Faculty of Science - University of Benghazi

Libyan Journal of Science & Technology

(Formerly known as Journal of Science & It's Applications)

journal home page: www.sc.uob.edu.ly/pages/page/77

Smarandache zero and weak zero divisors

Shaban A. Traina *^a* **, *, Abir K. Salibi** *^b*

^aDepartment of mathematics, University of Benghazi

^bDepartment of mathematics, University of Omar-El Muktar

A R T I C L E I N F O A B S T R A C T

Article history: Received 10 April 2017 Revised 14 May 2017 Accepted 17 May 2017 Available online 15 August 2017

Keywords:

S-zero divisor, S-weak zero divisor, group ring.

* Corresponding author: *E-mail address*: Shaban.traina@uob.edu.ly Sh. A. Traina

1. Introduction

The concepts of Smarandache zero divisors (S-zero divisors) and Smarandache weak zero divisors (S-weak zero divisors) in a ring *R are* illustrated with examples. Both S-zero divisors and S-weak zero divisors are zero divisors but all zero divisors may not be S-zero divisors or S-weak zero divisors.

2. Basic definitions

The notions of S-zero divisors and S-weak zero divisors are introduced and several examples are provided.

Definition 1.1: (Vasantha Kandasamy, W.B. & Chetry M.K., 2005) Let *R* be a ring, we say that a non-zero element $x \in R$ is a *Smarandache zero divisor* (*S-zero divisor*) if there exists a non-zero element *y* in *R* such that $x \cdot y = 0$ and there exist $a, b \in R\{0, x, y\}$, with

1.
$$
xa = 0
$$
 or $ax = 0$
2. $yb = 0$ or $by = 0$ and
3. $ab \neq 0$ or $ba \neq 0$.

Note that in case of commutative rings we just need

i) $xa = 0$, ii) $yb = 0$, iii) $ab \neq 0$

Example 1.2: Let Z_{12} be the ring of integers modulo 12. Clearly 6, and 4 are zero divisors, Now take $a = 2$ and $b = 3$ in \mathbb{Z}_{12} , we then have

 $2.6 \equiv 0 \pmod{12}$ & $3.4 \equiv 0 \pmod{12}$, but $2.3 \not\equiv 0 \pmod{12}$. So 6 and 4 are S-zero divisors in Z_{12} .

Example 1.3: Let $M_{2\times 2} = \begin{cases} \begin{pmatrix} a & b \ c & d \end{pmatrix} \end{cases}$ $\begin{pmatrix} a & b \\ c & d \end{pmatrix} | a, b, c, d \in \mathbb{Z}_2$ be the set of all 2 \times 2 matrices with entries from the ring of integers \mathbb{Z}_2 . Consider

 $x = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $y = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

Then $x, y \in M_{2\times 2}$ are zero divisors of $M_{2\times 2}$ as

$$
xy = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \text{ and } xy = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
$$

Now take

Now take

In this paper, conditions on n for the ring of integers modulo n have been obtained to have Szero divisors and S-weak zero divisors. If *n* is a composite number of the form $n = p_1p_2p_3$, or $(n = p^m)$, where $p_1p_2p_3$ are distinct prime numbers, or $(p$ a prime with $m \ge 3$), then it has been proved that Z_n has S-zero divisors. Further, conditions on Z_n have been obtained to have S-weak zero divisors and we have established the existence of S-zero divisor if $n = 2^m p$ (where p an odd prime, $m \ge 3$) or $n = 3^m p$ (p a prime different from 3) or in general, when $n = p^m q$ (p, q distinct primes). We also have shown that the group ring $Z_{2n}G$, where $n > 1$, $G = \{g/g^2\} = 1$ has S-zero divisor and S-weak zero divisor. The group ring $Z_{2n+1} G$, $G = {g/g^2} = 1$ has only S-weak zero divisor.

²⁰¹⁷ University of Benghazi. All rights reserved.

