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In this paper, conditions on n for the ring of integers modulo n have been obtained to have S-
zero divisors and S-weak zero divisors. If n is a composite number of the form 𝑛 = 𝑝1𝑝2𝑝3, or 
(𝑛 = 𝑝𝑚), where 𝑝1𝑝2𝑝3 are distinct prime numbers, or ( p a prime with 𝑚 ≥ 3), then it has been 
proved that Zn has S-zero divisors. Further, conditions on 𝑍𝑛 have been obtained to have S-weak 
zero divisors and we have established the existence of S-zero divisor if 𝑛 = 2𝑚𝑝 (where p an odd 
prime, 𝑚 ≥ 3) or 𝑛 = 3𝑚𝑝 (p a prime different from 3) or in general, when 𝑛 = 𝑝𝑚𝑞 (p, q distinct 
primes). We also have shown that the group ring 𝑍2𝑛𝐺, where n >1, 𝐺 = {𝑔/𝑔2} = 1 has S-zero 
divisor and S-weak zero divisor. The group ring 𝑍2𝑛+1𝐺, 𝐺 = {𝑔/𝑔2} = 1 has only S-weak zero 
divisor.  
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1. Introduction 

The concepts of Smarandache zero divisors (S-zero divisors) 
and Smarandache weak zero divisors (S-weak zero divisors) in a 
ring R are illustrated with examples. Both S-zero divisors and 
S-weak zero divisors are zero divisors but all zero divisors may 
not be S-zero divisors or S-weak zero divisors. 

2. Basic definitions 

The notions of S-zero divisors and S-weak zero divisors are 
introduced and several examples are provided. 

Definition 1.1: (Vasantha Kandasamy, W.B. & Chetry M.K., 2005) 
Let R be a ring, we say that a non-zero element 𝑥 ∈ 𝑅 is a 
Smarandache zero divisor (S-zero divisor) if there exists a non-zero 
element y in R such that 𝑥 ∙ 𝑦 = 0 and there exist 𝑎, 𝑏 ∈ 𝑅{0, 𝑥, 𝑦}, 
with  

1. 𝑥𝑎 = 0 or 𝑎𝑥 = 0 

2. 𝑦𝑏 = 0 or 𝑏𝑦 = 0 and 

3. 𝑎𝑏 ≠ 0 or 𝑏𝑎 ≠ 0. 

Note that in case of commutative rings we just need  

𝑖) 𝑥𝑎 = 0, 𝑖𝑖) 𝑦𝑏 = 0, 𝑖𝑖𝑖) 𝑎𝑏 ≠ 0 

Example 1.2: Let 𝑍12 be the ring of integers modulo 12. Clearly 6, 
and 4 are zero divisors, Now take 𝑎 = 2 and 𝑏 = 3 in 𝒁12, we then 
have 

2.6 ≡ 0 (mod 12 ) & 3.4 ≡ 0 (mod 12), but 2.3 ≢ 0 (mod 12). 
So 6 and 4 are S-zero divisors in 𝑍12.  

Example 1.3: Let 𝑀2×2 = {(
𝑎 𝑏
𝑐 𝑑

) |𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑍2}

 

be the set of all 

2 × 2 matrices with entries from the ring of integers 𝒁2. Consider  

𝑥 = (
1 0
0 0

) , 𝑦 = (
0 0
0 1

) 

Then 𝑥, 𝑦 ∈ 𝑀2×2 are zero divisors of 𝑀2×2as 

𝑥𝑦 = (
1 0
0 0

) (
0 0
0 1

) = (
0 0
0 0

) and 𝑥𝑦 = (
0 0
0 1

) (
1 0
0 0

) = (
0 0
0 0

) 

Now take  

𝑎 = (
0 1
0 0

)  𝑎𝑛𝑑 𝑏 = (
0 0
1 0

), we then have 

𝑎𝑥 = (
0 1
0 0

) (
1 0
0 0

) = (
0 0
0 0

), but 

𝑥𝑎 = (
1 0
0 0

) (
0 1
0 0

) = (
0 1
0 0

) ≠ (
0 0
0 0

), 

𝑏𝑦 = (
0 0
1 0

) (
0 0
0 1

) = (
0 0
0 0

), but 

𝑦𝑏 = (
0 0
0 1

) (
0 0
1 0

) = (
0 0
1 0

) ≠ (
0 0
0 0

) 

