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 الاهداء
 

 

ل       إن كان وراء كل إمراءة رجل عظيم فأبي أعظم الرجا  

.جهدي أهدي كل ثماررحمه الله إلى روح أبي الطاهرة   
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تقدير و شكر  

 

 وانشكر لله أن فتح أمامً أبواب انعهم فً ،انحمد لله عهى نعمة انعهم والأدب

 تفضل الذي لاطًانبو ق. توفيدلأستاذي وانشكر موصول  ،ك انظروفهأح

                     الكثٌر. وقته منحنً من و العمل هذا على بالإشراف

فلولا دعواتهم ما وفقنً الله، ولا  أمً وأبًوشكري ٌخلوه الوفاء بدون ذكر  

لمن  على اهتمامه وسعة صدره معً، وكل التقدٌر زوجً أنسى أن أشكر

وكل من ساندنً من  تالعزٌزا أخواتًً فً ساعات الإحباط مترفعوا من ه

                                                                                  .زوجً أهلً وأهل

 يم.أ. مبروكة انفضدرب الدراسة صدٌقتً  ةوللحبٌبة التً كانت انٌس

 ٌومً هذا.ى لإوختاماً الشكر لكل من علمنً ولو حرف من نعومة أظافري 
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ABSTRACT 

     During the last seventh decades ago, there has been 

ongoing interest concering different types of inequalities 

integration. 

     Our aim in this project is to study the important type of 

these inequalities, from Riemann-Stieltjes integral, which are 

well known in the literature as the Ostrowski and trapezoid 

inequalities.    

      In this study we focused our attention on the results to 

find the Riemann-Stieltjes Integral of product integrators and 

here applied on some inequalities. 
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 ملخص

 

 من مختلفة أنواع بشأن مستمر اهتمام هناك كان الماضية العقود السبعة خلال

 .التكاملية المتباينات

 خلال من المتباينات تلك أنواع اهم دراسة هو البحث هذا في الأساسي والهدف

 شبه ومتباينة أوسترسكي بمتباينة يعرف ما وهي اشتيلتجز، -ريمان تكامل

 .المنحرف

 اشتيلتجز-ريمان تكامل  لإيجاد مبرهنة هو الدراسة هذه له تطرقت ما وأهم

∫  المضروبة المكاملات ذو       
 

 
.  المتباينات بعض على وتطبيقها    
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    T. J. Stieltjes (1856–1894) introduced a generalization of the Riemann 

integral, Stieltjes himself died before the appearance of his paper, and 

the idea at traced almost no attention for the next 15 years, the type of 

integration considered here is somewhat more general, and the added 

generality makes it very useful in certain applications, especially in 

statistics and numerical integration. 

    We shall consider bounded functions on closed intervals of real 

number system, define the integral of one such function with respect to 

another, and derive the main properties of this integral, 

     In this study we shall focus our attention on two integral inequalities 

which are well known in the literature as the trapezoid and Ostrowski 

inequalities and  depended in her proofs on the Riemann-Stieltjes 

integral, the trapezoid inequality is deals with the estimation of the 

magnitude of the difference, 

                                ∫  
 

 
    – [ (  –   ) ( )   (  –   ) ( )]  

and the Ostrowski inequality provides an error analysis for the quantity 

                                       ∫  
 

 
   – (     )  ( )   

    Since the writing of the classical book by Hardy, Litlewood and Polya 

in (1934), the subject of differential and integral inequalities has grown 

by about 800%. Ten years on, we can confidently assert that this growth 

will increase even more significantly Inequalities have proved to be an 

applicable tool for the development of many branches of mathematics. 
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     In 1938 Ostrowski proved the integral inequality which is known in 

the literature as Ostrowskiʼs inequality which is provides an error 

analysis for the quantity        ∫  
 

 
   – (     )  ( ),  by formula  

                    │ ( ) - 
 

   
 ∫  

 

 
( )   │≤   [ 

 

 
 + 

(   
   

 

(   ) 
 ](   )- ‖  ‖

 
  

      In the year 1995 G, A, Anastassion [5] gave a different proof to 

Ostrowskiʼs inequality and using concept of the optimal function to 

establish optimal upper bounds on the deviation of a function from its 

averages, these lead to sharp inequalities. In 1976, Milovanovic et al. 

proved a generalization of the trapezoid and Ostrowski inequalities for 

n-time differentiable mappings. In 1998, Dragomir [17] presented a new 

results to the classical Ostrowskiʼs inequality and for the first time 

applied it to the estimation of error bounds for some special means and 

for some numerical quadrature rules, the monographs {[19], [23], [28], 

[29] and [30]} were written from 1999 -2004 to present some selected 

results on Ostrowski type inequalities and their applications.  In 2000, 

Cerone et al. [32], in 2004, Ujevic [57], and in 2011, Alomari [3] were 

Presented very useful results by concept of the perturbation. In 2014, 

Dragomir [22] proved the results to find the Riemann-Stieltjes Integral 

of product integrators and applied on some inequalities.     

    The basic idea for proofs of main results in this thesis by using the 

integration by parts formula for Riemann-Stieltjes Integral with the help 

of the Peano kernels theorem, for example  

                   ∫ (   )  ( )  (   ) ( )
 
 
 
 

 

 
 ∫  ( )  

 

 
. 

     The material of this thesis is organized as follows: 
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    In the first chapter, there will be basic concepts which will be used 

throughout the thesis. Among them, the definitions of functions of 

bounded variation, Riemann- Stieltjes integral and their fundamental 

properties. 

    In chapter two, we will give a different generalization of the trapezoid 

and Ostrowski inequalities.   

   Chapter three, contains some types and results of the Riemann-Stieltjes 

Integral of product integrators and the trapezoid and Ostrowski 

inequalities for the Riemann-Stieltjes Integral.   
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1.1 Some concepts 
Let   and   denote real-valued functions defined on a closed interval ,   - of the 

real line. We shall suppose that both   and   are bounded on ,   -  this standing 

hypothesis will not be repeated a lot. 

Definition 1.1 [51] 

A mapping    is said to be bounded function if there is real number   such that 

│ ( ) │≤     for all      ,   -   

Proposition 1.2 [10] 
i. If     are real numbers, then   

         Sup*   + = 
 

 
 *         +, and inf *   + = 

 

 
 *         +  

ii. If      are continuous  real-valued functions on ,   -, then  

     Sup *   + =  
 

 
(         ), and  inf *   + = 

 

 
 (         )  

Definition 1.3                   
A function   is said to be monotonic increasing on [   ] if   ( 2) ≥  ( 1) for 

  2    1, and monotonic decreasing if  ( 2) ≤  ( 1) for   2    1. 

Definition 1.4   
A real-valued function    is continuous at       [   ] if given      , there 

exists        such that  │   -   │˂    and       [   ] implies that  

                                         │ ( )  -  (  )│˂  . 

Definition 1.5    [55] 
A real-valued function     is absolutely continuous on [   ] if given ɛ ˃ o, there 

exists       such that   

                                         ∑   
   │  ( i) -  (  i) │˂ ɛ   
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Whenever   {( i,  i ) } is  a finite collection of disjoint intervals with 

                   ∑   
   │ i    i│˂  . 

Mean Value Theorem 1.6 [10] 
Suppose that   is continuous on a closed interval [   ] and that     has                      

a derivative interval (   ). Then there exists at least one point c in (   )  such that 

                          ( ) –   ( )      ( ) (     ).    

Theorem   1.7 [36] 

If   is continuous on [a, b] and     exists and is bounded on (a, b), then   is 

absolutely continuous on [a, b]. 

proof: 
Suppose that      ( )|    for     (   ),    is real number   

let          consider     

  ∑   
   │  ( i) -  (  i) │ when   {( i,  i ):  1      } is  a finite collection of 

disjoint intervals in [   ],  such that     ∑   
   │ i  -  i  │˂    ⁄ , 

Now,   observe that   

                        ∑   
   │  ( i) -  (  i) │ =  ∑   

     
   (  )    (    )    

            
         

The mean value theorem tells us that for         there exists       ,      -  

such that,  

                                  
   (  )    (    )    

            
  =     (   )|  . 

 

Therefore   
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∑   
    

   (  )    (    )    

            
              ∑   

   │ i -  i│    .   ⁄ /  =  .                              

Hence     is absolutely continuous on,   -. 

Definition 1.8 [11] 
The mapping      ,   -       is said to be L−Lipschitzian on [   ] if 

        ( )    ( )                  For        ,   -  

Proposition 1.9   [36] 
Let   ,   -       be a function that is L   Lipschitzian for some constant    . 

Then     is absolutely continuous on ,   -.  

Proof  

let         and  choose    
 

 
. 

now,  if  { ( i ,  i ):  1      } is  a finite collection of disjoint intervals in [   ],  

such that     ∑   
   │ i  -  i  │˂  , 

So by using the Lipschitz condition for   ( i,  i ),  we obtain   

                       │  ( i) –  (  i)│                  for all       

Therefor  

                         ∑   
   │  ( i)    (  i) │     ∑   

                
 
 
 = . 

(Sequence of Taylor) 1.10 [38]   
The Taylor formula for continuous function   on     and      

 ( )   ( )  (   )  ( )   
(   ) 

  
   ( )        

(   ) 

  
   ( )   

our point the Taylor formula with an integral remainder term,   
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 ( )   ( )  (   )  ( )   
(   ) 

  
   ( )        

(   ) 

  
  ( )( )  

                                                                           +  
 

  
 ∫ (   ) 

 

 
  (   )( )                  1.1 

(It can be verified by integration by parts). 

Suppose that we are given an approximant (e. g.  of a function, a derivative 

 and an integral).  Whose error vanishes for       , -   where  

                                   , -             
       

   

Notation 1.11 [38] 

The Taylor formula produces an expression for the error that depends on  (   )   

This is the basis for the Peano kernel theorem, 

Formally, let   ( ) be an error of an approximant, thus   maps from  ,   - to  , 

And   is linear, so  (     )     ( )    ( ) for α, β   , and that  ( )     

for      , -,  

Thus, from (1.1) we have  

                            ( )       
 

  
  *∫ (   ) 

 

 
  (   )( )  },          

To make the range of integration independent of    we introduce the notation  

                    (   ) 
   =  { 

 (   )                             
                                         

 

 

Whence   ( )      
 

  
  *∫ (   ) 

  

 
  (   )( )  }. 

Now, let   ( )   *  (   ) 
   }, for     ,   -  then   is independent of     

Suppose that it is allowed to exchange the order of action of   ∫  and   , 

    So        ( )     
 

  
 ∫  ( )

 

 
  (   )( )  .                                                      
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Theorem 1.12   [8] (the Peano kernel) 
Let   be a linear functional from a space of functions to   such that  ( )     

for     , -, provided that        ,   -  and the above exchange of   with 

integration sign is valid, the formula (2.1) is true. 

Example 1.13 
We approximate a derivative by a linear combination of function values, 

              ( )       
 

 
 ( )    ( )   

 

 
 ( )  

Therefore,    ( ) =    ( )   [  
 

 
 ( )    ( )   

 

 
 ( )-  

And it is easy to check that  ( ) = 0  for       , -,  [Verify by trying  

 ( ) = 1,   ,    and using linearity of  -. Thus, for       ,   - we have, 

                         ( )  =   
 

 
 ∫  ( )

 

 
  ( )( )     

  To evaluate the Peano kernel K, we fix     Letting  ( ) = (   )  
  

 We have,        ( )   ( ) =   ( )   [  
 

 
 ( )    ( )   

 

 
 ( )- 

                         =   (   )   [  
 

 
(   ) 

   (   ) 
   

 

 
(   ) 

 -   

So 

                                  ( ) = { 

                           

   
 

 
                

 

 
(   )                   

 

 

It is obvious that  ( ) = 0 for t∉ [   -  since then   acts on a quadratic 

polynomial 
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1.2 - Functions of Bounded Variation 

Definition 1.14 [35]  

A function   ,   -      is said to be of bounded variation on [   ] if 

and only if there is a constant      , such that 

                           ∑   
   │ ( i) –  ( i-1) │≤      

 for all partitions  p = { 0,   1,   2,  …,   n }  of  ,   -. 

   If    is of bounded variation on [   ], then the total variation of  

     is defined to be 

                ⋁   
 = sup{ ∑   

     (   )   (    )     *              +   

                                                                                   is a partition of [a, b]}. 

Lemma 1.15 [54] 

Let    ,    -     be a function, Let   *           + and *           } any   

partitions of [   ] such that 

*              +    *            +  
Then, 

                       ∑   
     (  )–   (     )   ∑   

      (  )–   (    )   

Theorem 1.16 [36] 
Let     and    be functions of bounded variation on [   ], 

and let    be a constant. Then 

(1)     is bounded on  ,   -  

(2)      is of bounded variation on every closed subinterval of  ,   -  

(3)      is of bounded variation on  ,   -  

(4)          and   –     are of bounded variation on ,   -   
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(5)         is of bounded variation on ,   -   

(6)   If   1/    is bounded on [   ],   then    /  is of bounded variation on ,   -  

 Proof:  

(1)  Suppose    is not bounded on ,   -   

  so there exist      ,    -  such that    ( )     for   r   R.  

  Now, let    =    for         , such that {   : 1≤ i ≤ n} be a partition of [a, b]. 

  Then                   ∑   
     (   )–   (     )   ,   

  Therefor      ⋁   
      for some partition {   : 1≤ i ≤ n } of [a, b]. 

   Hence,    if     be functions of bounded variation on [   ], then   is bounded. 

(2)   We begin by assuming that    is of bounded variation on [   ] Thus 

                       ⋁   
  = sup {∑   

   │ (   ) –   (     ) + = r,  

    Let [c, d]    [a, b] and {   : 1≤ i ≤ n} be a partition of [c, d],  

   Then extend this partition to [a, b] by adding the points   and   , and relabeling 

  So   *              + is a partition of  ,   - such that  1 =   and  n+1 =     

  Then  

     ∑     
   │  (  ) –   (     )  │  ( 1) –  ( ) │ 

                                                 + ∑     
   │ ( i) –  ( i-1) │+│   ( ) –   ( n) │≤      

  Because original partition of ,   - was arbitrary we can conclude that, 

                                     ⋁   
   ≤   .                                                               

(3)     Let { i: 1 ≤ i ≤ n} be a partition of  ,   - consider  

           ∑   
   │   ( i) –   ( i-1) │=   ∑   

   │ f (   ) –  f ( i-1)│ 

                                                        ≤ │ │ ⋁    
   ≤ │                  for r   R  
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  Then      is bounded variation and     ⋁  (  ) 
  = │ │⋁   

    

 (4)      Let { i: 1 ≤ i ≤ n} be a partition of [a, b].  

    By repeated use of the triangle inequality 

    We have  

            ∑   
   │   ( i) +   ( i)      ( i-1)     ( i-1) │≤ ∑   

   │  ( i) –   ( i-1) │ 

                                                                                    + ∑   
   │  (  ) –   ( i -1) │ 

                                                           ≤   ⋁  
 
  +  ⋁  

 
  

   And notice that ⋁   
  + ⋁   

  is finite, the partition we choose was arbitrary  

   hence     is bounded variation to prove  –  is of bounded variation simply     

    note that   –    =   + (  )    by (3),  (   ) is bounded variation.  

(5)  To prove     is bounded variation  

   Let { i :          } be arbitrary partition of  ,   - then, 

   By repeated use of the triangle inequality, we get 

     ∑   
   │   ( i)  (  ) -   ( i-1)   (   -1) │  ∑   

   │  ( i)   (  ) -   ( i-1)   (  -1) 

                                                                              + (  ( i)   (  -1) –   ( i)   ( i-1) │ 

                                                                      = ∑   
   ││  ( i)│ │   ( i) -   ( i-1)│ 

                                                                          ∑   
         ( i-1)     ( i) –   ( i-1)| 

                                                                             ≤    (  ) ⋁   
  + (  ) ⋁   

 ,  

     Where │ ( )│˂   and │  ( )│˂  ,     for       ,   -   

 Since   (  ) ⋁   
  + (  ) ⋁   

   is finite,                                                                                                                                                                                                                                                                       

Then       is bounded variation.                                                             

(6)   Since       is bounded so there exists     such that  

     ( ) ≤          for       ,   -   
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    Now let { i:          } be a partition, then  

           ∑   
   │

 

 (  )
    

 

 (    )
  │= ∑   

   │
 (    ) 

 (  )

 (  ) (    )
 │  

                                                               ∑   
   │  (  ) –  (     ) │ 

                                                                 ⋁   
        

  Thus   
  

 
   is bounded variation so by (5)  ( ) (

  

 
) = 

   

 
 it is also.                   

Lemma 1.17   [47] 

If     ,   - → R is a function and     is of bounded variation on ,   - and 

 [   ], then     is of bounded variation on ,   - and      

                                        ⋁   
    =  ⋁   

  +  ⋁     
   

Theorem 1.18 [54] 
 If   is monotone increasing on [   ], then   is of bounded variation on [   ], and 

                                     ⋁   
  =  ( )     ( )  

Proof:  
 Let {xi, 1≤ i ≤ n } be a partition of  [   ], we know    ( i)     ( i-1) for   

and so   ( i) –   ( i-1)   0, and │ ( i) –  ( i-1)│= (  ( i) –  ( i-1)). 

Hence  

         ∑   
   │  (xi) –  ( i-1)│= ∑   

   (   (xi) –   (xi-1))  

                                                         = ( ( n) –  ( n-1)) + ( ( n-1) –  ( n-1)) + … 

                                                                       + (  ( 3) –   ( 2)) + (   ( 2) –   ( 1)) 

                                                          =   ( n) –   ( 1) =  ( ) –   ( ) 
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Easily noting that  

                 n =   and  1 =     

It is the same for every partition of [   ]. So   

                                     ⋁   
   =  ( ) –  ( )      

Thus      is of bounded variation                                                 

Lemma 1.19   [55] 

 If    ,   - → R is a function, then  ⋁   
  = 0   if and only if       is constant. 

