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Abstract
ZnO has applications in optoelectronics and is used as a transparent semiconductor. However, p-type electrical

doping of has proved difficult to achieve, with group-V impurities substituting for O being suggested as a solution. Using
first-principles local density functional theory, we extensively studied the properties of N doping. In agreement with others,
we find that NZn is the dominant donor rendering ZnO n-type, and a complex of NZn with Zn vacancies is an acceptor,
although not particularly shallow. NO has deep donor and acceptor levels through the formation of N —O bonds in the
positive charge state. We also studied interstitial O and N, which showed that they readily form complexes with
substitutional N and can enhance n-type over p-type conductivity in N-doped ZnO.

Keywords: : DFT, Nitrogen, Zinc oxide.
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Introduction

Zinc oxide § a  transparent
semiconductor with a direct, wide band
gap of 3.4 eV and a large exciton binding
energy of 60 meV. This has led to ZnO
being proposed for applications such as
optoelectronic devices, lasers, and light-
emitting diodes (Bagnall et al., 1997; Tang
etal., 1998; Hwang et al., 2005). The most
significant impediment to the widespread
exploitation of ZnO-related materials in
electronic and photonic applications is the
difficulty in carrier doping, specifically as
it relates to achieving p-type materials.
Perhaps the most promising dopants for p-
type ZnO are the group-V elements,
although theoretical studies have indicated
difficulty in explaining the p-type activity
for nitrogen at room temperature
(Kobayashi et al., 1983; Park et al., 2002).
Nevertheless, high  hole  carrier
concentrations from N impurities (10"17-
10719 [[cm)”~(-3)) have been achieved
experimentally (Look et al., 2002; Bian et
al., 2004), and p-type samples obtained
with other dopants such as P and As (Ryu
et al, 2003; Kim et al., 2003). An
important characteristic of ZnO is that it
exhibits n-type conductivity even without
intentional doping, and obtaining p-type
conductivity also occurs due to carrier
compensation (Zhang et al., 2001). Recent
calculations indicate that phosphorous

Rwafed Al- Maerefah (June 2023)
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doping may vyield p-type conductivity
(Ryu et al., 2003; Kim et al., 2003; Heo et
al., 2004). However, experimentally, N-
doping tends to enhance the n-type
behavior in as-deposited films, indicating
the formation of shallow donor states.
This is contrary to the simplistic
expectation of acceptor-defect formation
via substitution on the O site (Heo et al.,
2004). In this paper, we investigate the
electronic structure of various N defects in
Zn0 by comparing the formation energies
through first-principles density functional
pseudopotential calculations and discuss
the chemistry that tends to enhance the
formation of donors rather than acceptors.

Method

Calculations are based on density
functional theory using the AIMPRO
package (Briddon & Jones, 2000; Rayson
& Park, 2008). Defects are simulated
using large supercells and periodic
boundary conditions. The cells are repeats
of the primitive hexagonal unit cell
containing four atoms (Zn202) with
lattice vectors a[1000], a[0100], and
c[0001]. The calculated values for a and ¢
are 6.18 and 9.81A"°, respectively. We
analyzed  P-centers in  supercells
containing 72 or 192 atoms, comprised
from (3x3x2) and 4x4x3 primitive cells,
respectivel.

25K
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The Brillouin-zone is sampled using
the Monkhorst-Pack (Monkhorst & Park,
1976) scheme generally with a mesh of
2x2x2 k-points. Structures are optimized
via a conjugate gradient scheme until the
change in energy be-tween iterations is
less than 10-5 Ha.