 $a = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $b = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, we then have $ax = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ $\left(\begin{matrix} 0 & 1 \ 0 & 0 \end{matrix}\right) \left(\begin{matrix} 1 & 0 \ 0 & 0 \end{matrix}\right)$ $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, but $xa = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 \ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ $by = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ $\left(\begin{matrix} 0 & 0 \ 1 & 0 \end{matrix}\right) \left(\begin{matrix} 0 & 0 \ 0 & 1 \end{matrix}\right)$ $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, but $yb = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ $\left(\begin{matrix} 0 & 0 \ 0 & 1 \end{matrix}\right) \left(\begin{matrix} 0 & 0 \ 1 & 0 \end{matrix}\right)$ $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ $\begin{matrix}0 & 0\\ 0 & 0\end{matrix}$ Finally

$$
ab = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},
$$

\n
$$
ab = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},
$$

Hence $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ are S-zero divisors of the ring $M_{2\times 2}$.

Theorem 1.4: (Vasantha Kandasamy.W.B, 2002) Let *R* be a ring. Every S-zero divisor is a zero divisor but a zero divisor in general is not a S-zero divisor.

Example 1.5: Let Z_6 be the ring of integers modulo 6. Clearly 2 and 3 are zero divisors but are not S-zero divisors.

Theorem 1.6: (Vasantha Kandasamy.W.B. 2004) Let *R* be a noncommutative ring. $x, y \in R{0}$ are S-zero divisors with $a, b \in R \setminus \{0, x, y\}$ satisfying the following conditions:

1.
$$
ax = 0
$$
 and $xa \neq 0$
2. $yb = 0$ and $by \neq 0$
3. $ab = 0$ and $ba = 0$

Then $(xa + by)^2 = 0$, i.e. $xa + by$ is a nilpotent element of *R*.

Example 1.7: In example 1.3.

Take
$$
x = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}
$$
, $y = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$, then we have $xy = yx = 0$

Traina & Salibi / Libyan Journal of Science &Technology 6:1 (2017) 5 – 7

Now take $a = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, $b = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$. So $ax = 0, xa \neq 0$ and $yb = 0, by \neq 0$ and $ab = 0, ba \neq 0$ Then $(xa + by)^2 = 0$ or $ab \equiv 0 \pmod{pq}$. Therefore $xa + by$ is a nilpotent element of *R*.

Definition 1.8: (Vasantha Kandasamy and Chetry, 2005) An element ∈ {0} is a *Smarandache weak zero divisor* (*S-weak zero divisor*) if *x* is a zero divisor, i.e. $xy = 0$ for $y \in R\{0, x\}$, and there exists $a, b \in R\{0, x, y\}$ such that

1.
$$
xa = 0 \text{ or } ax = 0.
$$

2.
$$
yb = 0
$$
 or $by = 0$.

$$
3. \quad ab = 0 \text{ or } ba = 0
$$

Example 1.9: In **Z**₂₀; we have

 $4.5 \equiv 0 \pmod{20}$, $10.4 \equiv 0 \pmod{20}$ and $8.5 \equiv 0 \pmod{20}$, also $10.8 \equiv 0 \pmod{20}$. So 4 and 5 are S-weak zero divisors in \mathbb{Z}_{20} . We can also check whether \mathbb{Z}_{20} has S-zero divisors. For $4.10 \in \mathbb{Z}_{20}$, we have 4.10 \equiv 0 (mod 20). Now take 2,5 \in Z₂₀ such that 5.4 \equiv 0 (mod 20), and $2.10 \equiv 0 \pmod{20}$, but $2.5 \not\equiv 0 \pmod{20}$ Thus \mathbb{Z}_{20} has both S-zero divisor and S-weak zero divisor.

Theorem 1.10: Let *R* be a non-commutative ring. $x, y \in R\{0\}$ are S-weak zero divisors with $a, b \in R\{0, x, y\}$ satisfying the following conditions:

1.
$$
ax = 0
$$
 and $xa \neq 0$
2. $yb = 0$ and $by \neq 0$
3. $ab = 0$ and $ba = 0$

Then $(xa + by)^2 = 0$ i.e. $xa + by$ is a nilpotent element of *R*.

Proof. Consider $(xa + by)^2 = xaxa + xaby + byxa + byby; ax =$ 0, using $ax = 0$, $ax = 0$; $ab = 0$, $xy = yx = 0$, and $yb = 0$ we get $xa + by$ to be a nilpotent element of order 2.

Example 1.11: In example 1.3.

