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ABSTRACT

Several pairwise concepts for bitopological spaces (BTS) have been studied by many researchers.
In this paper we introduce new pairwise separation axioms p'-Ti (1=0, 1, 2, 3,4) and p'-Ri (1 =0, 1) in
bitopological spaces, then we study their properties and their relations with the standard separation
axioms in BTS.
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1. INTRODUCTION

The concept of bitopological spaces (BTS for short) was introduced by Kelly [1] in 1963;
where he considered a bitopological space (X,t,0) as a set X equipped with two topologies t
and o. In this paper Kelly defined pairwise separation axioms in bitopological spaces as
pairwise Hausdorff, pairwise regular and pairwise normal axioms, and he studied their
properties. General details on BTS can be found in [2-9]. In 1966, Murdeshwar and Naimpally
[10] offered the notions of pairwise To, pairwise T1, pairwise Ro and pairwise R1 bitopological

( Received 07 April 2020; Accepted 25 April 2020; Date of Publication 26 April 2020 )


http://www.worldscientificnews.com/

World Scientific News 145 (2020) 31-45

spaces. More details on the properties of p-Ro and p-R: in bitopological spaces can be found
in both [11] and [12]. Pairwise compact BTS was introduced by swart [13] in 1971, after that
in 1973, Reilly [14] defined pairwise Lindelof BTS and he investigated its properties. See [15-
19].

In this paper, we study geeral concepts of bitopological spaces, then we define new
pairwise separation axioms in bitopological spaces using the notion of to-open sets, and discuss
their properties and derive some relations between the separation axioms and the new pairwise
separation axioms in BTS which we define.

We organize our work as follows: firstly, we give a brief introduction to the notions of
bitopological spaces BTS, then we introduce tc-open sets and to-closed sets in the
bitopological space (X, t, o) which are due to Lellis and Ravi [20], when we use them to
introduce the notion of to-closure of a subset of BTS. Some properties of to-closure are
different from the standard closure in topological space, as: the to-closure of to-closed set is
equal the to-closed set but not conversely. Secondly, we mention the concepts of separation
axioms in bitopological spaces, as Ti(i=0, 1, 2, 3, 4) and R; (i=0, 1) spaces, where (X,t,0) is T;
(or Ri) if both t and o are Ti (or R;).

The properties of the separation axioms in BTS are similar to the separation axioms in
topological spaces. Finally, we define a new pairwise axioms in BTS as; p'-Ti space (i=0, 1, 2,
3, 4), p'-regular space, p'-normal space, and p'-R; (i=0, 1) space. Note that our definition of p'-
To space is identical with p-To space which due to Murdeshwar and Naimpally [10], but the
other axioms as: p'-Ti spaces (i=1, 2, 3, 4) and p'-Ri (i=0, 1) spaces are different from Kelly and
Murdeshwar's definitions [1, 10]. We concentrate to derive the properties of these new pairwise
separation axioms, and how they relate to the separation axioms in BTS.

2. BITOPOLOGICAL SPACES

In this section we give a brief introduction to the notions and concepts of bitopological
space BTS that we need in the sequel.

Definition 2.1. [1] Let X be a non-empty set and let 1, 6 be two topologies on X, then (X,1,0)
is called a bitopological space (BTS for short).

Definition 2.2. [20] A subset V of a bitopological space (X,t,0) is called to-open set if VetUc.
A subset F of X is called to-closed set if F'=X/F is 1o-0pen set.

Remark: In bitopological space (X,t,0), the subset F of X is to-closed if FeF, U F; where F;
is the collection of all closed sets in (X,1), and F; is the collection of all closed sets in (X,0).

Example 2.1. Let X = {a,b,c,d,e}, T = {X,9,{a},{c,d},{a,c,d},{b,c,de}}, o = {X,0,{a},{c},
{a,c}}. Then (X,1,0) is a bitopological space, and {c,d},{a,c} are tc-open sets, while {a,b,d,e},
{a,b,e} are to-closed sets, but {a,b}, {a,d} are not tG-open sets and are not to-closed sets.

Definition 2.3. [20] Let (X,t,0) be a bitopological space and let BEX, then the to-closure of B
_TO _Tto _
is denoted by B and define as B =B=N{F:F is to-closed set, BCF }.
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Theorem 2.1. If (X,t,0) is a bitopological space and A, B are subsets of X then:
_T0 _T _oO
(1) A =A NA .
_T0 _T _10 _o
(2) A cA andA cA .
__TO
(3) If Alis to-closed setthen A =A.

_TO
(4) AcCA .

(e

_T0 _T
(5) IfAcBthenA <B .