Finally  

𝑎𝑏 = (
0 1
0 0

) (
0 0
1 0

) = (
1 0
0 0

) ≠ (
0 0
0 0

), 

𝑎𝑏 = (
0 0
1 0

) (
0 1
0 0

) = (
0 0
0 1

) ≠ (
0 0
0 0

), 

Hence (
1 0
0 0

) , (
0 0
0 1

) are S-zero divisors of the ring 𝑀2×2.  

Theorem 1.4: (Vasantha Kandasamy.W.B, 2002) Let R be a ring. 
Every S-zero divisor is a zero divisor but a zero divisor in general 
is not a S-zero divisor. 

Example 1.5: Let 𝒁6 be the ring of integers modulo 6. Clearly 2 
and 3 are zero divisors but are not S-zero divisors.  

Theorem 1.6: (Vasantha Kandasamy.W.B. 2004) Let R be a non-
commutative ring. 𝑥, 𝑦 ∈ 𝑅{0} are S-zero divisors with 
𝑎, 𝑏 ∈ 𝑅\{0, 𝑥, 𝑦} satisfying the following conditions: 

1. 𝑎𝑥 = 0 and 𝑥𝑎 ≠ 0 
2. 𝑦𝑏 = 0 and 𝑏𝑦 ≠ 0 
3. 𝑎𝑏 = 0 and 𝑏𝑎 = 0  

Then (𝑥𝑎 + 𝑏𝑦)2 = 0, i.e. 𝑥𝑎 + 𝑏𝑦 is a nilpotent element of R. 

Example 1.7: In example 1.3. 

Take 𝑥 = (
1 0
1 0

) , 𝑦 = (
0 0
1 1

), then we have 𝑥𝑦 = 𝑦𝑥 = 0 
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Now take 𝑎 = (
1 1
1 1

) , 𝑏 = (
0 1
0 1

). So 𝑎𝑥 = 0, 𝑥𝑎 ≠ 0 and 

𝑦𝑏 = 0, 𝑏𝑦 ≠ 0 and 𝑎𝑏 = 0, 𝑏𝑎 ≠ 0 Then (𝑥𝑎 + 𝑏𝑦)2 = 0 
Therefore 𝑥𝑎 + 𝑏𝑦 is a nilpotent element of R. 

Definition 1.8: (Vasantha Kandasamy and Chetry, 2005) An 
element 𝑥 ∈ 𝑅{0} is a Smarandache weak zero divisor (S-weak zero 
divisor) if x is a zero divisor, i.e. 𝑥𝑦 = 0 for 𝑦 ∈ 𝑅{0, 𝑥}, and there 
exists 𝑎, 𝑏 ∈ 𝑅{0, 𝑥, 𝑦} such that 

1. 𝑥𝑎 = 0 or 𝑎𝑥 = 0. 

2. 𝑦𝑏 = 0 or 𝑏𝑦 = 0. 

3. 𝑎𝑏 = 0 or 𝑏𝑎 = 0 

Example 1.9: In Z20; we have 

4.5 ≡ 0 (mod 20), 10.4 ≡ 0 (mod 20) and 8.5 ≡ 0 (mod 20), also 
10.8 ≡ 0 (mod 20). So 4 and 5 are S-weak zero divisors in Z20. We 
can also check whether Z20 has S-zero divisors. For 4,10 ∈ 𝒁20, we 
have 4.10 ≡ 0 (mod 20). Now take 2,5 ∈ 𝒁20 such that 5.4 ≡ 0 
(mod 20), and 2.10 ≡ 0 (mod 20), but 2.5 ≢ 0 (mod 20) Thus Z20 
has both S-zero divisor and S-weak zero divisor. 