Proof :  
 Suppose that     is constant then     is monotone function, so by 

 (1.18)        ⋁    
    ( ) –    ( )   

However                        ( ) =   ( )       .   

So                                       ⋁    
   = 0  

Now suppose that     is not constant on [   ], so there exists  1,   2   [   ] such 

that  1 =  2   and   ( 1) ≠   ( 2).  

If we take these points as a partition of [   ], we have  

          ⋁    
     │  ( 1) –   ( )│+ │   ( 2) –  ( 1) │+ │  ( ) –  ( 2)│    

But                                   │  ( 2) –   ( 1) │  0  

Thus  ⋁    
     0 and   ⋁    

                                   

Lemma 1.20   [36] 
If    is a function of bounded variation on [   ] and      [   ], then 

    ( ) =  ⋁    
  is an increasing function on [   ]. 

Proof:  
 Let  1,  2   [    ] and        , because     is of bounded variation so by   



15 
 

  (1.17)  we have 

                                          ⋁  
   
  =  ⋁  

    
  +  ⋁  

   
   

 

                                          ⋁  
   
  –  ⋁  

    
   = ⋁  

   
   

   

                                            ( 2) –  ( 1) =   ⋁   
   
   

   0  

So                       ( 2)       ( 1)     

 Hence   ( ) is an increasing.  

Theorem 1.21 [47] 
If     ,   -       is a function of bounded variation, then there exist 

two increasing functions,     and     such that                 

Proof   
             Let       = ⋁   

   for     [   ],  

And    1( ) =0, so by (1.20)  1 is increasing.  

  Now, 

                 define  2    1 –    

We need show that  2 is increasing.  

Let   ,      [   ]  such that      , then 

                          1(y) –  1(x) =   ⋁  
 
  

                                                   │ ( ) –  ( )│      ( )–   ( )       

[Because    1(y) –  1(x) =    ⋁  
 
  ⋁   

   ⋁  
 
 -                                           

Then  

                           ( ) –  1( )    ( ) –  ( ) 

                         1( ) – f ( )       1( ) –   ( )  

So                              2( )         2( )  

Thus  2 is increasing on [   ], and   =     .                                                                     
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Lemma 1.22 [56] 
 If    ,   -     is absolutely continuous, then it is of bounded variation. 

Proof       
  Let       such that     ∑   

   │  ( i) -  (  i)  │˂  1  when       ∑   
   │ i  -  i  │˂ 

 , and  { ( i ,  i ):  1      } is  a finite collection of disjoint intervals in [   ],  

Round  up ( 
   

 
 )  to the nearest integer value and call it  . 

Now, construct a partition of [   ] as follows, {      .
   

 
/ :  0      }. 

Then   

                   =  (   .
   

 
/) -  (  (   ) .

   

 
/) =  

   

 
    , 

So, by the absolute continuity condition,   we have 

                                     ⋁   
    
  

   1,   

 Now, by Summing over i from 0 to   and using the (1.17), we have  

       ⋁ (  
 )   ∑   

   ⋁   
    
  

      … +     

Therefore    is of bounded variation.  

 Example 1.23  

Define the function    ,    -    , by         ( ) = 8
               

    
  

 
        

We know that     
  

 
  is bounded, and too  

                         |   
  

 
 |   1,   where     ,  

then by use of  definition of  continuity in( 1.4) we have, 

         ( )    ( )   |    
 

 
  | =    |   

 

 
|        

Choose    .     

  If                 implies that │ ( )  -  ( )  │        , then     is continuous 

on [ , 1] 

but is not of  bounded variation,  to see this, for each      N, let the partition  

                        = {   
 

  
 

 

    
   

 

 
 
 

 
  }  
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The values of   at the points of this partition one  

           (  ) = *  
 

  
   

 

    
 

 

    
   

 

 
 

 

 
   }, then 

∑   
   │  (   ) –    ( i-1)│   

 

  
      

 

    
 

 

  
 + │

 

(    )
 + 

 

    
│ 

                                           +      
 

 
   

 

 
    

 

 
   

 

 
       

 

 
  

                      = 
 

  
 + 

 

    
 + 

 

  
 + 

 

(    )
 + 

 

    
 + …+ 

 

 
    

 

 
  

 

 
   

 

 
  1 +  

 

 
 

                      = 2 ( 
 

   
 + 

 

    
 + … + 

 

 
 ) +1, 

 

 

We have the series ∑
 

 

 
     diverges, then given any  , there is a partition     for 

which 

                        ∑   
   │  ( i) –   ( i-1)│   . 

So by lemma1.22    is not absolutely continuous. 

Corollary 1.24   [47] 

  If   is continuous on [a, b] and     exists and is bounded on (a, b). 

Then   is of bounded variation on [a, b]. 
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Corollary 1.25 [35] 
  If     ,   -      is a function that is L-Lipschitzian for some finite constant  

L > 0, then   is of bounded variation on [a, b]. 

Remark 1.26 [36] 
  If     is a continuous function from ,   - to  , and if     is differentiable on 

(   ) with   |   ́( )|≤     for        (   )   then 

        |   ( )       ( )   ≤                              ,   -  

           in this case,     is a Lipschitz continuous function on ,   -  
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                 1.3 - Riemann- Stieltjes integral 

Definition 1.27   [47] 
 

Let      ,   -      be bounded functions, suppose that there exists  

 a real number    such that for every  ε ˃ 0 there is        for  which, 

                                   ∑
   

 (  )
 
   ,  (   ) –    (    )-          ˂      

 For every subdivision    of mesh size less then   and for {  + with (     ≤   ≤   )    

            ,   then  we say that   is Riemann – Stieltjes integrable with respect  to  

   on ,   - or     ( ),  and  we write  ∫      
 

 
.  

[mesh   = ‖  ‖ =    
     

 |   i –  i-1 |,    for             ]. 

Example 1.28 
  Let      ,   -       given by   ( )       and  

                                    ( ) =     { 
           

 

 

     
 

 
     

     

Then  the sum   ∑
   

 (  )
 
   .  (   )–    (    )/ =  ∑   

   .  (   )–    (    )/, 

for any partition {               } of [   ] and any      ϵ ( i-1,   i ),  there is   

such that         and  
 

 
   (        ),  so 

∑   
   .  (   )–    (    )/ =  0 + … +(  (  )   (    )) +  … +0  = 1 – 0 = 1, 

Then however  ∑
   

 (  )
 
   .  (   )–    (    )/ =1, 
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Then        ( ), and      ∫      
 

 
.                               

 Remark 1.29    [9] 

 If      is Riemann – Stieltjes integrable with respect to    then,  

                              ∫  
 

 
     =    ‖  ‖   (       ),  

Where  

                (P,      ) =  ∑
   

 (  )
 
   .  (   )–    (    )/    is called Riemann – 

Stieltjes sum, for     ϵ ( i-1,   i ),  where   *          +  any partition of [a,  b], 

and                    

                                     ‖  ‖ =     
     

 |   i –  i-1 |,    for                 

Definition 1.30    [51] 

A partition     is said to be a refinement of   , if         . 

Notation 1.31 

  If     is refinement of    then,   mesh      mesh P   

 So,    if    mesh            and mesh P     for         

Then,         . 

Remark    1.32   [51] 
Given two partition            of [   ], then their common refinement is  

                                         
 

 Remark 1.33    [10] 
      R ( )  if each number ɛ ˃ 0, there is a number   and a partition     of ,   -    

such that if    is refinement of       and if   (  ,    ) is any corresponding       

Riemann – Stieltjes sum, then |  (      ) –   | ˂ ɛ.   
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Theorem1.34    (Cauchy criterion for integrality)   [10]                 

        R ( ) if and only if each number ɛ ˃ 0,  there is a partition     of ,   - such   

that if   ,      are refinements of       and if    (        ) and S (  ,  ,  ) are any 

corresponding  Riemann – Stieltjes sums, then| S (  ,  ,  ) – S (  ,  ,  ) |˂ ɛ. 

Proof  

If    R ( ) and ∫  
 

 
       there is       such that if    and       are refinements 

of   . 

Then                (  ,       )         ˂ ɛ/2,      and           (      )             , 

So                 

                            (  ,  ,   )  -     (  ,   ,  )  ˂ ɛ/2 + ɛ/2   = ɛ. 

 Conversely,  

 Let     be a partition of [   ] such that if   and     are refinements      then  

                      │   ( ,  ,   ) –   (  ,  ,  ) │˂ 1. 

  Inductively, we choose     to be  a refinement of      
  
such that if       are 

refinements of     

Then  

           │  (   ,   ) –   (    ,   ) │˂ 1/n.  

Let (  (  ,        ) ) be a  sequence of real numbers obtained in this way, 

since     is refinement of     for         so this sequence of sums is Cauchy 

sequence. 

The names that    (   (      ) )      where   is real number,  

So if   ɛ ˃ o, there is N, such that 2/N ˂ ɛ and 

                         (       ) –          . 

 If P is a refinement of   , then    

                     (      ) –   (       )               
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 Hence                        (     )–              

 Then, by remark 1.33        ( ) on ,   ],    and  ∫  
 

 
        

Theorem 1.35 [47]                 

         If  1      ( ) and  2   R ( ) on  ,   -   then   1+   2    ( ) on  ,   -    

and                                           

                     ∫ (   
 

 1+   2) d =  ∫  
 

 1d +  ∫  
 

 2d . 

Proof 
 let     and let            be partitions of [   ] such that if P is refinement of 

both           , then for any corresponding Riemann – Stieltjes sums,   (  ,       ) 

and    (  ,        )  there exist             such that   

                                   (  ,     )  -       ˂  
 

    
                                                   

 and 

                                  (  ,      )  -       ˂  
 

     
                                                    

Let         =       , then         and both of relations above still hold. 

When the same intermediate points are used, we have  

               (  ,             )  =  ∑
   

(        )(  )
 
    (   ) 

                                                 = ∑
   

(   )(  )
 
   (   )  

                                                                            +∑
   

(   )(  )
 
   (   ) 

                                                 =   ∑
   

  (  )
 
   (   ) +   ∑

   
  (  )

 
   (   ) 

                                                 =    (  ,       )  +    (  ,       ).                           
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So by 3.1, 4.1 and 5.1, we have  

|         -   (  ,           )| = | (    -   (  ,      ) ) +  (     (  ,     ))| 

                                                                     ≤     
 

    
 +     

 

    
  =   

     Then    ∫ (   
 

 1+  f2)d          . 

Theorem 1.36     [10]                                                                                                                                                            

If      (  ) and   (  ) on [a, b], then      (        )   and                                            

                              ∫   (   
 

 1+   2) =  ∫      
 

 
+  ∫       

 

 
  

    When      are real numbers. 

 Proof: 

Let           , then for any partition {             } of [   ],  then 

           =    (       )  =   (       ) (  )   (       )(    ) 

                                            =  (   ) (  )   (   )(    ) + (   )(  )  (   ) (    ) 

                                           =          +        . 

Now,  

let      and let            be partitions of ,   ], such that if P is refinement of 

both           , then  

                 

                             ∑
   

 (  )
 
    (     ) -       ˂  

 

    
, 

 And 

                              ∑
   

 (  )
 
    (     )   -       ˂  

 

     
. 

 If    =       , then P is refinement of     and  

    Clearly, if {          } is the same intermediate points are used, then  
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                    S(  ,           )  =  ∑
   

 (  )
 
    (   )(        ) 

                                                       =   ∑
   

 (  )
 
    (   )(   )+ ∑

   
 (  )

 
    (   )(   ) 

                                                      =  ∑
   

 (  )
 
    (   )(  )+  ∑

   
 (  )

 
    (   )(  ) 

                                                      =     (  ,        )  +    (  ,        ). 

But we have  

                         ∫     
 

 
     and  ∫     

 

 
    ,  then  

 |∑
   

 (  )
 
    (   )(        ) – (        )| = |[    (  ,      ) +    (  ,       )- 

                                                                                         – (        ) |  

                                                                             ≤    | ,    (  ,      ) -   ]|+ 

                                                                                    | ,    (  ,      ) -   ]| ˂     

Hence,       (        )   and ∫   (   
 

 1+   2) =         .                                  

Theorem 1.37       [47] 
     Suppose that      , then    ( )  on [   ] and [   ] if and only if  

          ( )  on [   ],  and  

                                                  ∫    
 

 
   ∫    

 

 
  ∫    

 

 
. 

Proof 

 If     , let     be partitions of ,   - such that if   
  is refinement of    , then  

                                            (  
 ,      )         

     ˂  
 

 
  

 Similarly for ,   -  we can say  

                                        (  
  ,      )         

     ˂  
 

 
    for    

   is refinement of        
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 Then                            ∫          
  

 
   and  ∫     

 

 
      

  

 Let           =            such that   if   
  is refinement of    , then 

                             (        ) =  (  
 ,      )  +   (  

  ,       ) 

Where   
  and    

   denote the portions of   ,   -  and ,    - induced by    and the 

corresponding intermediate points are used, then 

             |(   +   )      (      )| ≤    (  
 ,       )        

      (  
  ,       )       

    

  

                                                       ≤   
 

 
  + 

 

 
  =  . 

     So      ( )  on [   -   and  

                                                  ∫    
 

 
   ∫    

 

 
  ∫    

 

 
. 

Conversely: 

since     ( )  on [a, b],  given      there is a partition     of [   ] such that 

if       are refinements of    , then (by  Cauchy Criterion) 

                                           | S (       ) – S (  ,      ) | ˂    

For any corresponding Riemann – Stieltjes sums,   S (  ,  ,  )  and   S (  ,  ,  )  

Now assume that        ,  

let   
  be the partition of  [   ] such that    

        

Suppose that   and    are partitions of [   ] such that        
   and         

 , 

and 

                  *,   ]    +    and          *,   ]    +, then 

     and     are  identical on  ,   ] that, if we use the same intermediate points, 
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 So  

                |S (   ,  ,  ) – S (   ,  ,  )| = | S (  ,  ,  ) – S (  ,  ,  ) | ˂   , 

Therefore,    ( )  on ,   ], and a similar argument also applies to the interval 

[   ]. 

Theorem 1.38 (Integration by parts)   [47] 
  A function     is integrable with respect to     over [   ] if and only if    is 

integrable with respect  to     over [   ],  

 and   

           ∫     ∫     
 

 

 

 
   ( ) ( )–    ( ) ( )  

Proof 

Let       be given.  

By definition (1-27), there is a     ,    

                          |∑  (   ) , (   )   (     ) -   ∫     
 

 
   

    |   ,         

for partition         
    

      
   of mesh    , and    

      
  
   

    

Now,  

       let    
 

 
  ,  and choose                           of  mesh     and  

            ,           ,   and  we further select    = a,          

Then we obtain the partition   :                      . 

So,     is   refinement of      therefore  mesh          and                    

for            +1. 

Then, we have 

 ∑  (  ) , (  )   (    ) -  ∑  (   )
 
     (  )

 
        ∑  (   )

 
     (    )  

                                                 =  ∑  (     )
   
     (    ) +  ( ) ( )   ( ) ( ) 
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                                                       ∑  (   )
 
     (    )      ( ) ( )   ( ) ( )  

                                                 =    ∑  (     )
   
     (    )   ( ) ( ) 

                                                       ∑  (   )
   
     (    )   ( ) ( )  

                                                  =   ∑  (    )
   
    (  (     )    (   ) ) 

                                                          ( ) ( )  +  ( ) ( )   

 Therefore                              

 ∑  (  ) , (  )   (    ) -   ( ) ( )   ( ) ( ) 
    

                                                         ∑  (    )
   
   ,  (   )    (     )-  

                    

Then, by exists of ∫     
 

 
and since         are refinements of       we have  

 ∑  (    )
   
   ,  (   )    (     )-  ∫      

 

 
  , 

But,        

 ∑  (    )
   
   ,  (   )    (     )-  ∫    

 

 
    ∑  (  ) , (  )   (    ) -  

 
    

  {, ( ) ( )   ( ) ( )-  ∫    
 

 
   . 

Hence,  ∫    
 

 
 exist and 

∫     ∫     
 

 

 

 
   ( ) ( )–    ( ) ( )    

Theorem 1.39   (Modification of the integral)    [51 ] 

 Suppose that      and     are continuous on [   ], then  ∫    
 

 
 exists.   And           

∫      
 

 
  ∫    

 

 
  . 

Proof  

Let       be given.  

By definition (1-26) we have shown that,  
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         |∑  (  ) , (  )   (    ) -   ∫  ( )
 

 
   ( ) 

     |   ,                               

for  any partition   {              } of [a, b],  such that the mesh of P is   

Sufficiently small and      ,        -  

 by the mean – value theorem  for any                there is  

        ,       -, such that  

                              (  )    
 (  )  (    )

        
, so                                                     

               ∑  (  ) , (  )   (    ) -  ∑  (   )
 
      (  )

 
   (       )                  

If            then   

 ∑  (   )
 
      (  ),(       )-   ∑ (   )(  ) ,(  )  (    ) - 

 
                          

Now, since      is continuous on [a, b] ( it is compact), then    is uniformly  

continuous on [a, b].  

Therefore, there is a       such that for             it follows that   

                             (  )    (  )      
 

    (   )
                                                     

(Where    ( )                ). 

   By definition of Riemann – Stieltjes integral (where  ( )    and for any 

partition P with mesh less than  ), and from [8.1] we have,   

                   |∑ (   )(  ) ,(  )  (    ) -  ∫ (   )( )  
 

 
  

   |   
 

 
.                      