Proof.
(1) Direct from definition (2.3).
(2) Direct from (1).

i

(3) If Alis to-closed set, then Alis closed in tor A is closed in . If Aisclosedint, i.e A =A,
10 _T _O _ o _ o 16 _T

then A =A NA =ANA =A, and if A is closed in 6 i.e A =A, then A =A NA=A. So

_T0

A =A

_T _0O _T _O0 _T0 _T0
(4) AcA and AcA ,then AcA NA =A ,s0AcA .

o T 10 o o _T6 _T _oO 10 c

_T T _ _ _ _ _ _T0 _T
(5) Since AcB,A <A <B andA cA <B ,ieA <cB NB =B ,thenA <B .

_T0o
Example 2.2. Let X={a,b,c}, =={X,0,{a,c},{c}}, o={X,p,{b}}, A={a}, then A =A but A is
not to-closed set.

Definition 2.4. [20] Let (X,t,0) be a bitopological space and let BEX. A point xe X is called a
to-limit point for B if BN(U,\{x})#¢ for any tc-open set U, containing x. The set of all to-
limit points of B denoted by (B)™ and called the to-derived set of B.

EX'ampIe 2.3. Let X={a,b,c,d}, ={X,0p,{a},{b},{a,b}}, c={X,0,{c},{a,c}}, and A={a,d}, then
(A)°={d}.

Theorem 2.2. In bitopological space (X,t,0) if AcX, then (A)*=(A)"N(A)°.

Proof. Suppose (A)°Z(A)N(A)° i.e there is xe(A)™ but xz(A)N(A)°, i.exe(A) or
xe(A)°. If xg (AT, then there is open set Uy et containing x with AN(U \{x})#¢, since Uy €T,
i.e UyetUo then x¢(A)™, which is impossible. If xg(A)°, then there is V, ec containing x with
ANV {x})#o, since V0, i.e V,etUc then x¢ (A)™ which is impossible.

Then (A)c(A)N(A).

Now let xe(A)'N(A)°, i.exe(A) and xe(A)°, then AN(U \{x})#¢ for any open set Uyet
containing x, and AN(V,\{x})#£e for any V, et containing x, i.e AN(W,\{x})#¢ for any t6-0open
set W, containing x, then xe(A)™, i.e (A)*N(A)°c(A)™. Then (A)°=(A)N(A)°.

-33-



World Scientific News 145 (2020) 31-45

Definition 2.5. Let (X,t1,01) and (X,t2,02) be two bitopological spaces, then we say that
(X,11,01) weaker than (X,12,02) (or (X,t2,02) stronger than (X,t1,61)) and written
(X,11,61)<(X,712,62), if 11<12 and 61<0c>.

Note that (X,t1,61)<(X,12,62) iff any open set in 11 is open in 12, and any open set in o1 IS 0pen
1m o2.

Theorem 2.3. If (X,t1,01) and (X,t2,62) are bitopological spaces, then (X,t1,61)<(X,12,02) if
any closed set in 11 is closed in 12, and any closed set in 61 is closed in G2.

Definition 2.6. Let (X,t,0) be a bitopological space and let ASX, then (A,ta,ca) is said to be
subspace of (X,t,0) where ta={UNA:Ue1}, caA={VNA:Veoc}.

TACA TO

Theorem 2.4. If (X,1,0) is a bitopological space, AcX and BcA,thenB =B NA.

TACA TA oA

— _ _ _T _ 0o _T _oO _10
Proof. B =B NB =B NA)N(B NA=(B NB )NA=B NA.
Definition 2.7. [3] Let (X,t1,01) and (Y,t2,02) be two bitopological spaces, and let f:
(X,t1,061)—>(Y,12,62) be a map, then f is called continuous (open, closed, homeomorphism) if

the maps f: (Xt1)—>(Y,r2) and f: (X,o1)—>(Y,02) are continuous (open, closed,
homeomorphism).

Example 2.4. Let X={a,b,c}, Y={1,2}, f={(a,1),(b,1),(c,2)}, 11={X,p,{a,b},{c}}, o={X,p,{a},
{b}{ab}} o1={Y,9,{1},{2}}, c2={Y,0,{1}}.

Then f: (X,11,061)—(Y,12,62) is continuous, open and closed.
Definition 2.8. Let (X,1,0) be a bitopological space and let (x,)p=1={X1 , Xz, -+ o ,Xp, .- ybE A
sequence in X. We say (x,)n=1converge to a point xe X if (x,)n=;, converge to x in (X,t) and
(Xn)m=1 COnverge to x in (X,o).
Example 2.5. Let X=IN, and let (X,t,0) be a bitopological space where 1={X,¢} and c={X,0,
{2},{2,3},{2,3,4},...... b, () ={1,2,3,........ }, then (n)p=;—1, but (n);2, »2.
3. SEPARATION AXIOMS IN BITOPOLOGICAL SPACES

Here we introduce the separation axioms in bitopological spaces as; Ti-spaces (i=0, 1, 2,
3, 4) and Rj-spaces (i=0, 1), and then we discuss their properties. Definitions and results in this
section are taken form [1, 2, 21].