Take $x = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$, $y = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$, then we have $xy = yx = 0$ $1 \frac{1}{3}$ $1 \frac{1}{3}$ $1 \frac{0}{1}$

Now take $a = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $b = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ $\begin{cases} 0 & 0 \\ 0 & 1 \end{cases}$. So $ax = 0$, $xa \neq 0$ and $yb = 0$, $by \neq 0$ and $ab = 0$, $ba = 0$

Then $(xa + by)^2 = 0$. Thus, $xa + by$ is a nilpotent element of *R*.

3. S-zero divisors and S-weak zero divisors in

In this section we find conditions for \mathbf{Z}_n to have S-zero divisors and S-weak zero divisors. We show that if *n* is of the form *pq*, where *pq* distinct odd primes, then Z_n has no S-zero divisors but it has S-weak zero divisors. More results are proved.

Theorem 2.12 (Vasantha Kandasamy and Chetry, 2005): Let \mathbf{Z}_p be the ring of integers modulo p , where p is a prime, \mathbb{Z}_p has no Szero divisor and S-weak zero divisor.

Theorem 2.13: Let \mathbb{Z}_{2p} be the ring of integers modulo 2p, p a prime, \mathbf{Z}_{2p} has no S-zero divisor or S-weak zero divisor.

Proof. Let *x*, *y* be two zero divisors in \mathbb{Z}_{2p} such that $xy \equiv 0 \pmod{1}$ 2*p*). Then *x*, *y* must be of the following form: Take $x = p$, $x = p$, $y = 2m$, $m \in \mathbb{Z}$; *x* and *y* cannot be S-zero divisors since there is no $a, b \in \mathbb{Z}_{2p}\backslash\{p\}$ such that $xa \equiv 0 \pmod{2p}$, $by \in 0 \pmod{2p}$, $ab \equiv 0 \pmod{2p}$. Hence the claim.

Example 2.14: In Z_6 ; The only zero divisors are 2,3 and 4. However, they cannot be S-zero divisors or S-weak zero divisors.

Theorem 2.15: Let \mathbb{Z}_{pq} be the ring of integers modulo pq , where *p, q* are distinct odd primes, then

1. \mathbf{Z}_{pq} has S-weak zero divisors.

2. \mathbf{Z}_{pa} has no S-zero divisors.

Proof.

(i). Let *x*, *y* be non-zero element in \mathbb{Z}_{pq} , take $x = p$ and $y = q$, then $x. y \equiv 0 \pmod{pq}$.

Now take $a \equiv k_1 q \pmod{pq}$, $k_1 \in \mathbb{Z}$, and $b \equiv k_2 p \pmod{pq}$, $k_2 \in \mathbb{Z}$ Z, then $xa \equiv 0 \pmod{pq}$, $by \equiv 0 \pmod{pq}$ and $ab \not\equiv 0 \pmod{pq}$

So Z_{pq} has S-weak zero divisors.

(ii) Let *x*, *y* be a non-zero element in \mathbf{Z}_{pq} , $x \cdot y \equiv 0 \pmod{pq}$. So, *x* and *y* must be as in the following form $x \equiv k_1 p \pmod{pq}$, $k_1 \in \mathbb{Z}$, and $y \equiv k_2 q \pmod{pq}$.

Now to find $a, b \in \mathbb{Z}_{pq}\{0, x, y\}$ such that $a. x \equiv 0 \pmod{pq}$, and $b. y \equiv 0 \pmod{pq}$, *a* and *b* must be of the following form $a = k_3q$ (mod *pq*), $k_3 \in \mathbb{Z}$ and $b = k_4 q$ (mod *pq*), $k_4 \in \mathbb{Z}$. From this, we get $a, b \equiv 0 \pmod{pq}$. So, \mathbb{Z}_{pq} has no S-zero divisors.

Example 2.16: Let Z_{15} be the ring of integers modulo 15. Clearly 3, 5, 6, 9, 10 and 12 are S-weak zero divisors in \mathbb{Z}_{15} .

Corollary 2.17 (Vasantha Kandasamy and Chetry, 2005): \mathbb{Z}_{p^2} , *p* be an odd prime greater than 3, has no S-zero divisors and has Sweak zero divisors.

Example 2.18: In \mathbb{Z}_{25} ; take $x = 5$, $y = 10$, and $a = 15$, $b = 20$. Then $5.10 \equiv 0 \pmod{25}$, $5.15 \equiv 0 \pmod{25}$, $10.20 \equiv 0 \pmod{25}$ and $15.20 \equiv 0 \pmod{25}$.