Atoms are simulated using ab initial
pseudopotentials (Troullier & Martins,
1991) and the total energies and forces are
obtained with a local density
approximation  for the exchange-
correlation (Perdew & Wang, 1992). The
wave functions and charge density are
expanded in terms of Gaussian orbitals
and plane-waves, respectively (Shaw &
Briddon, 2007). For Zn, O and N, we
includes s, p and d functions, with a total
of 28, 28 and 32 functions per atom,
respectively. Plane waves up to 150 Ha are
used to expand the charge density. We
calculate the formation energy of defect X
using

Ef(X,q) = E*'(X,q) = X;p; +
q(Ev(X,q) +pe) +{(X,q) (D)
Where E”~ot (X,q) is the total energy
calculated for system X containing the
defect in charge state q, u 1 denotes the
chemical potential of species (i =Zn, O
and N), E v (X,q) is the Fermi energy at
the valence-band top, p_e is the electron
chemical potential, which is defined as
zero at the top of the valence band. In
ZnO, the chemical potentials of

Rwafed Al- Maerefah (June 2023)
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components i O and p OZn are related
by E(ZnO)=p_0+p Zn where E(ZnO) is
the energy per bulk pair in ZnO. The range
of possible values for p 0 and p Zn is
related to the requirement for ZnO to be
stable relative to its decomposition into its
elemental constituents, so that the zinc-
rich limit is taken from zinc-metal, and the
oxygen-rich limit p 0 is taken from the
O_2 molecule. The heat of reaction for
ZnO in this way is calculated to be 3.9 eV,
whereas experimentally it is 3.61 eV
(Lide, 2004). The chemical potential for N
is the N2 molecule.

For the electrical characteristics of the
defect centers, we calculate the transition
levels, E(q,g") defined as the electron
chemical potential where the formation
energies for two charge states, q and g*,
are equal. For example, the donor level is

the value of p_e for which EF(X,0) =
EF(X,+1) (X,+1), and E~f (X,0)=E~f
(X,-1) for the acceptor level.

RESULTS

1. N on the Zn site, and related
centers.

First, we examine N substituting for
Zn (NZn). Since N has three more valence
electrons than Zn, it is expected that NZn
may be a triple donor, potentially able to
exist in a range of positive charge states.
However, some care has to be taken in
such an interpretation. Examination of the
relaxed structure, shown schematically in
Fig. 1 indicates that the nitrogen atom

it
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bounded with two oxygen in the
horizontal plane to make NO2-1 nitrate
ion molecule in the negative charge state.

It is more realistic to describe the
system not as NZn but as the NO2-1
molecular group (a nitrate anion) inside a
cavity. The combination with the native
double-donor V_O may expected to result
in a single donor (Gsiea et al., 2014), so
that in effect the nitrogen group in ZnO is
a single donor. The (0/1+) transition level
lies above the conduction-band minimum,
becoming a shallow donor.

By calculating the formation energy as
afunction of charge stateand [ nu] _e, we
can estimate the electrical levels of NZn.
The results are summarized in Fig. 2. We
find that the NZn is thermodynamically
stable only in the +1 charge state, and can

(a) (b)

g

g (V) e eV
Fig. 2: Plot of £/ vs. p, for key N-containing defects in ZnO calculated using the 192 atom

supercell. {a) Oxygen-rich conditions and {b) zinc-rich conditions.

be therefore viewed as a highly effective
n-type dopant.

We have also examined the possibility
for NZn to form pairs. One may expect a
strong Coulomb repulsion between these
centers, and indeed by increasing the
distance between two NZn in the same
simulation cell, the energy is reduced.

Although NZn is a single donor, it may
be converted into an acceptor by
formation of a complex with components
with sufficient acceptor activity. One
model is a complex with vacant Zn (VZn).
This is possible because VZn is a double

Rwafed Al- Maerefah (June 2023)
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acceptor  (Gsiea et al, 2014
Limpijumnong et al., 2004), and the
stability of the complex will be favorably
influenced by the attractive Coulomb
interaction.

There are many possible NZn VZn
orientations determined by the VZn
positions relative to NZn, all of which are
at least metastable. The most stable
structure we find is shown in Fig. 3. The
energies of the various orientations where
the vacancies are in the nearest shell of
Zn-neighbors to the N-site vary by just
100s of meV.

The binding energy of the complex
relative separate NZn and VZn centers is
3.9eV.

The formation energies for the various
charge states of the most stable acceptor
system are also plot-ted in Fig. 2. We find
that the acceptor level is quite deep at
around E_v+0.4 eV, and would therefore
may not be a good candidate for p-type
doping. Although we have analysed many
other configura-tions including NZn-VO,
N2 complexed substituting for Zn and O
site, and many other configurations
including NZn complex with interstitial
oxygen, which are considered the very
stable structure for p-type doping. Fig. 2
illustrates the formation energies for most
stable structure for p-type doping.

