Faculty of Science - University of Benghazi

Libvan Journal of Science & Technology

(Formerly known as Journal of Science & It's Applications)

Smarandache zero and weak zero divisors

Shaban A. Traina ^a, *, Abir K. Salibi ^b

^a Department of mathematics, University of Benghazi

^b Department of mathematics, University of Omar-El Muktar

ARTICLE INFO

Article history: Received 10 April 2017 Revised 14 May 2017 Accepted 17 May 2017 Available online 15 August 2017

Keywords:

S-zero divisor, S-weak zero divisor, group ring.

* Corresponding author: E-mail address: Shaban.traina@uob.edu.ly Sh. A. Traina

1. Introduction

The concepts of Smarandache zero divisors (S-zero divisors) and Smarandache weak zero divisors (S-weak zero divisors) in a ring R are illustrated with examples. Both S-zero divisors and S-weak zero divisors are zero divisors but all zero divisors may not be S-zero divisors or S-weak zero divisors.

2. Basic definitions

The notions of S-zero divisors and S-weak zero divisors are introduced and several examples are provided.

Definition 1.1: (Vasantha Kandasamy, W.B. & Chetry M.K., 2005) Let R be a ring, we say that a non-zero element $x \in R$ is a Smarandache zero divisor (S-zero divisor) if there exists a non-zero element *y* in *R* such that $x \cdot y = 0$ and there exist $a, b \in R\{0, x, y\}$, with

1.
$$xa = 0$$
 or $ax = 0$
2. $yb = 0$ or $by = 0$ and
3. $ab \neq 0$ or $ba \neq 0$.

Note that in case of commutative rings we just need

ii) vb = 0, *iii*) $ab \neq 0$ *i*) xa = 0,

Example 1.2: Let Z_{12} be the ring of integers modulo 12. Clearly 6, and 4 are zero divisors, Now take a = 2 and b = 3 in Z_{12} , we then have

 $2.6 \equiv 0 \pmod{12} \& 3.4 \equiv 0 \pmod{12}$, but $2.3 \not\equiv 0 \pmod{12}$. So 6 and 4 are S-zero divisors in Z_{12} .

Example 1.3: Let $M_{2\times 2} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} | a, b, c, d \in Z_2 \right\}$ be the set of all 2×2 matrices with entries from the ring of integers $\pmb{Z}_2.$ Consider

 $x = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \qquad y = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

Then $x, y \in M_{2 \times 2}$ are zero divisors of $M_{2 \times 2}$ as

$$xy = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \text{ and } xy = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Now take

ABSTRACT

In this paper, conditions on n for the ring of integers modulo n have been obtained to have Szero divisors and S-weak zero divisors. If n is a composite number of the form $n = p_1 p_2 p_3$, or $(n = p^m)$, where $p_1 p_2 p_3$ are distinct prime numbers, or (p a prime with $m \ge 3$), then it has been proved that Z_n has S-zero divisors. Further, conditions on Z_n have been obtained to have S-weak zero divisors and we have established the existence of S-zero divisor if $n = 2^m p$ (where p an odd prime, $m \ge 3$) or $n = 3^m p$ (p a prime different from 3) or in general, when $n = p^m q$ (p, q distinct primes). We also have shown that the group ring $Z_{2n}G$, where n > 1, $G = \{g/g^2\} = 1$ has S-zero divisor and S-weak zero divisor. The group ring $Z_{2n+1}G$, $G = \{g/g^2\} = 1$ has only S-weak zero divisor.

© 2017 University of Benghazi. All rights reserved.

 $a = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $b = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, we then have $ax = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, but $xa = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$ $by = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, but $yb = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ Finally

$$ab = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$

$$ab = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$

Hence $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ are S-zero divisors of the ring $M_{2\times 2}$.

Theorem 1.4: (Vasantha Kandasamy.W.B, 2002) Let *R* be a ring. Every S-zero divisor is a zero divisor but a zero divisor in general is not a S-zero divisor.

