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Abstract. The rapid evolution of malware, particularly polymorphic and meta-
morphic variants, has rendered traditional detection methods, such as signature-
based and behavioural detection, increasingly ineffective. This paper's objective 
is a comprehensive review of Artificial Neural Networks (ANNs) for malware 
detection and classification via a comprehensive review of the most widely used 
ANNs. The study focuses on supervised models, unsupervised models, and hy-
brid architectures across diverse environments. The study results indicate that the 
supervised models achieve exceptional accuracy (>95%); the unsupervised mod-
els offer interpretability and adaptability to evolving threats but face challenges 
in generalising to unseen data. Conversely, hybrid models combine spatial and 
temporal feature extraction, achieving 99.4% accuracy, albeit with higher com-
putational costs. This study emphasises the importance of the need for robust 
frameworks against obfuscation, efficient architectures for resource-constrained 
environments, and enhanced generalisation across malware families. 
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1 Introduction 

The ever-evolving cyber threats have made malware detection a critical area of research 
in cybersecurity. Traditional detection methods, including signature-based and heuris-
tic methods, have been extensively used to combat malware. However, these methods 
face significant limitations when dealing with advanced malware variants, such as pol-
ymorphic and metamorphic malware, which can change their code structure to evade 
detection. Malware, a term that encompasses various forms of malicious software such 
as viruses, worms, ransomware, and Trojans, is designed to infiltrate, damage, or ex-
ploit systems. Malware that compromises data and systems due to malicious attacks 
and threats must be confronted.  
   Figure 1 shows the top three sources of attacks, top three targets of attacks, types of 
attacks, the attacker IP addresses, the attacker location statistics, the countries attacked 
by malware, and the major sources of malware in 2025 [1]. Malware is rapidly growing 
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all over the world, malware types vary in purpose and intent, nevertheless all types of 
malware cause damage.  
   According to studies, they have caused several different types of damage. Traditional 
detection methods, including signature-based and behavioral methods, have been 
widely used to combat malware. However, these methods face substantial limitations 
when dealing with advanced malware variants, such as polymorphic and metamorphic 
malware, which can change their code structure to evade detection methods.  
   The study in [2] indicated that malware could harm all types of sensitive devices and 
data by various means, including unauthorized access, which infringes on the rights of 
their owners due to the security vulnerabilities exploited by malware creators and cy-
bercriminals. According to the "China Network Security Report 2021", Rising's "Cloud 
Security" system intercepted 119 million virus samples, with 259 million virus infec-
tions found, and the total number of viruses decreased relatively compared to 2020. 
   As cyber threats become increasingly complex and frequent, traditional malware 
analysis, detection and classification methods, such as static and dynamic analysis, sig-
nature-based detection and behavioural detection, have become more difficult, and their 
limitations against advanced, polymorphic and metamorphic malware, which con-
stantly changes its code to evade detection techniques, require the search for innovative 
methods that leverage the power of modern technologies [3,4].  

Fig. 1. Worldwide attacks. 

   Recent developments in the various branches of artificial intelligence, including ma-
chine learning and deep learning, more specifically in artificial neural networks 
(ANNs), have opened new horizons to address the limitations in traditional methods of 
detecting, and classifying malware. Neural networks have shown great performance in 
several areas, particularly in the field of cybersecurity, by detecting malware through 
learning patterns in datasets, whether it is a dataset, such as comma-separated values, 
(CSV) files or image data representing malware by converting them into binary, gray-
scale or colored images of different types of malwares. The potential of artificial neural 
networks (ANNs) is not only to enhance detection accuracy, but also to reduce false 
positive rates, which are a critical factor in maintaining effective and reliable cyberse-
curity systems. 
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Since it generalizes well to unseen data, this paper surveys traditional methods and their 
shortcomings, including malware detection methods (static and dynamic, signature-
based detection, and behavioral detection), machine learning, and deep learning, focus-
ing primarily on artificial neural networks (ANNs) in several environments.  
We evaluate the strengths and weaknesses of neural network models for malware de-
tection. Recent research uses artificial neural networks (ANNs) to detect and classify 
malware and achieves significant performance. 

2 Artificial Intelligence (AI) 

Artificial intelligence is defined as systems, applications, or computer models inte-
grated into machines to perform tasks that simulate how human intelligence works. A 
number of technologies that enable machines to simulate real intelligence consist of 
different sub-sections (machine learning (ML), deep learning (DL), neural networks 
(NN) as shown in the Figure 2. Applied in several fields such as education, health, 
problem solving, and decision-making [5]. In the field of cybersecurity, it has made 
great progress in protecting systems, networks and servers. It has been included in cy-
bersecurity systems to perform protection tasks and provide information to human se-
curity teams in identifying and discovering security threats and responding to them. 
Through its use, it has reduced risks with high efficiency in processing large amounts 
of security data [6]. 

Artificial Intelligence is the ability of a computer program to function like a human 
mind on levels: 
• Narrow AI: Can perform only a specific task or specific problems, 

Fig. 2. Artificial Intelligence Paradigms 
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• General AI: When it can perform any intellectual task with human capacity across 
a wide range of tasks, 

• Autonomous AI: Systems at this level are designed to make decisions independently 
in complex environments [6]. 

The AI techniques used in cybersecurity, particularly in malware detection and re-
sponse, as illustrated in Figure 2. Including several approaches: 

2.1 Machine Learning (ML) 

It is one of the technologies and contains a set of algorithms that enabling machines to 
learn from a dataset. This allows for improved detection of malware and its classifica-
tion according to specific mechanisms, such as its degree of danger or the family to 
which it belongs, etc.  
In [7] the Machine learning techniques are divided into supervised, unsupervised and 
semi-supervised learning models, as illustrated in Figure 3. These are the types of ma-
chine learning algorithms. 

2.1.1 Supervised Machine Learning 
Supervised learning is a target function derived from a labelled training dataset. The 
function is developed from input (x) to output (y) by analyzing the data. The output 
includes the labelling of the input data, which is the information needed for the model 
to make correct discoveries and predictions.  
Supervised algorithms are applied in classification and regression tasks. Some of these 
algorithms are k-NN algorithms, decision trees, and support vector machines (SVM). 
Supervised learning relies on having a training dataset for each supervised data point, 
which is correctly labeled. The model is evaluated by validating the trained model and 
testing it on a different test dataset that was not used for training [7]. 

2.1.2 Unsupervised Machine Learning 
Unsupervised learning involves learning from unlabeled data (without labels); where 
only input data (x) is available and there is no specific output data. This type of learning 

Fig. 3. Types algorithms of neural network 
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focuses on the basic structure or distribution of data to recognise patterns or understand 
the relationship between them. Models of this type are organised without external su-
pervision and are often used in clustering and understanding the rules of association 
between data. Among these algorithms are k-means, hierarchical clustering, and prin-
cipal component analysis (PCA). This learning is also applied in detecting unusual be-
haviour in the field of cybersecurity, analysing large data sets to facilitate their under-
standing and interpretation, and extracting features from data [7]. 

