g'(0) —[—>g(0) +2g9(1) — 2g(2)]
=2(0- 0, ~[-5(0-D3 +2(0- D - (0~ 03]

So

It is obvious that K (t) = 0 for t& [0, 2], since then L acts on a quadratic
polynomial



1.2 - Functions of Bounded Variation
Definition 1.14 [35]

A function f :[a,b] — Ris said to be of bounded variation on [a,b] if
and only if there is a constant M > 0, such that

Ly [ f) —fle) < M,
for all partitions p = {xo, x1, x2, ..., x4 } Of [a,b].
If £ is of bounded variation on [a, b], then the total variation of
f is defined to be

VEf=sup{ Sy If (%) = FOa) [P = {2, %00, 20}
Is a partition of [a, b]}.

Lemma 1.15 [54]

Let f:[a,b] — R be afunction, Let {xi:0 <i<n}and{y;:0 <i < m}any
partitions of [a, b] such that

xi: 0<i<n}c{y:0<i<m}
Then,

Ly [feo- fa-D | < IRy [FO00- FOD |-
Theorem 1.16 [36]
Let f and g be functions of bounded variation on [a, b],
and let k be a constant. Then
(1) f isbounded on [a, b].
(2) f isof bounded variation on every closed subinterval of [a, b].
(3) kf isof bounded variation on [a, b].

(4) f+g andf - g areof bounded variation on [a, b].

10



(5) f g isofbounded variation on [a, b].

(2)

(3)

(6) If 1/g isboundedon [a,b], then f /g isof bounded variation on [a, b].

Proof:
(1) Suppose f is not bounded on [a, b],
so there exist x € [a, b], such that |f(x)| > rfor reR.

Now, let x = x,,, for 0 <m <n, such that {x; : 1<i<n} be a partition of [a, b].
Then Lo [fC- flxi) | >,
Therefor V2 f > r, for some partition {x; : 1<i<n} of [a, b].

Hence, if f Dbe functions of bounded variation on [a, b], then f is bounded.
We begin by assuming that f is of bounded variation on [a, b] Thus

VEf=sup {3 |f(x) - f(xD[3=r,

Let [c,d] < [a, b] and {x; : 1<i <n} be a partition of [c, d],

Then extend this partition to [a, b] by adding the points a and b, and relabeling
So {x; : 0 <i<n+2}isapartition of [a, b]such thatx; =cand x.; =d.

Then

YL F ) - f(xis) | <] f) - fa) |
+ Y | FOa) — fi) | +] £FB)—F (o) | 7

Because original partition of [c, d] was arbitrary we can conclude that,
Veif <.
Let {xi: 1 <i<n} be a partition of [a, b] consider
Ly [k FO)—kf(xin) [=kELy | f(x)— fa)|
<|k|VEf<|klr forreR

11



Then kf is bounded variationand V% (kf)= | k|V23f.
(4) Let{xi: 1 <i<n} be apartition of [a, b].
By repeated use of the triangle inequality

We have
| fa)+g @)= f(xia) =g o) [<Zhy | FO0) - f (xi) |
+30 g () - g (i) |
< Vof+ Vg
And notice that V2 f + V& g is finite, the partition we choose was arbitrary
hence f + g is bounded variation to prove f- g is of bounded variation simply

note that f - g = f + (—g), by (3), (— g) is bounded variation.
(5) Toprove fg is bounded variation
Let {xi:1 < i < n} be arbitrary partition of [a, b] then,
By repeated use of the triangle inequality, we get
i | f (g () - f (ia) g (3i0) | = Bl |f (6) g () - f (i) g (i)
+(f () g Ceid) — f (x1) g (xi0) |
=X | @] | g@x)-g (el
+3% 1 gD F @) -f @)l
< (nM)Vgg + (nN) Vaf,
Where |f(x)|<Mand |g (x)|<N, for x € [a, b].

Since (nM) V2 g+ (nN) V2 f is finite,
Then fg is bounded variation.

(6) Since 1/g is bounded so there exists M € R such that
1/g(x)<M, for x € [a, b].

12



Now let {x;: 0 < i < n} be a partition, then

i=1 T 4i=1

g(x;) g(xi-1) 99 (xi_1)

<23 | g@)-gGa) |
< M? Vg <o
Thus % is bounded variation so by (5) (f) (%) = 5 it is also.
Lemma 1.17 [47]

If f:[a, b] — Risafunctionand f is of bounded variation on [a, c] and

[c, b], then f isof bounded variation on [a, b] and
Vaf = Vaf+ Ve f.

Theorem 1.18 [54]
If fis monotone increasing on [a, b], then f is of bounded variation on [a, b], and

VLf=fb) — f(a).
Proof:
Let {x;, 1<i<n } be a partition of [a, b], we know f (x;) = f (xi.) for i

and so f (xi) — f (xia) = 0,and | F(xi) — fxi) | = (£ () — £ (xi0))-

Hence
o | f 00— flan =2y (F 00— f ()
= (F (o) = f(xn1)) + (F(tns) = f(nr)) + ...
+(f (xa) = f (x2) + ( f (x2) — f (x2))
= f ()= f (1) = F(B) - f(@)

13



Easily noting that
x,=band x; = a.
It is the same for every partition of [a, b]. So

Vaf =f(b)-f(a) <o

Thus f is of bounded variation

Lemma 1.19 [55]
If f:[a, b] — Risafunction, then V2 f =0 ifandonlyif f isconstant.

Proof :
Suppose that f is constant then f is monotone function, so by

(118)  V4f =f®)-f(a)
However f(b)=f(a) = c €ER.
So VBf =0

Now suppose that f is not constant on [a, b], so there exists x;, x, € [a, b] such
that X1=Xo and f (Xl) ;éf (Xz)

If we take these points as a partition of [a, b], we have
Vif 2| fe)-f@ |+ | Fed-fe) |+ | r o) - |20

But | F o) —f @) | >0
Thus VBf >0and VEf #0.

Lemma 1.20 [36]
If f isa function of bounded variation on [a, b] and x € [a, b], then

g(x) = Vg f isanincreasing function on [a, b].
Proof:
Let x1, x, € [a,b]and x; < x,, because f is of bounded variation so by

14



(1.17) we have
Vo f=Va' f+ VS
Vol f— Vo' f =Vif
g(x)—gx)= V32 f 20

So g (x2) = g(x1)

Hence g(x) is an increasing.

Theorem 1.21 [47]
If f :[a,b] — R isa function of bounded variation, then there exist

two increasing functions, f; and f, suchthat f = f; — f.

Proof
Let f,=VXif forx €[a, b],

And fi(a) =0, so by (1.20) f, is increasing.
Now,
define f,= f1—f,
We need show that f is increasing.

Let x, y € [a, b] suchthat x <y, then
f10) =100 = Vi f
2 [f-fx)| =z f)- F&).
[Because fi(y)-filx)= Vof —Vif = Vifl.
Then

) - f1lx) = f(y) - f(x)
f1)-1) = filx)-f (x)
S0 fay) = falx)
Thus f, iIs increasing on [a, b], and f =f; — f>5.

15



Lemma 1.22 [56]

If f:[a, b] — R is absolutely continuous, then it is of bounded variation.
Proof

Let 6 >0suchthat Y™, | f(d)-f(c) |< 1 when noldi-a | <
o,and {(di, c;): 1<i <n}is afinite collection of disjoint intervals in [a, b],

b— . :
Round up (Ta) to the nearest integer value and call it k.

Now, construct a partition of [a, b] as follows, {x; = a +i (b_Ta) :0<i<k}.
Then

X{— Xj_q = (a+i(b;ka)>- (a+(i—1)(b;ka))= b_Ta <,

So, by the absolute continuity condition, we have
Vit f <1,
Now, by Summing over i from 0 to k and using the (1.17), we have
VB ST, Vil f<1+1+..+1=k
Therefore f is of bounded variation.

Example 1.23

. : (0 if x=0
Define the function f: [0,1] = R, by f(x)= xcos% i x£0

We know that cos% is bounded, and too

|cos§| <1, wherex # 0,
then by use of definition of continuity in( 1.4) we have,
F(x) = f(O)] = |xcosZ— 0| = |x||cos| < |x|
Choose 6 = «.
If |x—0]|<d impliesthat | f(x) - f(0) |<|x| <e then f is continuous
on [0, 1]
but is not of bounded variation, to see this, for each m € N, let the partition

1}

16
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The values of f at the points of this partition one

oLt - _tr 11_
f(Pm)_{O;Zm; --;3; 2, 1},then

2m—1" 2m-2""

1 1 1 1
- | | |
(2m-2) 2m-1

mf) - fln] = [ =-0l+ | -

2m-1 2m

ot |—c—Zl+ 421+ -1-2]

1 1 1 1 1
= +—+ +
2m 2m-1 2m (2m-2) 2m-1

1
b4 oo o1+
3 4 2 3 2

1 1
2m 2m-—1

b D)+,
2

We have the series 2;:;2% diverges, then given any M, there is a partition B, for
which

Ly | f ) - f (i) | > M.

So by lemmal.22 f is not absolutely continuous.

Corollary 1.24 [47]
If £ is continuous on [a, b] and f' exists and is bounded on (a, b).

Then f is of bounded variation on [a, b].

17



Corollary 1.25 [35]
If f:[a,b] = R isa function that is L-Lipschitzian for some finite constant

L >0, then f is of bounded variation on [a, b].

Remark 1.26 [36]
If £ is acontinuous function from [a, b]to R, and if f is differentiable on
(a, b) with |f (x)|< M for x € (a,b), then

f() = fO =Mlx -yl for x,y € [a, b],

in this case, f isa Lipschitz continuous function on [a, b].

18



1.3 - Riemann- Stieltjes integral

Definition 1.27 [47]

Let f,g : [a, b] — R be bounded functions, suppose that there exists

a real number A such that for every &> 0 there is 6> 0 for which,

| T [g (x) - g (xii)] — Al <k,

For every subdivision P of mesh size less then & and for {&;} with (x;_; < §&;<x;),
i = 1,2,...,n, then we say that f is Riemann — Stieltjes integrable with respect to

g onfa, b]or f € R(g), and we write fffdg = A.

[mesh P = || P|| = Max | xj—xj1|, for i= 1,2, ..,n].
0<i<1

Example 1.28
Let f,g:[0, 1] — R givenby f(x) =1, and

0 for 0<x <§
g(x) =
1 for %SxSl,

Then thesum 37, £(g) (9 (x)- g (xi-0)) = 3y (9 (x)- g (xi-0)),

for any partition {x,, x;, x5,..., x,} 0f [a,b] and any ¢&; € (x;1 x;), thereism
such that 0 <m < n, and § € (Xp—1,Xm ), SO

Ly (90- g (im)) = 0 H(gCtm)— gGmor)) + .10 =1-0=1,

Then however i £(¢,) (g (x)-g (xi_l)) =1,
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Then f € R(g), and folfdg = 1.

Remark 1.29 [9]
If f is Riemann — Stieltjes integrable with respect to g then,

b .
J, fdg =limypy,SCP,f, g),
Where

SPP. f, 9)= Xis1f(&) (g (x)-g (xi_l)), is called Riemann —
Stieltjes sum, for &; € (xiy, xi), where P = {x;, x,, ..., x,} any partition of [a, b],
and

| P|| = Max | xj— x|, for i=1,23,..,n
0<isn

Definition 1.30 [51]
A partition P~ is said to be a refinement of P, if P* 2 P.

Notation 1.31
If P*isrefinement of P then, mesh P* < mesh P

So, if meshP*< &* andmeshP < §for §,6* >0

Then, &§ = §".

Remark 1.32 [51]
Given two partition P;and P, of [a, b], then their common refinement is

P*=P1UP2.

Remark 1.33 [10]
f € R(g) if each number ¢ > 0, there is a number A and a partition P, of [a, b],

such that if P is refinement of P, and if S (P, f, g) is any corresponding
Riemann - Stieltjes sum, then [S (P, f, g) - 4| <.
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Theorem1.34 (Cauchy criterion for integrality) [10]

f € R (g) ifandonly if each number € > 0, there is a partition P, of [a, b] such
that if P;, P, arerefinementsof P, andif S (P f, g) and S (P,, f, g) are any
corresponding Riemann — Stieltjes sums, then| S (P, f, g) —S (P, f, g9) [<e.
Proof

If feR(g)and f(f fdg = A thereis P, suchthatif P;and P, are refinements
of P..

Then | S(P,, f, g) — Al <el2, and | S, f, 9) — Al <g/2,
So
| S(P,. f, 9) - S(P, . 9) |<el2+e2 =e.
Conversely,
Let P, be a partition of [a, b] such thatif Pand Q are refinements P;, then

|S(P1f1 g)_S(Qif’g) |<1

Inductively, we choose P, to be arefinement of P,_; suchthatif P,Q are
refinements of P,.