3. 1. Ti-Spaces (i=0, 1, 2, 3, 4)

Definition 3.1.1. A bitopological space (X,t,0) is called Ti-space where i=0,1,2,3,4 (regular,
normal ) if (X,t) and (X,c) are Ti-spaces (regular, normal ).
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Remarks:
(1) Every Ti.1 bitopological space is Ti (i=0, 1, 2, 3), but not conversely.
(2) If (X,t1,61) is Ti where i=0, 1, 2 and (X,t1,61)<(X,12,02), then (X,t2,62) is Tj .

Theorem 3.1.1. Every subspace of T; (or regular) bitopological space is Ti where i=0, 1, 2, 3
(regular).

Example 3.1.1. If X={a,b,c,d}, =={X, ¢,{a}.{a,b},{a,c},{a,b,c}}, 0={X,0,{b,c.d},{c,d},{b,d},
{d}}, A={ab,c} is to-closed set, ta={A, ¢,{a},{a,b}, {a,c}}, ca={X, 9,{b,c},{c},{b}}.
Then (X,t,0) is normal but (A,ta,c4) IS not normal.

Theorem 3.1.2. If (X,1,0) is normal space, and F is closed set in T and closed in 6, then (A,tF,oF)
is also normal space.

Theorem 3.1.3. A bitopological space (X,t,6) is To-space iff @T;émt and ﬁcimofor
every distinct points x,ye X.

Theorem 3.1.4. If (X,1,0) is T1-space, then any finite set is to-closed.

Example 3.1.2. Let X={a,b,c}, ==p(X), o={X,p}, then {a}, {b}, {c} are to-closed sets but
(X,1,0) is not T1-space.

Theorem 3.1.5. If (X,1,0) is T1-space, and A is a finite subset of X, then (A)™ =o.

Proof. Since (X,t1,0) is T1-space i.e (X,t) and (X,o) are T1-space, then we have (A)™=¢ and
(A)°=g, (A)™=(A)"N (A)° s0 (A) =¢.

Theorem 3.1.6. The closed continuous image of normal bitopological space is normal.
3. 2. Ri-Spaces (i=0, 1)

Definition 3.2.1. A bitopological space (X,t,0) is called Ri-space if (X,t) and (X,c) are R; (i=0,
1).

Example 3.2.1. Let X={a,b,c}, T =p(X), o ={X,0}, then (X,t,0) is R1 space but not To.

Theorem 3.2.1.

(1) Every T1 bitopological space is Ro.
(2) Every R1 bitopological space is Ro.
(3) Every T bitopological space is R1.

Theorem 3.2.2. A bitopological space (X,t,0) is T1-space iff (X,t,0) is To and Ro-space.
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Theorem 3.2.3. A bitopological space (X,t,0) is T2-space iff (X,t,0) is To and Rz-space.

4. PAIRWISE IN BITOPOLOGICAL SPACES

In the present section we introduce some pairwise concepts in bitopological spaces as
pairwise continuous (open, closed, homeomorphism) functions. Moreover, we define the notion
of pairwise comparison between bitopological spaces.

Definition 4.1. [3] Let (X,t1,01) and (Y,t2,02) be two bitopological spaces and let f:
(X,11,01)—(Y,12,02) be a map, then f is called:

(1) Pairwise continuous (p-continuous for short) if f ~1(V) et1Uo1 for any VetUc;.
(2) Pairwise open (p-open for short) if f(V)et2Uc? for any VetiUo.

(3) Pairwise closed ( p-closed for short) if f(F) is too2-closed set in (Y,t2,62) for any ti61-
closed set F in (X,t1,01).

(4) Pairwise homeomorphism (p-homeomorphism for short) if f is bijective function, and f,
f ~1 are p-continuous.

Examples 4.1.

(1) Let X={a,b,c,d}, ui={X,p,{a,b},{c,d}}, or={X,p,{a,c}}, Y={1,2,3}, =o={Y,0,{1},{2,3}},
o={Y,0,{2},{1,2}}, f={(a,1),(b,1),(c,2),(d,2)}, then f: (X,t1,061)—>(Y,12,62) is p-continuous
but is not continuous because f : (X,c1)—(Y,o2) is not continuous, since {2} is open in (Y,c2)
but f ~1({2})={c,d} is not openin (X,c1). f is p-open but is not open because f: (X,t1)—>(Y,12)
is not open, since {c,d} et but f({c,d})={2}¢12. f is p-closed but is not closed because f:
(X,t1)—(Y,12) is not closed, since {c,d} is closed set in (X,t1) but f({c,d)}={2} is not closed
set (Y,12).

