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ABSTRACT 

Using the Fisher information matrix (FIM) as a Riemannian metric, the family of Frechet 

distributions determines a two dimensional Riemannian manifold. In this paper we illustrates the 

information geometry of the Frechet space, and derive the 𝛼-geometry as; α-connections, 𝛼-curvature 

tensor, α-Ricci curvature with its eigenvalues and eigenvectors, α-sectional curvature, 𝛼-mean 

curvature, and 𝛼-scalar curvature, where we show that Frechet space has a constant 𝛼-scalar curvature. 

The special case where 𝛼 =  0 corresponds to the geometry induced by the Levi-Civita connection. In 

addition, we consider three special cases of Frechet distributions as submanifolds with dimension one, 

and discuss their geometrical structures, then we prove that one of these submanifolds is an isometric 

isomorph of the exponential manifold, which is important in stochastic process since exponential 

distributions represent intervals between events for Poisson processes. After that, we introduce log-

Frechet distributions, and show that this family of distributions determines a Riemannian 2-manifold 

which is isometric with the origin manifold. Finally, an explicit expressions for some distances in 

Frechet space are obtained as, Kullback-Leibler distance, and 𝐽-divergence. 
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1.  INTRODUCTION 

 

Statistical manifolds are representations of families of probability distributions that allow 

differential geometric methods to be applied to problems in stochastic processes, mathematical 

statistics and information theory. The origin work was due to Rao [1], who considered a family 

of probability distributions as a Riemannian manifold using the Fisher information matrix 

(FIM) as a Riemannian metric. In 1975, Efron [2] defined the curvature in statistical manifolds, 

and gave a statistical interpretation for the curvature with application to second order efficiency. 

Then Amari [3] introduced a one-parameter family of affine connections (𝛼-connection), where 

the 𝛼-connection and the (−𝛼)-connection are dual with respect to the Fisher metric 𝑔, and in 

particular, the 1-connection is said to be an exponential connection, and the (−1)-connection 

is said to be a mixture connection. These family of connections turn out to have importance and 

are part of larger systems of connections for which stability results follow [4]. He further 

proposed a differential-geometrical framework for constructing a higher-order asymptotic 

theory of statistical inference. Amari defining the 𝛼-curvature of a submanifold, pointed out 

important roles of the exponential and mixture curvatures and their duality in statistical 

inference. 

Several researchers studied the information geometry and its applications for some 

families of distributions. Amari [3] showed that the family of univariate Gaussian distributions 

has a constant negative curvature. Gamma manifold studied by many researcher eg [3], also 

Arwini and Dodson [5] proved that every neighbourhood of an exponential distribution contains 

a neighbourhood of gamma distributions, using an information theoretic metric topology, for 

more details see [6-9]. Abdel-All, Mahmoud and Add-Ellah [10] showed that the family of 

Pareto distributions is a space with constant positive curvature and they obtained the geodesics, 

and they showed the relation between the geodesic distance and the 𝐽-divergence. Weibull 

distribution manifold and the generalized exponential distribution manifold have been studied 

by Limei, Huafei and Xiaojie [11], who showed that these families has a similar but the Fisher 

metric and the geometrical structures are quite different. 

Oller [12] studied the geometry of the two parameters extreme value distributions as, 

Gumbel, Weibull and Frethet distributions, and he showed that all these spaces are with constant 

negative curvatures, and he obtained the geodesic distances in each case. The family of Frechet 

distributions does not form an exponential family, hence in the present paper we extend Oller’s 

work to derive the α-geometrical quantities, as the the α-connection and α-curvatures objects 

on the Frechet space without using the concept of potential function. Where here the 0-geometry 

corresponds to the geometry induced by the Levi-Civita connection. 

 

 

2.  FRECHET DISTRIBUTIONS  
 

The Frechet distribution known as the extreme value type II distribution, and was due to 

Maurice Frechet who had identified one possible limit distribution for the largest order statistic 

in 1927 [13]. The distribution has event space Ω =  ℝ+, and probability density function (pdf) 

given by 

 

𝐹(𝑥, 𝛽, 𝜆) =
𝜆

𝛽
(
𝛽

𝑥
)
1+𝜆

𝑒−(
𝛽

𝑥
)
𝜆

  for 𝑥 >  0                                   (2.1) 
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where: 𝛽 >  0 is the scale parameter, and 𝜆 >  0 is the shape parameter. In the case where 𝛽 =

 1 and 𝜆 =  1 the Frechet distribution has the standard form (𝑥) =
1

𝑥2 𝑒−
1

𝑥 . The mean, variance 

and standard deviation for the Frechet distributions are 𝑒(𝑥)  =  𝛾 𝛽 + µ (where 𝛾 =  0.577 is 

the Euler gamma constant),  𝑣𝑎𝑟(𝑥) =
1

6
𝜋2𝛽2, and 𝑠𝑡𝑑. 𝑑𝑒𝑣(𝑥)  =  1.28255𝛽, respectively. 