Then
ISP, f. 9)-5(Q, f. 9) |<1n.
Let (S (P,, f, g)) be a sequence of real numbers obtained in this way,

since P, is refinement of P,, for n > m, so this sequence of sums is Cauchy
sequence.

The namesthat (S (P, f, g)) — L where L is real number,
Soif &> o,thereis N, such that 2/N < ¢ and
|S (P, f,9) - L | <e/2.
If P is a refinement of Py, then

|S(P, f, 9)- S(Py, f, 9) |<1/N<g/2.
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Hence |S (P,f,9)- L |< E.
Then, by remark 1.33 f € R(g)on[a, b], and ff fdg = L.
Theorem 1.35 [47]

If f1 eR(g)and f, €R(g)on [a,b], thenaf+f f, € R(g) on [a,b],
and

[ Cafi+B f2) dg=a [} f1dg+B [ fdg.

Proof
let e > 0 and let P; and P, be partitions of [a, b] such that if P is refinement of
both P; and P,, then for any corresponding Riemann — Stieltjes sums, S(P, f1, g)
and S(P, f,, g) thereexist A;and A,, such that

&

3.1
2|af

| S(P, £, 9) - Ay | <

and

&

2| BI
Let P, =P, U P,,then P. < P and both of relations above still hold.

| S(P, f2, 9) - 42 | < 4.1

When the same intermediate points are used, we have
S(P,af1 + Bfz 9) = Xizi (afy, + Bfy) (&) (Lig)
=2i=1 (afy) (&) (Big)
=1 (Bf) (&) (Aig)
= aXiog f, (&) Qig) + BYis1 £, (&) (Aig)

=aS(P, f1, g9) +BS(P, f2, 9). 5.1
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Soby3.1,4.1and 5.1, we have
laA; + BA; - S(P,afy + Bf2 )l =la( Ay - S(P, f1,9)) + B(Az — S(P, f2, 9))|

=lal 3ig7 161 57 =

Then [.'(afi+B f)dg = ad; + BA,.

Theorem 1.36 [10]
If f € R (g1)andf € R(g,)on[a, b], then f € R(yg, + ug), and
ff fd(ygs+u g2 =fo fdg,+ uff fdg,,

When y, u are real numbers.
Proof:
Letg = yg, + ug,, then for any partition {x,, x4, x5, ..., x, } of [a, b], then

Aig = A (vg1 + 1g2) = (Y91 +192) (xi) — (g1 + 1192) (Xi-1)
= (rg1) () —(vg1)(xi-1) + (ug2)(x;) —(1g2) (xi-1)
= YAigit phig,.
Now,

let e > 0, and let P; and P, be partitions of [a, b], such that if P is refinement of
both P, and P,, then

£
|Zz 1f (&) (Aig) - By | < Tyl,

And

| 30, F(g) Digy) - By | < il

2| u
If P,=P, U P,, then P is refinement of P.and

Clearly, if {x;_; < & < x;} is the same intermediate points are used, then
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S(P,f, vg1 + 1g2) = X1 f(&) Qi) (vg: + ugz)

1 F(&) QgD+ X (&) D) (1g2)
=y Xiz1 £ (&) QgD+ X £(&) (Ai)(92)
=vS(P.f,91) +uS(P,f, g2)

But we have

[ fdg, =B, and [ fdg, = By, then
Ly S(P.f.91) *uS(P, f, g2)]
- (vBy + uB;) |
< vl S(P.f.g1)-Bill+
ul S(P. f,g2) - B2]I < e.

Xiz1 £(&) Qi) (Ygr + 1g2) - (¥By + uBy)|

b
Hence, f € R(yg, + ugz), and [ fd(ygi+u g2) =yB; + uB,.

Theorem 1.37 [47]
Suppose thata < c < b, then f € R(g) on[a, c]and [c, b] if and only if

f € R(g) onJa, b], and
[Sfdg + [ fdg = [’ fdg.

Proof
If € >0, let B, be partitions of [a, c] such that if P’ is refinement of P,’, then

! ! €
| S f9) — A | <5
Similarly for [a, c] we can say
| S(P”",f, g) — A" | < S, for P" is refinement of P.”
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Then [{fdg= A" and ['fdg = A"
Let P.=P." U P,"" suchthat if P isrefinement of P,, then

S, f, g=SP'.f, g) +SP".f, g9)

Where P" and P" denote the portions of [a, c] and [ ¢, b] induced by P, and the
corresponding intermediate points are used, then

(A +A") =S (P f I<| S f, g) — A'| + | S(P", f, g) — A"

IA
N | m
+
N | M
I

™

So feR(g) ona, b], and

b b
[ fdg + [ fdg = [ fdg.
Conversely:

since f € R(g) on[a, b], given & > 0 there is a partition Q. of [a, b] such that
if P,Q arerefinements of Q., then (by Cauchy Criterion)

IS(P, f, 9)-S(Q.f, g)|< ¢
For any corresponding Riemann — Stieltjes sums, S (P, f,g) and S(Q, f, 9)
Now assume that c € Q,,
let Q. be the partition of [a, c] such that Q. < Q,,
Suppose that P'and Q' are partitions of [a, ¢] suchthatP’ 2 Q." and Q' 2 Q,/,
and
P'=P/{[c, b]nQ} and Q" =Q /{[c, b]NQ.} then

Pand Q are identical on [c, b] that, if we use the same intermediate points,

25



So
|S(P,7f7g)_S(Q,’f’g)|=|S(P’f1g)_S(Q’f1g)|< &,

Therefore, f € R(g) on|[a, c], and a similar argument also applies to the interval
[c, b].

Theorem 1.38 (Integration by parts) [47]
A function f is integrable with respectto g over [a,b] ifand only if g is
integrable with respect to f over [a, b],

and

[P fdg + [P gdf = f (0gb)- f (@g(a).
Proof

Let e > 0, be given.

By definition (1-27), thereisa &’ > 0,
mFED 9D — 9] — [ fdg | <e,
for partition P": a = x’y, x'y, ..., x';y = bofmesh < ¢§’,and x';_; < &', <x';.
Now,
let 6 = %8’, and choose P:a = xq, x1, X ... ,x, = b of mesh < §,and
Xi—1 <& <x;, i=12,..,n, and we further select {, =a, &,,1 = b.
Then we obtain the partition Ps:a = &,&;, ... ,$p41 = b.

So, Pgis refinement of P’ therefore mesh P, < &', and &;_; <x;_; < &,
for i=1,2,..,n+l.

Then, we have
219D [f () = flxi) 1 = Xim1 (&) f(x) — Xiz19(E) f(xim1)
= Y g(&im) f(xq) + g(@f (@) — g(a)f(a)
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— 2i=19(&) flxi-) — gb)f(b) — g(b)f (b)
= X 9(8i-1) fxi) —g(@f (@)
— 21T 908D fCao1) + g(b)f (b),
= X f o) (9(6i-) — g(§))
—g(a)f(a) +gb)f(b),
Therefore
221 9CG) [f () = f(xi-) 1 = g(b)f(b) — g(a)f (@)
= X f G- [9(8) — 9(6i-1)]
Then, by exists of ff fdg and since Pand P; are refinements of P’, we have
| S f(ie) [9(&) — g( &)l = [ fdg | <e,

But,
| i) [9C8) = 9( &0 = [, fdg | = 159G [F () = f (i) ]
— {lgb)f (b) — g(@f (@)] - [} fdg| <.

Hence, ff gdf exist and

[P fdg + [P gdf = f 1gb)- f (@g(a).

Theorem 1.39 (Modification of the integral) [51]
Suppose that f, g and g’ are continuous on [a, b], then ff fdg exists. And

b b .,
|, fdg= [, fg'dx.
Proof

Let € > 0, be given.

By definition (1-26) we have shown that,
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LFED (9D — g ] = [ f(x) g'(x) dx| <, 6.1

for any partition P ={ x;, x,, x3,...,x,} Of [a, b], such that the mesh of P is
Sufficiently small and &; € [x;_q, x; ].
by the mean — value theorem forany i =1,2,3,..,n thereis

n; € [x;_1,x;], such that

/( )_ g(xi)_g(xi—l)
g \ni) = Xy SO
iz FED [g(x) —g(xi) 1 = X1 F(ED) 9" (M) (e — xi-1). 7.1
If ni = Ei' then
i=1f (8D 9" M) — xi-1)] = 21 (fg") () [(x) — (xi—1) |- 8.1

Now, since g’ is continuous on [a, b] (it is compact), then g’ is uniformly
continuous on [a, b].

Therefore, thereisa & > 0 such that for [§; —n;| < & it follows that

196G =gt < o 9.1
(Where [f(x)|<M for a<x<b).

By definition of Riemann — Stieltjes integral (where g(x) = x and for any
partition P with mesh less than &), and from [8.1] we have,

|Z?=1(fg’)(€i) [(x;) — (x-1) ] — ff(fg')(x)dx < % 10.1
If n; + &; then from [9.1], we can say that

Ty FGD [9" M) — 9" GDI(Cx) — (xiz)))

&
<2imM |m (x; = Xi—1)

& &
= 20— 2i=1 (i ~Xi-1) =3 11.1
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Lastly, by [6.1], [10.1] and [11.1], forany &, n; € [x;_1, x;] We get
D [9G) — g 1— [ fo'dx |
=[S, £(&) 9' ) (xi — xi-) — [ fo' dx|
< [ZEy FED [0 = g'ED () — (i)

+ [, (Fa) @) () — (o) 1- [P (Fg) () |

N | m

€
<—-—+ - =¢
2

Hence fffdg exists, and

[ fdg= [ fg dx

Example 1.40
Let: [0, =] — [0, 1], be afunction define by f(x) = sinx, then f'(x) = cosx

And f, f' are continuous on [0, g].

So, we can use [1.34] and [1. 33] to show that [2 fdf is exist and

T

Jefdf = [2sinxd(sinx) = [2ff dx = [2sinx cosx dx

1 o1
12z 1
= 3 (sinx)“|? .

And, from Integration by parts;

T T 4
2 2

Jgsinxd(sinx) = sinxsinx |; — [Zsinxd(sinx)

So,

T i

2[2sinxd(sinx) = (sinx)2|;=
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T

Or Jgsinxd(sinx) = Z,

2

Definition 1.41 [47]

Let f, g be functions defined on [a, b], and g be a monotonically increasing
function on [a, b].

Corresponding to any partition P of [a,b], P = {a =xy,%;,Xy ... ,X, = b},
and
Aig=g(xi)-g(xi1), for i =12..,n then (A;g >0).
Define the upper and lower Darboux — Stieltjes sums,
S*(P,f,9) = XisiMidg,
S(P, f,g) = Xiimilg,
where
m; =inf{ (x): xi1< x< x;}
Mi=sup {f (x): xi1< x< xi},

Then the upper Darboux — Stieltjes integral of as

2 fdg=inf S*(P,f,g)

and lower Darboux - Stieltjes integral of as

7 fdg=supS=(P, f,g).

If ff fdg = Qfdg, then f is Darboux — Stieltjes integrable with respect to g,

and

[? fdg= [ fdg=(S-D)f. fdg.
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Examples 1.42
(1) If gisconstanton [a, b], then any bounded function f is Riemann —

Stieltjes integrable with respect to g.
Clearly;

Aig = g(xi) - g(xi1) =0, for any partition p={Xo X1, Xz ..., Xn} Of [a, b],
and

ST(P,f,9) = Y Midg; =0= Y midg; =S~(P, f,g).

So Efdg = ifdg: 0.
(2)  Suppose g increaseson [a,b]x, € [a,b], and continuous at x,
f(xo)=1,and f(x) =0 ifx #x0, xo0 €[a, b], then f €R (g).
Since if € > 0, there exists § > 0, such that
lg(x) - g(x0)|<§ whenever |x - xo |< 6,

Let P any partition of [a, b], such that xi;< xo<xjand |x; — x;_, | <6

Then  Ajg = g(x) - g(xi1) = g(x) — g(x0) + g(Xo) — g(Xi1) < E + § = g,

0 < S*P, f,9) = XLiMiAg = Agi<e

thus 0 < [ fdg =infS*(P,f, g) <e

Since ¢ is arbitrary, so ff fdg =0.
also for any P partition of [a,b], m; =inf{f (x): xi1< x< x3={0}

Therefore ff fdg=0

Then [ fdg= ["fdg=(S-D) [” fdg =0,

31



Theorem 1.43[51]
If P* isarefinement of P, then
S*CP, f,9) < ST f, 9)
Proof
Assume that P*contains just one point more than P.

Let thisbe cand xi., <c <x;.

Let Mi=sup{ f(x)/x €[ xi1, ]}
and Mi=sup{f(x)/x€e[c xi]}
then M;<M; and M; <M,
consider

SHP",f, 9) = Tikea Mic A g + M [g(c) — g (xia)] + M [g(xi) — g(c)]

k=i

< Yk=1Mk Ak g + Mi[g(c) — g (xi)] + Milg(xi) — g (c)]

ki

< Yk=1 Mk Ap g + M; [g(x;) — g (xi1)]

k+#i

=Yke1McAr g +MiA; g

k#i
= S*(P.f,9)
Theorem 1.44 [51]
2 fdg < [7 fdg

Proof:

Let P,and P, be any partitions of [a, b].