2.1.3 Semi-Supervised Machine Learning 
This type of machine learning uses a training dataset for models consisting of a mixture 
of labelled and unlabeled data by combining supervised and unsupervised learning. 
This is because unlabeled data provides valuable information about the data and its 
distribution, and the amount of this data is often larger than that labelled data. Among 
these techniques are graph-based models and generative models, which are used in cy-
bersecurity to detect intrusions [7]. 

2.2 Neural Network (NN) 

It is a computational model of artificial intelligence inspired by the work of the human 
brain, consisting of interconnected elements called nodes or neurons. It processes in-
formation, reduces errors, and learns patterns from experience in order to make deci-
sions based on input data. It is used in various fields, such as image recognition [8]. 

2.3 Deep learning (DL) 

A set of neural network algorithms that mimic the human brain to solve complex prob-
lems by recognizing patterns, capturing concepts from processing large amounts of 
data, and learning from them to gain knowledge [9]. 

3 Artificial Neural Networks (ANNs) 

Neural networks are a crucial aspect of AI and ML and reside somewhere between deep 
learning and machine learning. These computational systems are based on the biologi-
cal neural network present in the human brain. Networks of nodes known as neuronees 
are placed into layers that are interconnected. Among such networks are convolutional 
neural networks (CNNs) and recurrent neural networks (RNNs). Widespread applica-
tions of neural networks in the analytics of large datasets for the purposes of recognition 
of patterns and learning from them, as well as in cybersecurity for event detection, in-
visible vulnerabilities and, polymorphic viruses, have been reported [8, 10, 11]. 
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3.1 Fundamental Composition of Artificial Neural Networks 

Neural networks are algorithms inspired by the way the human brain works. The goal 
is to learn patterns from data to make decisions or predictions and discoveries, as 
illustrated in Figure 4 . a general artificial neural network model that contains the main 
components The basic structure of a neural network, represents the X1......Xn input , 
W1.....Wn weights, Y output, and activation functions. It consists of layers (input - 
hidden - output). 
The neural network initially takes raw data, such as images, text, numbers, etc., in the 

input layer. The hidden layers are processed and transformed step by step, and each 
layer learns something new. In the end, the network presents the result, such as image 
recognition or weather prediction, in the output layer. Each connection within the net-
work has a weight that controls the importance of the information (the values that the 
inputs are multiplied by to determine their effect on the output). The network decides 
whether the information is important or not based on the activation functions, which 
determine whether the node is "active" or "inactive," Without these function, the neural 
network becomes linear and unable to learn complex patterns. The most famous acti-
vation function is the sigmoid function, which converts values between 0 and 1 but may 
cause the gradient to disappear. The softmax function is used in the last layer of multi-
class classification, as illustrated in Figure 5 [13]. Common activation functions in ar-
tificial neural networks (NNs). 

W2 

Fig. 4. General artificial neural network model 

ʃ + 
X1 W1 

Y 
X2 

Wn Xn 

Fig. 5. Activation functions in artificial neural networks. 



70                                                          Libyan Journal of Informatics, Vol. 02, Issue 01, Jun. 2025 

3.2 Classification of Neural Networks 

Neural networks can be classified as shown in the following in table 1. 

Table 1. Classification of Neural Networks 

Neural networks Type of learning Category 
Multi-Layer Perceptron Supervised Feedforward 
Convolutional Neural Network Supervised Feedforward 
Bidirectional Associative Memory Supervised Feedback 
Recurrent Neural Network Unsupervised Feedback 
Self-Organizing Map Unsupervised Competitive: 
Adaptive Response Theory Unsupervised Competitive 

Feedforward networks are a type of artificial neural networks in which data moves from 
an input layer to an output layer in one direction. They may have multiple hidden layers 
for easier analysis, and are used for different tasks. Feedback networks are among the 
most complex neural network structures, and CNN is an example of a Feedforward 
network in artificial neural networks, 
Feedback networks consist of an artificial neural network that is capable of learning 
from information-dense sequential data due to its structure. This makes it a powerful 
tool. Its memory-preserving, learning, analysis, and prediction properties make it ver-
satile in artificial intelligence applications, especially in recurrent neural networks 
(RNNs), 
Competitive networks are a type of artificial neural networks that learn through the 
process of competition between neurons to respond to certain inputs, leading to self-
organization and effective memory retention of patterns learned over time. Learning in 
competitive networks is usually unsupervised. Their ability to classify and recognize 
patterns along with clustering, image processing and data mining makes them powerful 
tool in various applications. Competitive networks are often associated with Self-Or-
ganizing Maps (SOMs) and Adaptive Resonance Theory (ART) [12]. 

4 Malware Representation as Images 

With the ongoing digital transformation in many areas, including cybersecurity, there 
are increasing problems in detecting, classifying, preventing or, mitigating malware in 
electronic systems and devices. An emerging malware visualization technique involves 
converting malware binary files into grayscale (0-255), colored, or binary (0-1) images. 
To convert them, the malware code or binary files are used to convert them into a two-
dimensional array of pixels. As illustrated in Figure 6. 
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Fig. 6. Representation of Malware as an Image 

Researchers have used this visual similarity to detect and classify malware. The mal-
ware binary code was visualized as grayscale images. The study visualized the codes 
of 25 malware families as grayscale images with values ranging from zero to 255 (0: 
black, 255: white) [14]. 
Grayscale images contain important features such as structural differences, information 
density, and visual similarities between malware families, all of which contribute to the 
effectiveness of the malware detection process. These features enable deep learning 
models to classify malware accurately and efficiently, 
Binary image analysis with deep learning is used. A proposed method uses convolu-
tional neural networks (CNN) to analyze binary images. This method allows the model 
to learn complex patterns and features from images, which improved the accuracy of 
malware detection [15]. 

5 Image-Based Malware Classification 

A method, image-based malware classification, applies artificial intelligence models to 
the information and identification of malware. They are converted from malware files 
or binary code into a binary image, RGB, or grayscale image. The image dataset is 
divided into training data and test and verification data. Neural network techniques are 
trained to classify malware into families or order them with respect to their severity. 
This can detect malware more accurately and efficiently, outperforming traditional 
methods that fail to detect some malware, enhancing cybersecurity by integrating de-
tection and response to potential and advanced malware threats. 
A malware family is defined as a group of sub-malware programs that share similar 
attack data. These families have distinct characteristics and behaviors that are similar 
to each other, which contributes to the smooth detection and classification of malware. 
The image representation of a particular family is completely difference from that of a 
different family belonging to another type. This is a result of converting the program-
ming code into a binary file, which is referred to as (visual similarity). If old samples 
are used to execute new binary files, the resulting binary files will be similar. In most 
cases, converting an executable file into a grayscale image will help detect and classify 
the differences between samples belonging to the same family, as illustrated in Figure 
7. Two grayscale malware families. 
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Fig. 7. Grayscale representation of the binary content of two types of malware samples. 