Example 1.5: Let Z_6 be the ring of integers modulo 6. Clearly 2 and 3 are zero divisors but are not S-zero divisors.

Theorem 1.6: (Vasantha Kandasamy.W.B. 2004) Let R be a noncommutative ring. $x, y \in R\{0\}$ are S-zero divisors with $a, b \in R \setminus \{0, x, y\}$ satisfying the following conditions:

1.
$$ax = 0$$
 and $xa \neq 0$
2. $yb = 0$ and $by \neq 0$
3. $ab = 0$ and $ba = 0$

Then $(xa + by)^2 = 0$, i.e. xa + by is a nilpotent element of *R*.

Example 1.7: In example 1.3.

Take
$$x = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$$
, $y = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$, then we have $xy = yx = 0$

Traina & Salibi / Libyan Journal of Science & Technology 6:1 (2017) 5 - 7

Now take $a = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, $b = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$. So $ax = 0, xa \neq 0$ and $yb = 0, by \neq 0$ and $ab = 0, ba \neq 0$ Then $(xa + by)^2 = 0$ Therefore xa + by is a nilpotent element of *R*.

Definition 1.8: (Vasantha Kandasamy and Chetry, 2005) An element $x \in R\{0\}$ is a *Smarandache weak zero divisor* (*S-weak zero divisor*) if x is a zero divisor, i.e. xy = 0 for $y \in R\{0, x\}$, and there exists $a, b \in R\{0, x, y\}$ such that

1.
$$xa = 0$$
 or $ax = 0$

2.
$$yb = 0$$
 or $by = 0$.

3.
$$ab = 0$$
 or $ba = 0$

Example 1.9: In Z₂₀; we have

4.5 ≡ 0 (mod 20), 10.4 ≡ 0 (mod 20) and 8.5 ≡ 0 (mod 20), also 10.8 ≡ 0 (mod 20). So 4 and 5 are S-weak zero divisors in \mathbf{Z}_{20} . We can also check whether \mathbf{Z}_{20} has S-zero divisors. For 4,10 ∈ \mathbf{Z}_{20} , we have 4.10 ≡ 0 (mod 20). Now take 2,5 ∈ \mathbf{Z}_{20} such that 5.4 ≡ 0 (mod 20), and 2.10 ≡ 0 (mod 20), but 2.5 ≢ 0 (mod 20) Thus \mathbf{Z}_{20} has both S-zero divisor and S-weak zero divisor.

Theorem 1.10: Let *R* be a non-commutative ring. $x, y \in R\{0\}$ are S-weak zero divisors with $a, b \in R\{0, x, y\}$ satisfying the following conditions:

1.
$$ax = 0$$
 and $xa \neq 0$
2. $yb = 0$ and $by \neq 0$
3. $ab = 0$ and $ba = 0$

Then $(xa + by)^2 = 0$ i.e. xa + by is a nilpotent element of *R*.

Proof. Consider $(xa + by)^2 = xaxa + xaby + byxa + byby; ax = 0$, using ax = 0, ax = 0; ab = 0, xy = yx = 0, and yb = 0 we get xa + by to be a nilpotent element of order 2.

Example 1.11: In example 1.3.

Take $x = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$, $y = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$, then we have xy = yx = 0

Now take $a = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $b = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. So ax = 0, $xa \neq 0$ and yb = 0, $by \neq 0$ and ab = 0, ba = 0

Then $(xa + by)^2 = 0$. Thus, xa + by is a nilpotent element of *R*.

3. S-zero divisors and S-weak zero divisors in Z_n

In this section we find conditions for Z_n to have S-zero divisors and S-weak zero divisors. We show that if *n* is of the form *pq*, where *pq* distinct odd primes, then Z_n has no S-zero divisors but it has S-weak zero divisors. More results are proved.