Let P*= P, U P,

32



Then P* is the common refinement of P; as well as P,.

Therefore by theorem 1.43
SY(Pf,9)<ST (P, f,9)
And  S_( P, f,9)=S_(Pyf,9)
Also we know that
S-(P.f,9) < ST (P [ 9)
From (12.1), (13.1) and (14.1), we get

S (P fig) <S_ (P, f,9)< ST (P".f,9) <S* (P, f,9)

Therefore for any two partitions P;and P, of [a, b], we have

S_(Pyf,9)< ST(Py f, 9)

Keeping P, fixed and varying P; over all partitions of [a, b],

S_(P,, f,g)< inf ST(P, f, g).

Now this is true for all partitions P, of [a, b].

Therefore

SupS_(P, f,g9) < inf S*(P, f, g),s0

Qfdgs Efdg-

Theorem1.45 [51]

f € R(g) on[a,b] if and only if for every € > 0, there exist a partition P of

[a, b] such that,

S*(P,f.9) - S_(P.f,9)<e

Proof:
If f €R(g)on]|a,b], then

[P fdg= [ fdg,
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when f(f fdg=inf S*(P, f, g),

and ff fdg=supS_(P, f, g).

Therefore, by definition of infinimum and supremum,

For given € > 0, there exists a partition P; of [a, b] such that
St (P f.g) < [° fdg +el2 16.1
And a partition P, of [a, b] such that
S_ (P, f, 9) > [, fdg-el2 17.1

Let P =P, UP,
Then by theorem 1.43

S*(P, f, 9)<ST (P f, 9) 18.1
and S (P, f, 9)=5_(P,, f, 9) 19.1

From (15.1), (16.1), (17.1), (18.1) and (19.1), we get

S*(P,f,9)<S* (P f. )< [ fdg +el2
< [) fdg+el2 <S_ (P, f,g)+el2 +el2
<S_(P,,f,g) te <S_(P,f,g9) t¢
Therefore there exists a partition P of [a, b] such that

S*(P, f, 9) —S_(P,f, g)<e 20.1

Then for every partition P of [a, b], we have

SP. f, ) < [0 fdg < J7 fdg < S*(P.f, 9) 21.1
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From (20.1) and (21.1), we get that

0< Efdg _ifdg < SYP,f, g) _S_(P,f, g) <k

This is true for ever & > 0.

Therefore [} fdg = [, fdg

Hence f € R (g)on [a,b].

Corollary 1.46 [10]
Let f be bounded and g be monotone increasing on [a, b],then f € R (g) on [a, b]

if and only if for every € > 0 there exists P, such that if P is a refinement of P,
then,

=1(M; —m;)Ag; <,

Where Mi=sup {f (x): x € [xi1, xi]}and m; =inf{ f (x) : x € [xi1, xi]}-

Theorem 1.47 [51]
If f,heR(g)on]a,b], then

@ Ifl, f? €R(g)on[a,b].
(b) fhe€R(g)on]a,b].
Proof
Lete > 0,
since f € R (g), then there exists P, such that if P is a refinement of P, then
(M —m;)Ag; < €, where P ={xg, x1, X3, ..., Xn}2 P,
We note
Mj—m;=sup{f(x):x€[xig, x]} —inf{f () 1y € [xi1, xi]}
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=sup { f (x) - x € [xig, xi]} + sup {(-f (¥)) 1 ¥ € [xi1, xi]}

=sup{f(x) —f(¥) : x, ¥ € [xi4, xi]},
And

IFCO = If DI <1 f) = FO)I
So by (1.46) and (22.1), we have

Yica {sup {IF QI -If W)l x,y € [xia, xi]}} Agi < &,

So |f|€R(g)
Now observe that |f (x)| <K for x € [a, b], and
Mi(f?) = sup {f*(x)/ x € [xi1, xi]}
=l F )T
mi(f?) =Imi(|f 7T
Mi(f %) -mi(f ) = M| £ D TP- i | £ D T

=M fD+miclF DI F D -mic £ D]
< 2k [M(| £ ) —mi(| f )] < 2k (el2k) < e.
So by Corollary (1.46) f2 € R (g).
(b) Since f,h €R(g)on[a, b],
By theorem 1.35,
f+heR(g)and f — h €R(g)on][a, b],
Therefore by part (),
(f + )’€R(g)on[a,b], and (f — h)*€R (g) on [a, b] and
fh= @/ + 0> - -] R,
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Hence fh € R (g)on|[a, b].

Theorem 1.48 [51]
If f iscontinuous and g is increasing on [a, b], then f € R (g) on [a, b].

Proof:

Let e>0.
£

[g(b) - g (@)]

Since f iscontinuous on [a, b], [ [a, b] is compact]. then
f is uniformly continuous on[a, b].

Choose n > 0 such that n <

Therefore for thisn > 0, there exists & > 0, such hat

|f(x)—f(y)|<11 whenever  x, y €[a, b] with |x—y|<6.
If P is any partition of [a, b] such that Ajx <&, Then

Mi—mi=sup { | f () -fO)|: %y €lxiey , x]}<n, for i =12..n
Therefore
ST(P,f,g9) - S_(P,f,9) =Xt MiAig - X1 miAig
= Yiz1 (Mi—m;) Aig
<1 X149
<n[g()-g (@] <e
Hence, from 1.45 f € R (g).

Proposition 1.49 [47]
If £ is continuous and g is of bounded variation, then f € R (g).

(from [1.18], [1.21] and [1.36] ).
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Theorem 1.50 [51]
If f isbounded on [a, b], and f has only finitely many points of discontinuity on
[a, b], and g is continuous at every point at which f is discontinues, Then

f € R(g).
Proof

Let € >0,

Put |f (x)|< M for xe€[a,b],and letE={x : f (x) is discontinues }
so g is continuous at E = { x4, x5, ..., X, } and since E is compact then g is
uniformly continuous at E ,

therefore we can cover E by finitely many disjoint intervals [u]-, vj] C [a,b]
where 1<j<m, and

Ea(gw) —gw)) < o0,
And for any x; € E there exist [u;, vj] 3 x;.
Now, let k = [a, b]\ (u;, v;) for j=1,23,..,m, then k is closed subset of
compact set it's compact,
Hence f uniformly continuous on k, there exist § > 0 such hat

whenever t,s € kwith |s —t|<é.

£ - FO < Smmam)

Now, let = {x, x1, x,,..,x,} be apartition of [a, b], such that
u; v; € P foralljand no pointofany (w, v;)occursin P.
If x;_, isnotone of the w;, then | x; —x;_;|<3,
We note that
~M< m< M, <M,

So M; <M and —m; < M therefore M; —m; <2M, forall i

And M; —m; < unless x;_, isone of the u; [by uniformly

€
2(g(b)- g())
continuity of f].
Then  S*(P,f,g) — S_(P,f,g9) =X~ ,(Mi—m;) Aig
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<(g) - g(a))m + ZM(ﬁ) = e

So by (1.45) f € R(g).

Notation 1.51
The Riemann-Stieltjes Integral may not exist if f has a single point of
discontinuity, and g is also discontinuous at the same point.

Example 1.52
If f,9:[0,1] =R dented by

Fx) = {1 for 0<x <V (x)_{() for 0<x <V
T 12 for v<x<1 IMTU1 for B<x<i,

let P = {x4, x5, x3,...,x,} Dbe any partition of [0, 1], then
If x;, € Psuchthat x;,_; < % < xp and xp_q < & < xi, then

[g(xx) —g(xk—1) =1—-0, but f(&) willbe 1or2, depending on whether
& < % or & 2% since these two choices may be made regardless of the mesh

of the partition, then | 01 fdg dose not exist.

Theorem 1.53 [51]
If fi, f, €R(g) and g monotonic on [a, b]and fi(x) < f.(x) on[a, b], Then

[} fidg < [ > dg.
Proof
Let P be any partition of [a, b].

Since fi(x) < f,(x),
sup{ f1(X) /X € [Xer, Xk I} < sup { f2(X) / X € [Xir, X}
Therefore,
S*(P, f1, 9) <S* (P, f2 9), then
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Inf S*(P, f1, g) <infST(P, f>, 9)
So
[P fdg <’ fdg,
[Since f1 €R(g)on[a, b], f2€R(g)on[a, b],
[But we know fabfldg: Ef dg; and fabfz dg= Ef dg, 1.
Hence fab fidg < fab fodg.

Proposition 1.54 [9]
If f €R(g)on[a, b], then

| [ fdg| < [ |fldg.

Proof:
By (1.47) we have |f| €ER(9).
Now for all x € [a,b]then f(x) < |f (0)],
So by theorem (1.52)

[ fdg <[] |f @|dg
And - fdg = [/ —fdg< [/ | -f)|dg =[] |f()]dg
So

—[J1f@ldg < [ fdg < []1f@]dg.
Then

1[0 fdg| <[, |fldg.
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CHAPTER 2

Some Integral Inequalities
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2.1 Inequalities for function of bounded variation

Lemma 2.1 [50]

Let f:[a, b] — R be a continuous function on [a, b], and g is of bounded
variation on [a, b], then

| [Jf©dg®) | < ;\ggﬁl f@| vig. (1.2)

Proof:
Let A,a=x,"V<x™MW<. . < x_™<x,™M=p

be a sequence of partitions of [a, b], such that V(A,) —» 0asn — oo,

where  V(A,) = CILVSI&JIC) (m®Y, with ;™ = %, — x,®,

and if ™ € [x,®™, x;,,™] forie {0,1,..,n— 1}, then
b . _
| [, £ dg®) | = [limya,) o B F &™) [9 (e ™ ) = g ()] |

<limygy 5o 20 [fE™) ] 19 Gia™) -9 (™) |

< Max |f|Vig

astsb

Where V2 g=sup I, | g (X1 ™) - g (™) |.

Theorem 2.2 [31]
Let f: [a,b] = R be afunction of bounded variation, then

| 7 f(Ddt -[(x—a) f(@) + (b= x) f(B)] |

a+

<[5 k-0 +]x - Z2|V5f, (2.2)

for x,t €[a, b].
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Proof
Using the integration by parts formula for Riemann-Stieltjes integral,

b
[ (x=0df(©)=(x- 0 f@©) |+ [0F(©adt

=(x—b)f(b)—(x—a)f(a)+fff(t)dt (3.2)
(by lemma 2.1)

| [P f0dt —[(x- &) f(@) + (b~ )F(D) | = | [La-0df© |

< sup |x-t]|VLf,

asts<b
sup |x— t | =Max{x-ab-x},
astsb
From proposition 1.2
Max{x—a,b—x}:%[b—a]+|x-azﬁ 4.2)

Then by (3.2), (4.2)

| f®dt —[(x-a) f@+b-x) f(b)]]

a+b

<[;lb—al+|x - Z2|1Vhf

To prove that% IS the best possible suppose that (2.2) holds with constant C >0.

| [ fdt = [F ) (b—x) + f (@) (x— )] |

<[c[b—a]+]|x _ b |1VLf, x € [a, b]

2
Iflet x = asz we get

f(a)+ f(b)
2

| [° fde - b-a) | < cb-a)Vif.
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Consider the function f : [a,b] = R by

0 ifx =a,
f(x)=41 if x € (a,b),
0 if x = b,
then f is of bounded variation and let P = {a = xo, %1, X 5, ... , X, = b}, any

partition of [a, b], then

upper and lower Darboux - Stieltjes integral is defined as
[? fdx=inf S*(P,f,x) =inf $IAMAx = 375 (1) Ax= b—a

f; fdx=supS~(P, f,x) =sup Xitm;iAx =YY"} (1) Ax=b—a

So [P f(x)dx =b-a, and
izo | fCs) = fG)| = [1-0[+|1-1]+.+[1-1]+] 0-1]
=1+0+0+.+0+1=2
Then
Ve f=2
Hence, from inequality (2.2) applied for this particular mapping we have
(b-a) <2C(b- a)

Which we get ¢ < %and from this showing that % IS the best constant in (2.2).