Theorem 2.19 [Vasantha Kandasamy and Chetry, 2005]: \mathbf{Z}_{p^n} has S-zero divisors, *p* be a prime and $n \geq 3$.

Example 2.20: In Z_8 ; we have $x = 4$, $y = 4$ and $x, y \equiv 0 \pmod{8}$. Take $a = 2$, $b = 6$, then $a \cdot x \equiv 0 \pmod{8}$, $b \cdot y \equiv 0 \pmod{8}$ but $a.b \not\equiv 0 \pmod{8}$.

Corollary 2.21: \mathbb{Z}_{p^n} has S-weak zero divisor, where *p* odd prime, $n \geq 3$

Proof. Take $x = p$, $y = p^{n-1}$ and take $a = kp^{n-1}$, $b = kp$ So we have $ax \equiv 0 \pmod{p^n}$, $by \equiv 0 \pmod{p^n}$, and $ab \equiv 0 \pmod{p^n}$ *pn*). Hence the claim.

Theorem 2.22: Z_n has S-zero divisor when $n = p_1p_2p_3$, where p_1 , p_2 , p_3 are distinct primes.

Proof. Take $x = p_1 p_2$ and $y = p_1 p_3$, then $xy \equiv 0 \pmod{n}$, and take $a = p_3$ and $b = p_2$, then $ax \equiv 0 \pmod{n}$, and $by \equiv 0 \pmod{n}$, but $ab \not\equiv 0 \pmod{n}$. Hence the claim.

On the other hand, Take $x = p_1 p_2$, $y = p_3$ and $a = kp_3$, $b = kp_1 p_2$, $k \in \mathbb{Z}$ Therefore, $ax \equiv 0 \pmod{n}$, $by \equiv 0 \pmod{n}$, and $ab \equiv 0$ (mod *n*).

Example 2.23: In \mathbb{Z}_{30} , (30 = 2.3.5), we have $x = 6$, $y = 10$, and $6.10 \equiv 0 \pmod{30}$

 $a = 5$, $b = 3$, $6.5 \equiv 0 \pmod{30}$, $10.3 \equiv 0 \pmod{30}$,

But $5.3 \not\equiv 0 \pmod{30}$. So, 6 and 10 are S-zero divisors.

Also, $x = 5$, $y = 6$ are S-weak zero divisors with $a = 12$, $b = 10$ We can generalize theorem 2.22 as follows:

Theorem 2.24: \mathbf{Z}_n has S-zero divisor when $n = p_1 p_2 \cdots p_t$, where $p_1 p_2 \cdots p_t$ are distinct primes.

Proof. For S-zero divisors, the proof is similar to the previous theorem.

Now take $x = p_1 p_2 ... p_{t-1}$, $n = p_1 p_2 ... p_t$ and $n = p_3 p_4 ... p_t$, $b = p_1 p_2$. Hence the claim.

Theorem 2.25: Let $\mathbb{Z}_{2^m p}$ be the ring of integers modulo $2^m p$, where *p* be an odd prime and $m \ge 2$, then 2*p*, 2^{*m*} and 2*kp*, 2^{*m*}*k* ($k \in \mathbb{Z}$) are S-zero divisors in $Z_{2^m p}$.

Proof. $2p^m \equiv 0 \pmod{2^m p}$.

Take $a = 2^{m-1}$ and $b = p$.

Then $2p2^{m-1} \equiv 0 \pmod{2^m p}$ and $2^m p \equiv 0 \pmod{2^m p}$ and we have:

 $2^{m-1}p \not\equiv 0 \pmod{2^m p}$.

Therefore 2p and 2^m are S-zero divisors in $\mathbf{Z}_{2^m p}$.

Note: The number of S-zero divisor in $Z_{2^m p}$ is $(2^{n-1} - 2 + p)$ *.*

Example 2.26: In \mathbb{Z}_{24} **, (24 = 2³.3), 6, 8, 12, 16 and 18 are all the** S-zero divisors in \mathbb{Z}_{24} , i.e. the number of S-zero divisors in \mathbb{Z}_{24} is 5

which can be calculated using the formula in the last note as $(2^{3-1} - 2 + 3) = 5.$

Theorem 2.27: Let $\mathbf{Z}_{3^m p}$ be the ring of integers modulo $3^m p$, p be a prime such that $p \neq 3$ and $m \geq 2$, then $3p, 3^m$ are S-zero divisors in $Z_{3^m p}$ also $3kp$ and, $k \in \mathbb{Z}$, are S-zero divisors in $\mathbb{Z}_{3^m p}$. Proof. One can show that $3p$, 3^m are S-zero divisors in $\mathbb{Z}_{3^m p}$, and the number of S-zero divisors in $\mathbf{Z}_{3^m p}$ is $(3^{m-1} - 2 + p)$.