If        then from [9.1], we can say that  

 |∑   
    (  ) , 

  (  )    (  )-((  )  (    ))| 

                                                      ∑  |
 

    (   )
(       )|

 
    

                                                       
 

 (   )
 ∑  (       )

 
    = 
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Lastly,   by [6.1], [10.1] and [11.1], for any     ,     ,       -  we get 

             |∑  (  ) , (  )   (    ) -  ∫       
 

 
  

   | 

                                            =|∑  (   )
 
      (  )(        )  ∫    

 

 
  | 

                                              |∑   
    (  ) ,  (  )    (  ) -((  )  (    ))| 

                                                + |∑ (   )(  ) ,(  )  (    ) -– ∫ (   )( )  
 

 
  

   | 

                                                    
 

 
  +  

 

 
  =   

 Hence   ∫    
 

 
 exists,   and      

                              ∫      
 

 
  ∫    

 

 
    

Example 1.40 

Let  ,  
 

 
 ]   ,   -    be a function define by    ( )       ,  then   '( ) =       

And       are continuous on ,  
 

 
 ]  

So, we can use [1.34] and [1. 33] to show that ∫    
 

 
 

  is exist and  

            ∫    
 

 
 

 ∫      (    )
 

 
 

 ∫    
 

 
 

   = ∫           
 

 
 

   

                                                                             =  
 

 
 (    )   

 

  =  
 

 
. 

And, from Integration by parts; 

                ∫      (    )
 

 
 

 =             

 

     ∫      (    )
 

 
 

 

So,    

                2∫      (    )
 

 
 

  =   (    )   

 

  =  1  
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Or              ∫      (    )
 

 
 

 =  
 

 
.  

Definition 1.41   [47]      

 Let      be functions defined on  ,   -  and    be a monotonically increasing 

function on [   ]. 

Corresponding to any partition     of ,   -         *                    +, 

and 

         =  ( i) -  ( i-1),     for                   then    (      ≥ 0). 

Define the upper and lower Darboux – Stieltjes sums, 

                         (  , f,  )  =   ∑   
   i    , 

                                 (  ,  f,  )   =    ∑   
    i     ,   

     where 

                     i   = inf {  ( ) :   i-1 ≤    ≤   i } 

            i = sup *   ( ) :   i-1 ≤    ≤   i }, 

  Then   the upper Darboux – Stieltjes integral of as 

             ∫  
 

 

̅̅ ̅̅
  d  = inf     (  ,     ),   

  and lower  Darboux - Stieltjes integral of as   

                   ∫  
 

 
     = sup   ( ,   ,  ). 

If ∫  
 

 

̅̅ ̅̅
    = ∫  

 

 
       then   is Darboux – Stieltjes integrable with respect to     

and 

                      ∫  
 

 

̅̅ ̅̅
    =   ∫  

 

 
    = (S – D)∫  

 

 
   . 
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Examples 1.42 
(1)     If     is constant on [   ], then any bounded function   is Riemann – 

Stieltjes integrable with respect to    

Clearly;  

        =  ( i) -  ( i-1) = 0,   for  any  partition   p = {x0,  x1,  x2, … , xn} of  [a, b],     

 and  

                   (  , f,  )  =   ∑   
   i 𝛥    = 0 =   ∑   

    i 𝛥    =   (  ,   ,  ).   

 So                       ∫  
 

 
    =   ∫  

 

 
  d = 0. 

 (2)      Suppose    increases on  ,     ]     ,    -  and continuous at  0, 

            ( 0) = 1, and  ( ) = 0   if   ≠  0,   0    ,    ],  then     R ( ). 

Since if       there exists    , such that  

                (x) -  (x0)|  
 

 
      whenever       -  0 |    

Let   any partition of [a, b], such that    i-1 ≤   0 ≤  i and                 

Then            =  (xi) -  (xi-1) =  (xi)    (  )      (x0)    (xi-1)   
 

 
  + 

 

 
   =  , 

                      0   ≤     (  ,     )  =   ∑   
   i      =      i ˂   

 thus            0   ≤    ∫  
 

 

̅̅ ̅̅ ̅̅
 d   = inf   (  ,      )       

 Since   is arbitrary,   so    ∫  
 

 

̅̅ ̅̅ ̅̅
 d    = 0.  

also for any     partition  of [a, b],      = inf {   ( ) :   i-1 ≤    ≤   i }={ 0 } 

Therefore         ∫  
 

 
  d = 0 

Then           ∫  
 

 
   =   ∫  

 

 
f d  = (S – D)  ∫  

 

 
    =0. 
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Theorem 1.43[51] 

If      is a refinement of  , then  

                    (        )         (     )  

 Proof  

Assume that   contains just one point more than     

Let this be   and    i-1 ≤   ≤  i. 

Let                        M i
ꞌ
= sup {  ( ) /     [  i-1, c] } 

and                      M i
"
 = sup {  ( ) /     [ c,  i ] }, 

then                     M i
ꞌ 
≤ M i,   and  Mi 

"  
≤

 
M i.   

consider   

             (    ,  ) = ∑   
 
   
   

      +  i
ꞌ 
 [ ( ) –   ( i-1)] +  i 

"
[ ( i) –  ( )]  

                                ≤  ∑   
   
   

K      +  i [ ( ) –   ( i-1)] +  i[ ( i) –   ( )] 

                       ≤  ∑   
   
   

K      +  i
 
 [ (  ) –   ( i-1)]  

                                  = ∑   
   
   

K       +  i     

                         =    (    ,  ).   

                                                                 

Theorem 1.44 [51] 

 ∫   
 

 
d  ≤  ∫   

 

 
d    

Proof:    

            Let          be any partitions of [   ].  

            Let      =         
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Then     is the common refinement of     as well as   .  

Therefore by theorem 1.43   

        (    ,     ) ≤     (   ,  ,  )                                                              12.1 

And          (    ,  ,  ) ≥    (   ,  ,  )                                                                13.1 

Also we know that  

     (       ,  )  ≤      (   ,     )                                                                14.1 

From (12.1), (13.1) and (14.1), we get 

   (  ,  ,  )  ≤    (  ,  ,  ) ≤     (  ,  ,  )  ≤    (   ,  ,  ) 

Therefore for any two partitions      and    of [   ], we have  

     (       ) ≤    (   ,     ).  

Keeping    fixed and varying    over all partitions of [   ], 

           (  ,     ) ≤   inf    (  ,  ,  ). 

Now this is true for all partitions     of [   ]. 

Therefore   

 Sup   ( ,  ,  )  ≤  inf    ( ,  ,  ), so  

                                             ∫  
 

 
 d  ≤  ∫  

 

 
 d .                                       

Theorem1.45 [51] 
   ( )  on [   ] if and only if for every       there exist a partition    of 

[   ] such that,  

                                         (    ,  )  –     (    ,  ) ˂ ɛ.  

Proof:  
  If        R ( ) on [   ], then 

                   ∫   
 

 
d  =  ∫     
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when    ∫   
 

 
   =  inf    (    ,   ),  

 and        ∫  
 

 
 d  = sup   (   ,   ).  

Therefore, by definition of infinimum and supremum,  

For given ɛ   0, there exists a partition     of ,   ] such that  

                      (  ,      )      ∫  
 

 
    + ɛ/2                                                           

And a partition    of ,   - such that  

                (  ,      )      ∫  
 

 
 d  - ɛ/2                                                         

  Let            

 Then by theorem 1.43                       

                               ( ,       )      (   ,      )                                                     

 and                       ( ,  ,   )      (  ,      )                                                        

  

               From (15.1), (16.1), (17.1), (18.1) and (19.1), we get  

                (       )      (  ,  ,  )   ∫  
 

 
    + ɛ/2 

                                                         ∫  
 

 
 d  + ɛ/2       (  ,  ,  ) + ɛ/2  + ɛ/2 

                                                                 (  ,  ,  )  + ɛ        (  ,  ,  )  + ɛ   

Therefore there exists a partition    of [   ] such that  

                     (       )  –   (   ,    )  ɛ                                                       20.1 

Then for every partition P of [   ], we have  

       (       )      ∫   
 

 
d       ∫  

 

 
           (       )                                 21.1 
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From (20.1) and (21.1), we get that  

                 0     ∫  
 

 
     _ ∫  

 

 
          (   ,   )  _    ( ,  ,   )   ɛ.  

 This is true for ever      0.  

 Therefore               ∫  
 

 
     =   ∫  

 

 
     

  Hence       R ( ) on [   ].   

Corollary 1.46   [10] 

 Let   be bounded and   be monotone increasing on [   - then      R ( ) on [   ]   

 if and only if for            there exists     such that if    is a refinement of     

then,  

                                              ∑ (     )       
    

Where              = sup {  ( ):     [ i-1,  i]} and     = inf {   ( ) :     [ i-1,  i]}. 

  

 

Theorem 1.47    [51] 
    If     h   R (  ) on [   ], then  

(a)             R ( ) on [   ]. 

(b)            ( ) on [   ].  

 Proof 

Let    ,  

since     R (  ), then there exists     such that if    is a refinement of     then  

                  ∑ (     )       
              = {               }    

We note         

                     = sup {   ( ) :     [ i-1,  i]}   inf {   ( ) :     [ i-1,  i]} 
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                     = sup {   ( ) :     [ i-1,  i]}   sup {(-  ( )) :    [ i-1,  i]} 

                             = sup {  ( )   ( ) :       [ i-1,  i]},                                     22.1 

And   

                                          |  ( )     ( ) |      ( )   ( )  

So by (1.46) and (22.1),   we have  

                          ∑   
   *sup { |f ( )|  - |f ( )| :       [ i-1,  i]}}      ,                           

So    |  |   R (  ). 

Now observe that |  ( )| ≤   for    ,   -, and  

              i( 
2
)  = sup { 2

( )/     [ i-1,  i]}  

                          = [ i(   ) ]
2
  

             i( 
 )    = [ i(│ │) ]

2 
                         

       i(  
2
) -  i(  

2
) = [ i(│ │) ]

2 
- [ i(│ │) ]

2
   

 

                        = [ i(│ │) +  i(│ │) ] [ i(│ │) –  i(│ │) ]  

                            2  [ i(│ │) –  i(│ │) ]   2  (ɛ/2 )     

  So by Corollary (1.46)       R ( ). 

(b)   Since       R ( ) on [   ],  

   By theorem 1.35,   

         R ( ) and           R ( ) on [   ],  

   Therefore by part (a),  

(     )
2
   R ( ) on [   ],   and    (     )

2
   R ( ) on [   ] and 

           (   ) ,(     )     (     ) -      ( )  
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  Hence          ( ) on [   ].               

 Theorem 1.48 [51] 

If     is continuous and   is increasing on [   ], then     ( ) on [   ].  

Proof: 

 Let ɛ 0.  

Choose      such that       
 

 , ( ) –   ( )-
. 

  Since     is continuous on [   ], [ [   ] is compact]. then                                                            

  is uniformly continuous on,   ].  

Therefore for this    , there exists        such hat                                 

 │ ( ) –  ( )│         whenever        ,      [   ] with │   │˂  .                         

If P is any partition of [   ] such that  i  ˂  , Then 

            i –  i = sup {│  ( ) –  ( )         [     ,   ]}        for                

Therefore         

    (   ,  )  –    (   ,  )   ∑   
   i     – ∑   

    i     

                                                                    = ∑  (  
   i – mi )                          

                                                                          ∑     
    

                                                                                                           [  ( ) –   ( )]   ɛ.  

 Hence, from 1.45     R ( ).                                       

 Proposition 1.49    [47] 

   If     is continuous and   is of bounded variation, then     R ( ). 

(from  [1.18],  [1.21] and [1.36]  ). 
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Theorem 1.50       [51] 
 If    is bounded on [   ], and    has only finitely many points of discontinuity on 

[   ], and   is continuous at every point at which   is discontinues, Then 

     ( ). 

Proof  

Let ɛ  0,   

Put      ( ) ≤     for      ,   ], and  let E = {      ( ) is discontinues }  

so   is continuous at E = {            } and since E is compact then   is 

uniformly continuous at E , 

therefore we can cover E by finitely many disjoint intervals [     ]   ,   ] 

where       ,  and  

                                   ∑ ( (  )   (  ))  
 

  
  

     

And for any      E there exist [     ]     . 

Now, let     ,   -  (     )  for             ,  then   is closed subset of 

compact set  it's  compact, 

Hence   uniformly continuous on     there exist     such hat                                  

 │ ( ) –   ( )│   
 

 ( ( )   ( ))
    whenever          with │   │˂    

 Now, let  *               }  be  a partition of [a,  b], such that  

              for all   and no point of any  (     ) occurs in    

If          is not one of the        then    │        │˂  ,   

We note that  

                                      ≤     ≤       ≤      

So           ≤        and           ≤     therefore            ≤   , for all  i           

And              ≤   
 

 ( ( )   ( ))
   unless        is one of the     [by uniformly 

continuity of    ]. 

Then          (   ,  )  –    (   ,  )   ∑ (  
   i    )      
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                                                      ( ( )    ( ))
 

 ( ( )   ( ))
  + 2M.

 
  

/ =  . 

So by (1.45)       ( )     

Notation 1.51 
The Riemann-Stieltjes Integral may not exist if      has a single point of 

discontinuity, and   is also discontinuous at the same point.  

Example 1.52 

If     : [0,1] →R dented by  

          ( ) =     2 
            
           

      ( ) = 2
            
             

 

 let   *               +   be any partition of  [0,  1],  then  

If       such that        
 

 
     and            ,   then    

 [ (  )   (    )          but    (  )  will be  1 or 2,  depending  on whether 

     
 

 
  or     

 

 
, since  these two choices  may be made regardless of the mesh  

of  the partition,  then    ∫    
 

 
 dose not exist. 

 Theorem 1.53   [51] 

If              R ( )  and   monotonic on [   ] and    1( )    2( ) on ,   -  Then 

                                           ∫  
 

 1d   ∫   
 

 
  .  

Proof  
Let   be any partition of [   ].  

Since     ( )     ( ),  

             sup {   (x)  / x   [xk-1, x k  ]}      sup {  2(x) / x   [xk-1, x k]}  

Therefore,  

                               ( ,  1,   )      ( ,  2,   ), then  
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                           Inf    ( ,  1,   )   inf   ( ,  2,  ) 

 So       

               ∫  
 

 
  d        ∫  

 

 
  d  , 

[Since  1   R ( ) on ,   -  2   R ( ) on [a, b], 

  [But we know     ∫  
 

 1d = ∫  
 

 
  d       and ∫   

 

 
  = ∫  

 

 
  d   ]. 

         Hence                            ∫  
 

 1d    ∫  
 

 2d                                       

Proposition 1.54 [9] 
 If     R ( ) on [   ], then  

                   │∫        ∫      
 

 
 

 

 
  

Proof: 

By (1.47) we have           R ( ).  

Now for all      [   ] then   ( )   │  ( )│, 

So by theorem (1.52) 

                ∫    
 

 
   ∫    ( ) 

 

 
   

And     ∫      
 

 
    ∫     

 

 
 ≤  ∫     ( ) 

 

 
    =  ∫    ( ) 

 

 
   

So                                 

                            ∫    ( ) 
 

 
     ≤  ∫   

 

 
   ≤   ∫    ( ) 

 

 
  . 

 Then 

                                        │∫   
 

 
  │   ∫       
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2.1 Inequalities for function of bounded variation 

Lemma 2.1 [50] 
Let    : [   ]   R be a continuous function  on ,   ], and   is of bounded 

variation on [   ], then  

                 │∫  ( ) 
 

 
 ( ) │ ≤       

     
│  ( )│ ⋁    

                                    (1.2) 

Proof:  

          Let        :     
( )      

( )   …..  
      

( )      
( ) =    

         be a sequence of partitions of [   ],  such that    (   )   0 as n    , 

         where       (  ) =    
     

 * i
(n)

},  with     
( )

 =      
( )      

( ),  

           and if      
( )

   [  
( ),      

( )]  for    *           +, then 

            ∫  
 

 
(t) d (t)│= │     (  )   ∑     

   (  
( ) ) [  (    

( ) ) –   (  
( ))] │ 

                              (  )   ∑      
   │ (  

( ) )│   (    
( ) ) –   (  

( ))│ 

                                          
     

   │ │ ⋁   
  

Where ⋁   
 = sup ∑   

   │   (    
( ) ) –    (  

( )) │.              

Theorem 2.2 [31]                         

 Let     ,   -         be a function of bounded variation,  then  

           │∫  ( )    
 

 
- [ (   )  ( )   (    )  ( )- │ 

                                              , 
 

 
 (  –   )         

    

 
│]⋁    

              (2.2) 

for       ,   -   
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Proof  

          Using   the integration by parts formula for Riemann-Stieltjes integral,    

           ∫  
 

 
(   )  ( ) = (  –   )  ( ) 

 

  
 

+   ∫   ( )    
 

 
   

                                         = (  –   )   (  )  (  –    )  ( ) + ∫   ( )    
 

 
         (3.2)   

 (by lemma 2.1) 

 │∫  ( )   
 

 
 ,(  –   )  ( )  (  –    ) (  ) ]│ = │∫ (   )

 

 
  ( ) │        

                                                                                     ≤       
     

 │  –    │⋁   
 , 

                   
     

 │  –    │ =     {   –      –   }, 

From proposition 1.2  

                      {   –      –   } =  
 

 
,   - +│  - 

   

 
 │                                  (4.2)        

Then by (3.2),  (4.2) 

                │∫  ( )    
 

 
   , (  –   )  ( )  (  –   )  ( ) ]│ 

                                                                         [  
 

 
,   - + │    

   

 
 │] ⋁   

     

 To prove that 
 

 
 is the best possible suppose that (2.2) holds with constant C ˃0.  