Corollary 2.3
If we choose X = aTer in (2.2), we obtain for the trapezoid formula for function
of bounded variation;

f (a)+ f(b)
2

| [°fdt - b-2a) | <Z(b-aVif.
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Corollary 2.4 [20]
Let f:[a, b] = R be a monotonic nondecreasing, Then

| [7f (dt = [(x— a) f(@) + (b —x) f(D)]|
< -x) f(b) —(x—a) f(a) +J, sgn(xt) fdt
<@-a)[f0) - f@] +-0[f@ - f()]
< [5b- @)+ [x=Z2]1f () - f(@), for x€[a b]

a+b
2
Proof:
Applying the inequality |fabfdg| < fab |f | dg, then
| Jee—e)dr@| <[ |x—t]df®

= [J(x = 0df+ [t —x) df
x b

= (x =0 fO |+ [FF©dt + ¢ —x) O +]] FB)dt
a t

=—(x-a) f @+ [ f®dt+®—x)f(b)-[. fD)dt
= (b—0)f(b)- (x — a)f(a) + [, sgn (x — O (B)dt,

f is monotonic nondecreasing on [a, b], then f is bounded variation and

f(a) < f(t) for t € [a,b].

So

Jo fl@ydt < [7f(®)at
Implies to (x-a)f(@> — [ f(Ddt
Andif b >t for t € [a, b], then

fb) = f(t)
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[0 f (b)dt = [ f (&) dt
(b-2)f) = [ f(©)dt
Therefor
[7sgn(x—Of@)dt = [*fdt - [ fdt
< (x-a) f@) + (x- b) F(0).
Then
(b-x) f(b) - (x- a) f(a) +J sgn(x - t) fdt
<(b-x)f(b)- (x- a)f(a) + (x- a)f(x)
+(x - b) f(x)
= (x- @) [f() - F@]+ (b-) [f(B) - F(0)],

But
f(@ < f(x) < f(b)forallx € [a,b],
50
(x- @)If () - f @]+ (B =x)[f () - ()]
< Max{x- a,b- x} [f(x)- f(@) + F(b)- f(x)]
=[5 b-al+ [x= 2|1 )- f(@)]
Corollary 2.5

If we choose x = % in 2.4, then

| [P F@de - L2 (h—a)| < 2 b~ @) [FD) - f(@)].
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Theorem 2.6 [19]

[Ostrowski for mapping of bounded variation]
Let f : [a,b] = R be a mapping of bounded variation on [a, b], Then

a+b

[ f@di-b-a)fx) |<[; b-a) + |x= 22 [IVEf (52

(The constant 1/, is the best possible one)

Proof:-
by the integration by parts for Riemann - Stieltjes integrals , we have
[;t—a)df (®) =f@) (x-a) - [ f()dt (6.2)
and
[Jt=b)df®©)=f @) (- 2- [, fO)dt (7.2)

By add the above two equalities then

(b-a)f - [ f®dt = [ K(x t)df(t)
Where

t—a if t €]a,x]

K(x, t) :{t—b if telx.b] fort, x € [a, b].

Andwe know | K (x, t) df(®) | < sup |K (x,t)|VLF,
astsb

=Max{(x-a),(b-x)}Vaf

_rbza _athb b
- [ 2 '+|X 2 |] \/alf

Therefor

a+b

|[Jf@®dt- (b-a) f(x) |<[5 b—a) + [x— =2 []VES.

Now to prove that % Is the best possible constant assume that the inequality (5.2)
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holds with a constant ¢ > 0 that is,

a+b

[[Jf®dt- (b-a) f(x) [<lcb-a) + |x— =2 |1VEf

Consider the mapping f : [a,b] = R given by

0if x # azﬁ
f(x): a+b
1 if x = —
2
then
VEf= sup{ZiL, |f () —f ()| b= |-1] +]| 1] =2
And [Zfde=0

If we letting x = aTer in (2.8) we get,
|0- 1(b-a)| < 2[c(b-a)+ 0]

1(b-a)| <2[c(b-a)

1 <c?2

N | =

<c

1. :
Hence c= S I the best possible constant

Corollary 2.7 [29]

(8.2)

(1) If we choose x = azﬁ we get the following inequality which is well known

in the literature as the midpoint inequality

a+b

| J; fdt— b-a)f () | < 5(b-a) Vif.

(2) If £ isa monotonic mapping on [a, b], then
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|[Jf®de—(b-a)f(x) |<[5(b-a)+ |x-Z2|]|Fb)-f(@].

2
Example 2.8
If f:[a, b] = R beamonotonic nondecreasing mapping on [a, b].
LetP = {x,x1,..,x, }beadivision of the interval [a, b], and if
& € x;, xi4q]for i=1,2,3,...,n, then

2 F)dx =Ry (f, Iy &)+ Wylf, 1n,©)
Where

Rn (f' Inf S;) = {1:_01 f(fl) hi

And there mainder satisfies the estimation

| Walf, 1 &) |<v ) (f®)- f(a)), Where v (h) = Max{h}.

Proof:

Apply (2.9) on the interval [ x;, x;.1], to get

|27 pe dx—flg) e | < Bahe+ |6~ =22 1(F Goin) — £ ()
Summing over i fromO0ton — 1
| Walf, 1 ©) |= S |12 Feodx—£(&) by
< T [+ & -1 (iwa) - f ()
<Max {[%h; +[§ —=E IR Cenn) = f ()

o<i<n

But,

Max Y hiz Y V(h), and if X < fi < Xi+1, then

o<i<n
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Xi+Xi+1

Xi+Xi+1 < E'_xHle
2

2 - 2

X — S Xi4i—

Xi—Xi+1 Xi+Xi+1 _ Xi+1-Xi
R R e
2 2 2

Vo (Xpp )< & — % <% (xi41—;)
-(Bhy) < & —FEHL <k
Then by triangle inequality
[ - <y
So

| Wi (f, 1n,©) | < [Yev (B) + Max |§—=222 [1(F(b) - f(a)

0<isn

=v(W) (f ®)- f @)
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2.2 Inequalities for Lipschitzian functions

Proposition 2.9 [28]

If fis continuous on [a, b] and g is lipschitzian with L >0, Then

| [0 fdg | <Lf]|flat 9.2)

Proof
Let P ={xy Xy, ..,x,} ISapartitions of [a, b]and §; € [xi, xis ],

if V(P)= Max h; where h; =xj;—xjthen

osisn-—-1
| rdg |= 1 Jim SEtF(E) L9 (i) —g (oo
< dim 3823 [F@)] |9 (i) - g ()]

< lim 335t [ | L] x|

= Llimyeyoo 212t |FCED | |2 —xi|=L [ |f]at

Theorem 2.10 [20]
If f:[a, b]— R is Lipschitzian with L > 0, then

| [ F®dt—[f(@) (x—a)+ f(b) (b—x)]]
<L -a)’+ (x-S0, forxtefab].  (102)

(The constant i is the best possible one).
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Proof:
From 2.9,

[Jax—0df®) = [ f®)dt - (x—a)f(a) +(b—x) f(b)
| Pe-df@© < Lf|x—tlae

= L[ (x—t)dt + [ (t —x)dt]

a2 2
_L[(x a)” + (b—x)

2 2 2

2 a b X
:L[X —ax+— +— -bx+—]
2 2

:L[xz—ax—bx+ ? +a72]

b2 b2 a? a? ab ab
=L[X¥-ax-bx+ — +— +— +— - —+ —]
4 4 4 2 2
b2 ab b
= L[ - =+ ) +(¥-ax-bx+—
4 2
b2 b
+- 4+ 2
4 2

=L[3(b-2)%+ (x -2,

To prove that i is the best possible constant assume that the inequality (10.2)
holds with a constant ¢ > 0 that is,
b
| [, f(©)dt — [ f(a) (x —a) + f(b) (b — x)]|
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a+b

SL[c(b—a)2+(x—T)2], For x € [a,b]

If x = azﬁ,weget

| P fde - M b-a)|<clb- a) (11.2)

Consider the function f : [a, b] — R by
t+1 if te[-1, 0],
fO=71-¢t if ¢t e(0, 1]
Now, to show that f is Lipschitzian with L = 1,
If x,y €[0,1], then
fC)=fWMI=10-x)-A ==y —x|=lx—-yl,
If x,y € [—1,0), then
If ) = fWl = Ix=yl,
If x€[0,1] and ye€[-1, 0), then
fO-fWI=[0-)-@+1D) ==+l =lx+yl,
but y <0 then y < -y, SO
x+y <x—y =0,
And x>0 so —x <x, then
—X+y <x+Yy
—(x—-y)<x+y
Therefor
—(x—y)<x+y<x-—y, Then

lx +yl <|x—yl
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So lfC)—fl=lx+yl<Ix—yl
Hence f is Lipschitzian with L = 1.

We have f(1) = f(—1) =0, from (11.2)

| [}, f(®de -

FIED (- 1y [ < e @) (1- (~1)2.

[Lf@®dt= [0 (t+Ddt+ [ (1-t)de

_(t? 2y 111 _

SRR
Then

|1-(0)(2) | <4c c=

1 . .
Hence c= 2 1S the best possible constant.

Remark 2.11 [20]

b : : . :
If we choose x= % , then the trapezoid formula for Lipschitzian function, as

f(a)+f(b)
2

[} f@®de - (b-a)| < 2(b-a)%.

Theorem 2.12 [28] [OstrowskKi for Lipschitzian function]
If f : [a,b] — R bean L- Lipschitzian function on [a, b] then

|fffdt— (b-a)f(x)|<L [(b;a)z + (x- %b)z] for x € [a,b] (12.2)

1, .
And the Constant L s the best possible one.
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Proof:

Consider the function

_(t—a if t€]a, x]
K(x’t)_{t—b if t€[x, b’

[P K@, ©df@©) = [Ft—a) df(t) + [ (t - b) df (©)

But,
[E-adf@)=f & x-a)- [ f(t)dt
And
[t=b)df(®©) =f(0) (b- )~ [) f(D)dt
So
LK@ 0df ©=0-a)fe)b-x0-f, f©)dt
And
| VK@, ©df O] = |- a) f) - [, f ) dt]
<L[f"|t—alde+ [ |t—b]dt]
:L[fax |t —aldt+ [ |t—b] dt]
— 1 [(x—za) + (b—zx) ]
Then

[P fde- - ayf @ |= L[+ (x-227].

To show the sharpness of the inequality with the constanti.

Consider the mapping, f:[a, b] = R, f(x)=x
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Then f islipschitzianwith L > 1, (|f(x)—f)| =|x—-y| < L|lx—y]),

So

|x—a7+b| < c(b — a)? +(x—a7+b)2, for x € [a, b]

If x = a, we get

b—a

< (c+i) (b-a)

<c+

N R
N

Then, ¢

\Y
N

Therefor c =

A

Corollary 2.13
Let f; [a,b] — R be as theorem (2.12) then by letting x = azﬁ , We obtain on
the midpoint inequality;

a+b

| rae-@-af () | < jLo-a
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2.3 Inequalities for differentiable and twice differentiable
functions.

Lemma 2.14 (Gruss type inequality) [33]
(i) Let h, gla, b] = R be two integrable mappings so that

@ <h(x) <¢ and n<g(x) < m for x € [a, b] ,where p, p,m,n
are real numbers, then

1 b 1 b 1 b
| —J, hgdx-— [’ hdx.— [’ gdx |
< ~(¢p— @) (m-n)

i) | 3= h(0)gedx- = [ h(x) dx ﬁ f; g(x)dx]|
< T hGo - = [ h() dy) ~ (9(0) -5 JF 9 dy) | dx.

Theorem 2.15 [20]

Let f : [a, b] — R be differentiable function on [a, b] have the first derivative
f :[a,b] = R bounded on [a, b]. Then,

—a)? -
12 £o0 dx- L9 0y | <2 ma (5100 - L2

asts<b b—a

Proof
By modification of the integral and integration by parts gives that:

Letg=(x—ﬂ)

[ (x=E2)fdx = [} (x-52)df =[] gdf

= f(b)g (b)- f (g @ — [ fdg
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= £ (5% - f@ () - J) fax
= L@ Oy _a)- [ fax

So

[ (x—%=2) fdx M(b- a) - [ fdx, (13.2)

Now applying the inequality in lemma (2.14) we find that

a+b

el (=) e gl = dx 5 [ 00|
< (-2 0 - E)ay)

~(F0 - 5=, ') dy)|dx

AS

Ple-)ax = (5 - (D)) | =L - (L)L L

= + — = 0, then
Iy (2= =22) praxd < ) |(x = <22) (/00 - 5L ax
< Max |/ - BT | 7| - 57)]
=5 ey | - 152
By (13.2) we can say:
2 £o0 dx- LOHD - )| < L7 gy |1y - LOL@,
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Corollary 2.16 [33]
If £ isintegrable on [a, b], then

f (b) f (@)

7 fey de - BB gy <22 P10 - dx

Remark 2.17 [31]
If fec® [a,b],then

| [Prde— =2 (f(@) + f®)) | < Y, (0-a)lIf'll for x€ [a,b],
where || ||; isthe Ly —norm, namely ||f’]|. = fflf’l dt.