Example 2.28: In \mathbb{Z}_{45} **, (45 = 3².5), 9, 15, 18, 27, 30 and 36 are** all the S-zero divisors in Z_{45} and the number of S-zero divisors in Z_{45} is $(2^{2-1} - 2 + 5) = 6$. We can generalize theorem 2.25, 2.27 as follows:

Theorem 2.29: Let $\mathbb{Z}_{p^m q}$ be the ring of integers modulo $p^m q$, where p, q are distinct primes and $m \geq 2$, then kpq , $p^m k$, $k \in \mathbb{Z}$, are S-zero divisors.

Theorem 2.30: Let \mathbf{Z}_{p^m} be the ring of integers modulo p^m , where p be a prime and $m \geq 2$, then p^2 , p^{m-1} are S-zero divisors.

Proof. Take $a = p^{m-2}$ and $b = p$, so we have $p^2 \cdot p^{m-2} \equiv 0 \pmod{p^m}$ p^m), and $p \cdot p^{m-1} \equiv 0 \pmod{p^m}$, but $p^{n-2} \cdot p \equiv 0 \pmod{p^m}$. Hence, p^2 and p^{m-1} are S-zero divisors.

Remark 2.31: One can also see that kp^2 , $k \in \mathbb{Z}$ is S-zero divisors in \mathbb{Z}_{p^m} .

Note: The number of S-zero divisors in \mathbf{Z}_{p^m} is $(p^{m-2}-1)$

Example 2.32: In $\mathbb{Z}_{32}(32 = 2^5)$, 4, 8, 12, 16, 20, 24 and 28 are all the S-zero divisors in Z_{32} , and the number of S-zero divisors is $(2^3 - 1 = 7).$

3. S-zero divisors in the group ring

Here we will show that the group ring Z_2G where G is a finite cyclic group of non-prime order has S-zero divisor. We illustrate by certain examples the non-existence of S-zero divisors before this, and we prove the group ring $\mathbb{Z}_2 G$ where $n > 1$, $G = \{g/g^2 = 1\}$ 1} has S-zero divisor and S-weak zero divisor. Further the group ring $\mathbf{Z}_{2n+1} G$, = { $g/g^2 = 1$ } has S-weak zero divisor.

Example 3.33: Consider the group ring $\mathbb{Z}_2 G$ where $G = \{g/g^2 = g\}$ 1} over \mathbf{Z}_2 . Clearly, $(1 + g)^2 = 0$ is the only zero divisor, so it cannot have S-zero divisors or S-weak zero divisors. Similarly, $\mathbf{Z}_2 G$ where $G = \{g/g^3 = 1\}$ has no S-zero divisors or S-weak zero divisors.

Example 3.34: Consider the group ring $\mathbb{Z}_2 G$ where $G = \{g/g^4 = g\}$ 1} is the cyclic group of order 4. Then

$$
(1+g)(1+g+g^2+g^3) = 0
$$

\n
$$
(1+g^2)(1+g+g^2+g^3) = 0
$$

\n
$$
(1+g^3)(1+g+g^2+g^3) = 0
$$

\n
$$
(g+g^2)(1+g+g^2+g^3) = 0
$$

\n
$$
(g+g^3)(1+g+g^2+g^3) = 0
$$

\n
$$
(g^2+g^3)(1+g+g^2+g^3) = 0
$$

are some of the zero divisors in $\mathbb{Z}_2 G$ So it has S-zero divisors and no S-weak zero divisors.

Theorem 3.35 (Vasantha Kandasamy and Chetry, 2005): Let $\mathbb{Z}_2 G$ be the group ring where *G* is a cyclic group of prime order *p*. Then the group ring Z_2G has no S-zero divisors or S-weak zero divisors.