(2) Let X={a,b,c,d}, t1={X,p,{a,b}}, o1={X,0,{c,d} }, Y={1,2}, 1o={Y,0,{2} }, 02={Y,0,{1} },
f={(a,1),(b,1),(c,2),(d,2)}. Notethat f: (X,t1)—>(Y,t2) and f: (X,o1)—(Y,c2) are not continuous
but f: (X,t1,01)—>(Y,12,62) is p-continuous.

Theorem4.1. Let f: (X,11,61)—>(Y,12,62) be a continuous (open, closed, homeomorphism), then
f is p-continuous (p-open, p-closed, p-homeomorphism).

Definition 4.2. [20] Let (X,t,0) be a bitopological space and let (x,)n=1 = {X1, Xz,
...... ,Xn, - - } D€ @ Sequence in X, we say ( x,)n=1 P-converge to a point xe X if for any VetUc
containing x there is nyeIN such that x, eV for any ny>n.

Theorem 4.2. Let (X,t,0) be a bitopological space, and let ( x,)a-, be a sequence in X, then
( Xn)m=1 CoONnverge to x iff ( x,)n=, p-converge to xe X.

Proof. "=" Suppose ( x,)a=; IS NOt p-converge to xeX, i.e there is to-open set V such that
xeV and infinite members of ( x,)n=; do not belong to V. VetUc then Vet or Veo. If Ver
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I.e (x,)n=11S Not converge to x in (X,t), and if Veo i.e ( x,)n=1 IS NOt converge to x in (X, o).
So (x,)7=1 IS Not converge to x in (X,t,0), which is impossible.

"<" Suppose ( x,)a=1 IS NOt converge to xe X, i.e ( x,)n=1 IS NOt converge to x in (X,t) orin
(X,0), then there is VetUc such that infinite members of ( x,)n=; do not belong to V, i.e
( Xn)n=1 IS NOt p-converge to x, which is impossible.

Theorem 4.3. Let f: (X,11,61)—(Y,12,02) be a p-continuous function from a bitopological space
(X,t1,01) to a bitopological space (Y,t2,02) and let ( x,)7=, be asequence in X such that x, —
xeX, then f(x,)—>f(x).

Proof. Let VetUc: such that f(x) eV, then xef “1(V) etiUc1 (f is p-continuous ), since x,, —
x, then there is nyeIN such that x,e f (V) for any n>n,, then f(x,)eV for any n>n,, i.e
f(xn) ().

Definition 4.3. [1] Let (X,t1,01) and (X,t2,62) be two bitopological spaces, then we say that
(X,t1,01) p-weaker than (X,t2,02) (or (X,t2,62) p-stronger than (X,t1,61) ) and written (X,t1,61)
= (X,12,02) if 1Uc1CT2UGS.

Example 4.2. Let X={a,b,c}, u={X,p,{a},{b,c}}, o1={X,p,{a,b}}, 22={X, ¢,{a}}, c2={X,
¢,{b,c}}, then (X,11,61) = (X,12,62) but (X,71,61)%(X,12,62) because 61£02.

Theorem 4.4. If (X,11,01) and (X,12,02) are bitopological spaces, then (X,t1,61)=(X,12,02) iff
any tio1-closed set is t202-closed set.

Proof. "=" Let F be t101-closed set, i.e F° is ti51-0pen set, then FCetiUo1 since (X,11,061)=
(X,12,62), i.e T1Uc1cT2UOG2, then FCetaUoz. So F is t202-closed set.

"<" Let U be t101-0pen set, i.e U° is tio1-closed set, so UC is t2o2-closed set, then U° is 1202-
closed set, then U is t202-0pen set i.e TiUc1ctoUc2. SO (X,11,61)=(X,12,02).

Theorem 4.5. If (X,t1,61)<(X,12,62), then (X,71,61)=(X,12,62).

Proof. (X,11,61)<(X,12,02) i.€ 11<12 and 61<02, then t1c12 and 6162, i.e T1UG1CT2UG.

5. NEW PAIRSIWE SEPARATION AXIOMMS BITOPOLOGICAL SPACES

In this section we define new pairwise separation axioms in bitopological spaces as; p'-Ti
spaces (i=0, 1, 2, 3, 4), p'-Ri spaces (i=0, 1), then we investigate the properties for these pairwise
separation axioms in BTS. In addition, we study the relation between the separation axioms and
the new pairwise separation axioms in BTS.