More details on Frechet distribution can be found in [14, 15], and some of its applications in 

[16-20].  

Figure 1 shows Frechet distributions, in the cases where 𝛽 =  1 with different shape 

parameters 𝜆 =  1,2,3, and where 𝜆 =  1 with different scala parameters 𝛽 =  1,2,3. 

 
 

Figure 1. In the left: Frechet distributions with unit scalar parameter β, where  λ =  1,2,3 for 

the range   x ∈  (0,3). In the right: Frechet distributions with unit shape parameter λ,  

where β =  1,2,3 for the range x ∈  (0,7). 
 

 

2. 1. Log-likelihood function and Shannon’s entropy 

The log-likelihood function for the Frechet distribution (2.1) is 

 

                                             𝑙(𝑥; 𝛽, 𝜆) = log(𝐹(𝑥; 𝛽, 𝜆)) 

 

      = −(
𝛽

𝑥
)

𝜆

− (𝜆 − 1) log(𝑥) + log(𝜆) + λ log(𝛽).        (2.2) 

 

By direct calculation Shannon’s information theoretic entropy for the Frechet 

distribution, which is the negative of the expectation of the log-likelihood function, is given by 

 

 𝑆𝐹 (𝛽, 𝜆) = −∫ 𝑙(𝑥; 𝛽, 𝜆)𝐹(𝑥; 𝛽, 𝜆)
∞

0

𝑑𝑥 

 

= 1 + 2𝛾 + log(𝛽)                                                 (2.3) 
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where 𝛾 is the Euler gamma constant. Note that the Shannon’s entropy is an increasing function, 

and independent of the parameter 𝜆, moreover 𝑆𝐹(𝛽, 𝜆) tends to zero when  𝛽 =  𝑒−1−2𝛾.  

Figure 2 shows a plot of 𝑆𝐹  as a function of 𝛽 in the domain 𝛽 ∈  (0,3). 
 

 
 

Figure 2. The Shannon’s information entropy  SF , for Frechet distributions  

in the domain β ∈  (0,3). 
 

 

2. 2. Fisher Information Matrix (FIM) 

The Fisher Information Matrix (FIM) is given by the expectation of the covariance of 

partial derivatives of the log-likelihood function. Here we give the Fisher information 

components of the family of two parameter Frechet distributions with respect to the coordinate 

system (𝜃)  =  (𝜃1, 𝜃2)  =  (𝛽, 𝜆) 

 

𝑔𝑖𝑗 = ∫
𝜕2𝑙(𝑥,𝜃)

𝜕𝜃𝑖𝜕𝜃𝑗

∞

0
 𝐹(𝑥, 𝜃)𝑑𝑦𝑑𝑥.                                      (2.4) 

 

hence: 

 

 𝑔 = [𝑔𝑖𝑗] =  [

𝜆2

𝛽2

1−𝛾

𝛽

1−𝛾

𝛽

6(𝛾−1)2+𝜋2

6𝜆2

].                                       (2.5) 
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and the variance covariance matrix is 

𝑔−1 = [𝑔𝑖𝑗] =  [

(6(𝛾−1)2+𝜋2)𝛽2

𝜋2𝜆2

6(𝛾−1)𝛽

𝜋2

6(𝛾−1)𝛽

𝜋2

6𝜆2

𝜋2

].                           (2.6) 

 

 

3.  GEOMETRY OF FRECHET MANIFOLD                     
 

In this section we consider the family of Frechet distributions as a Riemannian  

2-manifold, equipped with the Fisher information metric, and obtain the α-connection,  

α-curvature tensor, α-Ricci curvature with its eigenvalues and eigenvectors, α-sectional 

curvature, α-mean curvature and α-scalar curvature. Where here the 0-geometry corresponds to 

the geometry induced by the Levi-Civita connection, and we show that this space has a negative 

constant curvature. 

 

3. 1. Frechet 2-manifold 

Let M be the family of all Frechet probability density functions 

 

  𝑀 = {𝐹(𝑥, 𝛽, 𝜆) =  
𝜆

𝛽
(
𝛽

𝑥
)
1+𝜆

𝑒−(
𝛽

𝑥
)
𝜆

| 𝛽, 𝜆 ∈  ℝ+} , 𝑥 ∈  ℝ+                                 (3.7) 

 

so the parameter space is ℝ+ × ℝ+ and the random variable is 𝑥 ∈  Ω =  ℝ+ . 
Following the Rao’s idea to use the Fisher information matrix (FIM) as a Riemannian 

metric, we can consider the family of Frechet distributions 𝑀 as a Riemannian 2-manifold with 

coordinate system (𝜃1, 𝜃2)  =  (𝛽, 𝜆) and Fisher metric 𝑔 (2.5). 