6 Malware Analysis and Traditional Malware Detection 
Techniques 

Malware detection, classification, and analysis is critical to cybersecurity and signature-
based and behavioral detection methods are traditional techniques that have been used. 
As malware grows and evolves to become more sophisticated, and the obfuscation tech-
niques used by malware become more sophisticated, these methods are no longer able 
to protect against undetected infections. These methods can be leveraged through static 
analysis, which is performed by extracting features from static malware stored on disk, 
and hybrid methods that combine dynamic and static analysis. 

6.1 Malware Analysis 

Malware analysis in cybersecurity has been of great importance to understanding and 
mitigating the risks posed by malware. By using various analysis techniques and tools, 
analysts can examine and understand malware to better determine its behavior, intent, 
and potential impact on systems, networks, and modern malware sites. 

6.1.1 Static Analysis 

Static malware analysis is a traditional malware detection technique used to detect mal-
ware without running it. This type of detection analyses source code to extract infor-
mation and understand malware behaviour. At employs techniques such as string anal-
ysis, file structure examination, and syntax analysis. Static analysis can provide initial 
information on malware and often yields limited and simplistic insights that are not 
sufficient to identify the malware accurately. 
Static analysis works as the starting point in the malware analysis process, also in de-
ciding whether such indicators of compromise need to be located and analysed imme-
diately. The approaches of static analysis include delving into the code and the internal 
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processes of a binary file. It is necessary to know the operating system and the pro-
gramming language for deeper insight. Static analysis works to quickly analyse a mul-
titude of files at once; however, malware in its intense variants slows down its execution 
to complex malware so as not to be detected; its limitations bedevil its effectiveness in 
the most sophisticated threats in the evasion category [16].  
Static analysis is complicated by binary obfuscation techniques that transform malware 
binaries to resist reverse engineering. This makes static analysis expensive and less 
reliable, especially against sophisticated evasion techniques used by malware develop-
ers. Behavioural analysis techniques and machine learning are crucial for understanding 
malware and identifying new variants [17]. 
The static analysis of malware has certain drawbacks. Malware constructors utilise cer-
tain binary code obfuscation approaches to cause great difficulties in reverse engineer-
ing, making it utterly expensive and very error-prone. Critical information about the 
size of data structures or variables can especially be overlooked during the static anal-
ysis stage, raising more complexities towards the static analysis stage [18]. 

6.1.2 Dynamic Analysis 

Dynamic malware analysis examines a sample of malware as it runs on the system. In 
simulated or controlled environments, such as virtual machines, emulators, simulators, 
and sandboxes, it is possible to analyze and monitor malicious code. By analyzing mal-
ware's interactions with the system and network, its changes, and interactions with other 
processes on the host system, we can understand how it affects a host system. 
Dynamic analysis does not require the disassembly of the executable and reveals the 
true behaviour of the malware, which is often resistant to static analysis. Malware can 
behave differently in a simulated environment than in a real-world setting, making de-
tection more challenging. Certain malware behaviours are also conditional, making 
them difficult to identify in a controlled setting [18]. 
Advanced malware can use alternative behaviour in a virtual environment in order to 
mitigate the notice of its presence and thus become difficult to identify [17]. Dynamic 
analysis faces challenges such as evasion techniques, limited data availability, and com-
putational complexities. Additionally, it emphasises the need for robust systems that 
can handle advanced threats, address limitations of current methods, and provide early 
detection capabilities [18]. 

6.2 Malware Traditional Detection Techniques 

Traditional malware detection techniques include signature-based, behavior-based, or 
hybrid detection, each with their own strengths and weaknesses. Signature-based de-
tection is effective for known threats but struggles with new variants, while behavior-
based detection provides broader coverage but can lead to false positives and user frus-
tration. 

6.2.1 Signatures –based and Behavioral –based Detection Malware 
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Detection using signatures can be effective for the recognition of known threats, but it 
only works based on certain predefined patterns. This method, however, becomes inef-
fective when used against never-before-seen or altered malware that does not conform 
to existing signature patterns. Such detection methods are also ineffective against pol-
ymorphic and code-morphing malware, as they can easily evade detection by altering 
their signatures. Although the behaviour-based approach is capable of recognising a 
wider spectrum of malware, including unknown ones, it is also prone to false positives 
due to their over inclusiveness. In addition to that, such methods can also mistakenly 
identify non-malicious executable as malware if their behaviour contextually aligns 
with malware behaviour [19]. 
A new approach blending signature and behaviour detection was proposed in a study. 
This system does have some efficiency against certain known and emerging malware 
threats but cannot combat new styles of complex malware that do not have defined 
signatures as such, which can leave gaps in security. The system also performs real-
time network packet analysis, which is very demanding and resource-intensive. This 
may cause performance problems depending on the amount of data traffic since the 
system has to work hard to keep up with the data flow. In addition, this system tries to 
minimise false positives, but the very nature of behavior-based detection is bound to 
cause some misclassification [20]. 

7 Related Work  

Models for malware detection and classification using supervised and unsupervised 
neural networks, as well as other types of artificial neural networks (ANNs), are being 
created and enhanced in a various way for use in malware detection and classification 
techniques. 