Our definitions for these pairwise bitopological spaces are different from Kelly and
Murdeshwar's definitions [1, 10], except the axiom of p'-To space which is due to Murdeshwar
and Naimpally [10].
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5. 1. p'-Ti Bitopological Spaces (i=0, 1, 2, 3, 4)

Definition 5.1.1. [10] A bitopological space (X,t,0) is called pairwise To space ( p'-To Space
for short ) if whenever x and y are distinct points in X there is to-open set U ( UetUc )
containing one point and not the other.

Remarks:

(1) Any To bitopological space is p'-To, but converse is not true.

(2) If (X,7) or (X,0) is To-space, then (X,t,0) is p'- To.

(3) If (X,11,01) is p'-To bitopological space, (X,t1,61)=(X,12,62), then (X,12,62) is p'-To.
Example 5.1.1. Let X={a,b,c }, =={X,p,{a,b}}, c={X ,9,{b}}, then (X,1,0) is p'-To space but
is not To.

Theorem 5.1.1. The following statements are equivalent, for a bitopological space (X,z,0).

(1) (X,t,0) is p'-To space.

(2) @mimmwhenever X2y, x,yeX.
(3) @r #@r or @Gimc whenever x#y, x,yeX.

Proof. "1—»2" Let (X,1,0) be a p'-To space and let x,ye X, x#y, then there is tc-open set U
containing one and not the other. Suppose xeU3y, since UetUg, then Uetor Ueo. If Uer

ie xe(y})™, xe{y}, so xe{y} , but @mgmt, ie xe@m, xe @m then @m;&mm, and
similarity if Ueo, then @w#@m So @mqémm

"2—3" Let @w;&{y} ie there isze {x} and Zsé{y} orthere isze {y} and ze{x} In the
first case ZE {x} and Zsé{y} , i.e there |s to-closed set F such that yeF3z, then x¢F so
xe{y} —{y} ﬂ{y} |ex¢{y} orxe{y} then @T;&@tor@:ﬁma. Similarity in the
second case: Ze{y} and ze{x}

"3—1" Suppose (X,t,0) is not p'-To space, then there is x#y such that any to-open set
containing x containing y and any tc-open set containing y containing x and let Ue t (or o)
that contains x. Then U is tc-open set, since xeU and (X,t,c) is not p-To space, yeU, i.e

xe{y}" <l (o xe{y}°ch? )then 3 <73 (or &3 <fy} ). Similarity, if Vet (or Ve
o) that contains y, then @Tgmt(or @Gg{T}G). Then @T={Wt(or @G:@G).
Contradiction

Definition 5.1.2. A bitopological space (X,t,0) is called pairwise T space ( p'-T1 space for
short ) if whenever x and y are distinct points in X there are two tc-open sets one containing x
but not y, and the other containing y but not x.
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Remarks:

(1) Any Ty bitopological space is p'-T1, but the converse is not true.

(2) If (X,7) or (X,0) is T1-space, then (X,t,6) is p'-T1.

(3) If (X,t1,01) is p'-T1 space, (X,11,61)=(X,12,02), then (X,12,62) is p'-T1.

Example 5.1.2. Let X={1,2}, ={X,0,{1}}, o={X,0,{2}}, tUc={X,0,{1},{2}}, then a
bitopological space (X,t,0) is p'-T1 space but not Tj.

Theorem 5.1.2. In bitopological space (X,t,0) if {x} is to-closed set for any xe X, then (X,1,0)
Is p'-T1 space.

Proof. Let x, yeX, x#y, then {x}‘and {y}are tc-open sets and x¢{x}¢ 3y, y{y}*3 X, so
(X,t,0) isp-Tu.

Examples 5.1.3.

(1) Let X={a,b,c}, =={X,0,{a},{b},{a,b}}, c={X,0,{c}}, then (X,t,06) is p'-T1 space but {a}is
not to-closed set.

(2) Let X={a,b,c}, =={X, ¢,{a,b},{c}}, o={X, o,{a,c},{b}}, A={a,b,c}, note that (X,t,6) isp'-
T1, but (A)™ ={a}# ¢. Moreover ac(A)™ but any tc-open set contains a is finite.

Theorem 5.1.3. If (X,1) or (X,0) is T1, then (A)™ = ¢ where A is a finite subset of X.

Proof. Since (X,t) (or (X,0) ) is T1-space, then (A)™= ¢ (or (A)°= @), i.e (A)™=¢ N(A)°=¢
(or (A)=(A)N 0= @), s0 (A)°= o.

Theorem 5.1.4. Let (X,t,0) be a bitopological space which satisfy condition that any
convergence sequence has a unique limit point, then (X,t,c) is p*-T.