 

3. 2.  α-Connections 

For each 𝛼 ∈  𝑅, the α (or 𝛻(𝛼))-connection is the torsion-free affine connection with 

components 

 

𝛤𝑖𝑗,𝑘
(𝛼)

= ∫ (
𝜕2 log 𝐹

𝜕𝜃𝑖  𝜕𝜃𝑗
 
𝜕 log 𝐹

 𝜕𝜃𝑘
+

1 − 𝛼

2
 
𝜕 𝑙𝑜𝑔 𝐹

 𝜕𝜃𝑖
 
𝜕 log 𝐹

 𝜕𝜃𝑗
 
𝜕 log 𝐹

 𝜕𝜃𝑘
)𝐹 𝑑𝑥.

∞

0

 

 

We have an affine connection 𝛻(𝛼)  defined by: 

 

〈𝛻𝜕𝑖

(𝛼)
𝜕𝑗 , 𝜕𝑘〉 = 𝛤𝑖𝑗,𝑘

(𝛼)
         where       𝜕𝑖 =

𝜕

𝜕Ө𝑖
 

 

So by solving the equations 

 

𝛤𝑖𝑗,𝑘
(𝛼)

= ∑ 𝑔𝑘ℎ 𝛤𝑖𝑗
ℎ(𝛼)

  ,    (𝑘 = 1,2)

2

ℎ=1

 

. 
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we obtain the components of 𝛻(𝛼). 

Here we give the analytic expressions for the α-connections and then the 0-connections, 

with respect to coordinates (𝜃1, 𝜃2)  =  (𝛽, 𝜆). 

The nonzero independent components 𝛤𝑖𝑗,𝑘
(𝛼)

  , (𝑖, 𝑗, 𝑘 = 1,2) are 

 

𝛤11,1
(𝛼)

=
(𝛼𝜆 − 1)𝜆2

𝛽3
, 

 

𝛤21,1
(𝛼)

=
(1−(𝛾−2)𝛼)𝜆

𝛽2
, 

 

𝛤22,1
(𝛼)

= 𝛤12,2
(𝛼)

=
(12 + 6(𝛾 − 4)𝛾 + 𝜋2)𝛼

6𝛽𝜆
, 

 

𝛤11,2
(𝛼)

=
𝛾 − 1 − (1 + (𝛾 − 2)𝛼)𝜆

𝛽2
, 

 

𝛤22,2
(𝛼)

=
−6𝛾3𝛼+(6𝛾2+𝜋2)(6𝛼−1)−3𝛾((12+𝜋2)𝛼−4)+6(𝛼−1−2𝛼𝜁(3))

6𝜆3
.         (3.8) 

 

where ζ(s) is the Riemann zeta function, which is defined as 𝜁(𝑠) = ∑ 𝑥−𝑠∞
𝑥=1 . 

The components 𝛤𝑗𝑘
𝑖(𝛼)

 , (𝑖, 𝑗, 𝑘 = 1,2)  of the 𝛻(𝛼)-connections are given by 

 

𝛤(𝛼)1 = [𝛤𝑖𝑗
(𝛼)1

] = [

6(𝛾−1)(𝛼−1)𝜆+𝜋2(𝛼𝜆−1)

𝜋2𝛽

6+6𝛾(𝛼−2)−6𝛾2(𝛼−1)+𝜋2(𝛼+1)

𝜋2𝜆

6+6𝛾(𝛼−2)−6𝛾2(𝛼−1)+𝜋2(𝛼+1)

𝜋2𝜆
𝛤22

(𝛼)1
], (3.9) 

 

where 

 

𝛤22
(𝛼)1 =

(𝛾 − 1)𝛽 (6𝛾2(𝛼 − 1) + 𝜋2(5𝛼 − 1) − 2𝛾(−6 + 𝜋2𝛼) − 6(1 + 𝛼 + 2𝛼𝜁(3)))

𝜋2𝜆3
 

 

+
(12+6(𝛾−4)𝛾+𝜋2)𝛼𝛽

6𝜆3 . 