Theorem 1.10: Let R be a non-commutative ring. 𝑥, 𝑦 ∈ 𝑅{0} are 
S-weak zero divisors with 𝑎, 𝑏 ∈ 𝑅{0, 𝑥, 𝑦} satisfying the following 
conditions: 

1. 𝑎𝑥 = 0 and 𝑥𝑎 ≠ 0  

2. 𝑦𝑏 = 0 and 𝑏𝑦 ≠ 0 

3. 𝑎𝑏 = 0 and 𝑏𝑎 = 0  

Then (𝑥𝑎 + 𝑏𝑦)2 = 0 i.e. 𝑥𝑎 + 𝑏𝑦 is a nilpotent element of R. 

Proof. Consider (𝑥𝑎 + 𝑏𝑦)2 = 𝑥𝑎𝑥𝑎 + 𝑥𝑎𝑏𝑦 + 𝑏𝑦𝑥𝑎 + 𝑏𝑦𝑏𝑦; 𝑎𝑥 =
0, using 𝑎𝑥 = 0, 𝑎𝑥 = 0; 𝑎𝑏 = 0, 𝑥𝑦 = 𝑦𝑥 = 0, and 𝑦𝑏 = 0 we get 
𝑥𝑎 + 𝑏𝑦 to be a nilpotent element of order 2. 

Example 1.11: In example 1.3. 

Take 𝑥 = (
0 0
1 1

),  𝑦 = (
1 0
1 0

), then we have 𝑥𝑦 = 𝑦𝑥 = 0 

Now take 𝑎 = (
1 0
0 0

),  𝑏 = (
0 0
0 1

). So 𝑎𝑥 = 0, 𝑥𝑎 ≠ 0 and 𝑦𝑏 = 0, 

𝑏𝑦 ≠ 0 and 𝑎𝑏 = 0, 𝑏𝑎 = 0 

Then (𝑥𝑎 + 𝑏𝑦)2 = 0. Thus, 𝑥𝑎 + 𝑏𝑦 is a nilpotent element of R. 

3. S-zero divisors and S-weak zero divisors in 𝒁𝒏 

In this section we find conditions for 𝒁𝑛 to have S-zero 
divisors and S-weak zero divisors. We show that if n is of the form 
pq, where pq distinct odd primes, then 𝒁𝑛 has no S-zero divisors 
but it has S-weak zero divisors. More results are proved. 

Theorem 2.12 (Vasantha Kandasamy and Chetry, 2005): Let 𝒁𝑝 

be the ring of integers modulo p, where p is a prime, 𝒁𝑝 has no S-

zero divisor and S-weak zero divisor. 

Theorem 2.13: Let 𝒁2𝑝 be the ring of integers modulo 2p, p a 

prime, 𝒁2𝑝 has no S-zero divisor or S-weak zero divisor. 

Proof. Let x, y be two zero divisors in 𝒁2𝑝  such that 𝑥𝑦 ≡ 0 (mod 

2p). Then 𝑥, 𝑦 must be of the following form: Take 𝑥 = 𝑝, 𝑥 = 𝑝, 
𝑦 = 2𝑚, 𝑚 ∈ 𝒁.; x and y cannot be S-zero divisors since there is no 
𝑎, 𝑏 ∈ 𝒁2𝑝\{𝑝} such that 𝑥𝑎 ≡ 0 (mod 2p), 𝑏𝑦 ∈ 0 (mod 2p), 

𝑎𝑏 ≡ 0 (mod 2p). Hence the claim. 

Example 2.14: In 𝒁6; The only zero divisors are 2,3 and 4. 
However, they cannot be S-zero divisors or S-weak zero divisors. 

Theorem 2.15: Let 𝒁𝑝𝑞 be the ring of integers modulo pq, where 

p, q are distinct odd primes, then 

1. 𝒁𝑝𝑞 has S-weak zero divisors.  

2. 𝒁𝑝𝑞 has no S-zero divisors. 

Proof.  

(i). Let x, y be non-zero element in 𝒁𝑝𝑞, take 𝑥 = 𝑝 and 𝑦 = 𝑞, then 

𝑥. 𝑦 ≡ 0 (mod pq). 