Proof. Let x,yeX, x#y note that {X,X, ..., X, ..... }5(X) 72 X, {V,Y,-ersYs-.-.}= (¥)T >V, then
(x)7° »Y, i.e there is UyetUo such that yeUy ? x, (y)7° +» x i.e there is U, etUc such that
xeUy By. So (X,1,0) is p'-T1.

Example 5.1.4. Let X=IN, (X,tc) be the cofinite topological space, (X,c) be the trivial space,
then (X,tc,0) is p'-T1 space, because (X,tc) is T1 space, but (n)7° is a sequence in (X,tc,c), and
(n)7° converge to n for any neIN.

Definition 5.1.3. A bitopological space (X,t,0) is called pairwise T2 space ( p'-T2 space for
short) if whenever x and y are distinct points in X there are disjoint tc-open sets U and V with
xelU, yeV.

Remarks:
(1) Any T bitopological space is p'-T2 but converse is not true.
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(2) If (X,7) or (X,0) is T2-space, then (X,t,0) is p'-T>.
(3) If (X,t1,01) is p*-T2 space, (X,11,01)=(X,12,062), then (X,12,02) is p'-T.

Example 5.1.5. Let X={a,b,c}, =={X,p,{a},{b},{a,b}}, c={X,p,{c}}, then a bitopological
space (X,t,0) is p'-T2-space but is not T.

_ 10
Theorem 5.1.5. If (X,1,0) is p'-T2 space, then {x}=n {U :U is to-open set, xeU }.

Proof. Let xe X, then for any ye X such that x£y, there are to-open sets Uy, Vy such that xe Uy,
T0 T0

T0

yeVyand UyNVy=0, then Uy,c Vi, i.e U, cVy,yeVy ieyeU, ,soyen {U, :Uyis tc-open
T0

set, xeUy }. So {x}=n {U, :U is tc-open set , xe U, }.
Theorem 5.1.6. In p'-T2 space (X,t,6) any convergence sequence has a unique limit point.

Proof. Let ( x,)a=,be a sequence in X, and suppose x,— x and x,—Y, x#y. Since (X,1,0) IS
p'-T2, then there are Uy,UyetUc with xeUy, yeUy and U;NUy=0, xeUy, i.e there is nyelIN
such that x, €Uy for any n > n,, and since UyNUy=¢, then infinite members of ( x,)n-, do not
belong to Uy, then ( x,)n=; Y Which is impossible.

Definition 5.1.4. A bitopological space (X,t,0) is called pairwise regular space ( p'-regular
space for short ) if whenever A is to-closed set and x¢ A, then there are two disjoint tc-open
sets U and V with xeU, AcV.

A p'-Ts space is a p'-regular and p'-T1 space.

Remark. Any regular bitopological space (T3 bitopological space) is p'-regular ( p'-Ts ) but
converse is not true.

Examples 5.1.6.

(1) Let X={a,b,c}, =={X,0,{a}}, o={X,0,{b,c}}, then (X,t,0) is p'-regular space but is not
regular.

(2) Let X={a,b,c}, ={X,9,{a},{b},{ab}}, o={X,0,{c},{ac},{b,c}}, then (X,1,6) is p'-T3
space, but is not Ts.

Definition 5.1.5. A bitopological space (X,t,0) is called pairwise normal space ( p'-normal
space for short ) if whenever E and F are disjoint to-closed sets there are disjoint tc-open sets
U and V with EcU and FcV.

A p'-T4 space is p'-normal and p'-T1 space.

Remark. Any normal bitopological space (T4 bitopological space) is p'-normal space (p'-Ta)
but converse is not true.
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Examples 5.1.7.

(1) Let X={a,b,c}, =={X,0,{b,c},{a,c},{c}}, o={{X,p,{a,c},{a,b},{a}}, then (X,1,0) is p'-T4
space but is not Ta.

(2) Let X={ab,c.d}, =={X, ¢.{a}.{a,b},{ac},{ab.c}}, 6={X, ¢,{d}}, A={a,b,c} is to-closed
set, ta={A, 9,{a},{a,b},{a,c}}, ca={A, ¢ }, then (X,t,0) is a p'-normal but (A,ta,c4) is not p'-
normal.

Theorem 5.1.7. Any p'-Ti+1 bitopological space is p*-Ti (i=0, 1, 2, 3), but the converse is not
true.

Theorem 5.1.8. Any subspace of p'-T; (p-regular) space is p'-Ti where i=0, 1, 2, 3 (p'-regular).

Examples 5.1.8.