Proof:
[PGc—vdf(t) = [)(x—Of'dt

< (-0 [ | f@]adt
=[b-a)+ [x- =21 17l

then| [ fdr — L9 | < Z2 ey,

Theorem 2.18 [5]
Let f : [a, b] — R be differentiable function on [a, b], have the bounded first

derivative on (a, b). Then,

a+b

1 1 (X_T 1
|f00)-= [ f©®dt |< [3+—31b-a)|lf]|,
b-a (b—a)

Where f/: (a,b) - Risbounded,and ||f'|| =sup | f/(x) |<o
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Proof
Using integration by parts, and define K (x, t) by

_(t—a ift €a, x]
K G t)_{t—b ift € [x, b]

[Pk & 0df =[fc-aydf + [ -b)df.
by theorem (1.38)

[—a)ydf + [ fdt=f () (x-a) + f(a)(@a-a)=f (x) (x- a)
So,  [(t-adf =f@) «x-a)- [ fdt
And similarly for

[2e—b)df =f () B-x)- [ fdt

Therefore
[PK G, ©)df =f () (b-a)— [ (©) de, then
[FO) - - [ f @ dt|=|[[K G Oy df |=|[JK G ©) flat]

Hence
|f ) -= [ f ©dt|s = [ k@, 0| |f]dt].
S%[f;c|x—a|dt+ fxb | x — b| dt]
Where ||f'||_=sup | f7(x) | =M

|F -2 [ f @ dt] < 7= [[J (- aydt + [ (b - x)di]

—_ M px-a)?  (b—x)?
_b—a[ R ]

by proof (2.10), we have
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[(x—a)2 +(b—x)2] _ [ 1 i%b)z] b
2(b-a) "Ly b-a)2 (b-2a)

Hence,

a+b
x 2

1 (x=——7)
|f @ -5 f Wde| <[5

lb-ailfl.,

Remark 2.19 [19]
If £ is continuous on [a, b], and differentiable on (a, b), then

a+b

£ - == 127 @de|= [2+ =2 1] for

Where |If| 1=/ |f () |de

Proof:
Using the integration by parts formula for

[X(t—a) f'(t)dtand [(t—b) f'(t) dt
So, [ft—a)f'®)dt = [ (t-a)df(t)
=(x-a)f - (a-a)f(@- [ f (@) dt
=(x-a) f - [ f @®)adt
Similarly for [t = b) f'(t) dt, then

[t=b) f'® de=(b- 0)f () — [ f(©) dt

If we add the above two equalities, we obtain
(b-a)f@- [, f©de=[t—a)f @ dt+[t—b)f (©)dt

="K (x t)f (t) de
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Where

(t—a ift€e[a,x]
K(x, t)_{t—b it t e[x,b]

So
oK@ of@dr = sw | Kt ol 7 1F @] d
=Max {x—a,b-x} ||| 1
=[S+ [x=-Z2 1A
Hence

[(b-ayf - [1f @de<[Z2+ |x= 22 T
a+b

or £ -2t [f ode]< [2+ =2 TIF]

b—

Theorem 2.20 (the perturbed Ostrowski inequality) [32]
Let f :[a,b] — R becontinuouson [a, b], differentiable on (a, b) and whose
the first derivative bounded on (a, b),and ||f’|| » = Mag)(lf’ (x)|, then
as

2 @ade-[f e a-n+ 22056 -0

a+b

<[5 b-a?[ 2+ G-+ (x-22) 21 Il o

Forall 2€[0, 1], andx € [a+2 (*5%), b— 2922
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Proof

Let us define the mapping : [a, b]> — R given by

_ t—[a—/l(b;—a)], t €la,x]
Kl 0= t—[b-2(ZY], tex,b)

Then by integrating by parts, we have

[PK@, OFf'(©) dt

b—a

= [Jt—la+ A (52N @ dt+ [t —[b—A(SD)) fldt

= - 28Oy -1 -Df @) - [} f ©adt

On the other hand

[y K D ®de] < [ 1K 0] IF' (0] dt

<Nl J 1K (x, t) dt

t—(a+l.b%a)

dt+ [ |- (b-2.=7)

=11l [f}}
1 lloo L

Now, to find L let us observe that

dt] =

[(q —p)* + (r —q)?

N |-

L lt—qlde= [l(q-vdt+ [[(t—q)dt =
by proof 2.10 we have;
1 2 2 1 2 T+p 2
s@-p)*+0 -1 =, @-r"+(@—-)° forp=<q=r
Then
x b-a
fa |t—(a+/1. T) dt

=1 @x-a)?+ [(a+2.55) - =

2
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And similarly for

b _ 1 2 b—a x+b 2
[le-o- dt=2(b-207+|(b-2.2%) - =22 50
1 (x—a)2+(b—x)2 x—a b—x b-a
L= 5 (- )+ (- A)”
= CT 2+ -1D+ (- D)2

Notation 2.21
(@) If we let 2 = 0 then we get Ostrowski s integrality

00 - 3= J7 Foat| <

a+b
1 X
7+ ((b a)z) ] (b= a)lf'lle
(b) Ifwechoosed =1andx = azﬁ then we get the trapezoid inequality:

|17 Fde — Z2O (h— )| < 26— )?If]l.o

Theorem 2.22 [57]

Let f : [a, b] — R is a differentiable function on (a, b) suchthaty < f'(t) < u

fort,x € [a,b], for some constants y ,u € R, then

(a=b)|z(f@+ fb))+ (A —-Df(x) — 1-A(x -
( ) ,u Y a+b
kfdd

< HT[(IJ a)? (2 + (1—2)?) + ( a;—b)z],

Where a + 4 (bz;a) <x <b-1 (bz;a)and/1=[0, 1].
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Proof:

Let us define the mapping

{t—(a+lb%a),te [a,x]
K(x,t)= -
t—(b-2=%) ,t € (x,b]

Then
[P Ko, Of ©dt = (b= a) [5 (f(@) + f() + (1 = Df @] - [ f dt
We also
[PK G, ydt=1-2)(b-a)(x—22).

ut+y

Let ¢ = . then

K@D @=cldt=(-a) (f@+fB+ A=-Df (-
c(@-2) (x- a“’)] [2F () dt

And we know that

|f K (x, Of' @) —c|] dt| < sup |f'(t)—c]| f |K (x, t)|dt (14.2)

astsb

a+b

CL 2+ W=D+ (=52,

[JK(x, tdt =

and we havey < f' < u therefor

u+y uty
TSI s e

( )<f—“+y§“2y then

f'(@©)—cl < 5L, and Max|f'(t) —c| < &F (15.2)

From (14.2) and (15.2), if follows that
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[; K (G t)[f’(t)— ”Tﬂ/]dt| < &L [% (,12+ (1- 22+
(= =]
Then we get
@=0) [2(r @+ FB)+ A= Df @=L 1 -2 (x - )] -
I; dt| < &2 [@ A+ 1=+ (x_ ﬂ)z]

2

Theorem 2.23 [20]

Let f :[a, b] = R be atwice differentiable mapping on (a, b) , then
|2 fdx ~=2[f(a) + f(b)] <

Ule (b-a)® if f" € Lu[a,b]

{u (b—a)? if f* €Ly[ab]

8

Where  [If'll o = sup | £ (©], and Il f'll: = [71f"(®) dt.

Proof:
From integrating by parts;

b
[[x—a)(b—2x) frdx =[ (x-a) (b-x) f'(x) |
—f;[(a +b) — 2x] f"dx
b b b
=) 2x-(@+Db) | -2 fx)dx,

So

LF@ax = S @ + S0 3 [ =0 6= fdx
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Therefore
|2 fdx- =2 [f(@) +f®)] |

< 3Pa-ab-x|f () |dx (16.2)
Let us observe that
[—ab-x | f (|dx

< sup |f" @] fJ(x—a)(b—x)dx, but

astsb

fab (x — a) (b—x):fab(bx— x? —ab + ax) dx

= [— ——_abx+ﬂ
2 2
b3 3 2 a’b a3 a3
L B 2l el it i
b3  ab? a b a?
-l - -7
_ [b®-3ab? +3a® b—a?]
B 6
_ (-’
- g

So

f (@)+ f (b) (b-a)® | ..
—“; (b-a) |< 1;‘ I7]

| J; fax -
Now, from (16.2) and lemma (2.1) we can say that
[{x—a)b-x) | Flde < Max (x=a) (b—x) [[If"©de

=Max (x—a) (b—x) || "l

asts<b
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Leth(x) = (x —a)(b — x), then
h(x)=(-Dx—-a)+(b—x)= —2x+a+b

If A’ (x)=0 thenx = aT+b and ifxe( a+b)then h' (x) = 0and if

xe(ﬂb b)then h'(x) <0,
Therefor

a+b a+b (b—a)?
M 0= (22 0) - 238 = 52

ILffdx-ng[f(a)-+f(bn < Hla-a) -0 |f @]dx

(b— a) (b— a)

IA

o Il £1l4] = IRV

Remark 2.24 (Hermite - Hadamard inequality) [46]
If fisaconvex (f ">0)on [a, b], the midpoint Rule is the approximation

o fae=f ()b -al
And the trapezoid Rule is the approximation

f @+ f (b)
2

J, fdt = [b— al,

There is a very useful relationship between these rules as follows,

a+b

fED[b—al< ] fdt<

f (a>+2f(b) b—al

Then by corollary (2.3) and corollary (2.7), we can say;

0 < f(a);f(b)—biaf;fdtS%VZf,and

a+b

0 < L [lfde-f(ED) <Ivif,
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2.4 inequalities for absolutely continuous functions

Theorem 2.25 [27]
Let f : [a,b] — R be an absolutely continuous function on [a, b], then

3a+b

f(xX)+ f(a+b—x) 1 b 1 a2 '
2 - = [7f ®dt|s [2+2(=—=) G-,

for x,t € [a, ﬂ].
2

Proof:

Let us define the mapping

t—a, t € [a,x]
K(x, t):{t—azﬁ, te(x,a+b—x]
t—b, te(a+b—x,b]
for x € [a, asz]
Integrating by parts
[t=adf (1) =f() (x-a)— [, f(®)ds, 17.2
and
[ (=22 df @ = f (a+b—x) (52 - x)- f(x) (x--2D)

[T R (de, 182

Jorpx(E=DYAf@® =f (a+b=x) (x—a)=[;,, . f(Ddt  19.2

By add the above three equalities, we obtain

0 K@, 0df (©) = [0 K@, Of @) dt

_ foo+ f§a+b—x) _ bia [ ft,
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And by lemma (2.1)

|7 kG of @ de] < Max IF1 [ 1K@ olde

But we have from proof 2.10, we proved that

(x—a)? + (b— x)2 a
- Lb-a)2+ (x - 2Dp
(x—-a)?2+ (b-x)? _ 1 ( - a+b
Or 2(0—a) = [Z ](b —a).

By using the last fact, we can say

a+b
4(-a)*+(a+b-20)> _ - + (-0 _ 2[(b—a)2 N (x_3a+b
4(b-a) (b—a) 16

Then

a 2
1 b _ A(x-a)’+(a+b-2x)* _ 1 x> 4+b
Efa |K(x,t)|dt = —(b—a)[§+2 ]

4(b—a) b—a
Therefor
3a+b
Max || == [7 p(x0)ldt <[2+2(—==) %] (b - )lIf'll .

Theorem 2.26 [3]

Let f : [a, b] — R be an absolutely continuous functions on [a , b] whose
derivative is bounded on [a, b], then

| b-a) [(1 i (x)+féa+b—x> 42 (f(a);rf(b))] . dt|

(b— a) (3— A)a+(1+,1)b

< [P A2+ (1- D% + 2(x -

) 2| £ oo
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b—a a+b

Where A € [0, 1]andxe[a+/1— —.

2 ' 2

Proof
Using the integration by parts

f;(t ~(a +,1b2;“)) df = (x—a—2122) f(x)
AT f(@) = [ f(®)de
[ (e =52 df @ = (52 -2) FG) +f (a+ b —x)
—fxa+b_xf(t)dt,
And
- (t - (b- ,1”2;“)) df (¢) =
)L(bz;a)f(b) + (x—a—Ab_Ta)f(a+b—x)
Ly f (DL
Adding the above inequalities, we get

[V kG, Of (0dt = (b — a) 2L 4 (1 — gy L@

2

b
- J, @ dt,
Where
b_
t—(a+/17a), t € [a,x],
k(x,t) = t—aTH), te(x,a+b—x],

t—(b—lbz;a), t€(a+b—xb]

ForallA € [0,1] and a + )Lb%a <x< azﬁ.since , f'is bounded , so
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(b - ) [P L3I0 1 (- ) [OHGDT - 2 peya

b , , b
< [ kG DI Olldt <IlIf'llo [, 1kldt,
Now we using the fact

(q-p)*+(r—q)?
2

f;lt—qldt = qu(q—t)dt+fqr(t—q)dt =

T+p\2

== (p -m?+(@-—)% (202

For p < q <r,then

f;|t—( +7L—) dt

- (1222’

fxa+b x t_az;b| dt=( _aTH))Z,and

ff+b—x (b A_) dt——(x—a)2 (u—/l—)z

So , we obtain

—a)2 ) — _ 2
fablk(x,t)ldt=(x a) +((x a)-Ala b)) +(x_bﬂ)2

2 2

4Ot (r ) (- 2):

2

by (20.2)

(1-2)?

