

Abstract
Names are frequently used as a search criterion in

databases to retrieve information, so names play an

important role in information systems, but some

names in the case of application may have some

defects, including misspellings, in addition to those

cultural differences complicate the retrieval of

information Based on names. In a string fuzzy

match, the goal is to find short text matches from

many long texts, in which case fewer matches in

variance are expected. For example, a short text can

come from a dictionary, here usually one of the

strings is short and the other is arbitrarily long.

Levinstein's space has a wide range of applications,

such as spell checking, optical character correction

systems, and memory-based natural language

translation utilities. In this paper, the Levenstein

algorithm was used and included in the SQL Server

database engine. The purpose of this is to combine

the queries with Levenstein's algorithm to obtain

the best search results and to compare them with the

results of traditional search and filtering in queries.

The results were better in terms of accessing the

required records, but that was at the expense of the

time it takes to get the results.

Keywords— text similarity, Levenshtein Algorithm,

database efficiency

Introduction

Most database applications use queries to extract

data and display search results in a tabular form.
The query language SQL has been based on the

relational algebra [1]. The searches are based on a

set of parameters and commands, such as

comparing two words and making sure that they

are equal, or searching for a part of the word

within the text, whether it begins or ends with it,

and so on. But searches in databases have some

shortcomings when the search words are entered

incorrectly, such as writing the word missing from

some letters or the word is written incorrectly

which is an old problem [2], especially when

searching for the names of people. Hence the need

to increase the efficiency and accuracy of search

operation to get better results. In order to achieve

more accurate results, many techniques are

applied on the results. We focused on

approximation in string matching by using a

metric called Edit distance. As an important

operation in data searching and integration,

string similarity search has attracted significant

attention from the database community. It has a

widespread real application such as web search,

spell checking, translation to sign language [3]

and DNA sequence discovery in bio-informatics

[4]. In this paper, the Levenshtein algorithm was

used and included in SQL Server database after

converting it to a code written in C# and

compiling it into a DLL file. The purpose is to get

the search results using this algorithm and

compare it with the traditional search results in

database.

Edit Distance Algorithms

The edit distance between strings 𝑎1. . 𝑎𝑚 and

𝑏1. . 𝑏𝑛 is the minimum cost 𝑠 of a sequence of

editing steps that convert one string into another.

[5] There are two variants in string similarity

search. The first identifies the strings from a string

set whose edit distances to the query are not larger

than a given threshold (Threshold-based

Similarity Search). The second finds top-k strings

with the smallest edit distances to the query (Top-

k Similarity Search) [6]. In the Threshold-based

Similarity Search, Given a string set S, a query q,

and a threshold τ, threshold-based similarity

search finds all strings s ∈ S such that ED(s, q) ≤

τ. For example, consider the strings s= “أحمد,

 .τ = 1 ,”أحمتد“ =and the query q ”حماد محمود,

The threshold-based similarity search returns

 since the edit distance between {”أحمد“}

 is 1 and the edit ”أحمتد“ =and q ”أحمد“

distances between other strings and q are

larger than 1

Levenshtein Distance Algorithm

This algorithm is named after Vladimir

Levenshtein, who developed it in 1965. The

algorithm calculates the distance between two

texts, where this distance is measured by the

number of changes required to be made to the first

text, so that it becomes equal to the second

text [7]. This change occurs by substituting a

letter by a letter, or deleting a letter, or adding a

Using Levenshtein Distance Algorithm to Increase Database Search

Efficiency and Accuracy

Baleid Mohammed Aldoukali1, Ebrahem Ali Elburase2
1,2 University of Tripoli. - Libya

1b.aldoukali@uot.edy.lu, 2eb.elburase@uot.edu.ly

mailto:b.aldoukali@uot.edy.lu

letter. If the space between the two texts is zero,

this means that they are equal, and if they are 1,

this means that one of them differs from the other

by a letter (insert, delete or change). These three

operations can be represented in the

following steps:

1) Deleting a letter from any position say i,

to give 𝑎1…𝑎𝑖−1𝑎𝑖+1…𝑎𝑚.

2) Inserting a letter 𝑏 ∈  at position i to give

𝑎1…𝑎𝑖𝑏𝑎𝑖+1…𝑎𝑚.

3) Replacing a letter at position i to a new

letter 𝑏 ∈  to give 𝑎1 … 𝑎𝑖−1𝑏𝑎𝑖+1 … 𝑎𝑚. [5]

The Levenshtein distance between two strings

𝑎, 𝑏 (of length |𝑎| and |𝑏| respectively) is given by

𝑙𝑒𝑣(|𝑎|, |𝑏|) [4] , where:

𝑙𝑒𝑣(𝑖, 𝑗) =

{

max(𝑖, 𝑗) 𝒊𝒇min(𝑖, 𝑗) = 0,

𝑚𝑖𝑛 {

𝑙𝑒𝑣(𝑖, 𝑗 − 1) + 1

𝑙𝑒𝑣(𝑖 − 1,) + 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑙𝑒𝑣(𝑖 − 1, 𝑗 − 1) + 𝑘(𝑎𝑖≠𝑏𝑗)

In this equation, k is the indicator function equal

to 0 if 𝑎𝑖 = 𝑏𝑗 and 1 otherwise. By |a| we denote

the length of the string a. The equation above can

be tabulated as follows: For all 0 ≤ 𝑖 ≤ 𝑚 and 0 ≤

𝑗 ≤ 𝑛 , denote by 𝑙𝑒𝑣𝑖,𝑗 the edit distance

𝐸𝐷(𝑎1…𝑎𝑖 , 𝑏1…𝑏𝑗) from string 𝑎1…𝑎𝑖 to string 𝑏1…𝑏𝑗.