(1) Let X={a,b,c}, =={X,0,{a}}, o={X,0,{a,c},{b}}, then (X,t,0) is p'-To space but is not p'-
Ti.

(2) Let X be an infinite set and let (X,t) be a trivial space and 1. be a cofinite topology, then
(X,t,1c) Is p'-T1ispace but is not p'-T.

(3) Let X={a,b,c}, =={X,0, {a},{b},{a,b}}, o={X,0,{c}}, then (X,1,06) is p'-T2 space but is not
p'-Ta.

(4) Let X={a,b,c}, and let (X,t) be a trivial space, 6={X,p,{a}}, then (X,t,0) is p'-normal space
but is not p'-regular.

(5) Let X={a,b,c}, =={X,0,{a},{b},{a,b}}, c={X,0}, then (X,7) is not regular, (X,c) is regular
space but (X,t,0) is not p'-regular.

(6) Let X={a,b,c}, =={X,0,{b,c},{a,c},{c}}, o={X,p}, then (X,t) is not normal space, (X,o) is
normal space but (X,t,0) is not p'-normal.

5. 2. p'-Ri Bitopological Spaces (i=0, 1)

Definition 5.2.1. A b|topolog|cal space (X,t,0) is called pairwise Ro (p-Ro for short ) if for
each VetUo and xeV, then {X} CV

Examples 5.2.1.
(1) Let X={a,b,c}, =={X,0,{a},{b,c}}, o={X,p}, then (X,t,0) is p'-Ro space but is not p'-To.

(2) Let X={a,b,c}, ={X,9,{a},{b},{a,b}}, o={X,0,{b,c},{a,c},{c}}, then (X,7,6) IS p-Ro
space but is not Ro.

(3) Let X={a,b,c}, =={X, ¢ }, o={X, ¢,{a},{b},{a,b}}, then (X,1) is Ro but (X,1,0) is not p'-Ro.
Remark: Any Ro bitopological space is p'-Ro.

Theorem 5.2.1. Any p'-T1 bitopological space is p'-Ro.
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____T0
Proof. Suppose (X,1,0) is not p'-Ro space, i.e there is xeVetUc but {x} £V, then there is
ye{x} but yezV so X;éy, since (X, r G) is p'-Ty, then there is to-open set U, yeU3? x, i.e xeU°
so {x}c U°, then {x} c U, ye{x} < U®i.e yeU® which is impossible. So (X,t,0) is p'-Ro.

Theorem 5.2.2. A bitopological space (X,t,0) is p'-T1 space iff (X,t,6) is p'-To and p'-Ro-
space.

Proof. "=" Direct from theorems (5.1.7) and (5.2.1).
"<" Let x,yeX, x#y, since (X,1,0) is p'-To then there is UetUo such that xeU By or there is
V etUo such that yeV 2 x.

In the flrst case er 3y, since (X 1,6) is p'- Ro e {x} c U;é Y, SO

yg{x} —{x} ﬂ{x} |e ye{x} or ye{x} if ye{x} i.e ye({x} et that implies
({x} )CerUc y e({x} )¢ 3 x, then we have two tc-open sets U ({x} )¢ such that xeU 3y and
ye({x} ) X S0 (X’CG) is p-T1 space, and if ye{x} i.e ye({x} )Cec that implies
({x} )CetUG ye({x} )c  x, then we have two tc-open sets U, ({x} )° such that xeU 3y and
ye(@G)C ? x. The second case is similar.

Theorem 5.2.3. Every subspace of p'-Ro space is p'-Ro.

Proof. Let AcX, (X,1,0) is p'-Ro, and let xeUaetaUoa, i.e there is to-open set UetU o, with
___TAOCA

____T0
Ua=UNA, xeU, then {X} c U (since (X,1,0) is p'-Ro), then {x} = {x} NAc UNA=Ua.
So (A,ta,04) IS p'-R1.

Definition 5.2.2. A bitopological space (X,t,0) is called pairwise R1 space (p'-R1 space for

short) if for each pair of points x,ye X with {x} G7£@wthere are U,VetUc with xeU, yeV and
UNV=e.

Example 5.2.2. Let X=IR, (X,1c) be the cofinite topological space, (X,c) be the trivial space,
then (X,t,0) is p-Ro space but is not p-R: because for any distinct points a,belR
,{a} ={a}#{b}= {b} and for any tc-open sets U,V such that UNV=¢, acU, beV, then
Uc V¢, which is impossible.

