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Abstract—In this paper, a customized Auto-Encoder Complex
Valued Convolutional Neural Network (AE-CV-CNN) that has
been developed in a prior work is applied to Single Symbol
Generalized Spatial Modulation (SS-GSM) scheme with new
extracted features. The achieved reductions in the computational
complexity at the receiver is at least 63.64% for M -PSK schemes
compared to the complexity of Maximum Likelihood (ML)
detection algorithm. This Fast detection algorithm is based on
a proposed Low Complexity ML (LC-ML) detector that affords
a complexity reduction of at least 40.91%. With these proposed
algorithms, the complexity is reduced as the spatial constellation
size increases. Furthermore, in comparison to other sub optimal
detection algorithms, the computational complexity in terms of
real valued multiplications of the AE-CV-CNN applied to LC-ML
is independent of the spatial spectrum efficiency which means
that the total spectrum efficiency increases with larger spatial
constellation size at no additional complexity.

Index Terms—Auto-Encoder Complex-Valued Convolutional
Neural Network (AE-CV-CNN), Multiple Input Multiple Output
(MIMO), Generalized Spatial Modulation (GSM).

I. INTRODUCTION

The demand for wireless communication services is dra-
matically increasing [1] due to the application of Internet of
things (IoT) [2]. However, the allocated spectrum and the
transmission power [3] are limited. Multiple Input Multiple
Output (MIMO) transmission is a key technology for current
wireless cellular networks such as 4G networks [4]. Long Term
Evolution (LTE) is the most efficient spectrum technique for
the current MIMO wireless networks. This technique is unable
to support data rates at 10 Gbps [5, 6].

The application of neural networks especially the Convolu-
tional Neural Network (CNN) in the physical layer of wireless
MIMO systems is getting the interest of researchers. In [7], the
authors proposed a novel deep learning model for the physical
layer and applied it to Single Input Single Output (SISO)
communication systems. They modeled the physical layer
as an Auto-Encoder CNN (AE-CNN) model and introduced
the concept of Complex Valued Neural Network (CV-NN).
However, their model is not applied for MIMO systems. The
authors in [8] used an Auto-Encoder Neural Network (AE-NN)
in conventional MIMO with full and partial Channel Status
Information at the Transmitter (CSIT). The issue of this model
is that the use of CSIT consumes more resources (bandwidth,
power, and system complexity) at the transmitter and the
receiver. In [9], the authors proposed an auto-encoder deep

learning detector for the detection of the transmitted signal in
Orthogonal Frequency Division Multiplexing (OFDM)-MIMO
systems, but with an intensive computational loss function.

The main contributions in this paper are: (i) Developing
a novel LC-ML detector that provides an increase in the
complexity reduction as the spatial spectrum is increased. (ii)
Fast detection using a CNN based model that is developed
in [10] and obtaining constant computational complexity in
terms of real valued multiplications regardless of the spatial
constellation size.

The rest of this paper is organized as follows: Section II
includes abstracted introduction to Artificial Neural Network
(ANN) and Single Symbol Generalized Spatial Modulation
(SS-GSM) schemes. Section III presents the proposed LC-
ML and the AE-CV-CNN models. Section IV includes the
calculated computational complexities. Section V shows the
simulation results of the proposed models, and finally section
VI is the conclusion.

II. ARTIFICIAL NEURAL NETWORK AND WIRELESS
MIMO SYSTEMS

A. Artificial Neural Network

The basic building block of ANN is the neuron. The output
of the neuron y is expressed as given by (1) [11].

y = f

(
D∑
i=1

wisi + w0

)
(1)

The inputs s1, s2, ...sD are the input data, w1, w2, ...wD are
the learning weights, and f(.) is an activation function.

A simplified CNN consists of three main layers [12]: the
convolution layer, the activation function, and the maximum
pooling layer. A de-noising Auto-Encoder (AE) is a feed for-
ward CNN that is used for data recovery from a corrupted data
[13]. The de-noising AE is generalized as having stochastic
encoding function C(h/x) applied to the input data x to
produce a corrupted data z, and the de-encoder will reproduce
x̂ as close as much to the original data as shown in Figure 1.