 

𝛤(𝛼)2 = [𝛤𝑖𝑗
(𝛼)2

] = [

6(𝛼−1)𝜆3

𝜋2𝛽2

(−6−6𝛾(𝛼−1)+𝜋2𝛼)𝜆

𝜋2𝛽

(−6−6𝛾(𝛼−1)+𝜋2𝛼)𝜆

𝜋2𝛽

6𝛾2(𝛼−1)+𝜋2(5𝛼−1)−2𝛾(𝜋2𝛼−6)−6(1+𝛼+2𝛼𝜁(3))

𝜋2𝜆

], (3.10) 

 

The components of the Christoffel symbols 𝛤𝑗𝑘
𝑖  are given in the case where 𝛼 =  0; as 
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𝛤1 =

[
 
 
 
 −

6𝜆(𝛾 − 1) + 𝜋2

𝜋2𝛽

6(𝛾 − 1)2 + 𝜋2

𝜋2𝜆

6(𝛾 − 1)2 + 𝜋2

𝜋2𝜆
−

(𝛾 − 1)𝛽(6(𝛾 − 1)2 + 𝜋2)

𝜋2𝜆3 ]
 
 
 
 

, 

 

𝛤2 =

[
 
 
 
 −

6𝜆3

𝜋2𝛽2

6(𝛾 − 1)𝜆

𝜋2𝛽

6(𝛾 − 1)𝜆

𝜋2𝛽
−

6(𝛾 − 1)2 + 𝜋2

𝜋2𝜆 ]
 
 
 
 

. 

 

 

3. 3. α-Curvatures 

By direct calculation we provide various curvature objects of the Frechet manifold M, as: 

the α-curvature tensor, the α-Ricci curvature, the α-scalar curvature, the α-sectional curvature, 

and the α-mean curvature. After that, we give the expressions for the α-curvatures in the special 

case 𝛼 =  0. 

The (𝛼)-curvature tensor components, which are defined as: 

 

𝑅𝑖𝑗𝑘𝑙
(𝛼)

= ∑ 𝑔ℎ𝑙 (𝜕𝑖𝛤𝑗𝑘
(𝛼)ℎ − 𝜕𝑗𝛤𝑖𝑘

(𝛼)ℎ + ∑ 𝛤𝑖𝑚
(𝛼)ℎ𝛤𝑗𝑘

(𝛼)𝑚 − 𝛤𝑗𝑚
(𝛼)ℎ𝛤𝑖𝑘

(𝛼)𝑚

2

𝑚=1

)

2

ℎ=1

    , (𝑖, 𝑗, 𝑘, 𝑙 = 1,2) 

 

are given by 

 

𝑅1211
(𝛼)

= 
(𝜋2 − 12)𝛼𝜆2

𝜋2𝛽3
, 

 

𝑅1212
(𝛼)

= 
𝜋2(1 − 𝛼(𝛾 + 3𝛼 − 2)) + 6𝛼(2𝛾 − 2 + 𝛼 + 2(𝛼 − 1)𝜁(3))

𝜋2𝛽2
, 

 

𝑅1221
(𝛼)

= 
𝜋2(−1 + 𝛼(2 − 𝛾 + 3𝛼)) − 6𝛼(2 − 2𝛾 + 𝛼 + 2(1 + 𝛼)𝜁(3))

𝜋2𝛽2
, 

 

𝑅1222
(𝛼)

= 
−𝛼(24−12𝜋2+𝜋4−2𝛾2(𝜋2−12)+48𝜁(3)+8𝛾(𝜋2−6(1+𝜁(3))))

2𝜋2𝛽𝜆2 .   (3.11) 

 

while the other independent components are zero. 

The nonzero independent 0-curvature tensor components are given by: 

 

𝑅1212 = −𝑅1221 =
1

𝛽2
. 
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Contracting  𝑅𝑖𝑗𝑘𝑙
(𝛼)

 with 𝑔𝑖𝑙we obtain the components  𝑅𝑗𝑘
(𝛼)

 of the Ricci tensor 

 

𝑅11
(𝛼)

= 
−6𝜆2 (𝜋2(1 + 𝛼 − 3𝛼2) + 6𝛼(𝛼 + 2(𝛼 − 1)𝜁(3)))

𝜋4𝛽2
, 

𝑅12
(𝛼)

= 
3 (𝜋4𝛼 + 2𝜋2(𝛾 − 1 + (𝛾 − 4)𝛼 − 3(𝛾 − 1)𝛼2) + 12(𝛾 − 1)𝛼(𝛼 + 2(𝛼 − 1)𝜁(3)))

𝜋4𝛽
, 

 

𝑅22
(𝛼)

= 
𝜋4(−1 + 𝛼(5 − 4𝛾 + 3𝛼)) − 36(𝛾 − 1)2𝛼(𝛼 + 2(𝛼 − 1)𝜁(3))

𝜋4𝜆2
, 

 

+
−6(1+𝛾2(1+𝛼−3𝛼2)+𝛾(−2+𝛼(6𝛼−7))+2𝛼(3+𝛼(𝜁(3)−1)+𝜁(3)))

𝜋2𝜆2 .   (3.12) 

 

In the case where 𝛼 =  0, we obtain the 0-Ricci curvature 𝑅 : 

 

𝑅 =

[
 
 
 
 

−6𝜆2

𝜋2𝛽2

6(𝛾 − 1)

𝜋2𝛽

6(𝛾 − 1)

𝜋2𝛽
−

6(𝛾 − 1)2 + 𝜋2

𝜋2𝜆2 ]
 
 
 
 

. 