Theorem 3.36 (Vasantha Kandasamy and Chetry, 2005)**:** Let $\mathbf{Z}_2 S_n$ be the group ring of the symmetric group S_n over \mathbf{Z}_2 . Then $\mathbf{Z}_2 S_n$ has S-zero divisors.

Example 3.37: The group ring $\mathbb{Z}_2 S_3$ where S_3 is the symmetric group of order 4, has S-zero divisors.

Let
$$
a = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}
$$
, $b = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$, $c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$,
\n $d = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$, $e = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$

Put $A = 1 + a + b + c + d + e$ and $B = d + e$ (1 is the identity permutation).

Clearly $AB = 0$. Take

 $X = 1 + a$ and $Y = 1 + d + e$ then

 $AX = 0$ and $BY = 0$, but $XY \neq 0$.

Hence Z_2S_3 has S-zero divisors.

Theorem 3.38: the group ring \mathbb{Z}_{2n} G, where $n > 1$, has S-zero divisor.

Proof. To prove that $\mathbf{Z}_{2n}G$, where $n > 1$, $G = \{g/g^2 = 1\}$ has S-zero divisor,

Take $x = (2n - 1) + g$, $y = n + ng$ and take $a = 1 + g$, $b = (2n - 1) + (2n - 1)g$

Now we have $xy = (n(2n - 1) + n) + (n + n(2n - 1))g$ $xy = n(2n) + n(2n)g \equiv 0 \pmod{2n}$

and

$$
ax = (1 + g)((2n - 1) + g) = (2n) + (2n)g \equiv 0 \pmod{2n}
$$

\n
$$
by = ((2n - 1) + (2n - 1)g)(n + ng)
$$

\n
$$
= (n(2n - 1) + n(2n - 1)) + 2n(2n + 1) \equiv 0 \pmod{2n}
$$

\n
$$
ab = (1 + g)((2n - 1) + (2n - 1)g) = (2n - 1 + 2n - 1)
$$

\n
$$
+ ((2n - 1) + (2n - 1)g)
$$

\n
$$
= (4n - 2) + (4n - 2)g \not\equiv 0 \pmod{2n}
$$

\nTo show that **Z**₂, *G*, where *n* > 1, *G* = {*a*/(*a*² = 1} has S-weak zero

o show that $\mathbf{Z}_{2n}G$, where $n > 1$, $G = \{g/g\}$ $/g^2 = 1$ } has S-weak zero divisor, take $x = 1 + g$, $y = n + ng$. x , and take $a = (2n - 1) + g$, $b = (2n - 1) + (2n - 1)g$, i.e. $xy \equiv 0$, (mod 2n), $ax \equiv 0$ (mod 2n), $by \equiv 0$ (mod 2n) and $ab \equiv 0$ (mod 2n). Hence the claim.

Theorem 3.39: The group ring $\mathbb{Z}_{2n+1} G$, $G = {g/g^2 = 1}$ has Sweak zero divisor.

Proof. Take $x = 2n + 2ng$, $y = 1 + 2ng$ and take $a = 2n + g$, $b = 1 + g$. So we have

 $xy \equiv 0 \pmod{2n + 1}$, $ax \equiv 0 \pmod{2n + 1}$, $by \equiv 0 \pmod{2n + 1}$ And $ab \equiv 0 \pmod{2n+1}$.

Then the group ring $\mathbb{Z}_{2n+1} G$, $G = {g/g^2 = 1}$ has S-weak zero divisor.

References

- Vasantha Kandasamy.W.B., Smarandache (2002) 'Rings' *American Research Press*, Rehoboth.
- Vasantha Kandasamy.W.B., (2003) 'Bialgebraic structures and Smarandache Bialgebraic structures'. *American Research Press, Rehoboth*.
- Vasantha Kandasamy.W.B., (2004) 'Smarandache-Zero Divisors', *Smarandache Notions Journal*, Vol. 14, pp. 325-329.
- Vasantha Kandasamy, W.B., and Chetry M.K., (2005) 'On the number of Smarandache zero-Divisors and Smarandache weak zero-Divisors In Loop Rings of the Loops $L_n(m)$ ', *Scientia Magna*, 1, no. 2, pp. 96-99.
- Vasantha Kandasamy, W.B., and Chetry M.K., (2005) 'Smarandache-Zero divisors in group rings, Department of mathematics', *IIT Madras*, 1, pp. 231-242.