7.1 Models Supervised  

In study [21], Multilayer Perceptron (MLP) achieved superior performance compared 
to other traditional malware detection techniques on a specific ransomware dataset. 
However, the study used a single type of malware, which limits the detection of other 
types of high-quality datasets and hinders the effectiveness of the proposed methods. 
Other study research in [22], “Android Malware Detection Using Backpropagation 
Neural Network”, the model classifies apps as malicious or benign. Experimental re-
sults indicate that the proposed method can discriminate with 100% accuracy. How-
ever, the study used small datasets, which exposes the risk of overfitting. In addition, 
the absence of cross-validation or testing phase metrics (such as precision, recall, or F1 
score) weakens the reliability of asserting 100% training accuracy. While the simplicity 
of the model using lightweight features and a shallow network may favor deployment 
on resource-limited devices, this trade-off may weaken the detection effectiveness in 
complex threat environments. 
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An earlier study was conducted [23], proposes a malware classification methodology 
that integrates dynamic behavioural profiling with a backpropagation (BP) neural net-
work. This approach achieves 86% classification efficiency in detecting real-world 
malware samples. Although, the authors present the challenges in feature selection, 
computational overhead, and variability across malware classes. The study did not use 
precise evaluation metrics. In addition, some malware families exhibit significantly 
lower classification performance than others. 
In a study [24], it improved detection of persistent malware with an accuracy of 97.8%, 
but its reliance on imported functions and imbalanced data reflects broader challenges 
in this field. The study also used a binary neural network classifier to classify Windows 
Portable Executable (PE) files, making the method fail to detect other or advanced 
threats in other environments. Furthermore, the data was not validated on diverse and 
recent datasets (such as EMBER and VirusShare). 
The study [25], APSO-CNN-SE: An Adaptive Convolutional Neural Network Ap-
proach for IoT Intrusion Detection aimed to develop an efficient and effective intrusion 
detection system (IDS) specifically designed for Internet of Things (IoT) networks. The 
proposed model APSO-CNN-SE shows significant improvements in detection accu-
racy compared to the baseline CNN model and outperforms other models. However, it 
cannot solve the problem of imbalanced data distribution and is limited to IoT networks. 
Another study [26], proposes an image-based malware classification model using con-
volutional neural networks, EfficientNet. The proposed model, EfficientNetB1, 
achieved 99% accuracy in malware classification. Compared to other models, while 
EfficientNetB1 outperforms heavier models, the study neglects comparisons with light-
weight architectures (such as MobileNet and ShuffleNet) specifically designed for ef-
ficiency. However, resizing/padding can delete or distort critical byte sequences, unlike 
API-based vectors that preserve subtle feature semantics. The use of an outdated dataset 
raises concerns about information accuracy, generalisability, and resilience against 
modern, sophisticated threats. 
In another study [27], convolutional neural networks were used to detect malware by 
converting binary malware files into greyscale images, with an accuracy of 90% in 
distinguishing between benign and malicious files. However, the error rate was high, at 
14.02%, which leads to misclassification of benign files as malicious. Adversarial at-
tacks (such as malware pixel jamming) can also exploit CNN vulnerabilities. Their lim-
ited adaptability to sophisticated threats underscores the need for advanced frame-
works. 
According to [28], the study focused on image-based malware detection using convo-
lutional neural networks (CNN) and CRNN networks. The results show that the CRNN 
outperformed a traditional CNN, achieving 92.24% accuracy, 93.12% precision, and 
92.56% F1 score, while the basic CNN scored ~67% across metrics. Nevertheless, 
noise/obfuscation (e.g., Gaussian noise) reduced CRNN accuracy to 86.67%. Addition-
ally, those evasion tactics could undermine CNNs’ reliability by disrupting learnt pat-
terns. 
In another study [29], proposed a CNN-based method for Android malware detection. 
The LeNet-E model (entropy-color images) achieved 98.5% accuracy on ARM and 
99.0% on x86 datasets, outperforming SVM (88.0% on x86) and Logistic Regression 
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(96.1%). Regardless, the study did not evaluate scalability, computational demands, or 
applicability to other platforms (e.g., Windows, IoT). Furthermore, LeNet/AlexNet are 
outdated; modern architectures (e.g., MobileNet, EfficientNet) could improve accuracy 
while maintaining efficiency. 
In addition, study [30], proposed a CNN-based ransomware detection model by ana-
lyzing Portable Executable (PE) headers. The model achieved 93.33% and 95.11% ac-
curacy on two test sets, with faster training/testing times compared to prior methods. 
Although, reliance on static PE header analysis limits detection of packed/encoded ran-
somware. Moreover, attackers can trivially modify PE headers (e.g., section names, 
timestamps) to evade detection, a vulnerability not tested in the study. 
In research conducted by [31], introduced a web-based malware detection system using 
a 1D-CNN to classify Portable Executable (PE) files as malicious or benign. The model 
achieved high accuracy across three datasets: 98.85% (Benign and Malicious PE Files), 
98.37% (Classification of Malware), and 97.25% (MalwareDataSet). However, the re-
liance on header-based features limits detection of sophisticated threats, particularly 
those targeting fragmented IoT ecosystems or employing signature evasion tactics. 
In an earlier study [32], the VBDN framework, an image-based CNN algorithm for 
multi-class malware detection. Evaluated on four public datasets, VBDN achieved over 
90% accuracy, surpassing traditional machine learning classifiers. Albeit, the frame-
work struggles with adaptability with "obscured" malware variants, indicating gaps in 
handling poorly defined or novel threat types. 
Other study research [33], introduced IMCFN, a fine-tuned convolutional neural net-
work (CNN) for malware classification using the Malimg dataset (9,435 grey-
scale/cooler images across 25 families). The model achieved 98.82% accuracy with 
color images versus 98.27% for greyscale, demonstrating that cooler enhances feature 
discrimination. High precision (98.85%) and recall (98.81%) suggest strong generali-
sation across malware families. After all, attackers could manipulate cooler channels 
(e.g., altering pixel RGB values) to deceive the model, a vulnerability not addressed. 
In research, conducted [34], worked a Malware Classification Framework comparing 
two approaches: a dense neural network (DNN) applied to binary files and a convolu-
tional neural network (CNN) for malware image classification. Using the 2015 Mi-
crosoft Malware Classification Challenge dataset, the CNN-based method achieved 
97.8% accuracy, outperforming the DNN. While demonstrating the efficacy of image-
based deep learning, the framework struggles with sophisticated evasive malware and 
risks overfitting due to reliance on static signatures. 
In addition, research [35], an improved CNN model for malware classification using 
greyscale images generated from binary files. The Malimg dataset (9,339 images across 
25 families) was used, with binaries converted to 2D arrays. The custom CNN achieved 
98.03% accuracy, outperforming pretrained models like VGG16 (96.96%) and Res-
Net50 (97.11%). A hybrid CNN-SVM (linear kernel) reached 99.59% accuracy. How-
ever, computational inefficiencies in feature extraction (e.g., GIST) and scalability on 
larger datasets remain challenges. Additionally, absent FPR/FNR data obscures opera-
tional risks (e.g., false positives). 
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7.2 Models Unsupervised 