Theorem 2.12 (Vasantha Kandasamy and Chetry, 2005): Let Z_p be the ring of integers modulo p, where p is a prime, Z_p has no Szero divisor and S-weak zero divisor.

Theorem 2.13: Let Z_{2p} be the ring of integers modulo 2p, p a prime, Z_{2p} has no S-zero divisor or S-weak zero divisor.

Proof. Let *x*, *y* be two zero divisors in \mathbb{Z}_{2p} such that $xy \equiv 0 \pmod{2p}$. Then *x*, *y* must be of the following form: Take x = p, x = p, y = 2m, $m \in \mathbb{Z}$; *x* and *y* cannot be S-zero divisors since there is no $a, b \in \mathbb{Z}_{2p} \setminus \{p\}$ such that $xa \equiv 0 \pmod{2p}$, $by \in 0 \pmod{2p}$, $ab \equiv 0 \pmod{2p}$. Hence the claim.

Example 2.14: In Z_6 ; The only zero divisors are 2,3 and 4. However, they cannot be S-zero divisors or S-weak zero divisors.

Theorem 2.15: Let Z_{pq} be the ring of integers modulo pq, where p, q are distinct odd primes, then

1. \mathbf{Z}_{pq} has S-weak zero divisors.

2. \mathbf{Z}_{pq} has no S-zero divisors.

Proof.

(i). Let x, y be non-zero element in \mathbb{Z}_{pq} , take x = p and y = q, then $x, y \equiv 0 \pmod{pq}$.

Now take $a \equiv k_1 q \pmod{pq}$, $k_1 \in Z$, and $b \equiv k_2 p \pmod{pq}$, $k_2 \in Z$, then $xa \equiv 0 \pmod{pq}$, $by \equiv 0 \pmod{pq}$ and $ab \not\equiv 0 \pmod{pq}$ or $ab \equiv 0 \pmod{pq}$.

So Z_{pq} has S-weak zero divisors.

(ii) Let *x*, *y* be a non-zero element in \mathbb{Z}_{pq} , *x*. $y \equiv 0 \pmod{pq}$. So, *x* and *y* must be as in the following form $x \equiv k_1 p \pmod{pq}$, $k_1 \in \mathbb{Z}$, and $y \equiv k_2 q \pmod{pq}$.

Now to find $a, b \in \mathbb{Z}_{pq}\{0, x, y\}$ such that $a. x \equiv 0 \pmod{pq}$, and $b. y \equiv 0 \pmod{pq}$, a and b must be of the following form $a = k_3 q \pmod{pq}$, $k_3 \in \mathbb{Z}$ and $b = k_4 q \pmod{pq}$, $k_4 \in \mathbb{Z}$. From this, we get $a. b \equiv 0 \pmod{pq}$. So, \mathbb{Z}_{pq} has no S-zero divisors.

Example 2.16: Let Z_{15} be the ring of integers modulo 15. Clearly 3, 5, 6, 9, 10 and 12 are S-weak zero divisors in Z_{15} .

Corollary 2.17 (Vasantha Kandasamy and Chetry, 2005): Z_{p^2} , p be an odd prime greater than 3, has no S-zero divisors and has S-weak zero divisors.

Example 2.18: In Z_{25} ; take x = 5, y = 10, and a = 15, b = 20. Then $5.10 \equiv 0 \pmod{25}$, $5.15 \equiv 0 \pmod{25}$, $10.20 \equiv 0 \pmod{25}$ and $15.20 \equiv 0 \pmod{25}$.

Theorem 2.19 [Vasantha Kandasamy and Chetry, 2005]: Z_{p^n} has S-zero divisors, p be a prime and $n \ge 3$.

Example 2.20: In Z_8 ; we have x = 4, y = 4 and $x. y \equiv 0 \pmod{8}$. Take a = 2, b = 6, then $a. x \equiv 0 \pmod{8}$, $b. y \equiv 0 \pmod{8}$ but $a. b \neq 0 \pmod{8}$.