Now take 𝑎 ≡ 𝑘1𝑞 (mod pq), 𝑘1 ∈ 𝑍, and 𝑏 ≡ 𝑘2𝑝 (mod pq), 𝑘2 ∈
𝑍, then 𝑥𝑎 ≡ 0 ( mod pq), 𝑏𝑦 ≡ 0 (mod pq) and 𝑎𝑏 ≢ 0 (mod pq) 
or 𝑎𝑏 ≡ 0 (mod pq). 
So 𝒁𝒑𝒒 has S-weak zero divisors. 
(ii) Let x, y be a non-zero element in 𝒁𝑝𝑞, 𝑥. 𝑦 ≡ 0 (mod pq). So, x 

and y must be as in the following form 𝑥 ≡ 𝑘1𝑝 (mod pq), 𝑘1 ∈ 𝒁, 
and 𝑦 ≡ 𝑘2𝑞 (mod pq).  
Now to find 𝑎, 𝑏 ∈ 𝒁𝑝𝑞{0, 𝑥, 𝑦 } such that 𝑎. 𝑥 ≡ 0 (mod pq), and 

𝑏. 𝑦 ≡ 0  (mod pq), a and b must be of the following form 𝑎 = 𝑘3𝑞 
(mod pq), 𝑘3 ∈ 𝒁

 
 and 𝑏 = 𝑘4𝑞 (mod pq) , 𝑘4 ∈ 𝒁. From this, we 

get 𝑎. 𝑏 ≡ 0 (mod pq). So, 𝒁𝑝𝑞 has no S-zero divisors. 

Example 2.16: Let 𝒁15 
 be the ring of integers modulo 15. Clearly 

3, 5, 6, 9, 10 and 12 are S-weak zero divisors in 𝒁15. 

Corollary 2.17 (Vasantha Kandasamy and Chetry, 2005): 𝒁𝑝2 , p 

be an odd prime greater than 3, has no S-zero divisors and has S-
weak zero divisors. 

Example 2.18: In 𝒁25; take 𝑥 = 5, 𝑦 = 10, and 𝑎 = 15, 𝑏 = 20. 
Then 5.10 ≡ 0 (mod 25), 5.15 ≡ 0 (mod 25), 10.20 ≡ 0 (mod 25) 
and 15.20 ≡ 0 (mod 25). 

Theorem 2.19 [Vasantha Kandasamy and Chetry, 2005]: 𝒁𝑝𝑛

 
 has 

S-zero divisors, p be a prime and 𝑛 ≥ 3. 

Example 2.20: In 𝒁8; we have 𝑥 = 4, 𝑦 = 4 and 𝑥. 𝑦 ≡ 0 (mod 8).  
Take 𝑎 = 2, 𝑏 = 6 , then 𝑎. 𝑥 ≡ 0 (mod 8), 𝑏. 𝑦 ≡ 0 (mod 8) but 
𝑎. 𝑏 ≢ 0 (mod 8). 

Corollary 2.21: 𝒁𝑝𝑛

 
has S-weak zero divisor, where p odd prime, 

𝑛 ≥ 3 

Proof. Take 𝑥 = 𝑝, 𝑦 = 𝑝𝑛−1 and take 𝑎 = 𝑘𝑝𝑛−1, 𝑏 = 𝑘𝑝  
So we have 𝑎𝑥 ≡ 0 (mod pn), 𝑏𝑦 ≡ 0 (mod pn), and 𝑎𝑏 ≡ 0 (mod 
pn). Hence the claim. 

Theorem 2.22: 𝒁𝑛 
has S-zero divisor when 𝑛 = 𝑝1𝑝2𝑝3, where 

𝑝1, 𝑝2, 𝑝3 are distinct primes. 
Proof. Take 𝑥 = 𝑝1𝑝2 and 𝑦 = 𝑝1𝑝3, then 𝑥𝑦 ≡ 0 (mod n), and take 
𝑎 = 𝑝3 and 𝑏 = 𝑝2,then 𝑎𝑥 ≡ 0 (mod n),and 𝑏𝑦 ≡ 0 (mod n), but 
𝑎𝑏 ≢ 0 (mod n). Hence the claim. 
On the other hand, Take 𝑥 = 𝑝1𝑝2, 𝑦 = 𝑝3 and 𝑎 = 𝑘𝑝3, 𝑏 = 𝑘𝑝1𝑝2, 
𝑘 ∈ 𝒁 Therefore, 𝑎𝑥 ≡ 0 (mod n), 𝑏𝑦 ≡ 0 (mod n), and 𝑎𝑏 ≡ 0 
(mod n). 