 

with eigenvalues and eigenvectors: 

 

(

 
 
 
 

−𝛽2(6(𝛾 − 1)2 + 𝜋2) − 6𝜆4 − √((6(𝛾 − 1)2 + 𝜋2)𝛽2 + 6𝜆4)
2
− 24𝜋2𝛽2𝜆4

2𝜋2𝛽2𝜆2

−𝛽2(6(𝛾 − 1)2 + 𝜋2) − 6𝜆4 + √((6(𝛾 − 1)2 + 𝜋2)𝛽2 + 6𝜆4)
2
− 24𝜋2𝛽2𝜆4

2𝜋2𝛽2𝜆2 )

 
 
 
 

 

 

(

 
 
 
 

𝛽2(6(𝛾 − 1)2 + 𝜋2) − 6𝜆4 − √((6(𝛾 − 1)2 + 𝜋2)𝛽2 + 6𝜆4)
2
− 24𝜋2𝛽2𝜆4

12(𝛾 − 1)𝛽𝜆2
1

𝛽2(6(𝛾 − 1)2 + 𝜋2) − 6𝜆4 + √((6(𝛾 − 1)2 + 𝜋2)𝛽2 + 6𝜆4)
2
− 24𝜋2𝛽2𝜆4

12(𝛾 − 1)𝛽𝜆2
1
)

 
 
 
 

 

 

By contracting the Ricci curvature components  𝑅𝑖𝑗
(𝛼)

with the inverse metric components 

𝑔𝑖𝑙  we obtain the scalar curvature  𝑅(𝛼): 
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𝑅(𝛼) =
12(𝜋2(3𝛼2−1)−6𝛼2(1+2𝜁(3)))

𝜋4
.                                   (3.13) 

 

Note that the Frechet Manifold M is a space with constant α-scalar curvature, where 𝑅(𝛼) 

tends to zero where 𝛼 =  ±1.03665. Figure 3 shows a plot of 𝑅(𝛼)  where the 0-scalar curvature 

is negative constant, and given by: 

 

R(α) 

 
 

Figure 3. The scalar curvature 𝑅(𝛼)  for Frechet manifold, in the range 𝛼 ∈  [−2,2]. 

𝑅(𝛼) tends to zero where  =  ±1.03665 . In the case when 𝛼 =  0 the scalar  

curvature 𝑅(0) = −
12

𝜋2. 

 

 

𝑅 = −
12

𝜋2
. 

The sectional curvatures 𝜚(𝛼)(𝑖, 𝑗), where   𝜚(𝛼)(𝑖, 𝑗) =
𝑅𝑖𝑗𝑖𝑗 

(𝛼)

𝑔𝑖𝑖𝑔𝑗𝑗−𝑔𝑖𝑗
2 , (𝑖, 𝑗 = 1,2), are 

 

  𝜚(𝛼)(1,2) =
6𝜋2(−1+𝛼(𝛾−2+3𝛼))−36𝛼(2𝛾−2+𝛼+2(𝛼−1)𝜁(3))

𝜋4 .     (3.14) 

 

The 0-sectional curvature is given by 

 

  𝜚(𝛼)(1,2) = −
6

𝜋2
 

 

The mean curvatures   𝜚(𝛼)(𝑖) where   𝜚(𝛼)(𝑖) = ∑
1

3

2
𝑗=1   𝜚(𝛼)(𝑖, 𝑗), (𝑖 = 1,2) are 

-2 -1 1 2 

-1 

1 

2 

3 

α 
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  𝜚(𝛼)(1) =
2𝜋2(−1 + 𝛼(𝛾 − 2 + 3𝛼)) − 12𝛼(−2 + 2𝛾 + 𝛼 + 2(𝛼 − 1)𝜁(3))

𝜋4
. 

 

  𝜚(𝛼)(2) =
−2𝜋2(1+(𝛾−2−3𝛼)𝛼)−12𝛼(2−2𝛾+𝛼+2(𝛼+1)𝜁(3))

𝜋4 .         (3.15) 

 

Hence, the 0-mean curvatures are constant and given by: 

 

𝜚(1) = 𝜚(2) = −
2

𝜋2
. 