            │ ∫    
 

 
   ,  ( ) (   )     ( ) (   )- │ 

                                            ≤ [   ,   - +│    
   

 
 │] ⋁        ,   - 

  

  If let        
   

 
, we get  

                                │ ∫    
 

 
 –  

 ( )   ( )

 
  (b – a) │ ≤    (  –   ) ⋁    
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Consider the function    ,   -      by  

                               ( ) = {
                   
          (   ) 
                    

       

then     is of bounded variation and let     {                    }  any 

partition of ,   -    then  

upper and  lower  Darboux - Stieltjes integral  is defined as                             

      ∫  
 

 

̅̅ ̅̅
     = inf     (  ,  ,  )  = inf  ∑     

   i       ∑     
   ( )     =      

       ∫  
 

 
     = sup   (  ,   ,  )  = sup  ∑     

    i      ∑     
   ( )    =     

 So                                    ∫  ( )   
 

 
 = b – a,  and                   

            ∑   
   │  (    )    (  )│ = │1 - 0│+│1 - 1│+…+│1 - 1│+│ 0 - 1│ 

                                                                = 1 + 0 + 0 +…+ 0 + 1 = 2  

Then                

                                         ⋁   
  = 2 

Hence,     from inequality (2.2) applied for this particular mapping we have  

                                    (  –   )        (  –   )  

Which we get     
 

 
 and from this showing that  

 

 
 is the best constant in (2.2).                                                                                                         

Corollary 2.3 

If we choose    x = 
   

 
  in (2.2), we obtain for the trapezoid formula for function 

of bounded variation; 

                  │ ∫    
 

 
 – 

  ( )   ( )

 
 (b – a) │    

 

 
 (b – a)⋁   

 . 
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   Corollary 2.4 [20] 
    Let   ,   -      be a monotonic nondecreasing, Then                                    

            ∫  
 

 
( )     [(   )  ( )  (   )  ( )]│ 

                                       ≤ (   )  ( )   (   )  ( )   ∫    
 

 
(  )     

                                       ≤ (   ) ,  ( )    ( )-   (   ) ,  ( ) –   ( )- 

                                          [ 
 

 
(  –   ) + │x – 

   

 
│][ ( ) –   ( )],   for   x   [a, b] 

Proof:  

  Applying the inequality |∫    
 

 
|   ∫      

 

 
  then 

        │∫ (    )  ( ) 
 

 
    ∫         ( )

 

 
  

                                         = ∫ (   )
 

 
d + ∫ (   )

 

 
 d  

                                        = (   )  ( ) 
 

 
 
+ ∫  ( )  

 

 
 + (   )  ( )

 

 

 

+∫  ( )  
 

 
  

                                      =   (   )   ( ) + ∫  ( )  
 

 
 + (   )   ( ) -∫  ( )  

 

 
  

                                      =  (   ) ( )– (   ) ( )  ∫    
 

 
(   ) ( )    

   is monotonic nondecreasing on [   ], then    is bounded variation  and                

                                   ( )     ( )   for        ,   -    

So 

                              ∫  ( )
 

 
       ∫  

 

 
( )     

Implies to             (  –   )  ( ) ≥    ∫   ( )  
 

 
  

And if            for        ,   -,   then  

                              ( )     ( )  
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                         ∫  
 

 
( )    ≥  ∫  

 

 
( )     

                       (  –   )  ( )  ≥   ∫  
 

 
( )     

 Therefor   

                       ∫    
 

 
(   ) ( )   = ∫    

 

 
 - ∫    

 

 
  

                                                           (  –   )  ( )   (  –   )  ( )   

 Then  

              (  –   )  ( ) – (  –   )  ( )   ∫    
 

 
(  –   )        

                                               (  –   ) ( )– (  –   ) ( )  (  –   ) ( ) 

                                                                                                (  –   )  ( )  

                                              = (  –   ) , ( ) –   ( )-  (  –  ) , ( ) –   ( )-,  

But    

                                  ( )     ( )     ( ) for all   ,   -    

so  

                 (  –   ),  ( ) –    ( )-  (   ) ,  ( ) –   ( )- 

               ≤      {  –      –   + [ ( )–   ( )    ( )–   ( )]                                                                                                          

= [ 
 

 
 [ b – a] + │x – 

   

 
│][ ( )–   ( )]. 

Corollary 2.5 

If we choose   =  
   

  
  in 2.4,  then     

 ∫  ( )    
 ( )  ( )

 

 

 
 (   )  ≤  

 

 
  (  –   ) , ( ) –   ( )-.                        
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Theorem 2.6 [19]  

 [Ostrowski for mapping of bounded variation]                    
Let   ,   -     be a mapping of bounded variation on [   ], Then  

 │∫  
 

 
( )    – (   )  ( ) │≤ [ 

 

 
  (   )      

   

 
 │] ⋁   

           ( 5.2) 

 (The constant   ⁄  is the best possible one)  

Proof:-  

by the integration by parts for Riemann - Stieltjes integrals , we have  

              ∫ (   )  
 

 
( )   =  ( ) (  –   )    ∫  

 

 
( )                                    ( 6.2) 

  and  

           ∫ (   )
 

 
   ( ) =   ( ) (  –   ) - ∫  

 

 
( )                                          (7.2)  

By add the above two equalities then  

           (   –    )   ( ) – ∫  
 

 
( )      =   ∫   

 

 
 (   )   ( )  

Where  

          (   )   =  {
                 ,      -
                  ,     -

 ,              for t, x   ,   -   

And we know      │   (   )   ( ) │ ≤     
     

 │  (    )│⋁   
 ,      

                                                      =     {(  –   )  (  –   )} ⋁   
    

                                                       = [ 
   

 
 +|x – 

   

 
 |] ⋁   

   

 Therefor  

           │∫  
 

 
( )    – (   )  ( ) │≤  [ 

 

 
  (   )      

   

 
 │] ⋁   

 . 

Now to prove that  
 

 
  is the best possible constant assume that the inequality (5.2)  
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holds with a constant c ˃ 0 that is,  

   │∫  
 

 
( )    – (   )  ( ) │≤ [   (   )      

   

 
 │] ⋁   

              (8.2) 

Consider the mapping       ,   -        given by                             

                                          ( ) =  {
            

   

 
      

 

             
   

 
      

  

then 

  ⋁   
 =   sup {∑   

   │  ( i) –   ( i+1)│} = │- 1│ +│ 1│ = 2 

And                             ∫  
 

 
( )   = 0 

    If  we  letting       
   

 
     in   (2.8)   we get, 

                                       –     (  –   )     [    (   –   )      ] 

      (  –   )      ,    (   –   ) 

                                                                                   

                                                    
 

 
 ≤  c     

 Hence    c = 
 

 
   is the best possible constant 

Corollary 2.7 [29] 

(1)  If we choose   x = 
   

 
    we get the following inequality which is well known 

      in the literature as the midpoint   inequality 

                               │ ∫    
 

 
 –   (b – a)   ( 

    

 
) │      

 

 
 (b – a)  ⋁   

 .  

(2)  If     is a monotonic mapping on [a, b], then  
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   │∫  
 

 
 (t)    – ( b – a ) f (x) │≤  [ 

 

 
 ( b – a ) + │x – 

   

 
 │]│ ( ) –  ( )│. 

 Example 2.8  
   If    ,   -      be a monotonic nondecreasing mapping on [    ].  

    Let    *              + be a division of the interval ,   -  and if   

                           [          ] for              , then  

                               ∫  ( )  
 

 
 =    (      ) +   (      )   

Where  

                             (      )  = ∑     
    (  )     

And there mainder satisfies the estimation   

                       │   (      )  │≤   ( ) . ( )–   ( )/   Where    ( ) =     
     

{hi}.  

Proof: 

        Apply (2.9) on the interval [        ], to get 

           │∫  ( )
    

  
   –  (  )   │ ≤  [½   +│     – 

        

 
│] (  (    ) –    (  )) 

Summing over i from 0 to        

│   (      )   │≤  ∑     
   │∫  ( )  

    

  
 –  (   )   │ 

                                ≤  ∑     
    [½   +│     – 

        

 
│] (  (    ) –    (  )) 

                               ≤   
     

 {[½    +│     – 
        

 
│]∑ (  (    ) –     (  ))  

   
     

But,    

                     
     

 ½   = ½  (h), and if       ≤    ≤         then  
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  ≤     – 

        

 
 ≤      – 

        

 
  

                      
       

 
 ≤     – 

        

 
 ≤ 

       

 
                                                                                                                                                                      

                   - ½ (     –   ) ≤      – 
        

 
 ≤ ½ (    –  )  

                    - (½  ) ≤      – 
        

 
   ≤ ½    

Then by triangle inequality  

                            │    – 
        

 
 │≤ ½     

So  

       │   (      ) │≤  ,    ( ) +     
     

  │   – 
        

 
 │] ( ( ) –   ( ))  

                                     =   ( ) .   ( )–    ( )/    
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2.2   Inequalities for Lipschitzian functions 

 Proposition 2.9   [28] 

If  is continuous on [   ] and   is lipschitzian with   > 0, Then 

                                   │∫    
 

 
 │   ∫      

 

 
                        (   ) 

Proof  
 Let     *           +  is a partitions of [   ] and        [ i,   i+1 ],  

  if   ( ) =      
       

        where      =  i+1 –  i then  

               │∫    
 

 
 │= │    

  ( )   
∑  (  

   
   )  [  ( i+1) –   ( i)]│ 

                             
  ( )   

 ∑   (  
    
   )││  ( i+1) –   ( i)│ 

                             
  ( )   

∑   (    
     )│  │ i+1 –  i│ 

                               =          ( )   ∑   (    
     )││ i+1 –  i│=   ∫      

 

 
. 

Theorem 2.10 [20] 

 If    :[a, b]   is Lipschitzian with      , then    

              │∫  ( )     
 

 
[  ( ) (   )   ( ) (   )-  

                                  ≤   [
 

 
(   )

 2
 + (x – 

   

 
)

2
],   for      ,   -.        (    ) 

 (The constant 
 

 
 is the best possible one). 
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Proof:  

From 2.9,  

∫ (   )   ( )
 

 
   =   ∫  ( )   

 

 
 (   ) ( )   (   )  ( ) 

│∫ (   )   ( )
 

 
  ≤       ∫        

 

 
  

                                 =    [∫ (   )  
 

 
 + ∫ (   )  

 

 
 ]  

                              =    [
(   )    (   ) 

 
 ]  

                              =   [ 
            

 
 + 

            

 
 ]  

                      =   [ x2
 – a x + 

  

 
  + 

  

 
  - b x + 

  

 
 ]  

                               =   [ x2
 – a x – b x +  

  

 
  + 

  

 
  ]  

                                   =   [ x2
 – a x – b x +  

  

 
  + 

  

 
  + 

  

 
  + 

  

 
  -  

    

 
  

    

 
 ]    

                             =     [(
  

 
   

    

 
 +  

  

 
) + ( x2

 – a x – b x + 
  

 
  

                                                                                        + 
  

 
  

    

 
 ) 

                              =    [
(   ) 

 
 + (  – 

   

 
 )

2]                                

                                 =   [  
 

 
 (b - a)

 2
 + (  – 

   

 
)

2]. 

To prove that  
 

 
  is the best possible constant assume that the inequality (    )  

holds with a constant c ˃ 0 that is, 

               │∫  ( )    
 

 
[  ( ) (   )   ( ) (   )-  
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                                                    ≤   [  (   )
2
 + (x – 

   

 
)

2
],     For        ,   -  

 If          
   

 
 , we get  

                   │ ∫    
 

 
 –  

 ( )   ( )

 
  (b – a) │ ≤      (  –   )                    (    ) 

 Consider the function   ,   -     by  

                                 ( ) =  { 
                      ,    -         
                             (   -  

 

 

Now,  to show that    is  Lipschitzian with     , 

If       ,   -,  then  

                        ( )   ( )   (   )  (   )               

If       ,    ),  then 

                                   ( )   ( )         

If    ,   -              ,    )     then 

                             ( )   ( )  |(   )  (   )    (   ) |         

but                        so  

                                      

And        so          then  

                                     

                            (   )      

Therefor  

                         (   )              Then   
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So                                ( )   ( )                

Hence      is Lipschitzian with     . 

 We have   ( )   (  )      from  (    )   

             │ ∫  ( )  
 

  
 –  

 ( )   (  )

 
  (1 –  (  )) │ ≤    ( ) (   –  (  ))  ,            

                ∫  ( )  
 

  
 =  ∫ (   )  

 

  
 + ∫ (   )  

 

 
  

                    =  .
  

 
   /   

 

 
  

   +  .  
  

 
 /   

 

 
 

  =  
 

 
 

 

 
 =  1. 

Then  

                │  – (0) (2) │ ≤              
 

 
 

Hence    c = 
 

 
   is the best possible constant. 

 

Remark 2.11 [20] 

If we choose x=  
   

 
 , then the trapezoid formula for Lipschitzian function, as  

                │∫  ( )     
 

    
– 

  ( )     ( )

 
 (b – a) │   ≤   

 

 
 (b – a)

 2 . 

Theorem 2.12 [28]   [Ostrowski for Lipschitzian function]  

If        ,    -      be an L– Lipschitzian function on [   ] then  

│∫    
 

 
 – (  –   ) ( )│≤   ,(   )

 

 
   (   – 

   

 
)
 

]  for     ,    -        (    )   

And the Constant  
 

 
 is the best possible one.  
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Proof:  

 Consider the function 

                     (   ) = {
              ,    -
               ,    -

 ,    

            ∫   (   )   ( )
 

 
 = ∫ (   )   ( )

 

 
 + ∫ (   )   ( )

 

 
 

 But,    

              ∫ (   )   ( )
 

 
 =   ( ) (  –   ) –  ∫  ( )    

 

 
 

 And  

              ∫ (   )   ( )
 

 
 =  ( ) (  –   ) – ∫   ( )

 

 
    

So  

                    ∫   (   )    ( )
 

 
 = (  –   )  ( ) (  –   ) –  ∫   ( )

 

 
      

And  

                     │∫  (   )   ( )
 

 
│= │(  –   )  ( ) – ∫    ( )

 

 
    │ 

                                                         ≤   [∫         
 

 
 ∫         

 

 
 ]  

                                                       =  [ ∫         
 

 
 ∫         

 

 
]  

                                                =   [
(   ) 

 
 + 

(   ) 

 
] 

  Then   

                │∫    
 

 
 – (  –   ) ( ) │≤      [

(   ) 

 
 + ( x – 

   

 
 )

2].  

To show the sharpness of the inequality with the constant
 

 
. 

Consider   the mapping,   ,   -          ( )            
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Then       is lipschitzian with          (   ( )   ( )               )  

 So  

                   |  
   

 
|    (   )   .  

   

 
/
 
   for   ,   - 

If     , we get       

                         
    

 
 .  

 

 
/ (b – a) 

                                  
 

 
    

 

 
 

Then,        
 

 
,    

Therefor                 
 

 
  

Corollary 2.13 

      Let    ,    -     be as theorem (2.12) then by letting x = 
   

 
 , we obtain on 

the midpoint inequality;   

                             │∫    
 

 
 – (  –   )  .

   

 
/  ≤    

 

 
   (b – a)

2
. 
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2.3   Inequalities for differentiable and twice differentiable     

functions. 

Lemma 2.14    (Gruss type inequality) [33] 

  (i)   
 
 Let    ,   [   -   R be two integrable mappings so that 

 

         ( )       and       ( )      for       ,   - ,where  ,                              

are real numbers,  then    

         │
 

   
 ∫  

 

 
      - 

 

   
 ∫  

 

 
     .  

 

   
 ∫  

 

 
     │ 

                                                           
 

 
 (     ) (  –   ).  

(ii)      │ 
 

   
∫  
 
 

 ( ) ( )   -  
 

   
∫  
 
 

   ( )    .
 

   
∫  
 

 
 ( )  │ 

                        
 

   
∫  
 
 

│(  ( ) - 
 

   
∫  
 

 
 ( )   ) – ( ( ) - 

 

   
∫  
 
 

 ( )   )│                      

 Theorem 2.15 [20]  
    Let   ,   -    be differentiable function on [   ] have the first derivative  

  ,   -      bounded on [   ]. Then, 

 |∫  
 

 
 ( )    – 

 ( )   ( )
 

(  –   ) | ≤ 
(   ) 

 
     

     
     ( )     

 ( )  ( )

   
| 

Proof  

By modification of the integral and   integration by parts gives that: 

Let   .  
   

 
/   

  ∫ .  
   

 
/    

 

 
   =  ∫ .  

   

 
/   

 

 
    ∫    

 

 
                   

                                                           =   ( )  ( )–    ( )  ( )  ∫    
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                                                                  =   ( ) .
   

 
/    ( ) .

   

 
/  ∫    

 

 
 

                                                            
 ( )   ( )

 
(  –   ) - ∫  

 

 
    

So  

                ∫ .  
   

 
/    

 

 
   =  

 ( )   ( )

 
(  –   ) - ∫  

 

 
   ,                 (     ) 

Now applying  the inequality in lemma (2.14) we find that   

       │ 
 

   
∫  
 
 .  

   

 
/   ( )   -  

 

   
∫  
 
 

  (  
   

 
)    .

 

     
∫  
 

 
  ( )  │ 

                                            
 

   
∫  
 
 

│( .  
   

 
/ - 

 

   
∫  
 

 
(  

   

 
 )  )  

– (  ( )    
 

   
∫  
 
 

(  ( )   )│  .   

As      

           ∫ .  
   

 
/

 

 
    =  ( 

   

 
 – .

   

 
/  ) 

 

 
 

  =[ 
  

 
 - (  

     

 
 )] - [ 

  

 
  - 

     

 
] 

                                                                                 =  
     

 
 

     

 
  =  0, then  

           | ∫ .  
   