Example 2.23: In 𝒁30, (30 = 2.3.5), we have  
𝑥 = 6, 𝑦 = 10, and 6.10 ≡ 0 (mod 30) 
𝑎 = 5, 𝑏 = 3, 6.5 ≡ 0 (mod 30), 10.3 ≡ 0 (mod 30), 
But 5.3 ≢ 0 (mod 30). So, 6 and 10 are S-zero divisors. 
Also, 𝑥 = 5, 𝑦 = 6 are S-weak zero divisors with 𝑎 = 12, 𝑏 = 10  
We can generalize theorem 2.22 as follows: 

Theorem 2.24: 𝒁𝑛 has S-zero divisor when 𝑛 = 𝑝1𝑝2 ⋅⋅⋅ 𝑝𝑡, where 
𝑝1𝑝2 ⋅⋅⋅ 𝑝𝑡 are distinct primes. 

Proof. For S-zero divisors, the proof is similar to the previous 
theorem. 

Now take 𝑥 = 𝑝1𝑝2⋅⋅⋅𝑝𝑡−1, 𝑛 = 𝑝1𝑝2 ⋅⋅⋅ 𝑝𝑡 and 𝑛 = 𝑝3𝑝4 ⋅⋅⋅ 𝑝𝑡, 
𝑏 = 𝑝1𝑝2. Hence the claim. 

Theorem 2.25: Let 𝒁2𝑚𝑝 be the ring of integers modulo 2𝑚𝑝, 

where p be an odd prime and m 2, then 2p, 2𝑚 and 2kp, 2𝑚𝑘 
(kZ) are S-zero divisors in 𝑍2𝑚𝑝. 

Proof. 2𝑝𝑚 ≡ 0 (mod 2𝑚𝑝). 

Take 𝑎 = 2𝑚−1 and 𝑏 = 𝑝. 

Then 2𝑝2𝑚−1 ≡ 0 (mod 2𝑚𝑝) and 2𝑚𝑝 ≡ 0 (mod 2𝑚𝑝) and we 
have: 

2𝑚−1𝑝 ≢ 0 (mod 2𝑚𝑝). 

Therefore 2p and 2𝑚  are S-zero divisors in 𝒁2𝑚𝑝. 

Note: The number of S-zero divisor in 𝑍2𝑚𝑝 is (2𝑛−1 − 2 + 𝑝). 

Example 2.26: In 𝒁24 , (24 = 23. 3), 6, 8, 12, 16 and 18 are all the 
S-zero divisors in 𝒁24, i.e. the number of S-zero divisors in 𝒁24 is 5 
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which can be calculated using the formula in the last note as 
(23−1 − 2 + 3) = 5. 

Theorem 2.27: Let 𝒁3𝑚𝑝 be the ring of integers modulo 3𝑚𝑝, p be 

a prime such that 𝑝 ≠ 3 and 𝑚 ≥ 2 ,then 3𝑝, 3𝑚 are S-zero 
divisors in 𝑍3𝑚𝑝 also 3𝑘𝑝 and, 𝑘 ∈ 𝒁 , are S-zero divisors in 𝒁3𝑚𝑝. 

Proof. One can show that 3𝑝, 3𝑚 are S-zero divisors in 𝒁3𝑚𝑝, and 

the number of S-zero divisors in 𝒁3𝑚𝑝 is (3𝑚−1 − 2 + 𝑝). 

Example 2.28: In 𝒁45, ( 45 = 32. 5 ), 9, 15, 18, 27, 30 and 36 are 
all the S-zero divisors in 𝒁45 

 and the number of S-zero divisors in 
𝑍45 is (22−1 − 2 + 5) = 6. We can generalize theorem 2.25, 2.27 
as follows: 

Theorem 2.29: Let 𝒁𝑝𝑚𝑞
 

be the ring of integers modulo 𝑝𝑚𝑞, 

where 𝑝, 𝑞 are distinct primes and 𝑚 ≥ 2, then 𝑘𝑝𝑞, 𝑝𝑚𝑘, 𝑘 ∈ 𝒁,  
are S-zero divisors. 