:_Z(b_a)2+ (b—a)2+2(x—

(3—A)a+(1+;t)b) 2
4

by (20.2)

— (b-a)” a)

QA2+ (1-21)24+2 ( (3—/1)a+(1+/1)b) 2

4
Hence

72



| b —a) [(1 P (x)+f;a+b—x) N A(f(a);f(b))] 'y dt|

< [(b a)? (2/12 (1 —A)Z +2(x — (33— A)a+(1+l)b ] 1 1o
Corollary 2.27 [3]
(@) If choose A = 0, then we have
|0~ ) R [ (e <
S+ 200 =222 l1f o

(b) 1F2=1, x =22 then we have

(R WO B ICETOR T4

2

Lemma 2.28 [24]
Let f : [a, b] — R be an absolutely continuous on [a, b] and x € [a, b] then for
any A, (x) and 4, (x) real functions on [a, b] , we have

FOO) + 2 [b - 22,00 - (2 — 0?2, ()] - = [T f (Ot
= L - If (O -4 ()] de+ = [P —BIF'(©) ~A()] dt

Proof

To find f;(t —a)[f'(t) — A,(x)]dx and fxb(t —b)[f'(t) — A,(x)] dx
We can utilizing the integration by parts formula

So

[Et = lf'(®) — 4, (0)]dt
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X

= (t - a)[f ) =4, )t] | = [TIf(®) = 2,()e] de

a

= (x — @)[f(0) = L ()x(x — @) — [T f(B)dt + 1, () (x?a?)
= (x—a)f () = [ f(©)dt =5 (x — )4, () 21.2

And for [7(t = )[f' () = A, (x)]dt
b
= (t—D)[f(t) = 2,)t] | - [T[f (&) — 2, (D)t] dt

X
= (b - 0[f (@) = 2,(0)x] — [ f(©)dt = (b —x) A, (x)x
+2 Ao (x) (b*x?)
= (b-0f @) — [, f(O)dt +5 (b —x)? 1, (%) 22.2

So, by add the identifies (21.2), (22.2) and divide by (b — a), we have

1

—-a

= f+

(7t = [f'(®) = A, (O)]dt + [ (t = D)IF'(x) — 2,(0)]dt

1
2(b-a)

>y

[(b — x)?2; () — (x — @)? A, ()] — = [ f dt.

Remark 2.29 [24]
The last identify has many particular cases of interest.

(i) If choose 4, = A, = A then we have

a+b

fO) + (52— x) A== [7 f(t)dt = == [*(t — Q)[f'(t) — A(x)]dt
+ = [t = D)[f'(®) — A(x)]dt

In particular if A€ R, x = aZLb then, we have the midpoint
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a+b

£(42) - 2 17 Fode

a+b

= ﬂf 2 (t=a)[f'(t) —Adt + -

fa+b(t —D)[f' — A]dt
(i) If A, = 4, = 0 then we get,
f) = =[] f(t)dt == [*(t — a)f'dt + — [(t — b)f'dt

(i)  If x € (a, b) is apoint of differentiability for the absolutely continuous

function f: [a, b] — R then,
fO) + (52— x) f1(0) == [ f(D)t

= = [t - )f' () - f@ldt + = [ (t = B)[f'(©) - f'(0)]dt

Theorem 2.30 [25]

Let f : [a, b] —» R be adifferentiable function, and f’ is of bounded variation on
[a, b], then

|f(x)——f fO)dt +35 (22— x) /()

+ o[ =02 () = (= *f'(@)]

<2 - () Vi + () ver

a+b

(b—a)!

-

forx € [a, b].
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Proof

1 1 1 1
Let 4, (x) =~ (a):f G (x);f ()

In lemma (2.28) we get the modulus

fO) == [7 @+ (52— x) £2(0)

[(b—x)? f1(b) — (x —@)*f*(a)]

4(b a)

+$ff(t—b)[f’(t)—w]dt' for x € [a, b].

So know,

(a+b

|0 == 2 FDde +3 (52— 2) f/ ()

+35m [(0 =07 (B) = (x — ' (@]

< Zlle-ao o -2 a

olr-E52

(a)+f (€3] dt

1 b , f'G0)+f'(b)
et MO G R T2
But f': (a, b) = R is of bounded variation on [a, x] and [x, b] so

_ I O-f @+ ®)-f' ()]

f()+f()
fl(t) - === .

NIH

[(f' @) =@+ 1f'(x) = f (Ol
< %Vﬁ(f’),fort € [a, x]
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Similarly for

< VA [t - a)dt
. X
= V() [(% ~ at) |]
a
Vi (5 - ax) - (- o)
- §vz(f')(’;—2 —ax+5)
= %vgf’ (x — a)?, then from (23.2) we get

a+b

o0 = 2 Fode +3 (52— x) £/ ()

4y [0 = 07 () - (x - @) @)
<@ -a?Vif +3@—a)?Vif]
(b4a)[(b ) VX f! +( ) fo]

a+b

< @-a) [1 L ==
4 2 b—a

]VZf’, forx €a, b].

Theorem2.31 [26]
Let f:1 — R be differentiable functionon I and [a, b] < I°. If the derivative
f':1I° — R is of bounded variation on [a, b], then forany x,t € [a, b]

£G0 + 55 16 =0 @) - 1 [ (O]

Z(b

< S [e-avagae+ o - ovigha]
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_1 { 5 (= @ V()
e — @) [ (VEG))de
) { ~(b— )2 VE(),

= 24.2)
(b —x) fxb(Vlt’(f'))dt- (

Proof
By lemma (2.28)

If we assume that the lateral derivatives f'(a) and f'(b) exist and are finite, then
for 1,(x) = f'(a) and A,(x) = f'(b), we have

1
2(b—-a)

() + 52 (b — X)) — (x — )" (@)] — = [ F(0)dt

<Xt - lf'() — f1 @l dt + = ["(b = OIf'(b) — f'(B)]dt,
Forany x € [a, b].
Since the derivative f':1 - R is of bounded variation on [a, b], then

If'@® — f'(@] < Va(f") forany ¢ € [a, x]

And
f'(b) = f'(B)] < VE(f")for any ¢ € [x, b].
Therefore
- a)lf'(®) - f(@ldt < [t —a) VE(f") dt
And

L2 =DIf'(B) = f(®lde < [2(b—t) VA(f)dt, forany x € [a, b].

Adding these two inequalities and dividing by b — a we get the first inequality,
and Using Holder s integral inequality we have
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VA(F) [ (¢ — a)dt,
(x—a) [J(VE(F)dt .
_ { ~(x — @) VA(f),

(x—a) [(VE(F))dt .

J; = a)Va(f) d <{

And
~(b—x)2VE(f"),

[2(b =) V2(fHdt < {
(b —x) [ (VE(F)de .

Remark 2.32 [26]
From the first branch in (24.2) we have the sequence of inequalities

|f(x) + (b =02 () - (2 - @) (@) — 2= i £ ]

~[f, (t = &) V&’ )dt + [[(b =) V2(f")dt]

b

<3 0-a|(2) P vaon + (=) vae)

+ (b—)] VAU +2IvEeI|,

< S(b-a){; (25.2)

a+b

= ]vz<f'>,

1

2

from the second branch in (24.2) we have

|f) + 55 [(b = 0% ) = (x = ' (@] - 5% [ f(O)de]

ra [ (e = @ V(e + [ (b — 0 VEG )|

IA

< (22) fFoveg de + (5 [2(vRorn)de
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a+b
X

{[ +|—= ] [ OVaG) de+ [ (VRO |
max { [ (VE(F) de, [} (VE(F) de

Corollary 2.33 [26]
We observe that, if we take x = asz in (25.2) then we get the perturbed midpoint
inequality

[ (52) + 30 =0l @) -1 ) - o]

< [ - VG + o~ VRG] < 1o — ) Vi
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2.5 Inequalities for n-time differentiable functions.

Lemma 2.34 [18]
Let f: [a, b] —» R be amapping such that the derivation f™ D, n> 1is
absolutely continuous on [a, b], then

[} (&) dt = }325@[(96— ) f® @) + (=1)" (b — x) B ()]
+= [P — 0" fO (1) dt,
Forall x,t € [a, b].

Proof:
The proof is by mathematical induction,

For n = 1 we have for prove that
[f®dt=(x—a) f (@) + (b-2) f(b)+ [, (x—t) FDO()dt,

Which is clearly by integration by parts formula applied for ff(x —t) df,
b b by
Jaa=t) fO@®dt = [[(x=t)df =(x=1t) f(t) |+ [, fdt
a

= (x-a) f (@) + (b-x) f(b)+ [ f(6)dt
So
fabf(t)dtz (x—a) f (@) + (b—x) +fab(x—t)f(1) dt.

Assume that its holds for (n) and let us prove it for ((n+1)) that is we wish to show
that

2 F ©dt= T [0 — @) @) + (1) * (b = ) <0 £ b))
- oM PO @) dt,

(n+1)!
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Now let g(t) = (x — )* F¥ (©),

(Which is absolutely continuous on [a, b]),
L= fY @) dt= (x — @) (x — ) 19 (@) + (b — x) (x — b)*
£ b)Y+ [ —6) =[x — ) £ O]
== =)V FOMQ+ -t f D (]dt
+ (= a)"™ £ O@) + (-1)" (b — %)™ £ Ob)

= L= 0" FO® de+ [0 — )" f D) de
+(x—a)™ fOa)+(-1)" (b —x) " f Ob) (26.2)

From (26.2) we can get
ff(x . t)n f(”)('[) dt = ﬁ f;’(x _ t)k+1 f(k+1) (t) dt
[(x — a)]™ (@)

[(x—a)] ™ (a) +

(n+1)

+ ()" (b — )™ f™(b)]
by using the induction hypothesis

(n+1)

[ F® dt = 202 gy (=) £ ® (@) + (D b — 2 £ 9 0)] + o

1
(n+1)

[ [ — o1 £ (1) dt

[x—a)™ fO@)+ (b -x)"" fO®B)]]

(n+1)

1

= S0y [ — @) FO@) + (1 (b =0 £ O]

1 b K (1)
t oD J,x =" f (t) dt. O
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Theorem 2.35 [18]

Let f :[a, b]— R be amapping so that derivative £~ is absolutely
continuous then

| [ F () de- B0y s (=) £00 @) + () (b — 0 O (b) ]

IlF ™l
(n+1)!

[(x—a)"+(b—x)"1 if f™ €Lgla,b]

Proof:
From lemma [ 2.34 ] we have

| [} F©dt- Tiof s (- @) 1 F0 (@) + (1) < (b = x) < f0 (o]
<ula le=eln[r® ae < [ g x =l ad 7))

()
”f ” [f( —t) dt"‘f(t_x) dt]

~ ”f(n)”Oo [ (x_a)n+1+ (b_x)n+1 ]

n! n+1
_ ™l ot -
(1’1+1)' [( - ) ' + (b ) ' ]

To prove the second inequality we have

[0 lx—t|m] FO]dt < < Sup lx—¢|" 2] F®™ (o) |dt

n!

1
=—T[sup [x—¢[1™ lIf"Il 4

= lsup G-ab-nT" ™,

a+b

= L[y, 0-a+ [x 22 @),
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Hence

|1 F O de- BRSg oy (-0 9 @) + (1) (6 — 00 (o]

n
||f||| [1/2(a—b)+ |x a-zkb |]n

n

<

Lemma 2.36 [17]
Let f : [a, b] — R be a mapping such that f ™~V is absolutely
continuous on [a, b]. Then

(b—X)k+1 +(_1)k (x_a)k+1
(k+1)

[PF@de=ypt [ 1£®@

)" ke (0, 8) FO@ A (272)
Where the kernel K,,: [a, b]>—R is given by

When x € [a, b],nisanatural number,n > 1

Proof:
We use proof by Mathematical Induction.