 

 

4.  SUBMANIFOLDS 

 

In the present section we study three special cases of the family of Frechet distributions 

as submanifolds; 𝑀1 where the shape parameter = 1, 𝑀2 where the scala parameter = 1, and 𝑀3 

where the shape and scala parameters are identical. These submanifolds have dimension 1 and 

so that all the curvatures are zero. Moreover, we prove that the space 𝑀1  is an isometric 

isomorph of the space of exponential distributions. 

 

4. 1. Submanifolds M1 : 𝝀 = 𝟏 

In the case where the shape parameter 𝜆 = 1, the Frechet probability density function 

(2.1) reduces to the form 

 

𝐹(𝑥, 𝛽) =
𝛽

𝑥2 𝑒
−𝛽

𝑥 ,    𝑥 > 0,    𝛽 > 0.                                           (4.16) 

 

Using (𝜃1)  =  (𝛽) as a local coordinate system, we can consider the family of Frechet 

distributions with unit shape parameter as a Riemannian 1-manifold, with Fisher metric: 

 

𝑔 = [  
1

𝛽2
  ].                                                   (4.17) 

 

Here we note that, the submanifold  𝑀1  and the manifold of exponential distributions, 

which is 

 

{𝛽𝑒−𝛽𝑥│𝛽 ∈ ℝ+}, 𝑥 ∈ ℝ+ 

 

have the same Fisher metric. Hence the submanifold 𝑀1 is an isometric of the exponential 

manifold. In this manifold all the curvatures are zero, while the components 𝛤11,1
(𝛼)

 and 𝛤11
1(𝛼)

 of 

the 𝛻(𝛼)-connections are 

 

𝛤11,1
(𝛼)

=
𝛼 − 1

𝛽3
, 
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  𝛤11
(𝛼)1

=
𝛼−1

𝛽
.                                                          (4.18) 

 

4. 2. Submanifolds M2 : 𝜷 = 𝟏 

In the case where the scalar parameter 𝛽 = 1, the Frechet probability density function 

(2.1) reduces to the form 

𝐹(𝑥, 𝜆) = 𝜆 (
1

𝑥
)
1+𝜆

𝑒−(
1

𝑥
)
𝜆

,    𝑥 > 0,    𝜆 > 0.                                  (4.19) 

 

Using (𝜃1)  =  (𝜆) as a local coordinate system, we can consider the family of Frechet 

distributions with unit scala parameter as a Riemannian 1-manifold, with Fisher metric: 

 

𝑔 = [  
6(𝛾−1)2+𝜋2

6𝜆2
  ].                                                      (4.20) 

 

In this manifold all the curvatures are zero, while the components of the 𝛻(𝛼)-connections 

are 

 

𝛤11,1
(𝛼)

=
−6𝛾3𝛼 + 6𝛾2(6𝛼 − 1) + 𝜋2(6𝛼 − 1) − 3𝛾((12 + 𝜋2)𝛼 − 4) + 6(𝛼 − 1 − 2𝛼𝜁(3))

6𝜆3
, 

 

𝛤11
(𝛼)1 =

−6𝛾3𝛼 + 6𝛾2(6𝛼 − 1) + 𝜋2(6𝛼 − 1) − 3𝛾((12 + 𝜋2)𝛼 − 4) + 6(𝛼 − 1 − 2𝛼𝜁(3))

(6(𝛾 − 1)2 + 𝜋2)𝜆
, 

         

   𝛤11
1 = −

1

𝜆
                                                          (4.21) 

 

where 𝛤11
1

 is the Christoffel symbol, in the case where 𝛼 =  0. 
 

4. 3. Submanifolds M3: 𝜆 = 𝜷  

In the case where 𝜆 =  𝛽, the Frechet probability density function (2.1) reduces to the 

form 

 

𝐹(𝑥, 𝛽) = (
𝛽

𝑥
)
1+𝛽

𝑒−(
𝛽

𝑥
)
𝛽

,    𝑥 > 0,    𝛽 > 0.                               (4.22) 

 

Using (𝜃1)  =  (𝛽) as a local coordinate system, we can consider the family of Frechet 

distributions with unit scala parameter as a Riemannian 1-manifold, with Fisher metric: 

 

𝑔 = [
6𝛾2+𝜋2−12𝛾(1+𝛽)+6(1+𝛽)2

6𝛽2
].                                     (4.23) 

 

In this manifold all the curvatures are zero, while the components of the 𝛻(𝛼)-connections 

are 
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𝛤11,1
(𝛼)

=
6𝛾2(−1 + 3𝛼(2 + 𝛽)) + 𝜋2(−1 + 3𝛼(2 + 𝛽)) + 6(1 + 𝛽) (−1 + 𝛼(1 + 𝛽(5 + 𝛽)))

6𝛽3
, 

 