Corollary 2.21: Z_{p^n} has S-weak zero divisor, where p odd prime, $n \ge 3$

Proof. Take x = p, $y = p^{n-1}$ and take $a = kp^{n-1}$, b = kpSo we have $ax \equiv 0 \pmod{p^n}$, $by \equiv 0 \pmod{p^n}$, and $ab \equiv 0 \pmod{p^n}$. Hence the claim.

Theorem 2.22: Z_n has S-zero divisor when $n = p_1 p_2 p_3$, where p_1, p_2, p_3 are distinct primes.

Proof. Take $x = p_1p_2$ and $y = p_1p_3$, then $xy \equiv 0 \pmod{n}$, and take $a = p_3$ and $b = p_2$, then $ax \equiv 0 \pmod{n}$, and $by \equiv 0 \pmod{n}$, but $ab \not\equiv 0 \pmod{n}$. Hence the claim.

On the other hand, Take $x = p_1p_2$, $y = p_3$ and $a = kp_3$, $b = kp_1p_2$, $k \in \mathbb{Z}$ Therefore, $ax \equiv 0 \pmod{n}$, $by \equiv 0 \pmod{n}$, and $ab \equiv 0 \pmod{n}$.

Example 2.23: In Z_{30} , (30 = 2.3.5), we have x = 6, y = 10, and 6.10 $\equiv 0 \pmod{30}$ a = 5, b = 3, $6.5 \equiv 0 \pmod{30}$, $10.3 \equiv 0 \pmod{30}$,

 $u = 5, b = 5, 0.5 \equiv 0 \pmod{50}, 10.5 \equiv 0 \pmod{50},$

But 5.3 \neq 0 (mod 30). So, 6 and 10 are S-zero divisors. Also, x = 5, y = 6 are S-weak zero divisors with a = 12, b = 10We can generalize theorem 2.22 as follows:

Theorem 2.24: Z_n has S-zero divisor when $n = p_1 p_2 \cdots p_t$, where $p_1 p_2 \cdots p_t$ are distinct primes.

Proof. For S-zero divisors, the proof is similar to the previous theorem.

Now take $x = p_1 p_2 \dots p_{t-1}$, $n = p_1 p_2 \dots p_t$ and $n = p_3 p_4 \dots p_t$, $b = p_1 p_2$. Hence the claim.

Theorem 2.25: Let $\mathbb{Z}_{2^m p}$ be the ring of integers modulo $2^m p$, where *p* be an odd prime and $m \ge 2$, then 2p, 2^m and 2kp, $2^m k$ ($k \in \mathbb{Z}$) are S-zero divisors in $\mathbb{Z}_{2^m p}$.

Proof. $2p^m \equiv 0 \pmod{2^m p}$.

Take $a = 2^{m-1}$ and b = p.

Then $2p2^{m-1} \equiv 0 \pmod{2^m p}$ and $2^m p \equiv 0 \pmod{2^m p}$ and we have:

 $2^{m-1}p\not\equiv 0 \ (\mathrm{mod}\ 2^mp).$

Therefore 2p and 2^m are S-zero divisors in $\mathbb{Z}_{2^m p}$.

Note: The number of S-zero divisor in $Z_{2^m p}$ is $(2^{n-1} - 2 + p)$.

Example 2.26: In Z_{24} , $(24 = 2^3.3)$, 6, 8, 12, 16 and 18 are all the S-zero divisors in Z_{24} , i.e. the number of S-zero divisors in Z_{24} is 5

which can be calculated using the formula in the last note as $(2^{3-1} - 2 + 3) = 5.$

Theorem 2.27: Let $Z_{3^m p}$ be the ring of integers modulo $3^m p$, p be a prime such that $p \neq 3$ and $m \ge 2$,then $3p, 3^m$ are S-zero divisors in $Z_{3^m p}$ also 3kp and, $k \in \mathbb{Z}$, are S-zero divisors in $\mathbb{Z}_{3^m p}$. Proof. One can show that 3p, 3^m are S-zero divisors in $\mathbf{Z}_{3^m p}$, and the number of S-zero divisors in $\mathbb{Z}_{3^m p}$ is $(3^{m-1} - 2 + p)$.