The optimal de-noising AE minimizes the loss function as
given in Equation (2) [14].

Lmin = ||x̂− x||2 (2)
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Fig. 1. Block Diagram of De-noising AE.

B. Single Symbol Generalized Spatial Modulation Systems

SS-GSM scheme is based on using Na < Nt active
antennas for each transmission. In SS-GSM, the same symbol
is transmitted from all active antennas at the highest spectrum
and energy efficiencies.

The spatial constellation size of GSM is given by (3):

Nc = 2blog2 (
Nt
Na
) c (3)

For MIMO systems with Nt transmit antennas and Nr

receive antennas, the received signal vector r at the input of
the receiver is given by (4) [15]:

r = Hjsq + n (4)

where sq ∈ CNa×1 is the transmitted signal vector defined
in [10], q = 1, 2, 3, ...,M ;M is the modulation size, Hj ∈
CNr×Na , j = 1, 2, . . . , Nc is the spatial channel index, and
n ∈ CNr×1 is an AWGN vector. The elements of Hj and n
∼ CN(0, 1).

Hj ⊂ H where H is the MIMO channel matrix as follows:

H =


h11 h12 . . . h1Nt

h21 h22 . . . h2Nt

...
...

. . .
...

hNr1 hNr2 . . . hNrNt

 (5)

For simplicity, the term
Na∑
k=1

Hj(:, k) is defined as hj as the

spatial channel vector.
The received signal at the ith receiver antenna is given by:

ri =

Nt∑
j=1

hijxi + ni (6)

It is clear that (6) represents the argument of the activation
function of (1).

The traditional ML detector is given by (7) [16].

[j, q] = argmin
j=1...,Nc
q=1...,M

||r− hjsq||2 (7)

The computational complexity in terms of the number of
floating point operations (CML−T )flops and in terms of real
valued multiplications (CML−T )rvm of the ML detector of (7)
are given in (8) and (9), respectively.

(CML−T )flops = 11NrNcM (8)

(CML−T )rvm = 6NrNcM (9)

III. PROPOSED MODEL

Based on the proposed model in [10], the explanation of this
model is started in this section from the receiver correlation
layer at the receiver side.

A. Receiver Correlation Layer

Receiver correlation is basically used to extract the in-phase
and quadrature components of the received signals r of (4).

B. Features Extraction Layer

1) Learning Weights: The estimation of the channel coeffi-
cients is equivalent to training the model. This is accomplished
through the transmission of pilot symbol which is known to
the receiver, and it is given by (10).

hj =
s∗r

|s|2
(10)

Therefore, the estimated channel coefficients represent the
learning weights (w1, ...wD) of (1).

2) Traditional Features Extraction Algorithm: The ex-
tracted features of the traditional ML detector for SS-GSM
is given by (11).

FT = r− hjsq (11)

3) Proposed Features Extraction Method: The proposed
features extraction algorithm for SS-GSM is given by (12).

FP =
s∗qr

|sq|2
− hj (12)

The extracted features of (11) and (12) represent a complex
valued errors. The output of this layer is 3D with the dimension
of Nr×Nc×M . From machine learning perspective, M rep-
resents the number of modulation classes while Nc represents
the number of spatial classes.
From (12), the ML detection of the proposed features extrac-
tion is given by (13).

[(j, q)LC−ML]P = argmin
j=1...,Nc
q=1...,M

||
s∗qr

|sq|2
− hj ||2 (13)

C. Activation Function

The absolute value is the activation function which is
applied to in-phase component and the quadrature phase
component of the extracted features of (11) or (12) separately.
In the ideal case, these absolute values have to be zeros. The
output of this layer is still a 3D space with a dimension of
Nr ×Nc ×M .

D. Maximum Pooling

The output space of this layer has a dimension of Nc ×M
as it selects the maximum error of the received signals.