               +
−6𝛾3𝛼 − 3𝛾 (−2(2 + 𝛽) + 𝛼 (𝜋2 + 6(2 + 𝛽(4 + 𝛽)))) _12𝛼𝜁(3)

6𝛽3
, 

 

𝛤11
(𝛼)1 =

6𝛾2(−1 + 3𝛼(2 + 𝛽)) + 𝜋2(−1 + 3𝛼(2 + 𝛽)) + 6(1 + 𝛽) (−1 + 𝛼(1 + 𝛽(5 + 𝛽)))

𝛽(6𝛾2 + 𝜋2 − 12𝛾(1 + 𝛽) + 6(1 + 𝛽)2)
 

 

                  +
−6𝛾3𝛼 − 3𝛾 (−2(2 + 𝛽) + 𝛼 (𝜋2 + 6(2 + 𝛽(4 + 𝛽)))) _12𝛼𝜁(3)

𝛽(6𝛾2 + 𝜋2 − 12𝛾(1 + 𝛽) + 6(1 + 𝛽)2)
, 

 

𝛤11
1 =

6−6𝛾+6𝛽

6𝛾2+𝜋2−12𝛾(1+𝛽)+6(1+𝛽)2
−

1

𝛽
.                            (4.24) 

 

where 𝛤11
1

 is the Christoffel symbol. 

 

 

5.  LOG-FRECHET MANIFOLD 

 

We introduce the log-Frechet distribution, which arises from the Frechet distribution (2.1) 

for non-negative random variable 𝑦 =  𝑒−𝑥 . So the log-Frechet distribution, has probability 

density function (pdf): 

 

𝐿𝐹(𝑦; 𝛽, 𝜆) = 𝜆 𝛽𝜆 1

𝑦
(− log(𝑦))−1−𝜆𝑒−𝛽𝜆 (− log(𝑦))−𝜆

 ,  𝑦 ∈  (0,1).              (5.25) 

 

where 𝛽 >  0, 𝜆 >  0. The standard form of the log-Frechet distribution is 𝐿𝐹(𝑦; 1,1), with 

the following probability density function: 

 

𝐿𝐹(𝑦) =
1

𝑦 log2(𝑦)
𝑒

1

log(𝑦). 

 

Figure 4 shows plots of the log-Frechet family of densities in the cases where; 𝛽 =  0.5 

and 𝜆 =  1,1.5,2.5, and where 𝜆 =  2 and 𝛽 =  0.2,0.4,0.6, for the range 𝑦 ∈  (0,1). 
Here we show that the families of Frechet and log-Frechet distributions have the same 

Fisher metric. 

From 

 

𝐿𝐹(𝑦) = 𝐹(𝑥)
𝑑𝑥

𝑑𝑦
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Hence 

 

log(𝐿𝐹(𝑦)) = log(𝐹(𝑥)) + log (
𝑑𝑥

𝑑𝑦
) 

 

 

 
 

Figure 4. In the left: Log-Frechet distributions where 𝛽 = 0.5 and 𝜆 = 1,1.5,2.5, for the 

range 𝑦 ∈ (0,1). In the right: Log-Frechet distributions where 𝜆 = 2 and 𝛽 = 0.2,0.4,0.6, for 

the range 𝑦 ∈ (0,1). 
 

 

Then double differentiation of this relation with respect to 𝜃𝑖  and 𝜃𝑗  (when (𝜃1, 𝜃2)  =

 (𝛽, 𝜆)) yields 

 

𝜕2 log(𝐿𝐹(𝑦))

𝜕Ө𝑖 𝜕Ө𝑗
=

𝜕2 log(𝐹(𝑥))

𝜕Ө𝑖  𝜕Ө𝑗
 

 

from (2.4) we can see that 𝐹(𝑥) and 𝐿𝐹(𝑦) have the same Fisher metric. Hence Frechet and log-

Frechet families of distributions have a common differential geometry through the information 

metric. 

 

 

6.  DISTANCES IN FRECHET MANIFOLD 

  

If M is the Frechet 2-manifold, and F1 and F2 are two points in M where: 

 

𝐹𝑖(𝑥, ; 𝛽𝑖, 𝜆𝑖) =
𝜆𝑖

𝛽𝑖
(
𝛽𝑖

𝑥
)
1+𝜆𝑖

𝑒
−(

𝛽𝑖
𝑥

)
−𝜆

      (𝑖 = 1,2). 