Example 2.28: In **Z**₄₅, (45 = 3².5), 9, 15, 18, 27, 30 and 36 are all the S-zero divisors in $\mathbf{Z}_{45}~$ and the number of S-zero divisors in Z_{45} is $(2^{2-1} - 2 + 5) = 6$. We can generalize theorem 2.25, 2.27 as follows:

Theorem 2.29: Let Z_{p^mq} be the ring of integers modulo p^mq , where p, q are distinct primes and $m \ge 2$, then kpq, p^mk , $k \in \mathbb{Z}$, are S-zero divisors.

Theorem 2.30: Let Z_{p^m} be the ring of integers modulo p^m , where

p be a prime and $m \ge 2$, then p^2 , p^{m-1} are S-zero divisors. Proof. Take $a = p^{m-2}$ and b = p, so we have $p^2 \cdot p^{m-2} \equiv 0 \pmod{2}$ p^m), and $p. p^{m-1} \equiv 0 \pmod{p^m}$, but $p^{n-2} \cdot p \equiv 0 \pmod{p^m}$. Hence, p^2 and p^{m-1} are S-zero divisors.

Remark 2.31: One can also see that kp^2 , $k \in \mathbb{Z}$ is S-zero divisors in \mathbb{Z}_{p^m} .

Note: The number of S-zero divisors in \mathbb{Z}_{p^m} is $(p^{m-2}-1)$

Example 2.32: In **Z**₃₂(32 = 2⁵), 4, 8, 12, 16, 20, 24 and 28 are all the S-zero divisors in Z_{32} , and the number of S-zero divisors is $(2^3 - 1 = 7).$

3. S-zero divisors in the group ring Z_2G

Here we will show that the group ring Z_2G where G is a finite cyclic group of non-prime order has S-zero divisor. We illustrate by certain examples the non-existence of S-zero divisors before this, and we prove the group ring ${\pmb Z}_2 {\pmb G}$ where $n>1,\,{\pmb G}=\{{\pmb g}/{\pmb g}^2=$ 1} has S-zero divisor and S-weak zero divisor. Further the group ring $\mathbf{Z}_{2n+1}G$, = { $g/g^2 = 1$ } has S-weak zero divisor.

Example 3.33: Consider the group ring Z_2G where $G = \{g/g^2 =$ 1} over **Z**₂. Clearly, $(1 + g)^2 = 0$ is the only zero divisor, so it cannot have S-zero divisors or S-weak zero divisors. Similarly, Z_2G where $G = \{g/g^3 = 1\}$ has no S-zero divisors or S-weak zero divisors.

Example 3.34: Consider the group ring Z_2G where $G = \{g/g^4 =$ 1} is the cyclic group of order 4. Then

$$\begin{aligned} (1+g)(1+g+g^2+g^3) &= 0\\ (1+g^2)(1+g+g^2+g^3) &= 0\\ (1+g^3)(1+g+g^2+g^3) &= 0\\ (g+g^2)(1+g+g^2+g^3) &= 0\\ (g+g^3)(1+g+g^2+g^3) &= 0\\ (g^2+g^3)(1+g+g^2+g^3) &= 0\end{aligned}$$

are some of the zero divisors in $\mathbf{Z}_2 G$ So it has S-zero divisors and no S-weak zero divisors.

Theorem 3.35 (Vasantha Kandasamy and Chetry, 2005): Let Z_2G be the group ring where *G* is a cyclic group of prime order *p*. Then the group ring $\mathbf{Z}_2 G$ has no S-zero divisors or S-weak zero divisors.