Theorem 5.2.4. Any p'-R1 space is p'-Ro.
Proof. Suppose (X,t,0) is notp -Ro, i.e thereis ererUc but {x} zV, so there is ye{x}
yeV |e erC then {y} cVC xegV° ie xe{y} —{y} ﬂ{y} , xe{x} and xe{x} o)

xe{x} | e {x} * {y} then by p'-R: space there are tc-open sets U and V, xeU, yeW and
o) ___T0
UNW=0 this impels UcW¢, xeW°* 3 yi.e {x} W3y, thenyg{x} ,which iscontradiction.
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Theorem 5.2.5. Any p'-T> bitopological space is p'-Ru.

Proof. Let x,yeX, {x} #{y} ,i.e x#y, since (X,1,5) be a p-Tz, then there are tc-open sets
U,VetUo with xeU, yeV and UNV=9, i.e (X,t,0) is p'-R1 space.

Examples 5.2.3.

(1) Let X={a,b,c}, =={X,p,{a,b}}, c={X,p,{c}}, then (X,t,0) is p'-R1 space but is not p'-T> and
IS not Ri-space.

(2) Let X={a,b,c}, =={X, o,{a},{b,c}}, o={X, 0,{b}}, then (X,7) is Ry, but (X,7,0) is not p'-
Ri.

Remark: Any R bitopological space is p'-Ru.
Theorem 5.2.6. A bitopological space (X,t,0) is p'- T2 space iff (X,t,6) is p'-T1and p'-Ri-space.

Proof. "=" Direct from theorems (5.1.7) and (5.2.5).

"<" Let x,ye X, x#y, since (X,1,0) is p'-T1 then there are to-open sets U, V such that xe U3y
TG 16 __T0

and yeV3 x, V°is 1o-closed set and xeV°3y, i.e {x} < V°¢so{x} #{y} ,since (X,1,0)isp'"-

R, then there are G, HetUo such that xe G, yeH and GNH= ¢, i.e (X,t,0) is p'-T2 space.

Theorem 5.2.7. A bitopological space (X,t,0) is p'-T2 space iff (X,1,0) is p-To and p'-Ri-
space.

Proof. "=" Direct from theorems (5.1.7) and (5.2.5). "<" Direct from theorems (5.2.4), (5.2.2)
and (5.2.7).

Theorem 5.2.8. Every subspace of p'-R1 space is p'-R1.

___TAOCA ___ TAOCA ___TAOA
Proof. Let AcX, (X,1,0) is p-Ri, and let xyeA, {x} Hy} , e {x}
TA OA TA

:@rm@GA:(@TmA)m(@GmA)z(@Tm@c)nAzmmmA, and o3 = N
o} ={y} nAN{y} NA=({y} N{y} NA={y} NA, then {x} NA#{y} NA, ie

____T1T0 _10

{x} #y} ,but(X,1,0)is p'-Ry, then there are disjoint to-open sets U and V such that xeU,
yeV , then xeUNA, ye VNA, let Us=UNA, Va=VNA, then Ua, Va are taca-open sets and
UaNVa=(UNA)N(VNA)=UNV)NA= ¢ NA. SO (A,ta,0a) is p-Ri.

7. CONCLUSIONS
In this paper we defined a new pairwise separation axioms in bitopological space (BTS),
and they are denoted by; p'-T; spaces (i=0, 1, 2, 3, 4), p'-regular spaces, p'-normal spaces, and

p'-Ri (i= 0, 1) spaces. We concentrate our study to derive the properties of these new axioms,
and how they relate to the standard separation axioms in BTS.
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We obtain some results, for instant:
1) Every p'-Ti+1 space (i=0, 1, 2, 3) is p'-Ti but not conversely.
2) Every Ti-space is p'-Ti space (i=0, 1, 2, 3, 4) but not conversely.
3) Every regular-space (normal) is p'-regular space (p'-normal) but not conversely..
4) Iftorois Ti(i=0, 1, 2) space, then (X,t,0) is p'-Ti.
5) Every p'-T1 space is p'-Ro but not conversely.
6) Every p'-T1space is p'-To and p'-Ro space and conversely.
7) Every p'-Ry space is p'-Ro but not conversely.
8) Every p'-T2 space is p'-R1 but not conversely.
9) Every p'-T2 space is p'-T1 and p'-R1 space and conversely.
10) Every p'-T2 space is p'-To and p'-R1 space and conversely
11) Every R; (i=0,1) space is p'-R; (i= 0, 1) but not conversely.
12) Every subspace of p'-R; space (i=0, 1) isp'-Ri .

In this diagram we show the relation between the separation axioms and the new pairwise

separation axioms in bitopological spaces:

Ts > Tz > T2 > Ti1—> To
\’ \’ J VN
p-Ts— p'-Tz— p'-T2— p-T1—> p*-To

\2 \2
p'-R1 — p'-Ro
T T
Ri - Ro
P-Ro p-R1
p-T1 < p-To and p-T2 < p-T:
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