Forn=1

Lfmde = b-a)f - [ K, ) O de
Where

Ki (x, t)‘{t—b if t€|[x, b]

[y Kot ) FO(E) de = (e —a) £ 1(©) dt + [ (¢ = bF () dt
=[;¢-aydf +[/(t~a)df
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X b
=(t-a) f(©) |- [Tfdt+(e-b) ft) |- [ f (B)at

= (- f @)+ (b-x)f @[ f) dt

=(b-a)f ) - [ f()dt
So

[, f ®©dt=(b-a) f() - [ Ki (x,0) fPde
Now assume that (27.2) holds for n and let us prove it for (n+1)

That is prove the equality

(b—X)k+1 +(_1)k (X—Cl)k+1

[ f@de=3,[ oD 1 £ 969

+ (D)™ [P har (¢, 1) FOD () de

Using
(t-a)+D
W ift € [a ,X]
Kn+1 (x) t) = t—b n .
— ift € [x,b]
And

x (t—a)™*

b (n+1) _ L rn)
Jo naa o8 f70 (@) de =, = D (0 dt

b (t-p)"+1 (n+1)
e G fOT O dt

So, using the integrating by parts for

x (t_a)(n+1) (+1) _x (t—a)”“
fa (n+1)! y (t) de = fa (n+1)!

df ™ (v
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And

b (t—a)™t F@+D) ™
Je “owmi de= [0 apo

—_\n+1
Nowput g =GEmmand k= £

[Fgdh=h(x) g (x)-h(a) g (a)- [, gdh

= h(x) g(x) ~ [ hg'dt

So
_\n+1 i N Dt )
A 900 = S0 00 and [ g de = [ SISO p oo g g
t— n+
f;((ni)l)' df(n)(t) - ( +1)| f(n)( )__f (t a)nfn (t) dt
Similarly a bout
bw (n+1) _ (b (t=b)"*1 (n) __(x_b)n+1 )
J. et /(D4 J; o Oy ST
+() [(t—a)" £ V() dt
b _ ntl (n+1) B (_1)n+2(b_x)n+1 )
fo @ =" f T de =——— e P ()
(28.2)

o =Dy O (@)

Note that
(_1)n+2 (b _ x)n+1= (_1)2n+3 (x _ b)(n+1) - _ (x _ b)n+1

From (27.2) and (28.2) we have
b M) _ =M (D)2 (b)) ()
Jp Fnea 0,0 £70(0) = D)
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x (t—a)™ b (t—-a)"
=[S == Ode+ [ == 1O) de

_ (x_a)n+1+(_1)n+2 (b—x)n+1

= fO(x)

(n+1)!

— [Pk (x, 1) FOt) de
So

(x_a)n+1+(_1)n+2 (b_x)n+1

(n+1)!

2k (6, 1) £ () dt = £ ()

P ey () £ V() de
by mathematical induction hypothesis we have

ne1 (b—x)k"'l +(_1)k (x_a)k+1

[ f(®)dt = 233 Ty 1 7Y%

N (b_x)n+1 +(_1)Tl (x_a)n+1
(k+1),

)

— (D) [ Ky (e, 6) F DO dt

(b—X)k+1 +(_1)k (x_a)k+1
(k+1)

=¥hoo [ 179 (x)

+ (D™ s (e, 0) £ OO

Corollary 2.37 [19]
Let f; [a, b] = R suchthat f ™%is absolutely continuous on [a, b] then

b 1 (1+(-DK; (b—a)kt? a+b
L @®dt=3C o] e Y&

+(-1)" 7 M, ) £ Ot) dt

Where
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(t—-a)" a+b

= ift € [Cl T]
M, (t) =5, _;\n
L ife € (22,0
Proof:
a+b

From lemma [2.36] by choosing x = —

Corollary 2.38 [19]
Let f:[a, b] — R beamapping such that f®™=1 is absolutely continuous on
[a, b].

Then

b _ b-a i1 1 P @+DEFED)
o FOdt=3kS0 G ) . ]

b (b—t)"+ (=) (t—a)"
nJa 2

1 £O) de

fort,x € [a, b].

Proof:
Let x = a and x = b in (2.26) then summing the resulting identifies and
dividing by 2,

So where x = a we have inequality

— b b (t-b

Proda=gpsy [ EU poe ]+ [P o) o

[(b_a)k+1
(k+1)!

=YRo3 f Q@) ] + % (b—1)" f O(t) dt (29.2)
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Now x =b

b(t a)

SR EEOT @9 (b)) + (1) [ {00 de (30.2)

(k+1)!

Then from (29.2) and (30.2)

b _ ka1 FO+(DRK (D)
[ f Oa=385 () 51

1 fb (b-O)"+ (- (t—a)™

a 2

| WAROL

n!

Theorem 2.39 [17]
Let f: [a, b] — R be amapping such that f ™% is a absolutely
continuous on [a, b]. Then

(b—X)k+1 +(_1)k (x—a)k"'l
(k+1)

| 17 F (®de — xpz 1) |

(M|l oo
P22 16— st 4+ (b — 0™ 1] i £ € Lo [a, ),

(n)
V2R pah — @) + |x -

a+b

Mif F™ e Li[ab],
Where

IF™. = as;:gb | FP) | < o0
And

lF@, =17 1@ | dee)
Proof:
By Lemma (2.36), and observe that | £ |< [|f™]

(b=x)k+1 +(= 1)K (x—a)k+1

| 12 £ty de — 23 o 119 |
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= | [Pk (0 £ dt |
< [V lka(e 0 || FO0)] de
< r® f T Gx,0)]
= llkw G Blly - [IF

— |l £ [fx |t—a|ndt+fb |t—b|ndt]
= [lr™l Uy = e

n:

N Rl I TGy Uity

_ N (t—a) n+1 x (b_t)n+1 b
oA R e e er i
_ I, o -
= e e )™ ()™

and clearly that
| [V e 0 FO@ de [ < 2] @] [k, 0| ot
<[5 1@ ] e G, Do
=IF@I, - sup e,

(x— a)" (b—x)"

LF1, - Max { , 1}

n
||f(“)||

Max { (x-a)", (b—-x)"}

IIf(“)II

[ Max {x—a,b—x}]"
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Il poea

Notation 2.40
Can easily notice that the Ostrowski inequality

(a+b)2

(x—
| [ f (®dt- f(x) <[+ =5

] (b —2a)llf"lle

We obtain from (2.39) by put (n = 1) and as a simple last calculation we shows

that

“[(x- )’ + (-0 =[5b-2)" + (x
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Chapter 3

Inequalities for the Riemann - Stieltjes integral

Of product integrators.

92



3.1 Inequalities of Ostrowski and trapezoid type for the
Riemann-Stieltjes integral

In this section we point out some recent results by the authors in [50], [15], [11]
and [46] concerning certain inequalities of trapezoid type, Ostrowski type and for
Riemann-Stieltjes integrals,

The section is structured as follows:
The first part deals with the estimation of the magnitude of the difference,

HO2TO) (g(b) - g(@)) ~ [ F©dg (o).

Where f is of p — H — Holder type and g is of bounded variation, and vice versa.

The second part provides an error analysis for the quantity

b
FC(gd) - 9(@) — j F(Odg (D),

This is commonly known in the literature as an Ostrowski type inequality, for
the same classes of mappings.

Definition 3.1 [50]

The function f : [a, b] = R, be ap— H —Holder type, if it satisfies the
condition, lf(x) — f(y)| <H|x—y|P, for,y€[a, b],and H >0,
p € (0, 1] are given.

Theorem 3.2 [15]

Let f: [a, b] » R, beap— H —Holder type mappingand g : [a, b] = RIs
a mapping of bounded variation on [a, b], then

| LB () - g(@)) - F0dg®
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Szip H(b—a)? Vg, For tx€[a, b]

Proof
Using the property in lemma 2.1 we have

HOTO (g - g(@) ~ 1 F Wy |

= | 2D £ (6)) dg |

b
< sup [ KO £ vig).

astsb

As f isof p—H—Holder type, then

f@+ f® f@)—- )+ f (b)—f (t)
[ L@ O fyy |- | / |

<0l f@-f@ 1 +17®-7F@© [

<1,H[(t—a)’+(b—1t)"

Now consider the mapping

h(t) = (t—a)’ + (b—-t)P,t € [a,b],p € (0,1]

Then
K =pt-a)?P™ — pb—t)P=0
And h'(t) 20 on[a, 7], h'(H) <0 on (£2,b]

Which shows that maximum is realized at t = asz, and

sup h(t)=h (a:—b) =20-P) (h —q)P

astsb
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SO

sup |(C2LE— r (o) | <H (S0

asts<b
Hence
f@+ f(b
| PR 9y - g@)- [ f dg |5 H b - ) Vi)

Corollary3.3 [50]
Let f :[a, b] = R beap-—H-Holder type mapping, and g: [a, b] - Rbea
monotonic mapping on [a, b]. Then

1EE2IE (9) - @) - [ F (9dg O] < 5H - 19 () - g(@) .

[Since g is monotonic so it is of bounded variation and V3(g) =|g (b) - g(a) |]

Corollary 3.4 [11]
Let f beap-H-—Holder mapping and g be a Lipschitzian mapping with

L>0. Then
+£(b 1
| LDH®) (4b) - g(@)- [ fdg | s o5 H L (b —a) P+
(We know that V2(g)<L [b — a] where g is Lipschitzian mapping).
Theorem 3.5 [50]

Let f:[a, b] = R be ap — H — Holder type mapping, Where H > 0 and p €
(0,1] are given, and g:[a, b] — R is a mapping of bounded variation on [a, b].

Then we have the Ostrowski inequality,

[Fe(9) - g(@) - [ F()dg(t)]

<H[E®-a)+ -2 vig) (1.3)
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For all x € [a, b], furthermore, the constant% Is the best possible, for all p € (0,1]

Proof
Using the property in lemma (2.1) we have

F(9b) - 9(@) - [} f(D)dg(t)| =

[2(f0 = £(©)dg©)|
< sup |f(x) - f(t)l Vg(g)

te[a,b]

As fisof p — H — Holder type, we have

SUPtefap)|f(x) =g < sup [H|x —¢t|"]
tela,b]

= H max{(x — a)?, (b — x)P}
= H[max{x — a,b — x}]?

=H E(b —a) + |x—a+b”p

2
To prove the sharpness of the constant % forany p € (0,1], assume that (1.3)
holds with a constant ¢ > 0, that is

|F 0 (9®) - g@) - [ F(Ddg(t)]

a+b

<H[cb-a) + |x =22 vicg) (2.3)

For f be p — H — Holder type mappings on [a, b] and g of bounded variation
on the same interval.

Choose f(x) = xP (p € (0,1]), x € [0,1] and g:[0,1] — [0, =] given by

0 ifx € [0,1)

g(x):{ 1ifx=1

As

If () = fO)I = [xP = yP| < |x = y[?
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Forall x,y € [0,1].p € (0,1]. it follows that f is of p — H — Holder type with

the constant 1.
By using the integration by parts formula for Riemann-Stieltjes integrals, we have

[} f(®dg(®) = FOg®} — [} g(O)df (©)
=1-0=1
And Vi(g) =1, so

e 11 < [c+ 2| forall € [0, 11

P
Forx =0,weget 1< (C +%) , Which implies that C > %

Remark 3.6 [46]
If £ is a convex function on (f* > 0), and g is increasing on [a, b] then

by turning to Riemann-Stieltjes integrals The Hermite — Hadamard inequality is

not true in general.

FED g 1) - g @] [ fdg <FELD (40 - g(a))

Example: 3.7
Let [a, b] =[0,1] and
f®=t, g =t
So left — hand inequality does not hold in general

And if g(t) =t then
The right — hand inequality does not hold in general to see this, we need shows

FED g -g@] > [, fdg

By the modification of the integral, we have g’ = -—
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3

So [ofdg=f,fgdt = [, (5 ) dt == [tz dt

~

1
N
—
S
M-

I
ul | =

1+0

And  f(—)[V1+0] =

Thus left — hand inequality does not hold.

3
2

N|U‘l

Now if g(t)= t% so g'==t

1, yqe_ 1 5,3
[ fgdt=[] e (37

I
|
—
© w
(‘h
N
o
—t
I
Nlu-[
—

ﬁ

(o e
—_
1
O |

@IU‘I

and LD gy - g)]= 5 <

So the right — hand inequality does not hold.
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3-2 Inequalities for the Riemann - Stieltjes integral of

Product integrators.

In this section we show that if f,g : [a, b] = R are two functions of bounded
variation and such that the Riemann-Stieltjes integral f: fdg exists, then for any

continuous functions h : [a, b] = R, the Riemann-Stieltjes integral f: hd(fg)
exists and using this result we then provide sharp upper bounds for the quantity

[P hd(fg)

And apply them for trapezoid and Ostrowski type inequalities.