Theorem 3.36 (Vasantha Kandasamy and Chetry, 2005): Let $\mathbf{Z}_2 S_n$ be the group ring of the symmetric group S_n over \mathbf{Z}_2 . Then $\mathbf{Z}_2 S_n$ has S-zero divisors.

Example 3.37: The group ring Z_2S_3 where S_3 is the symmetric group of order 4, has S-zero divisors.

Let
$$a = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, b = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, d = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, e = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

Put A = 1 + a + b + c + d + e and B = d + e (1 is the identity permutation).

Clearly AB = 0.

Take X = 1 + a and Y = 1 + d + e then

AX = 0 and BY = 0, but $XY \neq 0$.

Hence Z_2S_3 has S-zero divisors.

Theorem 3.38: the group ring $Z_{2n}G$, where n > 1, has S-zero divisor.

Proof. To prove that $\mathbf{Z}_{2n}G$, where n > 1, $G = \{g/g^2 = 1\}$ has S-zero divisor.

x = (2n - 1) + g, y = n + ng and take a = 1 + g, Take b = (2n - 1) + (2n - 1)g

Now we have xy = (n(2n-1) + n) + (n + n(2n-1))g $xy = n(2n) + n(2n)g \equiv 0 \pmod{2n}$

and

 $ax = (1+g)((2n-1)+g) = (2n) + (2n)g \equiv 0 \pmod{2n}$ by = ((2n-1) + (2n-1)g)(n+ng) $= (n(2n-1) + n(2n-1)) + 2n(2n+1) \equiv 0 \pmod{2n}$ ab = (1+g)((2n-1)+(2n-1)g) = (2n-1+2n-1)+((2n-1)+(2n-1))g $= (4n-2) + (4n-2)g \not\equiv 0 \pmod{2n}$ To show that $Z_{2n}G$, where n > 1, $G = \{g/g^2 = 1\}$ has S-weak zero

divisor, take x = 1 + g, $y = n + ng \cdot x$, and take a = (2n - 1) + g, b = (2n - 1) + (2n - 1)g, i.e.

 $xy \equiv 0$, (mod 2n), $ax \equiv 0 \pmod{2n}$, $by \equiv 0 \pmod{2n}$ and $ab \equiv 0$ (mod 2n). Hence the claim.

Theorem 3.39: The group ring $Z_{2n+1}G$, $G = \{g/g^2 = 1\}$ has Sweak zero divisor.

Proof. Take x = 2n + 2ng, y = 1 + 2ng and take a = 2n + g, b = 1 + g. So we have

 $xy \equiv 0 \pmod{2n+1}, ax \equiv 0 \pmod{2n+1}, by \equiv 0 \pmod{2n+1}$ And $ab \equiv 0 \pmod{2n+1}$.

Then the group ring $\mathbf{Z}_{2n+1}G$, $G = \{g/g^2 = 1\}$ has S-weak zero divisor.

References

- Vasantha Kandasamy.W.B., Smarandache (2002) 'Rings' American Research Press, Rehoboth.
- Vasantha Kandasamy.W.B., (2003) 'Bialgebraic structures and Smarandache Bialgebraic structures'. American Research Press, Rehoboth.
- Vasantha Kandasamy.W.B., (2004) 'Smarandache-Zero Divisors', Smarandache Notions Journal, Vol. 14, pp. 325-329.
- Vasantha Kandasamy, W.B., and Chetry M.K., (2005) 'On the number of Smarandache zero-Divisors and Smarandache weak zero-Divisors In Loop Rings of the Loops $L_n(m)'$, Scientia Magna, 1, no. 2, pp. 96-99.
- Vasantha Kandasamy, W.B., and Chetry M.K., (2005) 'Smarandache-Zero divisors in group rings, Department of mathematics', IIT Madras, 1, pp. 231-242.