 
/    

 

 
 |  ∫ |.   

   

 
/ .  ( )   

 ( )  ( )

   
/|

 

 
 dx. 

                                                      
     

|  ( )   
 ( )  ( )

   
 | ∫ |.   

   

 
/|

 

 
   

                                                     = 
(   ) 

 
     
     

|  ( )   
 ( )  ( )

   
 |, 

By   (13.2) we can say: 

|∫  
 

 
 ( )    – 

 ( )   ( )
 

(  –   ) | ≤ 
(   ) 

 
     

     
     ( )     

 ( )  ( )

   
|. 
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 Corollary 2.16 [33] 

     If      is integrable on [a, b], then 

| ∫  
 

 
 ( )    – 

 ( )  ( )

 
 (b – a)|   ≤ 

   

 
  ∫  

 

 
|  ´(x) – 

 ( )  ( )

   
|    

Remark   2.17 [31] 

  If      ( ) ,   -  then   

    │ ∫     
 

 
   

   

 
   ( ( )     ( ) ) │       ⁄  (b – a) ‖  ‖1,    for  x   [a, b],   

where ‖  ‖1 is the L1 – norm,  namely  ‖  ‖1 =  ∫     
 

 
  t.   

Proof:  

          ∫ (   )  ( )   ∫ (   )   

 

 

 
dt  

                                   (   )  ∫  
 

 
  ( )│    

                                        = [  
 

 
 (b – a) + │x –  

   

 
 ]   ‖  ‖1     

    If  x =   
   

 
                      

                      then│ ∫      
 

 

 ( )   ( )

 
 │    

   

 
   ‖  ‖1.  

Theorem 2.18 [5] 

Let   ,   -    be differentiable function on [   ], have the bounded first 

derivative on (   ). Then, 

           │ ( ) - 
 

   
 ∫  

 

 
( )    │≤   [ 

 

 
 + 

(   
   

 

(   ) 
 ](   )- ‖  ‖

 
 

Where      (   )      is bounded, and  ‖  ‖
 

= sup │    ( ) │˂     
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Proof  

   Using integration by parts,  and define   (   ) by  

                          (   ) = {
           ,   -
           ,    -

  

         ∫   (   )    
 

 
 = ∫ (   )      

 

 
 + ∫ (   )      

 

 
 

by theorem (1.38)   

    ∫ (   )      
 

 
+ ∫     

 

 
=   ( ) (  –   )      ( ) (  –   ) =   ( ) (  –   ) 

So,         ∫ (   )      
 

 
=   ( ) (  –   ) – ∫     

 

 
 

And similarly for        

                      ∫ (   )      
 

 
=   ( ) (  –   ) – ∫     

 

 
 

 Therefore  

      ∫   (   )    
 

 
 =   ( ) (  –   ) – ∫  

 

 
 ( )   ,  then   

  │  ( ) (  –   ) –  ∫  
 

 
 ( )   │=│∫   (   )    

 

 
│=│∫   (   ) 

 

 
  ꞌdt│ 

Hence  

           │  ( ) – 
 

   
 ∫  

 

 
 ( )   │≤  

 

   
 [∫   (    ) 

 

 
|  |    ]. 

                                                      ≤  
 

   
 [∫          ∫        

 

 

 

 
] 

Where ‖  ‖
 

= sup │    ( )│=   

        │  ( ) – 
 

   
 ∫  

 

 
 ( )   │ ≤  

 

   
 [∫ (   )    ∫ (   )  

 

 

 

 
]  

                                         = 
 

   
 [

(   ) 

 
 + 

(   ) 

 
]  

by proof  (2.10),  we have  
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            [
(   )   (   ) 

 (   )
] = [ 

 

 
 + 

(  
   

 
) 

(   ) 
 ]( b – a) 

Hence,   

              │  ( ) – 
 

   
 ∫  

 

 
 ( )   │≤ [ 

 

 
+ 

(  
   

 
) 

(   ) 
 ][b – a ]‖  ‖

 
 

Remark 2.19 [19] 
If    is continuous on ,   -  and  differentiable on (a, b), then  

│ ( )   
 

   
 ∫  

 

 
 ( )  │≤   [  

 
 + 

   
   
 

   
│ ] ‖  ‖ 1, for    

Where    ‖  ‖ 1 = ∫   
 
( ) 

 

 
│    

Proof:  

        Using the integration by parts formula for  

           ∫ (   )
 

 
   ( )    and  ∫ (   )

 

 
   (t)    

So,    ∫ (   )
 

 
   ( )        ∫ (   )

 

 
  ( )   

                                         = (  –   )    ( ) – (  –   )   ( ) –   ∫  
 

 
 ( ) dt  

                                         = (  –   )   ( ) –  ∫  
 

 
 ( )     

 Similarly for        ∫ (   )
 

 
   (t)     then 

 ∫ (   )
 

 
   ( )    = (  –   ) ( ) – ∫  

 

 
( )     

If we add the above two equalities, we obtain  

       (  –   ) ( ) –  ∫  
 

 
( )    = ∫ (   )

 

 
    ( )    + ∫ (   )

 

 
    ( )     

  = ∫  
 

 
(     )    ( )     
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Where  

            (   )= {
            ,      -
               ,     -

,  

So  

 ∫    (   )
 

 
   ( )     ≤        

     
 │  (   )   ∫      ( )    

 

      

                              =     {x – a, b – x}  ‖  ‖ 1  

                                        = [ 
   

 
 + │x – 

   

 
│ ] ‖  ‖ 1 

 Hence  

     (   –   )   ( ) –  ∫  
 

 
 ( )    ≤ [ 

   

 
 + │x – 

   

 
│ ] ‖  ‖ 1.  

Or   │ ( ) - 
 

   
 ∫  

 

 
( )  │≤  [  

 
 + 

   
   
 

   
│ ] ‖  ‖ 1    

Theorem 2.20   (the perturbed Ostrowski inequality) [32] 
   Let     : ,    -      be continuous on [a, b] , differentiable on (a, b) and whose 

the first derivative  bounded on (a , b), and  ‖  ‖   =       
    

    ( )  , then  

 |∫   ( )    0   ( ) (   )   
  ( )  ( )

 
 1 (   )

 

 
|  

                                , 
 

 
 (   ) ,    (   ) -  .  

   

 
/     -‖  ‖    

For all    ,   - , and   ,    .
    

 
/     

(   )

 
-  
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Proof   

Let us define the mapping : [a, b]
2
 → R given by  

                  (   )= {
  0    ( 

   

 
)1       ,    -

  0    (  
   

 
)1        (    -

 

Then by integrating by parts, we have  

               ∫  (   )  ( )   
 

 
 

                ∫ (  ,    ( 
   

 

 

 
 ))  ( )     ∫ (  ,    (

    

 
)

 

 
-)       

                (   )  
( ( )  ( )

 
  (   )(   )  ( )   ∫   ( )  

 

 
  

On the other hand  

               |∫  (   )  ( )  
 

 
|  ∫   (   ) 

 

 
    ( )      

                ‖  ‖ ∫    (   )   
 

 
  

               ‖  ‖  ,∫ |  .     
   

 
/|

 

 
   ∫ |  .     

   

 
/|   - 

 

 
 

                    ‖  ‖     

Now,  to find L let us observe that  

               ∫           ∫ (   )    ∫ (   )      
 

 

 

 
 ,(   ) 

 

 

 

 
 (   )  

by proof 2.10 we have;  

           
 

 
  [(   )  (   )  ]    

 

 
 (   )    (  

   

 
)       for          

Then   

              ∫ |   .       
   

 
/|   

 

 
  

               
 

 
 (   )   0.     

   

 
/    

   

 
1    
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And similarly for  

              ∫ |  (     
   

 
)|      

 

 
 (   )  0.     

   

 
/   

   

 
1    

 

 
so  

                
 

 
 
(   )  (   ) 

 
  .   

   

 
  

   

 
/   .

   

 
    (

   

 
)/    

                   
(   ) 

 
 ,   (   ) -   (   

   

 
) ².  

Notation   2.21 

 (a)     If we let     then we get Ostrowski
ʼ
s integrality 

               | ( )   
 

   
 ∫  ( )  

 

 
|   [ 

 

 
 

.  
   
 

/
 

(   ) 
 ] (   )‖  ‖            

  (b)     If we choose     and   
   

 
 then we get the trapezoid inequality:  

               |∫  ( )    
 ( )   ( )

 
 (   )

 

 
|    

 

 
 (   ) ‖  ‖  .  

Theorem 2.22 [57] 
 Let    : [a, b]  → R is a differentiable function on (a, b) such that      ( )     

for     ,    - , for some constants         , then  

       |(   ) 0
 

 
 ( ( )    ( ))  (   ) ( )   

    

 
 (   ) .  

   

 
/1  

                           ∫     
 

 
|    

                                                       
   

 
[
(   ) 

 
(   (   ) )   .  

   

 
/
 

]         

Where     .
   

 
/          .

   

 
/ and   ,   -   
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Proof:  

Let us define the mapping  

                (    )= {
  .   

   

 
/    ,    -

  .   
   

 
/    (    -

  

Then  

         ∫  (   )  ( )   (   ) ,
 

 
 ( ( )   ( )  (   ) ( )-  ∫      

 

 

 

 
 

We also  

                ∫   (    )    (   )(   ) .  
   

 
/  

 

 
  

Let    = 
   

 
 , then  

 ∫   (    )   ( )        
 

 
= (  –   ) [

 

 
 . ( )    ( )   (   )   ( )  

   (   ) .    
   

 
/1   ∫   ( )    

 

 
 

And we know that  

 |∫   (    ),  ( )     -   
 

 
|      

     
      ( )       ∫   (   )   

 

 
            (    )               

    ∫  (   )    
(   ) 

 
 ,    (   ) -   (  

   

 

 

 
)      

and we have           therefor 

                                      
   

 
    

   

 
      

   

 
  

                                  .
   

 
/     

   

 
   

   

 
, then 

      ( )       
   

 
 ,   and          ( )       

   

 
                                (    )                                     

From    (14.2) and (15.2), if follows that  
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    |∫  
 

 
  (   ) 0  ( )   

   

 
1    |    

   

 
 ,

(   ) 

 
 (    (     )  

            .   
   

 
/
 

]    

Then we get  

|(   ) 0 
 

 
 (  ( )     ( ))   (   )  ( )  

   

 
 (   ) .   

   

 
/1  

         ∫     
 

 
|    

    

 
 [

(   ) 

 
 (    (   ) )   .   

   

 
/
 

].                            

Theorem   2.23   [20] 

     Let      : [a, b]   R  be a twice differentiable mapping on (   ) , then  

                │∫    
 

 
 – 

   

 
 [  ( )   ( )] ≤       

                                                             {

‖   ‖ 

  
 (   )           ,   -

‖    ‖ 

 
(   )             ,   -

 

Where     ‖  ‖     =       │ " ( )│,  and  ‖    ‖  = ∫     ( )    
 

 
. 

Proof:  

           From integrating by parts;    

      ∫ (   ) (   )
 

 
  ''    = [ ( –  ) ( –  )   ( ) 

 

 
 

 

                                                           ∫ ,(   )     -
 

 
    ''    

                                                         = ∫  ,   
 

 
 – (a + b) 

 

 
 

 – 2 ∫  
 

 
( )     ,  

    So  

              ∫  
 

 
( )    =   

   

 
 [  ( )     ( )- -  

 

 
 ∫ (   ) (   )

 

 
 ''    
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   Therefore  

              │∫     
 

 
-   

   

 
  [  ( )    ( )- │  

                        ≤   
 

 
 ∫ (   ) (   )

 

 
   

 (    )                              │ ( ) ״

Let us observe that 

                ∫ (   )(   )
 

 
      

 ״
(x)│                 

                         ≤       
     

 │    (t)│ ∫ (   )(   )
 

 
   ,  but   

            ∫  
 

 
(   ) (   ) = ∫  

 

 
(             )     

                                              =  [
    

 
   

  

 
 – ab x + 

   

 
 ]   

                                               = [ 
  

 
    

 
 

 
         +  

  
 

 
  ] – [

   

 
    

  

 
      b + 

  

 
 ] 

                                                         =  [ 
  

 
   

   

 
 ]   [

  

 
     

    

 
   ]  

                                                         =   
,                  -

 
  

                                                           =   
(   )

 

 
. 

So  

            │∫    
 

 
 – 

  ( )    ( )

 
 (  –   ) │≤  

(   ) 

  
‖״  ‖  

 
.                          

Now, from (16.2)   and lemma (2.1) we   can say that 

∫ (   )(   )
 

 
 ״    

(x)│dx         
     

 (   ) (   ) ∫     ( )    
 

 
 

                                                       =    
     

 (   ) (   ) ‖    ‖  
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 Let  ( )  (   )(   ), then  

          ( )  (  )(   )  (   ) =          

If      ( )               
   

 
  and if   .   

   

 
 / then    ( )    and if 

  .
   

 
   / then       ( )    ,   

Therefor   

      
     

  ( ) = .
   

 
  / (  

   

 
) =  

(   ) 

 
,  

        │∫     
 

 
- 
   

 
 [  ( )    ( )-    ≤   

 

 
 ∫ (   ) (   )

 

 
   

 ״
( )                

                                                              ≤   
 

 
[
(   ) 

 
  ‖    ‖ ] = 

(   ) 

 
  ‖    ‖ ]. 

Remark 2.24   (Hermite – Hadamard inequality)   [46] 

 If   is a convex (  " ≥ 0 ) on ,   -,  the midpoint Rule is the  approximation  

                        ∫    
 

 
    .

   

 
/ ,   -    

And the trapezoid  Rule is the approximation  

                        ∫    
 

 
   

  ( )    ( )

 
 ,   -   

There is a very useful relationship between these rules as follows,  

                   (
   

 
) ,     ] ≤ ∫    

 

 
 ≤ 

  ( )    ( )

 
 [   -  

 Then by   corollary (2.3)   and corollary (2.7), we can say; 

              0        
  ( )   ( )

 
  

 

   
∫    
 

 
     

 

 
 ⋁    

  and  

              0         
 

   
∫    
 

 
 -   (

   

 
)      

 

 
 ⋁   
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2. 4      inequalities for absolutely continuous functions 

Theorem 2.25   [27] 
  Let    ,   -     be an absolutely continuous function on [   -, then   

|
 ( )   (     )

 
     

 

   
 ∫  

 

 
 ( )   |     [ 

 

 
 + 2 ( 

  
    

 

   
 )  ] (   )‖  ‖

 
  

for        [a,  
   

 
]. 

Proof: 

Let us define the mapping  

                               (   ) = { 

                            ,   -

  
   

 
          (       -

                 (       -

 

for   x   [a,  
   

 
] 

Integrating by parts 

          ∫ (   )  
 

 
( )   =  ( ) (x – a)   ∫  

 

 
( )  ,                                         17.2  

  and  

      ∫ .  
   

 
/

     

 
   ( ) =   (     ) . 

   

 
 –   /-   ( ) ( - -

   

 
)   

                                                                                           - ∫  
     

 
( )  ,       18.2 

 

           ∫ (   )
 

     
   ( ) =   (     ) (    ) – ∫  

 

     
( )            19.2    

By add the above three equalities, we obtain 

         ∫   (   )  
 

 
( )   

 

   
∫   (   ) 
 

 

 
( )       

                                       
  ( )   (     )

 
 

 

   
∫   
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And by lemma (2.1) 

          |∫   (   ) 
 

 

 
( )    |             

     
         ∫  

 

 
  (   )                     

 But we have from proof  2.10, we proved that 

                 
(   )    (   ) 

 
 = 

 

 
 (b - a)

 2
 + (  – 

   

 
)

2
, 

Or              
(   )    (   ) 

 (   )
  =  [ 

 

 
 + 

(   
   

 

(   ) 
 ](   ). 

By using the last fact, we can say 

 (   )  (      ) 

 (   )
   = 

(   )    (
   

 
  ) 

(   )
 =   ,

(   ) 

  
  .  

    

 
/
 
[   - 

                                                             = (   ) [ 
 

 
 + 2 4

  
    

 

   
5

 

]. 

Then  

         
 

   
 ∫  

 

 
  (   )     =    

 (   )  (      ) 

 (   )
   = (   ) [ 

 

 
 + 2 4

  
    

 

   
5

 

] 

  Therefor                         

             
     

      
 

   
  ∫  

 

 
  (   )       [ 

 

 
 + 2 ( 

  
    

 

   
 )  ] (   )‖  ‖   .  

Theorem 2.26 [3] 
Let   ,   -      be an absolutely continuous functions on [a , b] whose 

derivative is bounded on [a , b] , then  

           | (   ) 0(   )
  ( )  (     )

 
   .

 ( )  ( )

 
/1  ∫    

 

 
|                             

             ,
(   ) 

 
(    .   )   (  

(   )  (   ) 

 
)  1 ‖  ‖                 
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Where   ,   - and   0   
   

 
  

   

 
1  

Proof  
Using the integration by parts  

            ∫ (  .   
   

 
/)    .     

   

 
/  ( )

 

 
  

                                              
   

 
 ( )  ∫  ( )  

 

 
 

            ∫ .  
   

 
/  ( )  .

   

 
  / ( ( )    (     ) 

     

 
 

                                                      ∫  ( )   
     

 
   

And  

              ∫ (  .   
   

 
/)   ( )  

 

     
 

  .
   

 
/  ( )  .     

   

 
/  (     ) 

                             ∫  ( )  
 

     
 

Adding the above inequalities, we get 

                ∫  (    )  ( )   (   ) 0 
 ( )  ( )

 
 (   )

 ( )  (     

 
1 

 

 
   

                                                  ∫ ( )    
 

 
        

Where  

                    (    )  

{
 
 

 
   .   