 

Then the Kullback-Leibler distance, and J-divergence between Frechet distributions 𝐹1 

and 𝐹1, are given by: 
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 Kullback-Leibler distance: 

The KullbackLeibler distance or relative entropy is a non-symmetric measure of the 

difference between two probability distributions. From F1 to F2 the Kullbback-distance 

KL(F1,F2) is given by 

 

𝐾𝐿(𝐹1, 𝐹2) = ∫ 𝐹1 log (
𝐹1

𝐹2
) 𝑑𝑥,

∞

0

 

 

  = −1 − 𝛾 + log (
𝜆1

𝜆2
) + 𝛤 (1 +

𝜆2

𝜆1
) (

𝛽2

𝛽1
)

𝜆2

+ (log (
𝛽1

𝛽2
) +

𝛾

𝜆1
) 𝜆2.             (6.26) 

 

 J-divergence: 

The J-divergence is a symmetrization of the Kullback-Leibler distance. Its given by this 

formula 

 

𝐽(𝐹1, 𝐹2) = ∫ (𝐹1 − 𝐹2) log (
𝐹1

𝐹2
) 𝑑𝑥,

∞

0

 

 

= 𝐾𝐿(𝐹1, 𝐹2) + 𝐾𝐿(𝐹2, 𝐹1), 
 

  = −2 − 2𝛾 + 𝛤 (1 +
𝜆1

𝜆2
) (

𝛽1

𝛽2
)

𝜆1

+ 𝛤 (1 +
𝜆2

𝜆1
) (

𝛽2

𝛽1
)

𝜆2

 

 

 

+𝜆1 log (
𝛽2

𝛽1
) +

𝛾𝜆1

𝜆2
+ 𝜆2 log (

𝛽1

𝛽2
) +

𝛾𝜆2

𝜆1
.                                    (6.27) 

 

 

7.  FRECHET 3-MANIFOLD 
 

Here we consider the model of Frechet distributions with location parameter as a 

Riemannian 3-manifold, which contains the family of two parameter Frechet distributions M as 

a submanifold. We provide the Fisher metric for the new manifold, but the 0-geometry objects 

have been calculated but are not listed because they are somewhat cumbersome. 

The 3-parameter Frechet distribution has probability density function (pdf) given by: 

 

𝐹(𝑥; 𝛽, 𝜆, 𝜇) =
𝜆

𝛽
(

𝛽

𝑥−𝜇
)
1+𝜆

𝑒
(

𝛽

𝑥−𝜇
)
−𝜆

      for  𝑥 > 𝜇                       (7.28) 

 

where β > 0 is the scale parameter, λ > 0 is the shape parameter, and µ ∈ R is the location 

parameter. The mean for the Frechet distribution is e(x) = γ β +µ (where γ = 0.577 is the Euler 

gamma constant). In the case where µ = 0, we have the 2-parameter Frechet distributions (2.1).  

The family of all Frechet 3-parameter distributions can be considered as a Riemannian 3-

manifold, by identifying (β,λ,µ) as a local coordinate system. Here we provide the Fisher 

information metric (FIM) for this 3-manifold: 
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𝑔 = [𝑔𝑖𝑗] =

[
 
 
 
 
 
 𝜆2

𝛽2

1−𝛾

𝛽

𝜆2𝛤(2+
1

𝜆
)

𝛽2

1−𝛾

𝛽

6(𝛾−1)2+𝜋2

6𝜆2

𝛤(
1

𝜆
)(1+(𝜆+1)𝜓(2+

1

𝜆
))

𝛽𝜆2

𝜆2𝛤(2+
1

𝜆
)

𝛽2

𝛤(
1

𝜆
)(1+(𝜆+1)𝜓(2+

1

𝜆
))

𝛽𝜆2

(𝜆+1)2𝛤(
2+𝜆

𝜆
)

𝛽2 ]
 
 
 
 
 
 

,   (7.29) 

 

where 𝛤 is the gamma function which has the formula  𝛤(𝑧) = ∫ 𝑡𝑧−1𝑒−𝑡𝑑𝑡,
∞

0
 and 

𝜓(𝑣) =
𝛤′(𝑣)

𝛤(𝑣)
  is the digamma function. 

The connections and curvature objects of the Frechet 3-manifold are known but they are 

omitted here. 

 

 

8.  CONCLUSIONS 
 

In this paper we derived the geometrical properties for the 2-manifold of the Frechet 

distributions, using the Fisher information matrix (FIM) as a Riemannian metric. The α-

connections and 𝛼-curvatures objects as; α-curvature tensor, α-Ricci curvature, α-sectional 

curvature, α-mean curvature, and α-scalar curvature are obtained, where we showed that the 

Frechet manifold has a constant α- scalar curvature.  

Three special cases of the Frechet distribution have been studied as submanifolds with 

dimension 1, where we proved that one of these spaces is an isometric isomorph of the 

exponential manifold. Finally, the explicit expressions for Kullback-Leibler distance and  

J-divergence in the manifold of Frechet distribution are obtained. 
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