Theorem 2.30: Let 𝒁𝑝𝑚

 
 be the ring of integers modulo 𝑝𝑚, where 

p be a prime and 𝑚 ≥ 2, then 𝑝2, 𝑝𝑚−1 are S-zero divisors. 
Proof. Take 𝑎 = 𝑝𝑚−2 and 𝑏 = 𝑝, so we have 𝑝2. 𝑝𝑚−2 ≡ 0 (mod 
𝑝𝑚), and 𝑝. 𝑝𝑚−1 ≡ 0 (mod 𝑝𝑚), but 𝑝𝑛−2. 𝑝 ≡ 0 (mod 𝑝𝑚). Hence, 
𝑝2 and 𝑝𝑚−1 are S-zero divisors. 

Remark 2.31: One can also see that 𝑘𝑝2, 𝑘 ∈ 𝒁  is S-zero divisors 
in 𝒁𝑝𝑚 . 

Note: The number of S-zero divisors in 𝒁𝑝𝑚

 
is (𝑝𝑚−2 − 1)  

Example 2.32: In 𝒁32(32 = 25), 4, 8, 12, 16, 20, 24 and 28 are all 
the S-zero divisors in 𝑍32, and the number of S-zero divisors is 
(23 − 1 = 7). 

3. S-zero divisors in the group ring 𝒁𝟐𝑮 
Here we will show that the group ring 𝑍2𝐺 where G is a finite 

cyclic group of non-prime order has S-zero divisor. We illustrate 
by certain examples the non-existence of S-zero divisors before 
this, and we prove the group ring 𝒁2𝐺 where n >1, 𝐺 = {𝑔 𝑔2⁄ =
1} has S-zero divisor and S-weak zero divisor. Further the group 
ring 𝒁2𝑛+1𝐺, = {𝑔 𝑔2⁄ = 1} has S-weak zero divisor. 

Example 3.33: Consider the group ring 𝒁2𝐺 where 𝐺 = {𝑔 𝑔2⁄ =
1} over 𝒁2. Clearly, (1 + 𝑔)2 = 0 is the only zero divisor, so it 
cannot have S-zero divisors or S-weak zero divisors. Similarly, 
𝒁2𝐺 where 𝐺 = {𝑔 𝑔3⁄ = 1} has no S-zero divisors or S-weak zero 
divisors. 
Example 3.34: Consider the group ring 𝒁2𝐺 where 𝐺 = {𝑔 𝑔4⁄ =
1} is the cyclic group of order 4. Then 

(1 + 𝑔)(1 + 𝑔 + 𝑔2 + 𝑔3) = 0 

(1 + 𝑔2)(1 + 𝑔 + 𝑔2 + 𝑔3) = 0 

(1 + 𝑔3)(1 + 𝑔 + 𝑔2 + 𝑔3) = 0 

(𝑔 + 𝑔2)(1 + 𝑔 + 𝑔2 + 𝑔3) = 0 

(𝑔 + 𝑔3)(1 + 𝑔 + 𝑔2 + 𝑔3) = 0 

(𝑔2 + 𝑔3)(1 + 𝑔 + 𝑔2 + 𝑔3) = 0 

are some of the zero divisors in 𝒁2𝐺 So it has S-zero divisors and 
no S-weak zero divisors. 

Theorem 3.35 (Vasantha Kandasamy and Chetry, 2005): Let 𝒁2𝐺 
be the group ring where G is a cyclic group of prime order p. Then 
the group ring 𝒁2𝐺  has no S-zero divisors or S-weak zero 
divisors. 

Theorem 3.36 (Vasantha Kandasamy and Chetry, 2005): Let 
𝒁2𝑆𝑛 be the group ring of the symmetric group 𝑆𝑛 over 𝒁2. Then 
𝒁2𝑆𝑛 has S-zero divisors. 

Example 3.37: The group ring 𝒁2𝑆3 where 𝑆3 is the symmetric 
group of order 4, has S-zero divisors. 