2. N on the O site, and related
centers

Secondly, we examined nitrogen on
the O-site (NO). The structure obtained
from neutral NO is showed in Fig. 4

e
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The nitrogen remains on-site and is
approximately tetrahedral. Since nitrogen

Fig. 4: Schematics of N, in (a) the neutral charge state and (b) the positive charge state, AX

structure. Colors and axes are as in Fig.].

has one fewer valence electron that the
oxygen atom it replaces, it is expected that
NO will be an acceptor, and indeed this is
what we fined. The charge-dependent
formation energies Fig. 2 indicate an
acceptor level around E_v+0.6 eV, far too
deep for p-type doping. In addition, one
can form a donor state with NO as it can
undergo a chemical reaction with a next-
nearest-neighbor oxygen atom, forming
the structure shown schematically in Fig.
4, the so-called AX center (Park et al.,
2002). Indeed, in this form our
calculations suggest that NO may donate
two electrons. The AX+1 structure which
we find to be lowest in energy is more
stable than the previously suggested
orientation (Park et al., 2002), which we
find is meta-stable and 0.32 eV, higher in
energy. The substantial structural re-
arrangement can be viewed as the
formation of an N=0O molecular fragment
within the ZnO lattice, and the band-gap
levels are highly characteristic of w*-
interactions between the two atoms.

This picture is extended when we
examine the possibility of (NO)2 forming
pairs. In this case we can view the
formation of (NO)2 as the insertion of a

Rwafed Al- Maerefah (June 2023)
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N2-molecular fragment. This significantly
reduces the formation energy for
substitution onto the oxygen lattice, but
(NO)2 only has donor properties. In
equilibrium, therefore, the formation of
NO acceptors will have to compete with
the formation of (NO)2 donors, further
reducing the probability of successfully
producing p-type ZnO via such as route.

The (NO)2 defect behaves as a double
donor. The (0/+), and (+/++) transition
levels which is occupied by four electrons
is located in the middle band-gab,
associated to the wave function exhibits
the occupied levels are derived from anti-
bonding combination between N atom and
O atoms which surrounded, and the AX+1
structure is prove that.

Discussion

Four of the N-related defects

discussed here are acceptors. The notable
exceptions are the possible AX behavior
of NO, and the shallow donor properties
of NZn. However, in order to predict
which species are most likely to form
under real conditions, we must compare
their total formation energies. In the limit
of O-rich growth conditions, Fig. 2,
substitution onto the Zn-lattice with
oxygen intestinal is highly favorable, and
potentially yields p-type material. Perhaps
surprisingly, NZnOi2 is very low in
formation energy in comparison with the
other structures examined, so we conclude
this is likely to form.
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For Zn-rich material (i.e., that grown
in oxygen lean conditions) the NO
structure is most favorable. Up to now, it
has been almost uniformly assumed that
this is the dominant defect in N-doped
ZnO. Our calculations show, however,
that NO is an effective sink for mobile
interstitial  species, which generally
convert it into donors. Such complexes are
thought to be important compensation
centers in the production of real p-type
material.

We note that both in O-rich and Zn-
rich conditions, there is a strong trend
towards the formation of N-O bonds. This
is energetically favoured as such bonding
includes a much greater degree of
covalence than Zn-O and Zn-N. Thus,
reactions that produce either N-O or N-N
covalent bonds generally stabilize N-
defect configurations which are donors,
with the notable exception of NZn-Oi type
centers which are acceptors.

In summary, the overwhelming trend
is for N to adopt defect structures bonding
with oxygen. Indeed, this trend is
extended over all group-V elements, and
similar result which we obtained for
nitrogen are found for the other elements.
Where differences arise, it is because
nitrogen is much smaller than other
group-V elements such as P, As and Sb,

Rwafed Al- Maerefah (June 2023)
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and can form different bonding

configurations such as N-O double bonds.

However, in general, we conclude that

group V-doping is effective for n-type

material, and may generate p-type

material under favorable conditions.
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