An earlier study [36], used a self-organising map (SOM) for unsupervised clustering 
analysis of malware behaviour, analyzing 270,000 samples to address limitations of 
traditional antivirus (AV) classification. The SOM generated behaviour-based clusters 
that outperformed AV vendor classifications in accuracy. Although reliance on incon-
sistent AV labels for validation introduced potential biases. Furthermore, malware can 
mimic benign behaviours or randomise API call sequences to evade detection. 
In addition to the study [37], a hybrid malware classification framework combining 
self-organising feature maps (SOFMs), logistic regression, and Bayesian networks. Us-
ing continuous machine activity data (e.g., execution behaviours), the model reduced 
overfitting and improved accuracy by 7.24–25.68% over traditional methods like Ran-
dom Forest. However, performance significantly dropped on unseen datasets, indicat-
ing that the model may encounter difficulties in accurately classifying new cases and 
revealing generalisation gaps. 
In another study [38], developed an explainable intrusion detection system (X-IDS) 
using self-organising maps (SOMs) to balance interpretability and accuracy. Evaluated 
on NSL-KDD (91% accuracy) and CIC-IDS-2017 (80% accuracy), the model enabled 
transparent threat clustering but suffered from overfitting on the latter dataset. Despite 
high accuracy, the lack of precision, recall, and F1-score metrics limits a holistic per-
formance assessment. 
In study, research [39], developed an LSTM-based model to classify five malware types 
(backdoors, rootkits, Trojans, viruses, and worms) and benign software using a custom 
MC-dataset-multiclass (19,740 samples). The model achieved 67.6% overall accuracy, 
with a high true positive rate (TPR) for rootkits (92.19%) but struggled with Trojans 
(51.06%). Despite balanced malware/benign samples, performance variability across 
classes highlights challenges in generalisation. 
Another research study [40], enhanced ransomware detection by integrating an At-
tended Recent Inputs (ARI) cell into LSTM networks. Using a dataset of 12,500 Win-
dows-emulated ransomware/benign file sequences, the ARI-LSTM achieved 93% ac-
curacy, outperforming the standard LSTM (87%). Attention mechanisms improved de-
tection of local behavioural patterns (e.g., repeated encryption calls), validated by ROC 
curves showing low false positives. Moreover, the model’s generalisability to other 
malware types and real-world efficiency remain unaddressed. 
The research study [41], proposes an LSTM- and GRU-based RNN model for malware 
classification using API call sequences extracted via dynamic analysis (Cuckoo Sand-
box, Alkanet Tracer). The model classified eight malware types, achieving strong val-
idation accuracy despite variable sequence lengths. A softmax output layer generated 
malware family probabilities. However, the study omitted overfitting risks and real-
world deployment challenges (e.g., adversarial noise, computational constraints). Ad-
ditionally, dynamic analysis (Cuckoo Sandbox) is slower and resource-heavy compared 
to other methods, limiting scalability. 
In another research study [42], developed LSTM and bidirectional RNN models to de-
tect malware in cloud environments using 40,680 live cloud samples (malicious/be-
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nign). The models analysed resource metrics (CPU/memory usage) to distinguish be-
haviours, achieving >99% accuracy. LSTMs trained faster than bidirectional RNNs, 
with input process sequencing critical to performance. Although the study assumed sin-
gle-malware compromises per VM (unrealistic for multi-tenant clouds) and relied on 
average resource patterns, leaving stealthier malware undetected. Furthermore, accu-
racy inflation: >99% accuracy on controlled live samples may not reflect real-world 
multi-tenant chaos or adversarial attacks. 
In another study [43], developed an RNN-based model for Android malware detection, 
achieving 98.58% accuracy. While effective at distinguishing malware from benign 
apps, RNNs may fail against apps mimicking benign sequences or injecting noise (e.g., 
junk API calls). Additionally, the need for continuous model updates to address evolv-
ing threats. 
In study [44], they developed a novel method, a hybrid Convolutional Gated-Recurrent-
Unit (CGRU) model for malicious URL detection, combining CNNs (spatial feature 
extraction) and GRUs (temporal sequence processing). Trained on 405,000 URLs (65k 
benign, 340k malicious), the model achieved 99.6% accuracy, outperforming manual 
feature-based methods and standalone neural networks. However, adaptability to evolv-
ing threats via real-time learning remains unaddressed. 
Another study [45], used an RNN model to predict malware within the first 5 seconds 
of execution using initial behavioural data (e.g., API calls, registry changes). Trained 
on a dataset of benign files, APTs, and ransomware from VirusShare, the model 
achieved 94% accuracy, enabling early threat intervention. Moreover, maintaining ef-
ficacy requires frequent retraining with new malware samples, necessitating automated 
update pipelines. 
An earlier study conducted a study [46], designed an Adaptive Resonance Theory 
(ART-2)-based intrusion detection system (IDS) for local area networks (LANs). Using 
the KDD'99 dataset, the hybrid system (data acquisition + ART-2) achieved a 98% 
recognition rate for attacks and 96% for normal traffic. Although, it struggled with rare 
attack types (e.g., multihop, guess_passwd, buffer_overflow), which comprised only 
0.003% of the dataset, leading to high false negatives. Furthermore, synthetic datasets 
and outdated traffic lack modern attack vectors (e.g., IoT exploits, ransomware). 
In another study[47], introduced a hierarchical ART-2m neural network for malware 
detection, combining adaptive resonance theory (ART) with Control Flow Graph 
(CFG) vectorisation via Graph2Vec. Analysed 500 executables using API call se-
quences and CFG structural patterns, achieving high speed/accuracy in detecting 
known and unknown malware variants. Outperformed naive Bayes classifiers in adapt-
ability and efficiency but faced scalability and generalisation challenges due to limited 
data. Additionally, malware can alter CFGs (e.g., dead code insertion, control flow flat-
tening) to evade Graph2Vec’s structural analysis. 
In addition, another study [48], used adaptive resonance theory in a hybrid intrusion 
detection system (IDS) combining Projective Adaptive Resonance Theory (PART) and 
K-means clustering to enhance network security. Evaluated on the KDD'99 dataset, the 
hybrid model reduced training time while maintaining detection accuracy. The ap-
proach improved system performance through multi-directional feature optimisation 
but remained confined to traditional network security frameworks, lacking validation 
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on modern threats. Furthermore, it is unspecified how PART and K-means interact—
e.g., sequential vs. parallel processing—limiting reproducibility. 
Earlier research [49], developed a database intrusion detection system (DIDS) using 
Adaptive Resonance Theory (ART) integrated with data mining techniques. By analyz-
ing database access logs and query patterns, the model demonstrated adaptability to 
dynamic environments, achieving high accuracy and low false positive rates for both 
common and rare intrusion types. However, scalability and applicability to modern, 
complex database architectures (e.g., distributed/NoSQL systems) remain unaddressed. 
Other research [50], explored the application of Adaptive Resonance Theory (ART) 
variants (fuzzy ART, ART2-A, PCA-MART2) to enhance intrusion detection systems 
(IDS). Key findings include the importance of optimal parameter tuning (vigilance, 
learning rate) and the benefits of hybridising ART with methods like PCA. While ART 
techniques show promise for real-time IDS, the study calls for further refinement to 
address scalability and complex threat landscapes. 
In addition, research [51], explored the use of Adaptive Resonance Theory 1 (ART1) 
to enhance intrusion detection systems (IDS). The model dynamically learns new in-
trusion patterns without overwriting prior knowledge. Fuzzy ART further improved 
IDS performance by enabling anomaly detection for unknown threats. However, the 
study lacked empirical benchmarks against state-of-the-art methods, limiting validation 
of its claims. Additionally, attackers can manipulate binary features (e.g., flipping pro-
tocol flags) to mimic benign patterns. 