Let 𝑎 = (
1 2 3
1 3 2

), 𝑏 = (
1 2 3
3 2 1

), 𝑐 = (
1 2 3
2 1 3

), 

       𝑑 = (
1 2 3
2 3 1

), 𝑒 = (
1 2 3
3 1 2

) 

Put 𝐴 = 1 + 𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒 and 𝐵 = 𝑑 + 𝑒 (1 is the identity 
permutation). 
Clearly 𝐴𝐵 = 0. 
Take  
𝑋 = 1 + 𝑎 and 𝑌 = 1 + 𝑑 + 𝑒 then 
𝐴𝑋 = 0 and 𝐵𝑌 = 0, but 𝑋𝑌 ≠ 0.  
Hence 𝑍2𝑆3 has S-zero divisors.  

Theorem 3.38: the group ring 𝒁2𝑛𝐺, where n >1, has S-zero 
divisor. 

Proof. To prove that 𝒁2𝑛𝐺, where n >1, 𝐺 = {𝑔 𝑔2⁄ = 1} has S-zero 
divisor, 
Take 𝑥 = (2𝑛 − 1) + 𝑔, 𝑦 = 𝑛 + 𝑛𝑔 and take 𝑎 = 1 + 𝑔, 

𝑏 = (2𝑛 − 1) + (2𝑛 − 1)𝑔 
Now we have 𝑥𝑦 = (𝑛(2𝑛 − 1) + 𝑛) + (𝑛 + 𝑛(2𝑛 − 1))𝑔 

  𝑥𝑦 = 𝑛(2𝑛) + 𝑛(2𝑛)𝑔 ≡ 0 (mod 2n) 

and  

𝑎𝑥 = (1 + 𝑔)((2𝑛 − 1) + 𝑔) = (2𝑛) + (2𝑛)𝑔 ≡ 0 (mod 2n) 

𝑏𝑦 = ((2𝑛 − 1) + (2𝑛 − 1)𝑔)(𝑛 + 𝑛𝑔) 

= (𝑛(2𝑛 − 1) + 𝑛(2𝑛 − 1)) + 2𝑛(2𝑛 + 1) ≡ 0  (mod 2n) 

𝑎𝑏 = (1 + 𝑔)((2𝑛 − 1) + (2𝑛 − 1)𝑔) = (2𝑛 − 1 + 2𝑛 − 1) 

 +((2𝑛 − 1) + (2𝑛 − 1))𝑔 

= (4𝑛 − 2) + (4𝑛 − 2)𝑔 ≢ 0 (mod 2n) 

To show that 𝒁𝟐𝒏𝐺, where n >1, 𝐺 = {𝑔 𝑔2⁄ = 1} has S-weak zero 
divisor, take 𝑥 = 1 + 𝑔, 𝑦 = 𝑛 + 𝑛𝑔. 𝑥, and take 𝑎 = (2𝑛 − 1) + 𝑔, 
𝑏 = (2𝑛 − 1) + (2𝑛 − 1)𝑔, i.e. 
𝑥𝑦 ≡ 0, (mod 2n), 𝑎𝑥 ≡ 0 (mod 2n), 𝑏𝑦 ≡ 0 (mod 2n) and 𝑎𝑏 ≡ 0 
(mod 2n). Hence the claim. 

Theorem 3.39: The group ring 𝒁2𝑛+1𝐺, 𝐺 = {𝑔 𝑔2⁄ = 1} has S-
weak zero divisor. 

Proof. Take 𝑥 = 2𝑛 + 2𝑛𝑔, 𝑦 = 1 + 2𝑛𝑔 and take 𝑎 = 2𝑛 + 𝑔, 
𝑏 = 1 + 𝑔. So we have 
𝑥𝑦 ≡ 0 (mod 2𝑛 + 1), 𝑎𝑥 ≡ 0 (mod 2𝑛 + 1), 𝑏𝑦 ≡ 0 (mod 2𝑛 + 1) 
And 𝑎𝑏 ≡ 0 (mod 2𝑛 + 1). 
Then the group ring 𝒁2𝑛+1𝐺, 𝐺 = {𝑔 𝑔2⁄ = 1} has S-weak zero 
divisor. 
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