E. Loss Function

The loss function of (11) is given in (14):

LT = max (|< (r− hjsq) |) + max (|= (r− hjsq) |) (14)

The loss function of (12) is given by (15):

LP = max

(
|<
(

s∗qr

|sq|2
− hj

)
|
)
+max

(
|=
(

s∗qr

|sq|2
− hj

)
|
)

(15)

F. Classification Layer

The classification layer will estimate jointly the index of the
spatial channel matrix ĵ and the index of the symbol q̂ that
minimize (14) or (15) as given in (16) and (17), respectively.

[ĵ, q̂]CNN−T = argmin
j=1...,Nc
q=1...,M

[ max (|< (r− hjsq) |)+

max (|= (r− hjsq) |)]
(16)

[ĵ, q̂]CNN−P = argmin
j=1...,Nc
q=1...,M

[
max

(
|<
(

s∗qr

|sq|2
− hj

)
|
)
+

max

(
|=
(

s∗qr

|sq|2
− hj

)
|
)]

(17)

IV. COMPUTATIONAL COMPLEXITY

A. Floating Point Operations (flops)

The computational complexity in terms of (flops) of the
proposed ML detector of (13) is given by (18).

(CML−P )flops = (6 + 5Nc)NrM (18)

The computational complexity of (16) in terms of (flops) is
(CCNN−T )flops and given by (19), while the computational
complexity of (17) in terms of (flops) is (CCNN−P )flops and
given by (20).

(CCNN−T )flops = (8Nr + 1)NcM (19)

(CCNN−P )flops = 6NrM + (2Nr + 1)NcM (20)

B. Real Valued Multiplications (rvm)

The computational complexity of (13) in terms of (rvm) is
(CML−P )rvm and given by (21). The complexity of (16) is
(CCNN−T )rvm and given by (22). For (17), the complexity
in terms of (rvm) is (CCNN−P )rvm and given by (23).

(CML−P )rvm = 2(2 +Nc)NrM (21)

(CCNN−T )rvm = 4NrNcM (22)

(CCNN−P )rvm = 4NrM (23)

V. RESULTS

Numerical calculations for the complexity reductions of
(18), (19) and (20) relative to (8) are illustrated in Table I.
It is clear that the reduction ratio of both the proposed LC-
ML detector and CNN based model increases as the spatial

TABLE I
COMPLEXITY REDUCTION RATIO: M = 8 AND Nr = 2.

Nc

(
1− Eq.19

Eq.8

)
%

(
1− Eq.18

Eq.8

)
%

(
1− Eq.20

Eq.8

)
%

4 22.73% 40.91% 63.64%
8 22.73% 47.73% 70.45%

16 22.73% 51.14% 73.86%
32 22.73% 52.84% 75.57%
64 22.73% 53.69% 76.42%

size increases with respect to the computational complexity of
the traditional ML detector.

Figure 2 shows the complexity in terms of (rvm) of (9), (21),
(22) and (23), and compared to the algorithms that presented
in [17] and [18] with Nr = 2 and M = 8. As shown in this
figure, the proposed CNN model applied to the proposed LC-
ML detector offers the lowest computational complexity, and
as a result, the highest total spectrum efficiency.

In Figure 3, the spatial confusion matrix of the proposed
CNN model that defined in (17) is shown. In addition, the
systems accuracy versus the Signal-to-Noise Ratio (SNR) of
SS-GSM over Rayleigh fading channel with Nt = 5, Nr = 2,
Na = 2 and employing 8-PSK technique are shown in Figure
4. It is clear from this figure that the system performance of
the proposed CNN based model at the SNR of 16 dB is very
close to the performance of the optimal detectors with the
advantage of the fast detection.

VI. CONCLUSION

In this paper, both a new low complexity ML and a fast
CNN based detectors are developed for the detection of
the transmitted information for M -PSK Generalized Spatial
Modulation schemes. Simulation results demonstrated that the
CNN based model affords the fastest detection algorithm
with low complexity. However, low computational complexity
results in low transmission latency. This makes the proposed
approach applicable to 5G networks as they heavily rely on
massive number of antennas at the base stations. In addition to
the fast detection process which increases the total spectrum
efficiency, the power consumption is decreased which yields to
increasing the total energy efficiency. In the future, this work
will be extended to M -QAM scheme.