7.3 Hybrid Models 

An earlier study [52], proposed hybrid CNN-LSTM models for Android malware de-
tection. The LSTM-CNN architecture achieved 98.53% accuracy, outperforming 
standalone models: MLP (94.73%), CNN (87.91%), LSTM (95.90%), and CNN-LSTM 
(96.76%). However, the model’s generalisability to other malware types/datasets is un-
certain, and performance may degrade with parameter changes or evolving threats. 
Other study research [53], evaluated Multi-Layer Perceptron (MLP), Convolutional 
Neural Networks (CNN), and Recurrent Neural Networks (RNN) for ransomware clas-
sification. The MLP achieved 100% binary classification accuracy, outperforming 
CNN (94%) and RNN (79%). Moreover, the dataset is small size (notably an incon-
sistent split: 372 training and 93 testing) and imbalance (3:1 malware-to-benign ratio) 
raised concerns about overfitting and generalisability. Regardless, MLP is superior per-
formance but the need for larger datasets to validate robustness. 
Another study [54], researched a hybrid CNN-BiLSTM model for malware detection 
and classification. The system achieved 99.44% detection accuracy (data length: 1,200) 
and 95.4% classification accuracy (data length: 2,000), with a false positive rate (FPR) 
of 0.23%, demonstrating strong performance in identifying malware while minimising 
false alarms. However, ambiguities in dataset composition and testing protocols raise 
concerns about reproducibility and other environments' applicability. Furthermore, 
while 0.23% FPR is low, unstated false negative rates (FNR) could mask critical missed 
detections (e.g., ransomware). 
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8 Review Methodology 

This paper adopted a systematic literature review to survey advances in malware detec-
tion and classification using artificial neural networks (ANNs). The steps are as fol-
lows: 

8.1 Research Objectives and Questions 

The primary objectives of this review are to: 
1. Identify and categorise the various ANN architectures applied in malware detection 

and classification. 
2. Compare between Supervised and Unsupervised Learning models via studies. 
3. Highlight the challenges and future directions in ANN-based malware analysis. 

The review addresses the following research questions: 
1. RQ1: Which ANN architectures are most prevalent and effective for malware de-

tection and classification? 
2. RQ2: How do different ANN-based approaches comparing to models supervised 

and unsupervised? 
3. RQ3: What gaps exist in current literature, and what are the potential avenues for 

future research? 

8.2 Study Field Area  

Focused on malware detection/classification in diverse environments: web-based infra-
structure, PE headers, cloud platforms, mobile (Android/Windows), IoT devices, 
URLs, API-call logs, databases, and network traffic. 
Examine four primary ANN paradigms: Convolutional Neural Networks (CNNs), 
Self-Organising Maps (SOMs), Recurrent Neural Networks (RNNs), and Adaptive 
Resonance Theory (ART) networks and other models while also noting emerging and 
hybrid architectures. 

8.3 Study and Analysis  

Assessing Supervised vs. Unsupervised vs. Hybrid. Comparing the strengths, limita-
tions, and applicability of each paradigm. 
Environment-specific Insights identify which ANN techniques excel in particular set-
tings (e.g., CNNs for image-based detection, SOMs for clustering unknown samples). 
Identifying gaps, highlighting areas that need further research, such as generalising 
malware that need to be detected, dealing with imbalanced datasets, and reducing com-
putational overhead. 
By this transparent and reproducible methodology, the review provides a comprehen-
sive, up-to-date mapping of how ANN techniques are being leveraged and where they 
fall short in combating the evolving malware landscape. 
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Table 2. Comparative between Supervised and Unsupervised Learning models 

Aspect Supervised Models Unsupervised Models 

Data 
Requirement 

Require large, accurately 
labeled datasets (e.g., 
malware family tags) to train 
classifiers. 

Operate on unlabeled data ideal 
when labels are scarce or 
expensive to obtain. 

Typical 
Architectures 

CNNs (e.g., EfficientNetB1, 
Inception), MLPs, RNNs 
(LSTM/GRU) 

Self-Organizing Maps (SOM), 
Adaptive Resonance Theory 
(ART) networks 

Detection 
Accuracy 

Very high—often >95 % 
(many CNNs reach 99 %)  

Good but generally lower 
SOMs around 91 %, ART up to 
98 % on common attacks, but 
rare events drop sharply  

Generalization 

Can generalize well if trained 
on diverse, balanced labels; 
vulnerable to zero-day 
variants without labeled 
examples. 

Naturally, group's novel 
behaviors, but clusters may 
misclassify rare or evolving 
malware families. 

Interpretability 
Often “black-box”—hard to 
explain why a sample is 
flagged. 

Clusters and prototypes (e.g., in 
SOM/ART) offer 
visual/semantic insights into 
malware behavior. 

Computational 
Cost 

High, especially deep CNNs 
and hybrid models (e.g. 
CNN–BiLSTM). 

Moderate to low: SOM/ART 
training is typically faster and 
memory-efficient. 

Adaptivity Static once trained—requires 
retraining on new labels. 

Adaptive by design (ART’s 
stability-plasticity) and can 
incorporate new patterns 
without full retraining. 

False Positives 

Can achieve very low FPRs 
(down to 0.2 % with CNN–
BiLSTM) but sensitive to 
adversarial noise. 

FPR varies ART can maintain 
low FPRs on common attacks 
but struggles with uncommon 
patterns. 

Best Use 
Cases 

When high‐quality labeled 
datasets exist and accuracy is 
paramount. 

When labels are unavailable or 
for exploratory analysis of 
emerging threats. 