   

 
/                  ,   - 

  
   

 
                   (       - 

  .   
   

 
/        (       - 

                    

For all   ,   - and    
   

 
   

   

 
   since ,    is bounded , so  
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                    |(   ) 0 
 ( )  ( )

 
 (   )

 ( )  (     )

 
 1  ∫  ( )  

 

 
|    

                                                  ∫   (   )    ( )      ‖  ‖   ∫       
 

 

 

 
  

Now we using the fact  

 ∫         ∫ (   )   ∫ (   )    
 

 

 

 

 

 
   
(   )  (   ) 

 
 

                                                                          
 

 
(   )    (  

   

 
)         (20.2)  

For         , then  

                  ∫ |  .   
   

 
/|    

 

 
 

                  = 
 

 
(   )  . 

   

 
 

   

 
/
 
   

                   ∫ |  
   

 
|    .  

   

 
/
 
 

     

 
and . 

                    ∫ |  .   
   

 
/|    

 

 
(   )   .

   

 
  

   

 
/
 
   

 

     
 

So , we obtain  

                    ∫   (   )    
(   )  ((   )  (   )) 

 
 .  

   

 
/  

 

 
  

                       
 

 
  (   )  .  

(   )    

 
/  ⏟                      .  

   

 
/    

                                                   by (20.2) 

                        = 
  

 
(   )   

(   ) 

 
(   )   .  

(   )  (   ) 

 
/  ⏟                                

                                                                                    by (20.2)  

                       = 
(   ) 

 
(    (   )   .  

(   )  (   ) 

 
/   

Hence                            
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| (   ) 0(   )
  ( )  (     )

 
   .

 ( )  ( )

 
/1  ∫    

 

 
|                             

             ,
(   ) 

 
(    .   )   (  

(   )  (   ) 

 
)  1 ‖  ‖                  

Corollary 2.27 [3]  
(a)   If choose    , then we have  

                                 |(   )
 ( )  (     

 
 ∫  ( )  

 

 
|    

                                                       0
(   ) 

 
  (  

    

 
) 1 ‖  ‖    

   (b)  If         
   

 
    then we have  

                                 |(   )
 ( )  ( )

 
 ∫  ( )  

 

 
|  

 

 
(   ) ‖  ‖      

Lemma 2.28 [24] 
Let   ,   -      be an absolutely continuous on [a, b] and    ,   - then for 

any   ( ) and    ( ) real functions on ,   -  , we have  

  ( )   
 

 (   )
 ,(   )   ( )  (   )   ( )-  

 

   
∫  ( )  
 

 
 

          
 

   
∫ (   ),  ( )    
 

 
( )-     

 

   
 ∫ (   ),  ( )  

 

 
    ( )-      

Proof  

To find ∫ (   ),  ( )    ( )-   
 

 
and ∫ (   ),  ( )    ( )-    

 

 
  

We can utilizing the integration by parts formula  

So  

              ∫ (   ),  ( )    ( )-  
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                (   ), ( )    ( ) - 
 
 
 
 ∫ , ( )    ( ) -    

 

 
 

               (   ), ( )    ( ) (   )  ∫  ( )   
 

 
  ( )( 

   )
 

 
  

              (   ) ( )  ∫  ( )   
 

 
(   )   

 

 
( )                                21.2 

And for ∫ (   ),  ( )    ( )-   
 

 
  

             (   ), ( )    ( ) - 
 
 
 
 ∫ , ( )    ( ) -    

 

 
                                                            

    (   ), ( )    ( ) -   ∫   ( )   (   )
 

 
  ( )             

           
 

 
   ( )( 

   )   

           (   ) ( )  ∫  ( )   
 

 
(   )    

 

 
( )                                    22.2 

So,   by add the identifies (21.2), (22.2) and divide by (   ), we have  

        
 

   
 [∫ (   ),  ( )    

 

 
( )]   ∫ (   ),  ( )    ( )-   

 

 
      

          ( )  
 

 (   )
,(   )    ( )  (   )    ( )-  

 

   
 ∫       

 

 
     

Remark   2.29 [24] 
  The last identify has many particular cases of interest.  

(i)   If choose         then we have  

          ( )  .
   

 
  /  

 

   
∫  ( )   

 

   
∫ (   ),  ( )   ( )-    
 

 

 

 
 

                                          
 

   
∫ (   ),  ( )   ( )-   
 

 
 

   In particular if        
   

 
  then, we have the midpoint  
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         .
   

 
/  

 

   
∫  ( )   
 

 
   

          
 

   
∫ (   ),  ( )   -   

 

   
∫ (   ),    -   
 
   

 

   

 
 

 

(ii)     If         then we get,  

          ( )  
 

   
∫  ( )   

 

   
∫ (   )      

 

   
∫ (   )    
 

 

 

 

 

 
 

(iii)     If   (   ) is a point of differentiability for the absolutely continuous 

            function   ,   - → R then,  

         ( )  .
   

 
  /   ( )  

 

   
∫  ( )   
 

 
 

            
 

   
∫ (   ),  ( )    ( )-   

 

   
∫ (   ),  ( )    ( )-    
 

 

 

 
 

Theorem 2.30 [25] 
Let   ,   -    be a differentiable function,  and    is of bounded variation on 

[a, b], then  

             | ( )  
 

   
∫  ( )   

 

 
.
   

 
  /   ( )

 

 
 

                         
 

 (   )
,(   )   ( )  (   )   ( )-  

                        
 

 
(   ),.

   

   
/
 

⋁    
  .

   

   
/
 

⋁   -  
  

                        
 

 
(   ) 6

 

 
 |

  
   

 

   
|7 ⋁     

  

for   ,    -   

 



76 
 

Proof   

Let    ( )  
  ( )   ( )

 
          

  ( )   ( )

 
  

In lemma (2.28) we get the modulus 

                 ( )  
 

   
∫  ( )   

 

 
.
   

 
  /   ( )

 

 
 

                
 

 (   )
,(   )    ( )  (   )   ( )-  

               
 

   
∫ (   ) 0  ( )  

  ( )   ( )

 
1   

 

 
 

                
 

   
∫ (   ) 0  ( )  

  ( )   ( )

 
1    

 

 
           for   ,    -   

So know,  

    | ( )  
 

   
∫  ( )   

 

 
.
   

 
  /  ( )

 

 
 

                                           
 

 (   )
,(   )   ( )  (   )   ( )-⌋         

                                      
 

   
|∫ (   ) 0  ( )  

  ( )   ( )

 
1   

 

 
|  

                                              
 

   
|∫ (   ) 0  ( )  

  ( )   ( )

 
1   

 

 
|            

                                        
 

   
∫ (   ) |  ( )  

  ( )   ( )

 
|    

 

 
 

                                              
 

   
∫ (   ) |  ( )  

  ( )   ( )

 
|   

 

 
               (23.2)              

But    (   )    is of bounded variation on ,   - and ,   - so 

             |  ( )  
  ( )   ( )

 
|  

|  ( )   ( )   ( )   ( )|

 
  

                                                
 

 
,   ( )    ( )     ( )    ( ) -  

                                                  
 

 
⋁ (  

  ), for   ,   -  
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Similarly for  

              ∫ (   ) |  ( )  
  ( )   ( )

 
|   

 

 
 

               
 

 
⋁ (   

 ) ∫ (   )   
 

 
   

               
 

 
⋁ (   

 ) 6(
  

 
   )

 
 
 
7 

               
 

 
⋁ (   

 ) .
  

 
   /  .

  

 
   / 

               
 

 
⋁ (   

 )(
  

 
    

  

 
 ) 

               
 

 
⋁    (   )   

   then from (23.2) we get  

              | ( )  
 

   
∫  ( )   

 

 
.
   

 
  /  ( )

 

 
   

                                                    
 

 (   )
,(   )   ( )  (   )   ( )-⌋  

               
 

   
0
 

 
(   ) ⋁    

 

 
(   ) ⋁    

 
 
 1    

               
(   )

 
0.

   

   
/  ⋁    

  .
   

   
/  ⋁    

 1  

                
(   )

 
6
 

 
 |

  
   

 

   
|7 ⋁           ,   - 

          

Theorem2.31 [26] 
Let       be differentiable function on   and ,    -    . If the derivative 

          is of bounded variation on ,   -  then for any     ,   - 

                | ( )  
 

 (   )
,(   )   ( )-  

 

   
∫  ( )  
 

 
|  

                  
 

   
0∫ (   )⋁ (   

 )  
 

 
 ∫ (   )⋁ (   

 )  
 

 
1  
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{

 

 
(   ) ⋁ (   

 ) 

(   ) ∫ (⋁ (   
 ))   

 

 

 

                  
 

   
{

 

 
(   ) ⋁ (   

 ) 

(   ) ∫ (⋁ (   
 ))   

 

 

                                                     (    ) 

Proof  
By lemma (2.28) 

If we assume that the lateral derivatives   ( ) and   ( ) exist and are finite, then 

for   ( )    ( ) and   ( )    ( )   we have 

                  | ( )  
 

 (   )
,(   )   ( )  (   )   ( )-  

 

   
∫  ( )   
 

 
| 

                   
 

   
∫ (   )   ( )    ( ) 
 

 
   

 

   
∫ (   )   ( )    ( )    
 

 
  

For any   ,   -.  

  Since the derivative        is of bounded variation on ,   -  then  

                     ( )    ( )  ⋁ (   
 )  for any   ,   - 

And  

                     ( )    ( )   ⋁ (   
 ) for  any   ,   -  

Therefore  

               ∫ (   )   ( )    ( )    ∫ (   )⋁ (   
 )    

 

 

 

 
 

And 

               ∫ (   )   ( )    ( )    ∫ (   )
 

 

 

 
⋁ (   

 )  , for any     ,    -.  

Adding these two inequalities and dividing by     we get the first inequality, 

and Using Holder
, 
s integral inequality we have  
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               ∫ (   )⋁ (   
 )    {

⋁ (   
 ) ∫ (   )   

 

 

(   ) ∫ (⋁ (   
 ))    

 

 

 

 
 

                                                 {

 

 
(   ) ⋁ (   

 ) 

(   ) ∫ (⋁ (   
 ))    

 

 

  

 

And  

              ∫ (   )
 

 
⋁ (   

 )   {

 

 
(   ) ⋁ (   

 ) 

(   ) ∫ (⋁ (   
 ))    

 

 

                                      

Remark 2.32 [26] 
From the first branch in (24.2) we have the sequence of inequalities 

             | ( )  
 

 (   )
,(   )   ( )  (   )   ( )-  

 

   
∫  ( )   
 

 
|    

              
 

   
,∫ (   )⋁ (   

 )   ∫ (   )⋁ (   
 )  - 

 

 

 

 
 

              
 

 
(   ) 0.

   

   
/  ⋁ (   

 )  .
   

   
/⋁ (   

 )1       

    
 

 
(   )

{
 
 

 
 6

 

 
 4

  
   

 

   
57 0

 

 
⋁ (   

 )  
 

 
 ⋁ (   

 ) 1  

6
 

 
 |

  
   

 

   
|7 ⋁ (   

 )                                  

                  (    ) 

from the second  branch in (24.2) we have  

         | ( )  
 

 (   )
[(   )   ( )  (   )  

 
( )]  

 

   
∫  ( )  
 

 
|  

          
 

   
0∫ (   )⋁ (   

 )   ∫ (   )⋁ (   
 )  

 

 

 

 
1 

          .
   

   
/ ∫ (⋁ (   

 ))
 

 
   .

   

   
/ ∫ (⋁ (   

 ))   
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          {
6
 

 
 |

  
   

 

   
|7 0∫ (⋁ (   

 ))    ∫ (⋁ (   
 ))  

 

 
 

 

 
1

   2∫ (⋁ (   
 ))

 

 
   ∫ (⋁ (   

 ))
 

 
  3                   

                                   □ 

Corollary 2.33 [26] 

We observe that, if we take   
   

 
 in (25.2) then we get the perturbed midpoint 

inequality  

          | .
   

 
/  

 

 
(   )[  ( )    ( )]   

 

   
∫  ( )   
 

 
|                                 

 
 

   
[∫ (   )⋁ (   

 )   ∫ (   )⋁ (   
 )  

 
   

 

   

 
 

]  
 

 
(   )⋁ (   

 )  
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2.5        Inequalities for   n-time differentiable functions. 

Lemma 2.34 [18] 

Let      ,   -      be a mapping such that the derivation    (   )        is 

absolutely continuous on [a, b], then  

∫  ( )   
 

 
 = ∑

 

(   ) 
   
    [( – )

 k+1
  ( ) (a) + (  )

 k
 (     )

 k+1 ( )(b)]                                                                                                                                                                                                         

+ 
 

  
 ∫ (   )

 

 
n
  ( )( )     

 For all        ,   -  

Proof:  

The proof is by mathematical induction, 

 For n = 1 we have for prove that   

              ∫   ( )  
 

 
 = (   )     ( )    (  –  )   ( ) + ∫ (   )

 

 
   ( )( )   ,  

Which is clearly by integration by parts formula applied for  ∫ (   )
 

 
   ,       

          ∫ (   )
 

 
   ( )( )     =  ∫ (   )

 

 
    = (   )   (t) 

 

 
 

+ ∫    
 

 
  

                                                = ( –  )   ( )  (  –  )   ( ) + ∫  ( )   
 

 
  

So  

                                 ∫   ( )  
 

 
 = (   )     ( )    (   ) + ∫ (   )

 

 
   

(1)
      

Assume that it
'
s holds for ( ) and let us prove it for ((n+1)) that is we wish to show 

that  

           ∫   ( )  
 

 
 = ∑

 

(   ) 

 
     [(   )

k+1
  k( ) + (-1) 

k
 (   ) 

(k+1)
  (k) 

(b)]                          

+ 
 

(   ) 
     ∫ (   )

 

 
k+1

   
(n+1)

 (t)   .  
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Now let  (t) = (   )k
  (k)

 (t),  

(Which is absolutely continuous on [a, b]),   

                   ∫ (   )
 

 
k+1

  (k+1)
 (t) dt = (   ) (   )

k
  f 

(k)
 ( ) + (   ) (   )

k
 

                                       
(k)

( ) + ∫ (   )
 

 
 
 

  
 [(   )k

    
(k)

(t)]    

                                  = ∫ (   )
 

 
[-n (   ) (k-1)

   
(n) 

(t) + (   ) 
k
   

(n+1) 
(t)]   

                                    + (   )
n+1

   
(n)

(a) + (-1)
n
 (   )

n+1   
(n)

(b)  

                                  = -n ∫ (   )
 

 

n
   

(n)
(t)    + ∫ (   )

 

 
n+1

   
(n+1)

(t)    

       + (   )
n+1

   
(n)

( ) + (-1)
n
 (   ) 

n+1   
(n)

(b)         (    )           

From (    ) we can get   

∫ (   )
 

 
n
  (n)

(t) dt = 
 

(   )
   ∫ (   )    

 
 (   ) ( )      

                                 + 
 

(   )
 [(   )]  ( )  ( ) + 

 

(   )
 [(   )]

n+1
    (n)

(a)  

                                 + (-1)
n 
(   )

n+1
  ( )(b)]   

by using the induction hypothesis         

   ∫  ( )   
 

 
 = ∑

 

(   )  
   
    [( –  )

k+1
    

(k)
 (a) + (-1)

k
 (     )

k+1
   (k)

 ( )] + 
 

  
    

                        [ 
 

(   )
 [(   )]n+1

    (n+1)
 ( )     

                        +  
 

(   )
 [ (   )

n+1
    

(n)
( ) + (   )

n+1
    

(n) ( )--  

= ∑
 

(   ) 

 
     [(   )

k+1
  ( )(a) + (-1)

k
 (   )

(k+1)
   (k)

( )]   

                      + 
 

(   ) 
  ∫ (   )

 

 
k+1

  (   )  ( )   .                                                □  

 



83 
 

Theorem 2.35 [18] 

 Let      ,   ]   R be a mapping so that derivative   (   )   is absolutely   

continuous then  

        │∫   ( )   
 

 
 - ∑

 

(   ) 
   
    [( –  )

k+1
   ( ) (a) + (-1)

k
 (     )

k+1
  ( ) (b)  ]  

                                        
‖ ( )‖

 

(   ) 
 [ (   )

n+1
+(   )

n+1
]   if    ( )      [a, b]  

Proof:   

From lemma [   2.34  ] we have                                                  

 │∫  ( )  
 

 
 - ∑

 

(   ) 
   
    [( –  )       ( ) (a) + (-1)   (     )       ( ) (b)]│  

                       ≤ 
 

  
 ∫        

 
│ ( )│     [ 

  
 ∫        

 
   ]‖ ( )‖

 
    

                         = 
‖ ( )‖

 

  
 [ ∫ (   )

 

 
n    + ∫ (   )

 

 
n
    ]  

                         = 
‖ ( )‖

 

  
 [ 

(   )     (   )   

   
 ]  

                                    = 
‖ ( )‖

 
 

(   ) 
 [(   )

n+1
 + (   )

n+1 ].  