APPENDIX

A. Proof of Equation (13)

Equation (7) can be written as follows:

[j, q] = argmin
j=1...,Nc
q=1...,M

Nr∑
i=1

[
ri − (hi)j sq

] [
ri − (hi)j sq

]∗

= argmin
j=1...,Nc
q=1...,M

Nr∑
i=1

[
ri − (hi)j sq

] [
(r∗i − (hi)

∗
j s
∗
q)
]

(24)

Multiplying the term
[
ri − (hi)j sq

]
by

s∗q
|sq|2
|sq| and[

(r∗i − (hi)
∗
j s
∗
q)
]

by sq
|sq|2
|sq| yields to:



Fig. 2. Computational Complexity Comparison: Nr = 2 and M = 8.

Fig. 3. Spatial Confusion Matrices of Equation (17).

Fig. 4. SS-GSM System Accuracy.

[j, q] = argmin
j=1...,Nc
q=1...,M

Nr∑
i=1

[
s∗qri

|sq|2
− (hi)j

][
sqr
∗
i

|sq|2
− (hi)

∗
j

]
|sq|2

= argmin
j=1...,Nc
q=1...,M

Nr∑
i=1

[
s∗qri

|sq|2
− (hi)j

][
s∗qri

|sq|2
− (hi)j

]∗
|sq|2

= argmin
j=1...,Nc
q=1...,M

Nr∑
i=1

∥∥∥∥( s∗qri

|sq|2
− (hi)j

)∥∥∥∥2 |sq|2
(25)

The term |sq|2 is constant and can be neglected to obtain
(13) as shown in (26):

[( ĵ, q̂)LC−ML]P = argmin
j=1...,Nc
q=1...,M

Nr∑
i=1

∥∥∥∥( s∗qri

|sq|2
− (hi)j

)∥∥∥∥2 (26)

B. Proofs of (18), (20), (21) and (23)
To determine the computational complexities of (13) and

(17), the number of multiplications and summations are as
follows:
• Step (1): The term

s∗q
|sq|2

does not cost any process
because it is calculated once before starting the detection
process and stored in a memory.

• Step (2): The term
s∗qri

|sq|2
, i = 1 . . . , Nr has 4NrM

real multiplications and 2NrM summations, and they are
independent on the spatial constellation.

• Step (3): The term
s∗qri

|sq|2
−(hi)j has 2NrNcM summations

which are dependent on the spatial constellation.

• Step (4): The term
∣∣∣ s∗qri|sq|2

− (hi)j

∣∣∣2 has 2NrNcM real
multiplications and NrNcM summations.

• Step (5): The two terms max
(
|<
(

s∗qr

|sq|2 − hj

)
|
)
) and

max
(
|=
(

s∗qr

|sq|2 − hj

)
|
)

have 4NrM real multiplica-
tions, 2NrM summations (from step 2), 2NrNcM sum-
mations (from step 3), and NcM summations (the sum
of [max (|< (.) |) + max (|= (.) |)]).

1) Proof of (18): The computational complexity of the
proposed model given in (13) is the sum of the calculated
complexities (multiplications and summations) in steps 2, 3
and 4 after multiplying by the spatial constellation size Nc,
and the result is the same as given in (18); (6 + 5Nc)NrM .

2) Proof of (20): The computational complexity of the pro-
posed AE-CV-CNN of (17) in terms of (flops) is calculated as
explained in step 5 as follows: (4NrM+2NrM+2NrNcM+
NcM = 6NrM + (2Nr + 1)NcM .

3) Proof of (21): The computational complexity in terms
of (rvm) of the proposed LC-ML detector given in (13) is
calculated as follows: 4NrM rvms as calculated in step 2 plus
2NrNcM multiplications as calculated in step 4. Therefore,
the rvms complexity of (13) is 2(2 +Nc)NrM .

4) Proof of (23): The computational complexity in terms
of (rvm) of the proposed AE-CV-CNN with the proposed LC-
ML detector given in (17) is calculated as follows: 4NrM
rvms only, and it is independent on the size of the spatial
constellation.
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