9 Results and analysis  

9.1 Supervised Models 

MLPs are among the earliest neural network models applied in supervised malware 
classification. In [21], an MLP classifier trained on a Kaggle ransomware dataset out-
performed traditional techniques in accuracy and precision, although its effectiveness 
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was limited by dataset quality and availability. Similarly, the model in [22], which fo-
cused on Android malware detection using MLPs and features like APK size and bat-
tery usage, achieved 100% accuracy during the training phase. However, the small sam-
ple size significantly undermined its generalizability to real-world threats. In [23], a 
behavioral-based MLP approach attained 86% accuracy for malware samples and 99% 
for benign files using dynamic features from the HABO system, confirming MLPs' po-
tential in behavioral analysis. 
CNNs have demonstrated exceptional performance in image-based malware detection 
due to their ability to automatically extract spatial features from visual representations 
of malware binaries. In [26], the EfficientNetB1 CNN model, trained on the Microsoft 
Malware Classification Challenge (MMCC) dataset, achieved 99% accuracy with sig-
nificantly reduced computational time (0.1881 sec), outperforming other CNN models 
like ResNet and Inception. Another study [27] converted malware binaries into images 
and trained a CNN based on the Inception V3 architecture, reaching over 90% accuracy. 
However, challenges like false positives and the evolving nature of malware persisted. 
In [28], a CNN and a hybrid CRNN model were evaluated using the Malicia dataset. 
While both models performed well, the CRNN achieved 92.24% accuracy, with trans-
fer learning further enhancing its performance. However, noise and obfuscation in mal-
ware images reduced detection accuracy, illustrating the vulnerability of CNNs to ad-
versarial modifications. Similarly, [29] utilized CNNs (LeNet and AlexNet) to classify 
Android malware images derived from Hilbert space-filling curves and entropy visual-
izations. Detection rates ranged between 98.5% and 99%, highlighting the method's 
effectiveness, though scalability and computational cost remained issues. 
The study in [30] used CNNs to analyze Portable Executable (PE) headers and achieved 
accuracy rates between 93.33% and 95.11% for detecting ransomware, demonstrating 
fast processing times. Meanwhile, a one-dimensional CNN model in [31] attained up 
to 98.85% accuracy on various datasets, validating the efficiency of lightweight CNN 
architectures in malware detection. 
Other Supervised Architectures. In [35], a CNN model combined with Support Vector 
Machine (SVM) achieved an outstanding accuracy of 99.59% on the Malimg dataset. 
This hybridization demonstrated that CNNs, when paired with classical machine learn-
ing algorithms, could yield highly accurate and robust classifiers. Furthermore, [33] 
showed that CNN performance improved when malware images were represented in 
color rather than grayscale, achieving 98.82% accuracy compared to 98.27% for gray-
scale, indicating the importance of input feature representation. 
Another study [34] compared Dense Neural Networks (DNNs) with CNNs for malware 
image classification and found CNNs significantly more effective, achieving 97.8% 
accuracy. However, the reliance on specific image patterns made the model susceptible 
to evasion techniques. Lastly, [32] introduced a general-purpose CNN-based frame-
work (VBDN) that maintained accuracy above 90% across multiple datasets and out-
performed traditional machine learning classifiers. 
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9.2 Unsupervised Models 

SOMs are unsupervised neural networks capable of transforming complex, high-di-
mensional data into lower-dimensional representations, making them useful for clus-
tering and visualization. In [36], a clustering analysis based on SOM effectively 
grouped over 270,000 malware samples into behavior-based clusters, outperforming 
traditional antivirus classification methods. Another study [37] applied Self-Organizing 
Feature Maps (SOFMs) on continuous machine activity data, demonstrating improved 
classification accuracy (a 7.24% to 25.68% increase over traditional methods). Despite 
these successes, the performance of SOMs diminished significantly when applied to 
previously unseen datasets, highlighting generalization challenges. Additionally, SOM-
based X-IDS systems [38] achieved high accuracy rates (91% with NSL-KDD and 80% 
with CIC-IDS-2017 datasets) and offered interpretable results, though overfitting and 
the lack of comprehensive evaluation metrics remain concerns. 
Although RNNs are predominantly applied in supervised learning, several studies have 
leveraged their capacity to analyze sequential patterns without explicit labels. LSTM 
models used in [39] achieved 67.6% accuracy across a multi-class malware dataset, 
showing promise in identifying temporal malware patterns. However, they struggled 
with low true positive rates for certain malware categories (e.g., Trojans). Another 
study [40] introduced an Attended Recent Inputs (ARI-LSTM) model, which improved 
ransomware detection accuracy to 93%, surpassing standard LSTM’s 87%. These re-
sults suggest that integrating attention mechanisms enhances pattern recognition in mal-
ware behavior. Nevertheless, the cross-generalizability of such models to diverse mal-
ware families was not thoroughly evaluated. 
ART models offer a unique balance between stability (retaining learned knowledge) 
and plasticity (adapting to new inputs), making them highly suitable for the dynamic 
nature of malware threats. The ART2-based model in [46] reported a 98% recognition 
rate for attacks and 96% for normal traffic using the KDD’99 dataset. However, its 
performance was limited when classifying rare attacks (e.g., buffer overflow, 
guess_passwd), which comprised a small portion of the dataset. Additional studies [46], 
[48], and [49] demonstrated that ART networks are capable of fast and accurate detec-
tion, particularly in database and network intrusion contexts. Notably, [49] highlighted 
that ART outperforms SOM and radial basis function networks in detection speed and 
adaptability, although comparisons with newer deep learning techniques were lacking. 

9.3 Hybrid Models 

In [52], researchers proposed hybrid models by combining CNN with LSTM to enhance 
Android malware detection using the Drebin dataset (129,013 samples). The LSTM-
CNN architecture outperformed standalone models, achieving an accuracy of 98.53%, 
compared to 95.90% with LSTM, 87.91% with CNN, and 94.73% with MLP. This in-
dicates that the combination effectively captures both spatial and sequential features. 
However, the study noted that the performance might not generalize to other types of 
malware or datasets due to overfitting and dependence on sequential input representa-
tion like Bag-of-Words (Bow). 
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The study in [54] introduced a CNN-BiLSTM model using image-based representations 
of malware. This hybrid model achieved 99.44% accuracy on malware detection for 
sequence lengths of 1200 and 95.4% accuracy for classification with a sequence length 
of 2000, with a very low false positive rate of 0.23%. The CNN module effectively 
extracts spatial features from malware images, while BiLSTM captures bidirectional 
dependencies in data, enhancing classification accuracy. Despite the promising results, 
performance is sensitive to data length, and improper tuning can lead to accuracy deg-
radation. 
A comparative study in [53] evaluated the performance of MLP, CNN, and RNN on a 
dataset of 4,000 ransomware samples (1,000 benign and 3,000 malicious). The MLP 
achieved 100% accuracy in binary classification, while CNN and RNN reached 94% 
and 79% respectively. Although MLP performed best in this scenario, the small dataset 
size limits generalization. This also suggests that simple architectures can outperform 
complex models if feature engineering is well executed, but for nuanced, real-world 
data, deeper hybrid networks are more scalable. 