The matrix 𝑙𝑒𝑣((𝑚 + 1) × (𝑛 + 1)) can be obtained

from the recurrence:
 𝑙𝑒𝑣00 = 0

 𝑙𝑒𝑣𝑖𝑗 = min (𝑙𝑒𝑣𝑖,𝑗−1 + 1,

𝑖 > 0 𝑜𝑟 𝑗 > 0

 𝑙𝑒𝑣𝑖−1,𝑗 + 1,

 𝑙𝑒𝑣𝑖−1,𝑗−1 + 𝐼𝐹 𝑎1 =

 𝑏1 𝑇𝐻𝐸𝑁 0 𝐸𝐿𝑆𝐸 𝐼

If we used the previous example and calculate

according to the previous recurrence, we will

obtain the following table:

 Operations key د م ح أ ”“

“” 0 1 2 3 4 change insert

 delete You r here 3 2 1 0 1 أ

 2 1 0 1 2 ح

 1 0 1 2 3 م

 1 1 2 3 4 ت

 1 2 3 4 5 د

The above table is a 2d matrix of string a = “أحمد”

and string b = “أحمممتممد” which can be evaluated

starting from point 𝑙𝑒𝑣00 and going over it row by

row or column by column calculating the three

operations until you reach the end of the matrix,

the last cell 𝑙𝑒𝑣(𝑛,𝑚) holds the lowest cost required

to change string b to string a which can be

compared with the threshold τ specified earlier.

Applications that use the edit distance algorithm

convert the previously mentioned operations, in

addition to the equation into a code to run on the

computer, and the following code illustrates this:

Edit distance algorithm

Input: 𝑎 = 𝑎1…𝑎𝑛 and 𝑏 = 𝑏1…𝑏𝑚

1: for i  0 to n do

2: 𝑙𝑒𝑣𝑖,0 𝑖;

3: for j  0 to m do

4: 𝑙𝑒𝑣0,𝑗 𝑗;

5: for I  1 to n do

6: for j  1 to m do

 k = (𝑎𝑖 = 𝑏𝑗)? 0: 1;

 𝑙𝑒𝑣𝑖,𝑗  min (𝑙𝑒𝑣𝑖,𝑗−1 + 1,
 𝑙𝑒𝑣𝑖−1,𝑗 + 1,

 𝑙𝑒𝑣𝑖−1,𝑗−1 + 𝑘);

7: end for

8: return 𝑙𝑒𝑣𝑛,𝑚;

We converted the illustration above into C#

function.

Implementation

In this paper, we proposed a list of deferent full

Arabic names (first, middle, last, surname) with

deferent variations (5000 and 15000 names)

pumped into SQL server table. Two types of

queries were applied to the table, one is a normal

query that uses the (Like) clause to approximate

the search results to the desired name, And the

second is the Levenstein logarithm as a function

in the database and used in a query to find the best

approximation based on the specified threshold.

The function for calculating Levenstein's distance

is configured in two ways, first by C# and

converting it to a DLL file included in SQL

server, and second by creating a function directly

inside SQL server, the purpose is to try the two

functions separately and compare the results that

obtained from them.

After preparing and including the functions, we

designed a test tool through Visual Studio 2019 in

C# language, its purpose is to connect to SQL

server express 2014 database server and send 3

queries.

Figure 1. Test tool

The first query uses a LIKE clause to get the

search result and the query was as follows:

𝑆𝑒𝑙𝑒𝑐𝑡 [𝑛𝑎𝑚𝑒] 𝑓𝑟𝑜𝑚 𝐷𝑏𝑇𝑏𝑙 𝑊ℎ𝑒𝑟𝑒 [𝑛𝑎𝑚𝑒] 𝐿𝐼𝐾𝐸

 ′%@𝑝𝑎𝑟𝑎𝑚1%′

The second query uses the Levenstein algorithm,

which was written in C-Sharp and embedded in

the database server. The query was as follows:

𝑆𝑒𝑙𝑒𝑐𝑡 [𝑛𝑎𝑚𝑒] 𝑓𝑟𝑜𝑚 𝐷𝑏𝑇𝑏𝑙 𝑊ℎ𝑒𝑟𝑒 𝐶𝑆ℎ𝑎𝑟𝑝_𝐿𝑒𝑣([𝑛𝑎𝑚𝑒],

@𝑝𝑎𝑟𝑎𝑚1) > @𝑝𝑎𝑟𝑎𝑚2

Finally, the third query uses the Levenstein

algorithm, but this time by writing a function

inside the database server instead of including it

from outside, and the query was as follows:

𝑆𝑒𝑙𝑒𝑐𝑡 [𝑛𝑎𝑚𝑒] 𝑓𝑟𝑜𝑚 𝐷𝑏𝑇𝑏𝑙 𝑊ℎ𝑒𝑟𝑒 𝑆𝑄𝐿𝑆𝑟𝑣_𝐿𝑒𝑣([𝑛𝑎𝑚𝑒],

@𝑝𝑎𝑟𝑎𝑚1) > @𝑝𝑎𝑟𝑎𝑚2

A laptop with the following specifications was

used to connect to the database server

Table 1. Laptop specification

Brand HP

Processor Inter Core I7

Memory 8 GB

Operating System Windows 10 Pro

64Bit

Results

The results were focused primarily on the

accuracy of the search by comparing the results of

the resulting search from the three queries, in

addition, the time taken to extract the results is an

important factor. As such, the names to be

searched in the first parameter of the three queries

are sent, written in full without errors or missing

letters. The results were as follows:

• In case of records returned

1. First query (CSharp_Lev): The query

returned two records, since the name is

repeated twice in the database table but the

last character is different.

2. Second query (Like clause): This query

returns one record because Like Claus

cannot replace or guess letters or round the

results if there is an error in writing the name

incorrectly

3. The third query (SqlSrv_Lev): The result

was similar to the first query, but at the

expense of the time it takes to return the

results.

4. We made some changes to the name to be

searched for by writing the name missing

some letters, to determine whether the

results will change or not. We found that the

second query (LIKE clause) returned no

records. As for the first and third query

returned the same previous records.

Table 2. Search results

Name CSharp_Lev
LIKE

clause
SqlSrv_Lev

محمد سالم

علي

 رمضان

2 records
1

record
2 records

لم تمحمد س

 رمضان
2 records

No

records
2 records

• In case of time taken

The time taken was calculated on 5000 records

and 15,000 records for the three queries and the

results were as follows :

1. First query (CSharp_Lev): the time was

(0.043445) milliseconds for the 5000

records and (0.082765) milliseconds for the

15000 records.

2. Second query (LIKE clause): the time taken

was (0.018544) milliseconds for the 5000

records and (0.043653) milliseconds for the

15000 records.

3. third query (SqlSrv_Lev): the time taken

was (1.439887) seconds for the 5000 records

and (2.911435) seconds for the 15000

records.

With a simple comparison, it shows us that the

query (Like clause) is faster than the rest of the

two queries, this was in terms of time, but as soon

as you forget or change a letter or two, the results

change. The query (Like clause) did not return any

results, the winner was the query (CSharp_Lev)

which showed two records and was faster than the

third query (SqlServ_Lev) that showed the same

results.

Figure 2. Results comparison

Conclusion

The Levenstein algorithm discussed in this paper

is a method for determining the extent to which

two texts match each other. This algorithm has

been used in many applications, the most famous

of which are genetic sequence analysis,

translation and spell checker. In this paper, the

algorithm is used to search database records and

compare the results with traditional query

statements such as LIKE Clause. The results

concluded that it is possible to improve searching

in databases by using this algorithm to get more

accurate results.

References

[1] G. Sreenivasulu and M. Basha, "Searching As-

You-Type in Databases Using SQ," IJRECS, vol.

1, no. 2, pp. 621-638, 2014.

[2] G. Navarro, "A Guided Tour to Approximate

String Matching," ACM Computing Surveys, vol.

33, no. 1, pp. 31-88, 2001.

[3] A. Almohimeed, M. Wald and R. I. Damper,

"Arabic Text to Arabic Sign Language Translation

for the Deaf and Hearing-Impaired Community,"

in 2nd Workshop on Speach and Language

Proceissing and Assistive Technologies,

Edinburgh, UK, 2011.

[4] M. Bartoszuk and M. Gagolewski, "A Fuzzy R

Code Similarity Detection Algorithm," in

Information Processing and Management of

Uncertainty in Knowledge-Based Systems,

Montpellier, 2014.

[5] E. Ukkonen, "Algorithms of Aproximate String

Matching," Imformation And Control, vol. 64, pp.

101-117, 1985.

[6] M. Yu, J. Wang, G. Li, Y. Zhang, D. Deng and J.

Feng, "A unified framework for string similarity

search with edit-distance," The VLDB Journal, p.

26, 2016.

[7] D. K. Po, "Similarity Based Information Retrieval

Using Levenshtein," International Journal of

Advances in Scientific Research and Engineering,

vol. 6, no. 4, pp. 6-17, 2020.

[8] P. Thompson and D. Christopher, "Name

Searching and Information Retrieval," in Second

Conference on Empirical Methods in Natural

Language Processing, 1997.

[9] S. Marcos-Pablos and F. J. García-Peñalvo,

"Information retrieval methodology for aiding

scientific database search," Soft Computing, vol.

24, no. 8, p. 5551–5560, 2020.