’

Lemma3. 8 [22]

If £, g be two functions of bounded variation on [a, b], and fab fdg
exists, then forany € [a, b ],

L(x) = [ f (x) dg (t) of bounded variation and

Val < Ifllw Vag

Proof:
We know the integral f;f d gexistsforallx € [a, b]

Let
a=Xg<x1<..<xp1<xp=Db

a division for the Interval [a, b] , then
i | L) — L) | = 2| [ fdg - [ fdgl

=Yt fofdg + [ fdg]
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1
=S | [ rdgl
by Lemma (2.1) , then

fxl+1f dg <Supx,,<x|+1|f (t)| V.X'l+1
Therefor
YL (o) = Lx) | <3EC sup || F@®) | VEFLg)
xXistsxi+1
< sup |f(O)| I vERF(g)
Xistsxi+1
=sup | |f@®) | Vi(9)

ast<b

but f g are of bounded variation on [a , b]

So —sup| |f(t)|ng <00
a<t<b
Therefor Yo | L (x;41) — L(x;) | < 00
Hence L (x) is of bounded variation on [a, b]. m

Theorem 3.9 [22]
Let h: [a, b] — R iscontinuous and f, g be two function of bounded

variation on [a, b] and f: fdg exists. Then
[7 hd(fg) exists, and
[2 hd(fg) = [} (hf)dg + [, (hg)df (3.3)

Proof

Let x € [a, b] then by the integration by parts theorem
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[ g(®) df (t) exists
And

F)gx) =f@g@+[ fOdg®+ [ g df®) (43)
We can using (3.3) to say

d(f () g(x))=d (@ g@)+d[ f®)dg®)
+d[Tg®df®
h(x)d (f(x)g(x)=h@d([] ) dg®))
+h(@d (f;(g©df ©)
Therefor
[ R (00 g0) =, h)d ([, f )dg ()
+Ph@d ([Fg®df)  (53)
by last lemma
[ fdg and [ gdf are of bounded variation on [a, b]
Therefor
JhGod ([ f(®dg(t)) and [ hG)d ([ g(tdf(£)) exist
And

[Pred ([FF©dg®) ) = [2h(x)f (x)dg(x) (6.3)
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[ rGOd ([T g®df@®)) = [ h(x)gx)df (x) (7.3)
So by (4.3), (5.3) and (6.3)

[ rGd (FO0) g(x0) = [, h(x) f(x) dg(x)

+f; h(x)g (x)df(x) forx € [a, b].

Notation 3.10

If f: [a, b] = R isafunctions of bounded variation fabfdf exists

h: [a, b] = R Continuous then f: fdf?= fofdf

and if f' exists then

[7hdf?=2 [ fhf'dt

Theorem 3.11 [22]
Letf,g: [a, b] = R be two functions of bounded variation such that

fab fdg exists. If h:[a, b] — R is continuous. Then

| [ hd(f) < || fRI, VBC9) + [hgll,, V5P (7.3)

<\l [ 17, Vi@ + gl VaH]1  (83)

Both the above inequalities are sharp

Proof
From (3.3) and lemma (2.1) We have

| [ hd(Fo) | < | [ hfdg |+ | [ hgdf |
<Ilhfll V5 + || hall , VE()

< el 171l Voo + 2., Nl Ve
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=[allo T IFI.. Ve + gl Va1
Now, to prove the sharpness of (8.3)

let the functions f,g :[a, b] = R giving by

0 if t=
ro={ 1 i tec(la,b]’
and
(1 if te[ab)
g(t)"{o lif t=b

The functions f and g are of bounded variation,

VL f =sup {2{;1 | F(x) — f(xi_1) : {x:1 < i< n}isa partition of [a,
bl},

and

L f @)= f o) |= -0+ 1-1]+ +]1-1]=1
So

Va(H=1
and

Vhg=sup {3, | 9(x) — g(x-1) | : {x:1 < j < m} is a partition of [a, b]},
and

¥ a(x) -9 |=l1-1]+[1-1|++]|1-1]+|o-1]|=1
Then

Vag)=1and |lg|, = lIfll., =1
From

Ifll, = sup | f@®|=sup{0,1}=1
te[a,b]
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lgll.= sup |g(t) | =sup {0,1}=1,
te[a,b]

and we have

_(0ift €{a,b}
f(t)g(t)_{lift ¢ {a, b}

then fg is of bounded variation and for continuous function h

then fab hd (fg) exists
to show f g of bounded variation

VA(Fg) =sup { Tio | F) (k) = (f@) Cxir)

| {x;:0 < i < n}is a partition of [a, b] }

Vi(fg) =sup {|1-0]|+]|1-1|+..+|0-1] } =2

We know by the integration by parts
f: hd (fg) = f(b) g(b) h(b) - f (a) g(a) h(a) - fffg dh
=—J, fgdh (9:3)

. b . . ..
To find fa fgdh consider the following sequence of divisions and
intermediate points:
Aya=x™<e,W<xy®™< < x,  ™<t, ™ < x®=p
Such that V(A,)) » 0asn — oo where V(A,) = maXpgicn_1 (Xi41™ — x;,™)
andif &™ e [x,™, x;,,™] forie {0,1,..,n—1} then
® fgdh= i n ™) [h (102 ™ )= R (™
J, fgdh= limye,) o Zi5T (F @G ) [h (x4 ) = b ("™)]
<limyap,y o Xise (b (ried™ ) =k (™))
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From (9.3)

we also have

and

then

= h(b) — h(a),

[Phd (fg) = [ fgdh = h(a) - h(b),

0 if t=
h(®)f (t) :{ h(t) lif t g(a,b]’

= A0 1 e2

Irgll..= Nrfll. = lrll.

by inequality (2.9)

|h(b) — h(a)| <2 |R]. (10.3)

Now, we need show that (10.3) is sharp, so

a+b

Let h(t) =t — — - tE [a, b], then

h(b) - k(@) =b—a, |n],=="

Then b—a= 2(b;—a),

Therefor (8.3) is sharp.
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3.3 The Ostrowski and Trapezoid inequalities with
product Integrators.

Proposition 3.12 [22]
Let f, g:[a, b] = R be two functions of bounded variation and such that the

Riemann-Stieltjes integral f:f(t)dg(t) exists. Then for any x € [a, b]we have
[F®)g®)B —2) + f(@g(@)(x - a) - [ F(©)g(t)dt
< supefa vt — )GV + suprefa vl (€ = )f () VE(9)

a+b

<P+ e =22 lglo VA + Il VE@T. (113)

In particular, we have

|f(b>g(b)J2rf(a>g(a> (b—a) — f:f(t)g(t)dt|
< supeeia | (£ = 57) 9| VAU + supeeran | (£ = 2) FO| VE(D)
<= (b= D)llglleo VAU + lIfleo VE(S], (12.3)

The inequalities (11.3), (12.3) are sharp.
Proof
We use the following identity
F(B)(b—x) +F(@)(x—a) = [ FO)dt = [ (t —x) dF ()  (13:3)
That holds for any function of bounded variation F: [a,b] — R and any x € [a, b].

If we write the equality (13.3) for F = fg we get
f)gb)(b —x) + f(a)g(a)(x —a) — ff fOg®)adt (14.3)

= [Pt = 0)d(f(O)g(®)), forany x € [a, b]
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If we use theorems (3.9) and (3.11) for the function h(t) =t — x,t € [a, b], then
we have the inequality

|2 - 0d(F(0)g(®))|

< sup [(t —0)g®| V) + supeea p1|(t — ) g(H)I Ve(9)

t€[a,b]

< sup |t —x|[llglle Va() + lIfll VE(9) ]
t€[a,b]

=max{x — a,b — x}{llgllo Va(f) + If ll Va(g)]

a+b

= E (b—a)+ |x - ] [glleo VEG) + NIf lleo VE(9)] (15.3)

a+b

The inequality (12.3) follows from (11.3) for x = —

Consider the functions f, g: [a, b] = R defined by

_( Oift=a _( lift € [a, b)
f(t)_{lift € (a, b], g(t)—{ 0ift =b.

We observe that f and g are of bounded variation and

Ve = Vag) =1
Take the sequence of divisions and intermediate points

dnia=x{ <&M <x™ <o <ax® <gn  <xM=p

Such that A (dn) := maxeepo,. n-1| {xfﬂ - x§">} S0asn— o
By the definition of the Riemann-Stieltjes integral J” £ (£)dg(t) we have
P F©)dg(t) = limpe 5250 £ (68 [9 (x3) = 9 (x)]
= e 27 () o (+2) - (+47)
+ limp £ (£57) [90) = g (x&)| =0-1="-1.
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Which shows that this integral exists? Observe that

a+b 0 if t=a
(t__)f(t)_{ t—azi’ if t € (a, b],

_a+b _ t—ﬂlftE[a b)
(t ) 0= { 0 i if t=0>.
Then

SUPte[a,b] |(t - ﬂ) (t)| bT
And

SUPte[a,b] |(t - ﬂ) f(t)|

We also have

TOWOHIID (h — a) - [° F(O)g(D)dt = —(b - ).

2

b—a -a
—t —
2 2

|-(b-a)|=b—-a=

So (12.3) is sharp.

Corollary 3.13 [22]
Assume that f, g: [a, b] = R are monotonic nondecreasing on [a , b] and such that

the Riemann-Stieltjes integral fff(t)dg(t) exists. Then for any x € [a, b] we
have

[F®)gb) (b — ) + f(@g(@)x — a) - [ f(Dg(t)dt|
< 1t —xllg®Idf @) + f}1t = x|If(D]dg(®)
< 06—+ [x=Z| (191 df ) + []1F (©)1dg (@)
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In particular, we have
f(b)g(b)+f(a)g(a) f f(t)g(t)dt|

<[,
<1-a (ff 9Ol + ff F©ldg(®).

a+b a+b

2| 1f@)1dg (@)

Corollary 3.14
If f is Lipschitzian with L>0, g is Lipschitzian with K > 0,

and h:[a, b] = R iscontinuous

Then

| [7 hd (o)

[N

K InflaceL f? [hglas

IA

MRl F]+ gl ae

Where M = Max {K,L}.

Remark 3.15 [22]
If f, g arecontinuous at [a, b] and h is Lipschitzian with M > 0

Then

| [P hd(fg) ~1ba |<M [ (fg) dn<M|fg],
Where

I, a=h(b)f (b)g (b)- h(a)f (a)g(a).
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Proposition 3.16 [22]
Let f, g:[a, b] = R be two functions of bounded variation and such that for

x € [a, b ] the Riemann-Stieltjes integralsfff(t)dg(t), then

Fge® - a) - [} F©)g(dt]
< (r—a) sup {(If(OBVA9) + (x —a) sup (lg@OBVE)

tela,x] tela,x]
+(b —x) sup {IfOI}Vi(g) + (b —x) sup {lg®OBV(f)
te[a,x] t€lax]
< 30— a) +|x = 22| lllglleo VA + lf oo V(] (16.3)

+b

In particular if the Riemann-Stieltjes integrals f f(t)dg(t) and fa+b f(t)dg(t)

exist. Then we have

F(£2)9(22) b -a) - J; fF(Dg@)dt]

a+b a+b

<=0 sup (IFOBVE @+ sup {lg®BVE ()

o] e

a+b a+b

sup {(IfOBVS2 @+ sup {Ig®OBV.? ()
te[*2p) te[2p)
<2 (b = Dllglles V) + [Iflleo VE(9)] (17.3)

The inequalities are sharp.
Proof
We use the following identity
F()(b—a)— []F (@®)dt = [*(t — )dF(t) + [, (t — b)dF(t)
That holds for any function of bounded variation F : [a,b] — R and any x € [a, b].
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If we write the equality for F = fg we get
F)gE®b - a) - [ F(t)g(e)dt
= [*(t — d(FOg®) + [t — BYA(f (g (D)

For any function f, g: [a, b] = R of bounded variation and any x € [a, b].

Taking above modulus:

[Fegb - a) - [} F()g©d

< [t~ d(f@g®)| + |1 - DA(f g ®)]
< sup {(t—a)|f®}Vig) + sup]{(t—a)lg(t)l}v a(f)

t€la,x] t€lax

+ sup {(b-DIf®OBVEg) + sup {(b-)g®}Vi()

t€[x,b] t€[x,b]

<s(x-a) sup Uf@hvalg) + (x—a) sup, {lg@® 3 va(f)

t€la,x] t€la,x]

+(b —x) sup {If(O1}Vz(g) + (b —x) sup {lg(O}Vz(f)

t€[x,b] t€[x,b]

< max{x —a,b — x} Sup {Ff®OBVE(g)

t€la,b]

+ max{x — a,b —x} sup {{g®)}VE()

t€la,b]

a+b

=[50 — @)+ [x = Z2{| llglle VEE) + Ifllo V],

Consider now the functions f, g: [a, b] — R defined by

a+b a+b

01ft€[a —) 1ift€[a—
Fo = re 22, b 90 =1 g e (&2, b
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We observe that f and g are of bounded variation and

Va(f) = Va(g) =1

+b

The Riemann-Stieltjes integrals [ > f(t)dg(t) and Jars f(£)dg(t) exist since
2

one function is continuous while the other is of bounded variation on those
intervals.

We observe that for these functions we have

() g(22) (b-a)- [P FOg®dt=b-a

a+b atb

sup {IfOBVS @+ sup {1g@©OBVy ()

tefa ] tefalt?

+ sup {lf(t)l}\/a+b(g)+ sup {Ig(t)I}Va+b(f)—2

te[2Lp] te[2Lp]
and

lglle V5 + lIflleo Va(g) = 2

Therefor
| F () 9(57) G- - f®Og®dtl=b-a=3b-a))

= %(b = a)[llglle Va(r) + lIflloo VE(9)]
So (17.3) is sharp.
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