 To prove the second inequality we have  

                   
 

  
∫        

 
│   (n)

 │       
 

  
      

     
 │   │

n
 ∫   ( ) ( )   

 

 
   

                                                            = 
 

  
 ,         -   ‖  ‖ 1    

                                                             =   
 

  
,    (       ) -

 
  ‖ ( )‖ 1  

                                                              =   
 

  
  [  ⁄  (    ) + │x-  

   

 
 |]    ‖ ( )‖1  
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Hence  

        │∫   ( )   
 

 
 - ∑

 

(   )  
   
    [( – )

k+1
   (k)

 (a) + (-1)
k
 (     )

k+1 ( ) ( )]│          

                                                                        
‖  ‖

  
 [  ⁄  (a – b ) + │x –

   

 
 │]

n 

Lemma 2.36 [17] 

             Let      ,   -     be a mapping such that   (   ) 
 
is absolutely 

continuous on [a, b]. Then  

           ∫  
 

 
( )    = ∑     

   [
(   )     (  )  (   )   

(   )  
]   ( )( )  

                                                     + (-1)
 n
   ∫   

 

 
 (    )   ( )( )             (27.2)  

Where the kernel   : [   ]
2
→  is given by  

When      ,   - ,   is a natural number,      

Proof:  

       We use proof by Mathematical Induction.  

For      

        ∫  
 

 
 ( )      (  –   )   ( ) – ∫   

 

 
(x , t)  (  )( )     

Where  

              K1 (   ) = {
              ,    -
              ,    -

  

              ∫   
 

 
(x, t)  ( )( )     = ∫ (   )   ꞌ( )     

 

 
+ ∫ (   )  ꞌ( )     

 

 
                              

                                                     = ∫ (   )     
 

 
+ ∫ (   )     
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                                = (  –   )  ( ) 

 

 

 

- ∫     
 

 
 + (  –   )  ( ) 

 

 
 

- ∫   ( )  
 

 
   

                                   (  –   )   ( )    (  –   )   ( ) – ∫  
 

 
(t)  dt  

                                 = (  –   )   ( ) – ∫  
 

 
( )      

So  

  ∫  
 

 
 (t)    = (  –   )  ( ) – ∫   

 

 
(    )   ( )    

Now assume that (27.2) holds for n and let us prove it for (n+1)  

That is prove the equality  

 ∫  
 

 
 (t)    = ∑   

   [
(   )     (  )  (   )   

(   )  
]   

(k)
(x)  

                                            + (-1)
 n+1 

 ∫     
 

 
 (x , t)   (   ) 

( )    .             

Using  

  n+1 (   ) = {

(   )(   )

(   ) 
     ,    -

(   ) 

  
          ,    -

  

And  

                ∫     
 

 
 (   )   

(   )
 ( )    =∫

(   )   

(   ) 

 

 
 (   ) ( )     

                                                                                + ∫
(   )   

(   ) 

 

 
 (   ) (t)    

So, using the integrating by parts for  

∫
(   )(   )

(   ) 

 

 
  (   ) ( )    = ∫

(   )   

(   ) 

 

 
    ( )( )    

 



86 
 

And  

      ∫
(   )   

(   ) 

 

 
  (   )( )   =  ∫

(   )   

(   ) 

 

 
   ( )( )  

Now, put                    = 
(   )   

(   ) 
 and    =   ( )( ) 

                                  ∫    
 

 
 =   ( )   ( ) –  ( )   ( ) – ∫     

 

 
  

                                               =  ( )  ( ) – ∫       
 

 
  

So  

               ( )  ( ) =  
(   )   

(   ) 
  (n)

(x)  and ∫       
 

 
 ∫

(   )(   )
 
 

(   ) 

  
 

  ( ) (t)     

                 ∫
(   )   

(   ) 

 

 
 d  ( )( )   =   

(   )   

(   ) 
  ( )(x) – 

 

  
 ∫ (   )    ( )   

 

 
  

Similarly a bout     

   ∫
(   )   

(   ) 

 

 
  (n+1)

( )    =  ∫
 (   )    

(   ) 

  

 
    (n)

(t) = 
  (   )    

(   ) 
   

(n)
( )  

+ (
  

  
) ∫ (   ) 

 

 
   

(n)
( )     

∫ (   )    

 
  

(n+1)
( )    = 

(  )   (   )   

(   ) 
  (n) ( )  

                                                   – 
 

  
 ∫ (   ) 

 

 
 ( ) ( )                              (28.2) 

 

Note that  

              (   )    (  –   )   = (  )     (  –   )(   ) = - (  –   )       

From (27.2) and (28.2) we have  

             ∫     
 

 
 (x , t)   (n+1)

(t) =  
(   )      (  )   (   )     ( )

(   ) 
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                                                        [∫
(   ) 

  

 

 
  f 

(n)
    + ∫

(   ) 

  

 

 
 f 

(n)
(t)     

                                                                              = 
(   )    (  )   (   )   

(   ) 
   

(n)
( ) 

                                                                        – ∫   
 

 
 (x , t)  (n)

( )     

So  

              ∫   
 

 
 (x , t)   

(n)
( )    =  

(   )    (  )   (   )   

(   ) 
   

(n)
( )                                  

                                                                                – ∫     
 

 
 (    )   

(n+1)
( )     

by mathematical induction hypothesis we have  

       ∫  ( )  
 

 
 = ∑     

   [
(   )     (  )  (   )   

(   )  
]  (k)

( ) 

                   + 
(   )     (  )  (   )   

(   )  
  

(n)
( )  

                               – (-1)
n
 ∫     

 

 
 (    )   

(n+1)
(t)     

                       = ∑   
   [

(   )     (  )  (   )   

(   )  
]  (k)

 ( )  

                                             +  (-1)
 n+1

 ∫     
 

 
 (    )   

(n+1)
( )   .                     

Corollary 2.37 [19] 
            Let     ,   -      such that    

(n-1) 
is absolutely continuous on [   ] then   

             ∫  
 

 
 ( )    = ∑     

   [
  (  ) 

(   ) 
] 
(   )   

       (k)
 (
   

 
)      

                                                      + (-1)
n
 ∫    

 

 
(t)   

(n)
( )     

Where  
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                ( ) = {

(   ) 

  
      ,  

   

 
-

(   ) 

  
      ( 

   

 
   -

 

Proof:  

              From lemma [2.36] by choosing      =  
   

 
  

Corollary 2.38 [19] 

   Let    ,   -      be a mapping such that   (   ) is absolutely continuous on 

[a, b].  

Then  

    ∫  
 

 
 (t) dt = ∑     

   (
    

(   ) 
 )    [ 

 ( )( ) (  )   ( )

 
 ] 

                            +  
 

  
 ∫

(   )   (  ) (   ) 

 
 

 

 
]   (n)

( )       

for       ,   -  

Proof:  

              Let     and     in (2.26) then summing the resulting identifies and 

dividing by 2 ,  

So where     we have inequality  

                   

  ∫  
 

 
 ( )    = ∑     

     [    
(    )   

(   ) 
  (k)

(a) ] + ∫
(   ) 

  

 

 
   

(n)
(t) dt  

                         = ∑     
    [(    )   

(   ) 
  f (k)

(a) ] +  
 

  
 (b – t)

n
 f 

(n)
( )              (    ) 
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Now       

                ∑ , 
(  ) (   )   

(   ) 
  ( ) ( ) -   

    + (-1)
n 
∫

(   ) 

  

 

 
 f (n)

( )         (    ) 

Then from (29.2) and (30.2)  

 ∫  
 

 
 (t) dt = ∑     

   (
    

(   ) 
 )   [ 

 ( ) (  )   ( )

 
 ]  

                       +  
 

  
 ∫

(   )   (  ) (   ) 

 
 

 

 
]    (n)

( )                       

Theorem 2.39 [17] 
                Let     ,   -     be a mapping such that   

(n-1)
 is a absolutely 

continuous on [   ]. Then  

                   │∫  
 

 
( )    ∑     

    [
(   )     (  )  (   )   

(   )  
]  (k)

(x)│ 

                    {

‖ ( )‖ 

(   ) 
,(   )    (   )   -     ( )      ,   - 

‖ ( )‖ 

  
, (   )     

   

 
 -      ( )       ,     - 

  

Where  

 ‖ ( )‖
 

     
     

│ (n)
( )│˂    

And  

             ‖ ( )‖
 
 = ∫    ( )  ( )

 

 
  

 Proof:  

By Lemma (2.36), and observe that │   (n)
│≤  ‖ ( )‖

  
 

│∫  
 

 
(t)      ∑     

    [
(   )     (  )  (   )   

(   )  
] f 

(k)
(x)│ 
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             = │∫   
 

 
 (   )  (n)

( )   │ 

             ≤  ∫    
 

 
 (   ) ││  (n)

( )      

              ≤  ‖ ( )‖
  
  ∫    

 

 
 (    )│  

                                                        = ‖   (   )‖  .   ‖ 
( )‖

  
  

                                                       =  ‖ ( )‖
  

  [∫
     

  

 
 

 
dt + ∫

     

  

 
 

 
dt ]  

              =   ‖ ( )‖
  

 [∫
(   )

  

  

 
dt + ∫

(   )

  

  

 
dt ]  

                                                         = ‖ ( )‖
  

  [ 
(   )

(   ) 

   
 
 

 
 

 + 
(   )

    

   
 
 

 
 

 ]  

             = 
 ‖ ( )‖

  

(   ) 
 [(  –    )

 n+1
 + (  –    )

 n+1
 ]  

and clearly that  

                                         │∫   
 

 
 (   )   (n)

( )   │≤ ∫      

 
( )     (    )  dt  

                 ≤ [ ∫      

 
( )  ] ‖   (    )‖    

                             = ‖ ( )‖
 
 .     

     
   (    )   

                             =   ‖ ( )‖
 
. Max { 

(   ) 

  
 , 

(   ) 

 
 ] } 

                             = 
‖ ( )‖

 
 

  
 . Max { (x – a)

n
 , (b – x)

n
 }  

                            = 
‖ ( )‖

 
 

  
   [ Max {x – a , b – x }]n 
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                            = 
‖ ( )‖

 
 

  
    [ 

   

 
 + │ x – 

   

 
 │]n .               

 

Notation 2.40 
       Can easily notice that the Ostrowski

  
 inequality  

                        │
 

   
 ∫  

 

 
 ( )    –   ( ) │≤ [¼ + 

(  
(   ) 

 
)

(   ) 
 ]  (b – a)‖  ‖   

We obtain from (2.39) by put (   ) and as a simple last calculation we shows 

that  

                                     
 

 
 [(  –   )2

 + (  –   )
 2
] = [

  

 
(b – a)

 2
 + (   – 

    

 
 )    ].   
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     Inequalities for the Riemann - Stieltjes integral 

 

                           Of product integrators. 
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3.1 Inequalities of Ostrowski and trapezoid type for the                   

Riemann-Stieltjes integral 

 
     In this section we point out some recent results by the authors in [50], [15], [11] 

and [46] concerning certain inequalities of trapezoid type, Ostrowski type and for 

Riemann-Stieltjes integrals, 

The section is structured as follows: 

The first part deals with the estimation of the magnitude of the difference, 

                     
 ( )   ( )

 
 (  ( ) –   ( ) )   ∫  ( )  ( )

 

 
, 

Where    is of   –   – Holder type and    is of bounded variation, and vice versa. 

The second part provides an error analysis for the quantity 

 ( )( ( )   ( ))  ∫ ( )  ( ) 

 

 

 

    This is commonly known in the literature as an Ostrowski type inequality, for 

the same classes of mappings. 

Definition 3.1 [50] 

   The function    ,   -         be  a   –   – Holder type, if it satisfies the 

condition,         ( )   ( )               for     ,   -, and         

  (   - are given.  

Theorem 3.2 [15] 

 Let      ,   -         be a   –   – Holder type mapping and   ,   -      is 

a mapping of bounded variation on [   ], then  

                │
 ( )   ( )

 
 (  ( ) –   ( ) )   ∫  ( )  ( )

 

 
 │ 
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     (   )  ⋁   
   For      ,   - 

Proof     

 Using the property in lemma     we have  

                     │
 ( )   ( )

 
  (  ( ) –   ( ) )   ∫   ( )   

 

 
│ 

                                    = │∫ (
 ( )   ( )

 
  ( ))

 

 
   ( )│  

                                                           
     

 
 ( )   ( )

 
    ( )  ⋁ (  

 )     

 

 As     is of     – H – Holder type, then  

    
 ( )   ( )

 
   ( )  =  

 ( )   ( )    ( )   ( )     

 
   

                                                  ⁄  [│   ( ) –    ( )       ( ) –    ( ) │]    

                                                      ⁄    [(   ) p + (   ) p]                            

Now consider the mapping  

       ( )    (   )    (   )     ,   -   (   -  

Then  

                             ( ) =  (   )         (   )                       
   

 
  

And       ( )     0     on [   
   

 
],     ( )   ˂ 0     on  (

   

 
  ]  

Which shows that maximum is realized at t = 
   

 
, and  

                                      
     

 ( ) =   (
   

 
)    (   ) (   )

 p
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so                                     

                                        
     

 (
 ( )   ( )

 
    ( )      (

   

 
)p  

Hence   

     │
 ( )   ( )

 
 .  ( ( ) –   ( )) - ∫       

 

 
│  

 

  
   (   )   ⋁ (  

 ) 

Corollary3.3 [50] 
 Let     ,   -      be a p – H- Holder type mapping, and    ,   -      be a 

monotonic mapping on [   ]. Then  

   │
 ( )   ( )

 
 (  ( ) –   ( ) ) - ∫   ( )   ( )

 

 
│  

 

  
   (   )  │  ( ) –   ( ) . 

 [Since     is monotonic so it is of bounded variation and  ⋁ (  
 ) =│  ( ) –   ( ) │] 

Corollary 3.4 [11] 
Let       be a p- H – Holder mapping and     be a Lipschitzian mapping with  

 L ˃ 0.  Then   

 
 ( )  ( )

 
( ( ) –   ( )) - ∫    

 

 
 │ ≤ 

 

       (   )        

(We know that   ⋁ (  
 )≤   ,   -  where    is Lipschitzian mapping). 

 Theorem   3.5 [50] 

 Let   ,   -    be        Holder type mapping, Where     and   

(   -  are given, and   ,   -    is a mapping of bounded variation on ,   -. 

  Then we have the Ostrowski   inequality, 

           | ( )( ( )   ( ))  ∫  ( )  ( )
 

 
| 

                                                   0
 

 
(   )  |  

   

 
|1

 

⋁ ( ) 
               (   ) 
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For all   ,   -, furthermore, the constant 
 

 
 is the best possible, for all   (   -   

Proof  
Using the property in lemma (2.1) we have   

  | ( )( ( )   ( ))  ∫  ( )  ( )
 

 
|   |∫ ( ( )   ( ))  ( )

 

 
| 

                                                                               
  ,   -

  ( )   ( ) ⋁ ( )  
   

As   is of       Holder type, we have 

          ,   -  ( )   ( )       
  ,   -

 ,       -   

                                                *(   )  (   ) + 

                                             ,   *       +-   

                                              0
 

 
(   )  |  

   

 
|1

 
 

    To prove the sharpness of the constant 
 

 
 for any   (   -    assume that (   ) 

holds with a constant    , that is  

     | ( )( ( )   ( ))  ∫  ( )  ( )
 

 
|    

         0 (   )  |  
   

 
|1

 

⋁ ( ) 
                    (2.3) 

    For            Holder type mappings on ,   - and   of bounded variation 

on the same interval.  

Choose  ( )      (  (   -)   ,   - and   ,   -  ,   - given by  

                                       ( )  2  
        ,   )
               

  

As  

                                        ( )   ( )                  



97 
 

      For all     ,   -   (   -  it follows that   is of      Holder type with 

the constant 1.  

  By using the integration by parts formula for Riemann-Stieltjes integrals, we have   

                                     ∫  ( )  ( )
 

 
  ( ) ( ) 

   ∫  ( )  ( )
 

 
  

                                                                       

And                               ⋁ ( )    
 ,   so 

                                         0  |  
 

 
|1

 
, for all  ,   -.  

For      we get    .  
 

 
/
 
  which implies that    

 

 
 .  

Remark 3.6 [46] 

    If   is a convex function on (    ), and   is increasing on ,   - then 

    by turning to Riemann–Stieltjes integrals The Hermite – Hadamard inequality is 

not true in general.  

                    (
   

 
) [   ( )    ( )- ≤ ∫     

 

 
≤ 

  ( )    ( )

 
 , ( )    ( )-   

 Example: 3.7 

            Let ,   - = ,   - and  

               ( ) = t
2   ( )    √   

So left – hand inequality does not hold in general 

 And if           ( ) = t
5/2,     

then  

The right – hand inequality does not hold in general to see this, we need shows 

                            (
   

 
) ,   ( )    ( )-   ˃   ∫     

 

 
  

By the modification of the integral, we have        
 

 √ 
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So              ∫     
  

  
g = ∫        

  

  
 =  ∫      ( 

 

 √ 
)    

  

  
t  = 

 

 
 ∫   

 

     
  

  
t 

                                                         = 
 

 
 [  

 
 
 

 

 

 
  

 
  

]  = 
 

 
 

And       (
   

 
)[√  √ ] = 

 

 
 ˃  

 

 
 

Thus left – hand inequality does not hold. 

Now    if    ( ) =   t
5/2    

  so      = 
 

 
  

 

     

                          ∫       
  

  
t = ∫      ( 

 
 
  

 
    )    

  

  
 

                                           
= 

 

  
 ∫    

 
       

  

  
    =  

 

  
 [
 
  
 

  

 

 
  

 
  

]  =  
 

 
   

And           
 (  )    (  )

 
  [ ( )    ( ) ] =   

 

 
  ˂ 

 

 
    

So    the right – hand inequality does not hold. 
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3-2 Inequalities for the Riemann - Stieltjes integral of   

                            Product integrators. 

     In this section we show that if      : ,   -    are two functions of bounded 

variation and such that the Riemann-Stieltjes integral ∫    
 

 
 exists, then for any 

continuous functions h : ,   -   , the Riemann-Stieltjes integral ∫    (  )
 

   
 

exists and using this result we then provide sharp upper bounds for the quantity 

                                                  |∫   (  )
 
 

|, 

 And apply them for trapezoid and Ostrowski type inequalities. 