10 Discussion 

Supervised ANN models, especially CNNs and MLPs, have shown excellent perfor-
mance in malware detection tasks. Most CNN-based studies achieved >95% accuracy, 
with some models like EfficientNetB1 and CNN+SVM reaching up to 99.59%. Con-
verting malware binaries into images (grayscale, RGB, entropy-based) has proven 
highly effective for CNN training. Model performance often hinges on dataset size, 
balance, and feature diversity. Smaller or imbalanced datasets can lead to overfitting 
and reduced generalizability. Combining CNNs with classical classifiers (e.g., SVM) 
or integrating attention mechanisms improves performance. However, computational 
demands for training deep models. Vulnerability to adversarial inputs (e.g., obfusca-
tion, noise). Limited performance on unseen or highly polymorphic malware. 
Unsupervised neural networks, particularly SOMs and ART, offer interpretability and 
flexibility in handling evolving malware threats. Their capability to cluster unknown 
malware and detect anomalies is valuable in early-stage threat identification. However, 
generalization challenges performance often degrades on unseen or rare samples. De-
pendence on data representation effectiveness varies significantly based on input fea-
tures, such as machine activity logs or image-based encodings. Overfitting risks espe-
cially in complex or noisy datasets like CIC-IDS-2017. Evaluation gaps some studies 
lacked standard performance metrics (e.g., F1-score, precision) and did not benchmark 
against state-of-the-art supervised methods. Despite these challenges, the ability of un-
supervised models to adapt to new malware behaviors without complete retraining is a 
notable advantage. ART networks, in particular, show great potential due to their sta-
bility-plasticity trade-off and robustness in intrusion detection settings. 
Hybrid neural networks clearly offer superior performance in malware detection and 
classification tasks by integrating the strengths of multiple architectures. CNN-
BiLSTM and LSTM-CNN models reached 98–99.4% accuracy, outperforming many 
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single-model approaches. CNNs capture spatial features from malware images or en-
coded sequences, while LSTMs handle temporal behavior patterns effectively. The 
CNN-BiLSTM model, in particular, maintained a low 0.23% FPR, making it suitable 
for practical deployment. However, hybrid models are computationally expensive and 
may not be suitable for low-resource environments. Performance is sensitive to se-
quence length, image size, and dataset balance. Most studies used custom or limited 
datasets (e.g., Drebin, PE files), raising concerns about real-world applicability and ro-
bustness against threats. 

11 Conclusion 

The rapid evolution of malware, characterised by increasingly sophisticated and eva-
sive techniques, has rendered traditional detection methods such as signature-based 
analysis and behavioural analysis ineffective when used against malware that does not 
conform to such stored signature patterns, new types of complex malware that do not 
have specific signatures, and polymorphic, variable code malware. Static analysis is 
limited by the widespread use of obfuscation. Dynamic analysis fails with counter-anal-
ysis techniques and is computationally expensive. These methods are insufficient as 
malware authors use advanced techniques to hide the malicious intent of the program, 
making it difficult to analyze them. Hence, artificial neural networks (ANNs) have 
started to gain the attention of researchers in the field of malware detection and classi-
fication, especially in malware image classification and analysis. This study emphasises 
the potential of artificial neural networks (ANNs) in addressing the challenges of tradi-
tional methods and providing high performance, adaptability, and scalability in mal-
ware detection and classification. 
Supervised models, such as CNNs have shown exceptional performance in image-
based malware classification, achieving high accuracy. However, limitations such as 
information loss during image resizing and exposure to adversarial noise remain critical 
concerns. Other networks, like MLP networks, have shown high accuracy in binary 
classification tasks such as for malware detection. However, their reliance on fixed fea-
tures limits their effectiveness against obfuscated malware. 
Unsupervised models, such as Self-organising Maps (SOMs) and Adaptable Resonance 
Theory (ART) Networks, have demonstrated some interpretable and adaptable solu-
tions to non-stationary data with high malware detection accuracy by the unsupervised 
models. However, they have become unreliable due to low dataset classifications and 
sporadic attack patterns. Although RNN/LSTM-based methods have been used to anal-
yses time series data, such as API calls, it has proven challenging to generalise the 
model across different malware families and frequent retraining is required. 
Hybrid model approaches, such as LSTM-CNN, have outperformed standalone net-
works with high accuracy on a dataset. Additionally, image-based methods using grey-
scale/color representations have benefitted from the pattern recognition strengths of 
CNNs but struggled to deal with the computational overhead and diversity of datasets. 
Moreover, hybrid models, CNN-BiLSTM, have shown improved detection rates with 
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high accuracy by combining sequential and spatial analysis, although their effective-
ness is highly dependent on the quality and size of the data. Finally, more research is 
needed on artificial neural networks for malware detection and classification, as they 
can reduce the need for traditional methods. In the future, researchers may consider 
developing more efficient, scalable, and adaptive neural network-based methods to ad-
dress the changing nature of malware. 
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 ىلإ ،ةلوحتملاو لاكشلأا ةددعتم تاریغتملاً ةصاخو ،ةثیبخلا تایجمربلل عیرسلا روطتلا ىدأ :صخلملا
 ةساردلا هذھ تفدھ .يكولسلا فشكلاو عیقوتلا ىلع مئاقلا فشكلا لثم ،ةیدیلقتلا فشكلا بیلاسأ ةیلاعف يندت
 ،اھفینصتو ةثیبخلا تایجمربلا نع فشكلل (ANNs) ةیعانطصلاا ةیبصعلا تاكبشلل ةلماش ةعجارم ىلإ
 جذامنلا ىلع ةساردلا تزكر ً.امادختسا رثكلأا ةیبصعلا تاكبشلا جذامنل ةلماش ةعجارم للاخ نم كلذو
 .ةعونتم تائیب يف ةنیجھلا جذامنلاو ،فارشلإل ةعضاخلا ریغ جذامنلاو ،فارشلإل ةعضاخلا

 رفوت امنیب ؛)%95 نم رثكأ( ةیئانثتسا ةقد ققحت فارشلإل ةعضاخلا جذامنلا نأ ىلإ ةساردلا جئاتن ریشت
 تایدحت ھجاوت اھنكلو ،ةروطتملا تادیدھتلا عم فیكتلاو ریسفتلل ةیلباق فارشلإل ةعضاخلا ریغ جذامنلا
 ةیناكملا تامسلا جارختسا نیب ةنیجھلا جذامنلا عمجت ،لباقملا يف .ةیئرملا ریغ تانایبلا ىلع میمعتلا يف
 ىلع ةساردلا هذھ دكؤت .ىلعأ ةیباسحلا اھفیلاكت تناك نإو ،%99.4 ىلإ لصت ةقدً ةققحم ،ةینامزلاو
 ربع نسّحمُ میمعتو ،دراوملا ةدودحم تائیبلل ةلاّعف لكایھو ،میتعتلا دض ةیوق لمع رطأ دوجو ةیمھأ

 .ةثیبخلا تایجمربلا تلائاع
 

 تایجمربلا ةروص ،ةثیبخلا تایجمربلا فینصت ،ةثیبخلا تایجمربلا فاشتكا :ةیحاتفملا تاملكلا
 .ةیعانطصلاا ةیبصعلا تاكبشلا تایمزراوخ ،ةثیبخلا

 