 Lemma3. 8 [22] 

If     be two functions of bounded variation on ,   -  and ∫    
 

 
  

exists, then for any   ,     ],  

                          ( )   ∫   ( )    ( )
 

 
 of bounded variation and  

                               ⋁   
   ‖ ‖  ⋁    

    

Proof:  

             We know the integral ∫      
 

 
 exists for all     ,     -  

Let  

          a = x0 ˂ x1 ˂ … ˂ xn-1 ˂ xn = b  

a division for the Interval [a, b] , then  

        ∑    (    )     (  
   
   )   ∑ ∫       

    

 
  ∫        

  

 
   

                                                 =  ∑  ∫        
 

  
   
    ∫        
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                                                  ∑  ∫        
    

  
   
    

by Lemma (2.1) , then  

        ∫       
    

  
≤ supxi t ≤ xi+1│  ( )  ⋁      

       

Therefor  

    ∑    (    
   
   )   (  )   ∑ (   

        
         

││ ( )  ⋁      
  )    

                                                   
         

│ ( ) ∑     
   ⋁ (     

  )   

 =    
     

│  │ ( ) ⋁ (  
 ) 

but      are of bounded variation on [    ]  

 So                      =    
     

│   │f (t)│⋁   
   ˂   

Therefor            ∑    (    
   
   )   (  )       

Hence                   ( ) is of bounded variation on [   ].                    □  

Theorem 3.9 [22]    

 Let    ,   -      is continuous and     be two function of bounded 

variation on [   ] and ∫    
 

 
 exists. Then  

         ∫    (  )
 

   
 exists, and  

                   ∫   (  )
 

   
 = ∫ (  )  

 

   
 + ∫ (  )  

 

   
    (   ) 

Proof 

Let     ,   ] then by the integration by parts theorem  



101 
 

                     ∫  ( )   ( )
 

 
 exists  

And  

       ( )  ( )     ( )  ( ) +∫  ( )    ( )
 

 
 + ∫  ( )   ( )

 

 
       (   ) 

We can using (3.3) to say  

        

  (  ( )  ( ) ) = d (f (a)  (a) ) + d ∫   ( )    ( )
 

 
 )  

                                                                        +   ∫   ( )     ( )
 

 
   

      (  )  (   (  )  (  ))     ( )  (∫   ( )    ( )
 

 
 )  

                                                             ( )   ( ∫ (  ( )    ( )
 

 
 )         

Therefor  

             ∫   ( )  
 

 
( f (x)  (x) = ∫   ( )  

 

 
( ∫   ( )   ( )

 

 
 )  

                                                     +∫   ( )  
 

 
( ∫   ( )  

 

 
 )        (   )  

 by last lemma  

               ∫     
 

 
 and ∫     

 

 
 are of bounded variation on [a, b]  

Therefor   

          ∫  ( )  
 

 
( ∫  ( )  ( )

 

 
 )  and ∫  ( )  (∫  ( )  ( )

 

 
 )   

 
exist.  

And  

            ∫  ( )  
 

 
( ∫  ( )  ( )

 

 
 ) = ∫  ( ) ( )  ( )

 

 
               (   ) 
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             ∫  ( )  
 

 
( ∫  ( )  ( )

 

 
 ) = ∫  ( ) ( )  ( )

 

 
               (   ) 

So by (4.3),  (5.3) and  (6.3)  

       ∫  ( )  
 

 
( ( )  ( )) =  ∫  ( ) 

 

 
 ( )   ( )                             

                                                +∫  ( )  
 

 
( )   ( )    for    ,   -                                                       

Notation 3.10  

If      ,   -     is a functions of bounded variation ∫    
 

 
 exists  

   ,   -     Continuous then ∫    
 

 
2
 = 2∫    

 

 
  

and if       exists then  

     ∫    
 

 
2
 = 2 ∫     

 

 
    

Theorem 3.11 [22] 
  Let      ,   -      be two functions of bounded variation such that 

 ∫    
 

 
 exists. If     ,   -      is continuous. Then  

        │∫   (  ) 
 

 
≤      

 
 ⋁ (  

 ) +     
 
    ⋁ (  

 )                     (7.3) 

                            ≤    
 
  [     

 
  ⋁ (  

 ) +    
 
   ⋁ (  

 ) ].      (8.3) 

Both the above inequalities are sharp  

Proof  

From (3.3) and lemma (2.1)  We have   

│∫   (  ) 
 

 
≤ │∫      

 

 
+  ∫      

 

 
                                                                          

          ≤ ‖  ‖ ⋁ (  
 ) +     

 
  ⋁ (  

 )   

                    ≤     
 

     
 
 ⋁ (  

 )     
 
     

 ⋁ (  
 )  
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                     =    
 

  [     
 ⋁ (  

 ) +     
 

 ⋁ (  
 ) ]  

Now, to prove the sharpness of  (   )  

 let the functions        : ,   -      giving by  

               ( ) = 2
          

           (    -, 

and  

             (t) = 2
               ,   )
                     

 

The functions    and   are of bounded variation,  

 ⋁   
  = sup {∑ │ (  

 
   )   (    )  *          + is a partition of [a, 

b]}, 

and  

         ∑ │  (  
 
   )    (    )│= │1 - 0│+│1 - 1│+…+│1 - 1│= 1 

So  
          ⋁ (  

 ) = 1 
and  

⋁   
 = sup { ∑ │ (  )   (    

 
   )│ *         + is a partition of [a, b]}, 

and   

    ∑ │ (  )   (    
 
   )│=                         =   

Then  

 ⋁ (  
 ) = 1 and     

 
  =      

 
   = 1  

From  

    
 
  =     

  ,   -
│ f (t)│= sup {0 , 1} = 1 
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 =     
  ,   -

│ (t) │ = sup  {0 , 1} = 1, 

and we have  

                             ( )  (t) = {
        *    +

       ∉ *    +
 

then     is of bounded variation and for continuous function   

then   ∫    (  )
 

 
 exists   

to show f   of bounded variation                                                    

       ⋁ (   
 ) = sup { ∑  (  )(  

 
   )  (   )(    )      

   *        + is a partition of [a, b] }  

       ⋁ (   
 ) = sup {│1- 0│+│1-1│+…+│0-1│ } = 2   

We know by the integration by parts  

          ∫    (  )
 

 
  =  ( )  ( )  ( ) –   ( )  ( )  ( ) –  ∫       

 

 
 

                                                   = – ∫    
 

 
d h                         (   ) 

To find ∫      
 

 
  consider the following sequence of divisions and 

intermediate points:      

    :     
( )    

( )
      

( )   …..  
      

( )      
( )

       
( ) =  , 

Such that   (   )   0 as n      where   (  ) =            (    
( )       

( ))   

 and if      
( )

   [  
( ),      

( )]  for    *           +  then 

        ∫   
 

 
d =       (  )   ∑ (    

    )(  
( ) ) [  (    

( )  ) –   (  
( ))]  

                           (  )   ∑      
      (  (    

( ) ) –   (  
( ))) 
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                                         =   ( )    ( )  

From  (   ) 

                     ∫    (  )
 

 
  = – ∫    

 

 
d h  =   ( )    ( )  

 we also have                         

                               ( ) ( )  = {
          

      ( )      (    -, 

and  

                               ( )  (t) = {
   ( )            ,   )
                     

 

then                           
 
 =       

 
        

 
, 

 

 by inequality  (2.9)   

                                   | ( )    ( )|         
 

                                   (    ) 

Now, we need show that (10.3) is sharp, so 

Let   ( )     
   

 
,   ,   -,  then  

                  | ( )    ( )| =    ,       
 

  
   

 
 

Then       = 2( 
   

 
),  

Therefor (8.3) is sharp. 
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3.3      The Ostrowski and Trapezoid inequalities with 

product Integrators. 

Proposition 3.12   [22] 
Let     ,   -    be two functions of bounded variation and such that the 

Riemann-Stieltjes integral ∫  ( )  ( )
 

 
 exists. Then for any   ,   -we have 

      | ( ) ( )(   )   ( ) ( )(   )  ∫  ( ) ( )  
 

 
| 

                     ,    - (   ) ( ) ⋁ (  
 )       ,    - (   ) ( ) ⋁ (  

 )  

               0
 

 
(   )  |  

   

 
|1 ,‖ ‖ ⋁ (  

 )  ‖ ‖ ⋁ (  
 )-        (    ) 

In particular, we have   

       |
 ( ) ( )  ( ) ( )

 
(   )  ∫  ( ) ( )  

 

 
|   

                      ,   - |.  
   

 
/ ( )| ⋁ (  

 )       ,    - |.  
   

 
/  ( )| ⋁ (  

 ) 

                 
 

 
(   ),‖ ‖ ⋁ (  

 )  ‖ ‖ ⋁ (  
 )-                                     (    ) 

The inequalities (11.3), (12.3) are sharp.  

Proof 

We use the following identity 

   ( )(   )   ( )(   )  ∫  ( )   ∫
 

(   )   ( )
 

 

 

 
       (    ) 

That holds for any function of bounded variation   ,   -    and any   ,   -.  

If we write the equality (13.3) for      we get  

     ( ) ( )(   )   ( ) ( )(   )  ∫  ( ) ( )  
 

 
               (    ) 

                                        ∫ (   ) ( ( ) ( ))
 

 
   for any   ,   -  
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 If we use theorems (3.9) and (3.11) for the function  ( )        ,   -, then 

we have the inequality  

     |∫ (   ) ( ( ) ( ))
 

 
|  

                      
  ,   -

 (   ) ( ) ⋁ (  
 )       ,    - (   ) ( ) ⋁ (  

 ) 

     
  ,   -

      ,‖ ‖ ⋁ (  
 )  ‖ ‖ ⋁ (  

 ) -   

                     *       +,‖ ‖ ⋁ (  
 )  ‖ ‖ ⋁ (  

 )-  

                 0
 

 
(   )  |  

   

 
|1 ,‖ ‖ ⋁ (  

 )  ‖ ‖ ⋁ (  
 )-           (    ) 

The inequality (12.3) follows from (11.3) for    
   

 
.  

 Consider the functions     ,   -    defined by   

                 ( )  {  
               
        (   - 

         ( )  2
          ,   )

           
 

We observe that         are of bounded variation and  

                ⋁ (  
 )   ⋁ (  

 )     

Take the sequence of divisions and intermediate points  

                        
( )

   
( )

   
( )

       
( )

     
    

( )
   

Such that  (  )         ,       - 2    
( )

   
( )

3            

By the definition of the Riemann-Stieltjes integral ∫  ( )  ( )
 

 
 we have  

               ∫  ( )  ( )        ∑  .  
( )

/ 0 .    
( )

/   .  
( )

/1   
   

 

 
 

                                                 ∑  .  
( )

/ 0 .    
( )

/   .  
( )

/1   
    

                                                   .    
( )

/ 0 ( )   .    
( )

/1          
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Which shows that this integral exists? Observe that  

             .  
   

 
/  ( )    8

                                                      

  
   

 
           (   - 

 

             .  
   

 
/  ( )   8       

  
   

 
       ,   )           

                                           
 

Then  

                  ,   - |.  
   

 
/ ( )|  

   

 
 

And 

                 ,   - |.  
   

 
/  ( )|  

   

 
    

We also have  

            
 ( ) ( )  ( ) ( )

 
(   )  ∫  ( ) ( )    (   ) 

 

 
 

                    | (   )|       =    
   

 
 +   

   

 
.  

So (12.3) is sharp.                                                                   

Corollary 3.13 [22] 
Assume that      ,   -    are monotonic nondecreasing on ,    - and such that 

the Riemann-Stieltjes integral ∫  ( )  ( )
 

 
 exists. Then for any   ,   - we 

have 

         | ( ) ( )(   )   ( ) ( )(   )  ∫  ( ) ( )  
 

 
|  

                   ∫        ( )   ( )  ∫        ( )   ( )
 

 

 

 
 

                   0
 

 
(   )  |  

   

 
|1 .∫   ( ) 

 

 
  ( )  ∫   ( )   ( )

 

 
/ 
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In particular, we have                                                                                 

                     |
 ( ) ( )  ( ) ( )

 
(   )  ∫  ( ) ( )  

 

 
| 

                   ∫ |  
   

 
|   ( )   ( )  ∫ |  

   

 
|   ( )   ( )

 

 

 

 
  

                  
 

 
(   ) .∫   ( )   ( )  ∫   ( )   ( )

 

 

 

 
/  

 Corollary 3.14 
   If     is Lipschitzian with L ≥ 0,    is Lipschitzian with         ,  

    and     ,   -      is continuous  

    Then     

│ ∫      (  )│ 
 

 
 ≤    ∫ │   │  

 

 
 + L ∫ │   │  

 

 
  

                            ≤    ∫ │  
 

 
,       -     

      Where           *   +   

Remark 3.15 [22] 

  If    ,    are continuous at [   ] and   is Lipschitzian with        

Then  

           │∫   (  )
 

 
 – I b, a │≤    ∫ (  )

 

 
    ≤      

 
 

Where  

                    I b, a =  ( )  ( )  ( )–   ( )  ( ) ( )  

 

 



110 
 

Proposition 3.16 [22] 
Let     ,   -    be two functions of bounded variation and such that for 

  ,    - the Riemann-Stieltjes integrals∫  ( )  ( )
 

 
, then 

              | ( ) ( )(   )  ∫  ( ) ( )  
 

 
| 

               (   )    
  ,   -

 *  ( ) + ⋁ (  
 )  (   )    

  ,   -
*  ( ) +⋁ (  

 ) 

               (   )    
  ,   -

 *  ( ) + ⋁ (  
 )  (   )    

  ,   -
 *  ( ) + ⋁ (  

 ) 

   0
 

 
(   )  |  

   

 
|1 ,‖ ‖ ⋁ (  

 )  ‖ ‖ ⋁ (  
 )-.              (    ) 

In particular if the Riemann-Stieltjes integrals ∫  ( )  ( )
   

 
 

 and ∫  ( )  ( )
 
   

 

 

exist.  Then we have  

                | .
   

 
/  .

   

 
/ (   )  ∫  ( ) ( )  

 

 
|    

                   
   

 
 [    

  0  
   

 
1

*  ( ) + ⋁ ( 
   

 
 )      

  0  
   

 
1

*  ( ) + ⋁ ( 
   

 
 )           

                         
  0

   

 
  1

  *  ( ) + ⋁ ( 
   

 
 )      

  0
   

 
  1

 *  ( ) +⋁ ( 
   

 
 )] 

                  
 

 
(   ),‖ ‖ ⋁ (  

 )  ‖ ‖ ⋁ (  
 )-                                     (    ) 

The inequalities are sharp.   

Proof  
We use the following identity   

                      ( )(   )  ∫   ( )   ∫ (   )  ( )  ∫ (   )  ( )
 

 

 

 

 

 
 

That holds for any function of bounded variation   ,   -    and any   ,   -  
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If we write the equality for      we get  

                       ( ) ( )(   )  ∫  ( ) ( )  
 

 
 

                      ∫ (   ) ( ( ) ( ))  ∫ (   ) ( ( ) ( ))
 

 

 

 
 

For any function     ,   -    of bounded variation and any   ,   -   

Taking above modulus: 

                     | ( ) ( )(   )  ∫  ( ) ( )  
 

 
| 

                      |∫ (   ) ( ( ) ( ))
 

 
|  |∫ (   ) ( ( ) ( ))

 

 
| 

                         
  ,   -

*(   )  ( ) +⋁ (  
 )      

  ,   -
*(   )  ( ) + ⋁ (  

 )  

          
  ,   -

 *(   )  ( ) + ⋁ (  
 )      

  ,   -
 *(   )  ( ) + ⋁ (  

 ) 

                     (   )    
  ,   -

*  ( ) + ⋁ (  
 )  (   )    

  ,   -
 *  ( ) +⋁ (  

 ) 

                     (   )    
  ,   -

*  ( ) + ⋁ (  
 )  (   )    

  ,   -
 *  ( ) +⋁ (  

 )  

                        *       +    
  ,   -

*  ( ) +⋁ (  
 ) 

                       *       +    
  ,   -

*  ( ) + ⋁ (  
 )   

                     0
 

 
(   )  |  

   

 
|1 ,‖ ‖ ⋁ (  

 )  ‖ ‖ ⋁ (  
 )-,  

  

Consider now the functions     ,   -    defined by  

                     ( )   {
       0  

   

 
/

       0
   

 
  1

     ( )   {
        0  

   

 
1 

        .
   

 
  1
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We observe that   and   are of bounded variation and  

                   ⋁ (  
 )   ⋁ (  

 )     

     The Riemann-Stieltjes integrals ∫  ( )  ( )
   

 
 

 and ∫  ( )  ( )
 
   

 

 exist since 

one function is continuous while the other is of bounded variation on those 

intervals.  

We observe that for these functions we have  

                      .
   

 
/   .

   

 
/  (   )  ∫  ( ) ( )        

 

 
  

                       
  0  

   

 
1

  *  ( ) +⋁ ( 
   

 
 )      

  0  
   

 
1

 *  ( ) +⋁ ( 
   

 
 ) 

                     
  0

   

 
  1

  *  ( ) + ⋁ (  
   

 

)     
  0

   

 
  1

  *  ( ) +⋁ (  
   

 

)     

and  

                 ‖ ‖ ⋁ (  
 )  ‖ ‖ ⋁ (  

 )      

Therefor  

      |     .
   

 
/   .

   

 
/  (   )  ∫  ( ) ( )        

 

 
 = 

 

 
 (   )(2)  

                                                    =  
 

 
(   ),‖ ‖ ⋁ (  

 )  ‖ ‖ ⋁ (  
 )- 

                        So (17.3) is sharp. 
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